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1. Introduction

1.1. Background

The group von Neumann algebra L(Γ) of a countable discrete group Γ is defined 
as the weak operator closure of complex group algebra C[Γ] acting by left convolution 
on the Hilbert space !2Γ of square-summable functions on Γ, [42]. The classification of 
group von Neumann algebras has since been a main theme in operator algebras centered 
around the following question: How does L(Γ) depend on Γ? The question is particularly 
interesting when all non-trivial conjugacy classes of Γ are infinite (abbrev. Γ is icc), which 
corresponds to L(Γ) being a II1 factor. While this is a fairly broad thematic, the main 
interest is to identify what purely algebraic aspects of Γ could be recovered from L(Γ)
which in essence is a highly analytic environment. This is a rather complicated task as in 
general L(Γ) tends to have only a “faded memory” of Γ. Perhaps the best illustration in 
this direction is A. Connes’ celebrated result [19] which asserts that for any icc amenable 
groups Γ and Λ the corresponding von Neumann algebras are isomorphic, L(Γ) ∼= L(Λ). 
Thus besides amenability, a representation theoretic property of the group, L(Γ) has no 
recollection of any algebraic structure of the underlying group Γ.

In the non-amenable case the situation is even more complex. For instance, methods 
in free probability show that for any collections of infinite amenable groups Γ1, Γ2, ..., Γn

and Λ1, Λ2, ..., Λn where n ≥ 2, the potentially non-isomorphic free products Γ = Γ1∗Γ2∗
... ∗ Γn and Λ = Λ1 ∗ Λ2 ∗ ... ∗ Λn always give rise to isomorphic von Neumann algebras, 
L(Γ) ∼= L(Λ) [25]. Other examples of isomorphic von Neumann algebras arising from 
non-isomorphic non-amenable groups can be constructed using wreath products, see for 
instance [32,7,38].

Over the years however there have been discovered a variety of instances where L(Γ)
is sensitive to various algebraic, analytic and representation theoretic properties of Γ. 
A significant part of this progress was achieved through the emergence of Popa’s de-
formation/rigidity theory in the early 2000. This is a remarkably powerful conceptual 
framework that allows for various algebraic, dynamical, geometric and cohomological 
information of groups to be completely recovered from their von Neumann algebras.

In this paper we are interested in an absolute form of reconstruction, namely when, 
up to isomorphism, Γ is entirely recoverable from L(Γ). Specifically, a group Γ is called 
W∗-superrigid if the following holds: given any group Λ and any ∗-isomorphism θ :
L(Γ) → L(Λ), then one can find a group isomorphism δ ∈ Isom(Γ, Λ), a multiplicative 
character ω ∈ Char(Γ), and a unitary w ∈ L(Λ) such that θ = ad(w) ◦ Ψω,δ; here Ψω,δ

denotes the canonical ∗-isomorphism given by Ψω,δ(ug) = ω(g)vδ(g), for all g ∈ Γ, where 
{ug : g ∈ Γ} and {vh : h ∈ Λ} are the canonical group unitaries of L(Γ) and L(Λ), 
respectively.

The first examples of W ∗-superrigid groups were discoverd by Ioana, Popa, and Vaes 
in their groundbreaking work [38]. Moreover, their paper is particularly important as it 
introduces a conceptual approach towards the study of W ∗-superrigidity through several 
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novel techniques such as the analysis of comultiplication and height arguments. Develop-
ing several new technological aspects of these methods, a few other classes of examples 
of W ∗-superrigid groups were found subsequently in [8,2,14].

1.2. Statements of the main results

In this paper we introduce several methods of constructing W ∗-superrigid groups. 
Some on them are entirely new while others rely on prior constructions, mainly from 
[38,14]. We start by introducing our classes of groups, highlighting their features and 
importance along with the main results in the von Neumann algebraic setting and various 
applications for the study of C∗-algebras.
Class IPV. As already mentioned, the first examples of W ∗-superrigid groups were 
discovered by Ioana, Popa and Vaes in [38]. Their groups arise via a specific generalized 
wreath product construction and some of its algebraic features play a key role in our 
work too. Therefore, to properly introduce our results, we briefly recall some of these 
examples below. Throughout the paper we denote by class IPV the collection of all 
generalized wreath product groups Γ = A 'I G satisfying the following conditions:

(1) The base group A ∼= Z2 or Z3;
(2) The acting group G is any icc, non-amenable bi-exact group that contains an infinite 

property (T) normal subgroup;
(3) The underlying set I = G/K on which G acts is the set of left cosets with respect 

to an infinite amenable malnormal4 subgroup K < G.

There are many natural examples of groups in class IPV, e.g. one can let G be any 
uniform lattice in Sp(n, 1) n ≥ 2 and K be any maximal amenable subgroup of G (see 
Section 4 for other concrete examples of groups that belong to the class IPV).

Besides being W ∗-superrigid another important feature for us is that all groups in IPV
are bi-exact [6,21]. Recall that a countable group Γ is called bi-exact (in the sense of [53]) 
if it is exact and admits a map µ : Γ →Prob(Γ) such that limh→∞‖µ(ghk) −gµ(h)‖ → 0, 
for all g, k ∈ Γ. Other examples of bi-exact groups include all hyperbolic groups [52] and 
Z2!SL2(Z) [54].

The first main result of our paper is establishing product rigidity for von Neumann 
algebras of bi-exact groups, in the same vein with [11, Theorem A]. Namely, we have the 
following result:

Theorem A. Let Γ = Γ1×· · ·×Γn be a product of n ≥ 1 icc, non-amenable, bi-exact groups 
and denote M = L(Γ). Let Λ be any countable group and t > 0 such that Mt = L(Λ).

Then there exist a product decomposition Λ = Λ1 × · · · × Λn, scalars t1, . . . , tn > 0
with t1 · · · tn = t, and a unitary u ∈ Mt such that uL(Λi)u∗ = L(Γi)ti for all 1 ≤ i ≤ n.

4 A subgroup K < G is called malnormal if gKg−1 ∩ K = 1, for any g ∈ G \ K.
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In fact this generalizes the main results from [11] in two ways. Firstly, it allows one 
to remove the weak amenability condition on the underlying groups in [11, Theorem A]. 
Secondly, it extends [11, Theorem B] from direct products of two to any finite number 
of groups.

Consequently, when Theorem A is combined with [38, Theorem 8.4] we obtain the 
following examples of W ∗-superrigid of direct product type.

Corollary B. Let Γ1, Γ2, ..., Γn ∈ IPV and the product group Γ = Γ1 × Γ2 × ... × Γn. 
Assume that t > 0 is a scalar, Λ is an arbitrary group and let θ : L(Γ) → L(Λ)t be an 
arbitrary ∗-isomorphism.

Then t = 1 and there exist δ ∈ Isom(Γ, Λ), ω ∈ Char(Γ) and u ∈ U(L(Λ)) such that 
θ = ad(u) ◦ Ψω,δ.

The class of all non-trivial finite product groups in class IPV can be used in con-
junction with other canonical constructions in group theory to provide new examples of 
W ∗-superrigid groups. Therefore, we introduce a family of groups that is constructed 
iteratively from the class IPV via a mix of two operations: amalgamated free product 
and HNN-extensions of groups belonging to a certain class of groups.

Class D. Let D0 be the class of all groups G = Γ1 × Γ2 × · · · × Γn, where Γi ∈ IPV
and n ≥ 2. Also, for any G ∈ D0 we consider the set of factor subgroups f0(G) = {G}
and the amalgamated subgroup a0(G) = 1. Then for every i ≥ 1 we define inductively 
Di and for every G ∈ Di its factor subgroups set fi(G) and its amalgamated subgroup 
ai(G) as follows. Assuming these are constructed, let Di+1 be the collection of all the 
groups that appear via one of the following constructions:

i) amalgamated free product groups G = G1 ∗Σ G2 with G1, G2 ∈ Di and Σ is an 
infinite, icc, amenable group such that QN(1)

G1
(Σ)5= QN(1)

G2
(Σ) = Σ and whenever 

i ≥ 1 we require that ai(G1) = ai(G2) = Σ;
ii) HNN-extension groups G = HNN(H, Σ, φ) with φ : Σ → H is a monomorphism such 

that H ∈ Di and QN(1)
H (Σ) = Σ, QN(1)

H (ϕ(Σ)) = ϕ(Σ), [Σ : Σ ∩ gϕ(Σ)g−1] = ∞ and 
[ϕ(Σ) : ϕ(Σ) ∩ gΣg−1] = ∞, for all g ∈ H. Also, whenever i ≥ 1 we require that 
ai(H) = Σ.

In case i) we define fi+1(G) = fi(G1) ∪fi(G2) for the factor subgroups and ai+1(G) =
Σ for the amalgamated subgroup set. In case ii) we define fi+1(G) = fi(H) and ai+1(G) =
Σ, respectively. When is no confusion we will drop the i-subscript from the definitions 
of factors and amalgamated subgroups sets. For i ≥ 1, we denote by Dm

i the subclass of 

5 If Σ < G is a subgroup, then QN(1)
G (Σ) denotes the one-sided quasi-normalizer of Σ in G and it is defined 

as the semigroup of all g ∈ G for which there exists a finite set F ⊂ G such that Σg ⊂ FΣ; see Section 2.3
for a more detailed account on the properties of quasi-normalizers.
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groups G ∈ Di for which there exist g1, . . . , gk ∈ G such that ∩k
i=1giΣg−1

i is finite, where 
a(G) = Σ. Finally, denote by D = ∪∞

i=0Di.

Theorem C. Every group G ∈ D is W ∗-superrigid.

We refer the reader to the second part of Section 6 for concrete examples of groups 
that belong to D. We also note that whenever G ∈ Di for some i ≥ 1 and ai(G) = {Σ}, 
then QN(1)

G (Σ) = Σ (see Theorem 6.2).
All known examples of semidirect product groups that are W ∗-superrigid are gen-

eralized wreath product groups A 'I G for which the base group A is a finite abelian 
group [38,8,2]. Therefore, it is natural to investigate whether there are other kinds of 
W ∗-superrigid semidirect groups beyond this family of examples which could poten-
tially lead to new technological advancements. The following class of groups contains the 
first examples of W ∗-superrigid groups that are semidirect product groups arising from 
actions on non-amenable groups.

Class A. Let Γ be a non-trivial, icc, bi-exact, torsion free, property (T) group. Let n ≥ 2
be an integer and let Γ1, Γ2, ..., Γn be isomorphic copies of Γ. For every 1 ≤ i ≤ n

consider the action Γ "ρi Γi by conjugation, i.e. ρiγ(λ) = γλγ−1 for all γ ∈ Γ, λ ∈ Γi. 
Then let Γ "ρ Γ1∗Γ2∗ ... ∗Γn be the action of Γ on the free product group Γ1∗Γ2∗ ... ∗Γn

induced by the canonical free product automorphism ργ = ρ1
γ ∗ ρ2

γ ∗ ... ∗ ρnγ for all γ ∈ Γ
and denote by G = (Γ1 ∗ Γ2 ∗ ... ∗ Γn) !ρ Γ, the corresponding semidirect product.

Developing several new techniques in deformation/rigidity theory we were able to 
show that all groups in class A are completely recognizable from their von Neumann 
algebras.

Theorem D. Every semidirect product group G ∈ A is W ∗-superrigid.

Many concrete examples of groups G ∈ A can be obtained appealing to methods 
in geometric groups theory, see Section 7. For example, one can start with any group 
Γ in any of the following categories: any uniform lattice in Sp(k, 1) with k ≥ 2; any 
torsion free property (T) group that is hyperbolic relative to any given finitely generated 
amenable subgroup via the method described in [1, Theorem 1.1]. In fact, it is worth 
noting that using methods in [50,1] one can show that class A is uncountable (see item 
3) in Proposition 7.1) and that Theorem D provides new examples of residually finite 
W ∗-superrigid groups (see item 2) in Proposition 7.1) which add to the ones discovered 
previously in [8, Theorem B].

Another problem, closely related to W ∗-superrigidity, is to investigate groups G which 
are completely recognizable from their reduced C∗-algebra, C∗

r (G); these are termed 
in the literature as C∗-superrigid groups. Philosophically speaking, since C∗

r (G) is a 
much “smaller” object than L(G) it is reasonable to expect there should exist many 
C∗-superrigid groups. Despite this, unfortunately, very few examples are known in this 
direction.



6 I. Chifan et al. / Advances in Mathematics 412 (2023) 108797

The only examples of C∗-superrigid amenable groups are: all torsion free abelian 
groups by a classic result [61], certain Bieberbach groups [27], some families of 2-step 
nilpotent groups [26], and all free nilpotent groups of finite class and rank [44]. The 
only known examples of non-amenable C∗-superrigid groups are the amalgamated free 
product groups from [14].

There are a couple of points of contrast between these results. In the amenable case all 
groups are torsion free while the ones in the non-amenable setting could contain any type 
of torsion. In the amenable case all the results rely more or less on the C∗-superrigidity of 
abelian groups [61] as these are the building blocks for the groups considered. In the non-
amenable case on the other hand the methods rely on deformation/rigidity arguments 
and their von Neumann algebraic superrigid behavior. Finally, in the amenable case the 
results always proceed by showing that an ∗-isomorphism between the C∗-algebras entail 
an abstract isomorphism between the underlying groups without explicitly connecting 
the two. By contrast, in the non-amenable case the methods used allow one to explicitly 
relate the two, essentially classifying all such ∗-isomorphisms.

In the same vein, our aforementioned rigidity results in the von Neumann algebraic 
setting shed new light towards the C∗-superrigidity problem by providing many new 
examples of such non-amenable groups. Specifically, many of our groups have trivial 
amenable radical (see Propositions 6.3 and 7.1). Therefore, their C∗-algebras have unique 
trace by [4, Theorem 1.3] and hence, any ∗-isomorphism of these algebras will “lift” to the 
corresponding von Neumann algebras and using Theorems C and D we get the following:

Corollary E. Let G ∈ ∪i≥1Dm
i ∪A. Let Λ be an arbitrary group and let θ : C∗

r (G) → C∗
r (Λ)

be an arbitrary ∗-isomorphism. Then there exist δ ∈ Isom(G, Λ), ω ∈ Char(G) and 
u ∈ U(L(Λ)) such that θ = ad(u) ◦ Ψω,δ.

This result automatically enables us to describe all symmetries (automorphisms) of 
these algebras.

Corollary F. Let G ∈ ∪i≥1Dm
i ∪A. Then for any θ ∈ Aut(C∗

r (G)) there exist δ ∈ Aut(G), 
ω ∈ Char(G) and u ∈ U(L(G)) such that θ = ad(u) ◦ Ψω,δ.

A similar statement for the amalgamated free products considered in [14] follows 
directly from [14, Corollary C]. To our knowledge, besides the Corollary F above these 
are the only cases known of icc groups G with L(G) full factor for which the symmetries 
of C∗

r (G) can be described entirely.

1.3. Organization of the paper

Besides the introduction there are ten other sections and Appendix A in the paper. 
In Section 2 we recall some preliminaries and prove a few useful lemmas needed in the 
remainder of the paper. In Section 3 we use a new augmentation technique to prove 
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an intertwining result in von Neumann algebras that arise from products of bi-exact 
groups. We then continue in Section 4 with recalling some useful properties for groups 
that belong to the class IPV. In Section 5 we use the result from Section 3 to prove 
our first main result, Theorem A, and derive Corollary B from it. We then continue in 
Sections 6 and 7 by presenting several properties for groups that belong to the classes 
D and A, respectively. In Section 8 we provide a new situation where we can control 
the lower bound for height of certain unitary elements (Theorem 8.4) and two technical 
results that provide “discretization” results (Theorems 8.6 and 8.7). In Section 9 we 
present several results that allow us to reconstruct at the von Neumann algebra level the 
“peripheral structure” of groups that belong to the classes D and A. Finally, by using 
the machinery established in the previous sections, we present in Sections 10 and 11 the 
proofs of the remaining main results that are stated in the introduction.

1.4. Acknowledgments

We are grateful to Stefaan Vaes for helpful comments and for kindly bringing to our 
attention that the W∗-superrigid groups from [8] are residually finite. We also want to 
thank the anonymous referee for their numerous comments and suggestions which greatly 
improved the exposition and the overall quality of this paper. In particular, we thank 
the referee for pointing out a computational error in our original proof of Theorem 8.4.

2. Preliminaries

2.1. Notations and terminology

Throughout this document all von Neumann algebras are denoted by calligraphic 
letters e.g. A, B, M, N , etc. Given a von Neumann algebra M, we will denote by U(M)
its unitary group, by Z(M) its center, by P(M) the set of all its nonzero projections 
and by (M)1 its unit ball. Given a unital inclusion N ⊆ M of von Neumann algebras 
we denote by N ′ ∩M = {x ∈ M : [x, N ] = 0} the relative commutant of N inside M
and by NM(N ) = {u ∈ U(M) : uNu∗ = N} the normalizer of N inside M. We say 
that N is regular in M if NM(N )′′ = M. We also denote by W ∗(S) the von Neumann 
algebra generated by a subset S ⊂ M.

All von Neumann algebras M considered in this document will be tracial, i.e. endowed 
with a unital, faithful, normal linear functional τ : M → C satisfying τ(xy) = τ(yx)
for all x, y ∈ M. This induces a norm on M by the formula ‖x‖2 = τ(x∗x)1/2 for all 
x ∈ M. The ‖ · ‖2-completion of M will be denoted by L2(M). For any von Neumann 
subalgebra N ⊆ M we denote by EN : M → N the τ -preserving condition expectation 
onto N . We denote the orthogonal projection from L2(M) → L2(N ) by eN . The Jones’ 
basic construction [40, Section 3] for N ⊆ M will be denoted by 〈M, eN 〉.

For any group G we denote by (ug)g∈G ⊂ U(!2G) its left regular representation, i.e. 
ug(δh) = δgh where δh : G → C is the Dirac function at {h}. The weak operator closure 
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of the linear span of {ug : g ∈ G} in B(!2G) is called the group von Neumann algebra 
of G and will be denoted by L(G); this is a II1 factor precisely when G has infinite 
non-trivial conjugacy classes (icc). Throughout this paper, for every subset K ⊆ G we 
denote by PK the orthogonal projection from !2(G) onto the Hilbert subspace generated 
by the linear span of {δg : g ∈ K}.

All groups considered in this paper are countable and will be denoted by capital letters 
A, B, G, H, Q, N , M , etc. Given groups Q, N and an action Q "σ N by automorphisms 
we denote by N !σ Q the corresponding semidirect product group. A group inclusion 
H ! G of finite index will be denoted by H !f G. For any subgroup H ! G we denote by 
CG(H) = {g ∈ G | [g, H] = 1} its centralizer in G and by vCG(H) = {g ∈ G | |gH | < ∞}
its virtual centralizer. Note that vCG(G) = 1 precisely when G is icc. Throughout the 
paper, we will also use the following observation: if H < G is a subgroup satisfying 
vCG(H) = 1 (e.g. if G is icc and H < G has finite index), then L(H)′ ∩ L(G) = 1.

Let G be a group together with a family of subgroups F . A set K ⊂ G is called small 
over F if there exist finite subsets R, T ⊂ G and G ⊆ F such that K ⊆ ∪Σ∈FRΣT . We 
denote by Sub(G) the set of all the subgroups of G. If G " I is an action and i ∈ I, we 
denote by StabG(i) = {g ∈ G| g · i = i} the stabilizer of i inside G.

Finally, for any subset S ⊂ {1, . . . , n} we denote its complement by Ŝ = {1, . . . , n} \S. 
If S = {i}, we will simply write î instead of {̂i}. Also, given any product group G =
G1 × · · ·×Gn we will denote the subproduct supported on S by GS = ×i∈SGi.

2.2. Popa’s intertwining techniques

Over fifteen years ago, S. Popa introduced in [56, Theorem 2.1 and Corollary 2.3]
powerful analytic methods for identifying intertwiners between arbitrary subalgebras of 
tracial von Neumann algebras. These tools are now termed in the literature as Popa’s 
intertwining-by-bimodules techniques and were highly instrumental to the classification 
of von Neumann algebras program via Popa’s deformation/rigidity theory.

Theorem 2.1 ([56]). Let (M, τ) be a separable tracial von Neumann algebra and let P ⊆
pMp, Q ⊆ qMq be von Neumann subalgebras. Let G ⊂ U(P) be a group such that 
G′′ = P. Then the following are equivalent:

(1) There exist p0 ∈ P(P), q0 ∈ P(Q), a ∗-homomorphism θ : p0Pp0 → q0Qq0 and a 
partial isometry 0 3= v ∈ qMp such that θ(x)v = vx, for all x ∈ p0Pp0.

(2) There is no sequence (un)n ⊂ G satisfying ‖EQ(xuny)‖2 → 0, for all x, y ∈ M.
(3) There exist finitely many xi, yi ∈ M and C > 0 such that 

∑
i ‖EQ(xiuyi)‖2

2 ≥ C for 
all u ∈ U(P).

If one of these equivalent conditions holds true, then one writes P ≺M Q, and says 
that a corner of P embeds into Q inside M. Furthermore, if Pp′ ≺M Q for any non-zero 
projection p′ ∈ P ′ ∩ pMp (equivalently, for any projection 0 3= p′ ∈ Z(P ′ ∩ pMp)), then 
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we write P ≺s
M Q. We refer the readers to the survey papers [57,65,35,36] for recent 

progress in von Neumann algebras using deformation/rigidity theory.
In the remaining part of the section we highlight a few technical intertwining results 

that will be used in an essential way to derive the main results of the paper. Some 
of them are either direct generalizations or follow from existent results in which case 
we only include some succinct proofs. For the new results we include more elaborated 
explanations.

The first lemma is a consequence of [24, Lemma 2.4] and we omit its proof.

Lemma 2.2. Let (M, τ) be a tracial von Neumann algebra and let P ⊂ pMp and Q ⊂
qMq be von Neumann subalgebras. Assume Pp′ ≺s

M Q for some non-zero projection 
p′ ∈ P ′ ∩ pMp. Then there exists a non-zero projection z ∈ Z(P ′ ∩ pMp) with p′ ≤ z

such that Pz ≺s
M Q.

In the proof of Theorem 5.2 we will need the following result that is essentially con-
tained in [31]. Its proof is similar to the proof of [34, Lemma 6.2], and we include it only 
for the reader’s convenience.

Lemma 2.3 ([31]). Let Σ < Γ be countable groups and denote M = L(Γ). Let B ⊂ M be 
a von Neumann subalgebra for which the quasi-normalizer of B in M is dense and B ≺M
L(Σ). Let Ω be the subgroup of Γ generated by all γ ∈ Γ such that B ≺M L(γΣγ−1 ∩Σ). 
Then Ω has finite index in Γ.

We refer the reader to Section 2.3 for the definition of a quasi-normalizer of a subal-
gebra.

Proof. Let {uγ}γ∈Γ be the canonical unitaries that generate L(Γ). Following [31, Section 
4], one can associate a projection z(Σ1) ∈ M to any subgroup Σ1 < Γ such that z(Σ1) 3= 0
if and only if B ≺M L(Σ1). Moreover, z(γΣ1γ−1) = uγz(Σ1)u∗

γ , for any γ ∈ Γ and 
z(Σ1 ∩ Σ2) = z(Σ1)z(Σ2), for any subgroup Σ2 < Γ.

If Ω does not have finite index in Γ, then there exists a sequence of elements 
(γn)n ⊂ Γ such that B ⊀M L(γ−1

i γjΣγ−1
j γi ∩ Σ), for all i 3= j. This is equivalent to 

z(γjΣγj ∩ γiΣγi) = 0, for all i 3= j. Hence, the projections uγiz(Σ)u∗
γi

, i ≥ 1, are mutu-
ally orthogonal. Therefore, we deduce that z(Σ) = 0, which implies that B ⊀M L(Σ), 
contradiction. "

2.3. Quasinormalizers of groups and von Neumann algebras

Given a group inclusion H < G, the one-sided quasi-normalizer QN(1)
G (H) is the 

semigroup of all g ∈ G for which there exists a finite set F ⊂ G such that Hg ⊂ FH

[28, Section 5]; equivalently, g ∈ QN(1)
G (H) if and only if [H : gHg−1 ∩ H] < ∞. The 

quasi-normalizer QNG(H) is the group of all g ∈ G for which exists a finite set F ⊂ G

such that Hg ⊂ FH and gH ⊂ HF .
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Given an inclusion N ⊆ M of finite von Neumann algebra we define the quasi-
normalizer QNM(N ) as the set of all elements x ∈ M for which there exist x1, ..., xn ∈ M
such that Nx ⊆

∑
xiN and xN ⊆

∑
Nxi (see [55, Definition 4.8]). Also the one-sided 

quasi-normalizer QN
(1)
M (N ) is defined as the set of all elements x ∈ M for which there 

exist x1, ..., xn ∈ M such that Nx ⊆
∑

xiN [28].
We record now some formulas for the quasi-normalizer of corners.

Lemma 2.4. [56,28] Let P ⊂ M be tracial von Neumann algebras. For any projection 
p ∈ P, the following hold:

(1) W ∗(QN
(1)
pMp(pPp)) = pW ∗(QN

(1)
M (P))p.

(2) W ∗(QNpMp(pPp)) = pW ∗(QNM(P))p.

We also mention the following remark which can be deduced directly from the defini-
tion.

Remark 2.5. Let P ⊂ M be tracial von Neumann algebras. For any projection p ∈
P ′ ∩M, we have W ∗(QNp′Mp′(Pp′)) = p′W ∗(QNM(P))p′.

The following result provides a relation between the group theoretical quasi-normalizer 
and the von Neumann algebraic one.

Lemma 2.6. [28, Corollary 5.2] Let H < G be countable groups. Then the following hold:

(1) W ∗(QN
(1)
L(G)(L(H))) = L(K), where K < G is the subgroup generated by QN(1)

G (H). 
In particular, if QN(1)

G (H) = H, then QN
(1)
L(G)(L(H)) = L(H).

(2) W ∗(QNL(G)(L(H))) = L(QNG(H)).

We continue by emphasizing a few technical results regarding the control of quasinor-
malizers of von Neumann algebras subalgebras in various constructions including crossed 
products which are inspired by [56, Theorem 3.1]. We present a brief proof explaining 
how the same arguments from [56] can be used.

Theorem 2.7. Let Λ, Σ be countable groups, let Λ "ρ Σ be an action by automorphisms 
and consider the corresponding semidirect product Γ = Σ !ρ Λ. Denote by M = L(Γ)
and P = L(Λ) assume that N ⊆ P ⊂ M is a von Neumann subalgebra such that 
N ⊀P L(StabΛ(σ)) for all σ ∈ Σ \ {1}. Then we have that QN

(1)
M (N )′′ ⊆ P.

Proof. The conclusion follows immediately using the same arguments from [56, Theo-
rem 3.1] once we show the following property: given any sequence (xn) ⊂ N satisfying 
‖EL(StabΛ(σ))(axnb)‖2 → 0 for all a, b ∈ P and σ ∈ Σ \ {1} we have that

‖EP(cxnd)‖2 → 0 for all c, d ∈ M5 P. (2.1)
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Using basic ‖ ·‖2-approximations of c and d together with the P-bimodularity of EP one 
can easily see that it suffices to show (2.1) only for c = uµ, d = uσ for µ, σ ∈ Σ \ {1}. 
Under these assumptions if we denote by Aµ,σ = {λ ∈ Λ : ρλ(σ) = µ−1} basic 
computations show that EP(cxnd) = EP(uµxnuσ) =

∑
λ τ(xnuλ−1)τ(uµσλ(σ))uλ =∑

λ∈Aµ,σ
τ(xnuλ−1)uλ. Since Aµ,σ = νStabΛ(σ) for some ν ∈ Aµ,σ the above equa-

tion shows that EP(cxnd) = uνEL(StabΛ(σ))(uν−1xn) and using the hypothesis we get 
‖EP(cxnd)‖2 = ‖EL(StabΛ(σ))(uν−1xn)‖2 → 0 as n → ∞. "

For the following result, recall that a II1 factor M is called solid if for any diffuse 
subalgebra A ⊂ M, the relative commutant A′ ∩M is amenable. We refer the reader to 
Section 2.4 for the notion of an amenable von Neumann algebra.

Corollary 2.8. Let Γ be an icc, torsion free group such that L(Γ) is a solid von Neumann 
algebra. Consider the product group G = Γ × Γ together with its diagonal subgroup 
d(Γ) = {(γ, γ) ∈ G : γ ∈ Γ} < G. Let p ∈ L(G) = M be a projection and assume 
that A, B ⊆ pL(G)p are diffuse commuting von Neumann subalgebras such that B has no 
amenable direct summand. Then B ⊀M L(d(Γ)).

Proof. Assume by contradiction that B ≺M L(d(Γ)). Thus, one can find projections 
b ∈ B, c ∈ L(d(Γ)), a non-zero partial isometry v ∈ cMb and a ∗-isomorphism onto its 
image φ : bBb → Q := φ(bBb)) ⊆ cL(d(Γ))c such that φ(x)v = vx for all x ∈ bBb. Also 
note that vv∗ ∈ Q′ ∩ cMc and v∗v ∈ bBb′ ∩ bMb.

Next, we observe that the group G = Γ ×Γ can be written alternatively as a semidirect 
product G = (Γ × 1) !ρ d(Γ) with respect to the action by conjugation of d(Γ) "ρ

Γ × 1, i.e. ρ(γ,γ)(λ, 1) = (γλγ−1, 1), for all (γ, γ) ∈ d(Γ) and (λ, 1) ∈ Γ × 1. Then one 
can see that the stabilizers satisfy that Stabd(Γ)(λ, 1) = d(CΓ(λ)), where CΓ(λ) is the 
centralizer of λ in Γ. Since Γ is torsion free and L(Γ) is solid it follows that the centralizer 
CΓ(λ) and, hence, Stabd(Γ)(λ, 1) is amenable for all λ 3= 1. Since Q has no amenable 
direct summand, we have that Q ⊀ L(Stabd(Γ)(λ, 1)) and by Theorem 2.7 we get that 
vv∗ ∈ QNcMc(Q)′′ ⊆ L(d(Γ)). Thus vbBbv∗ = Qvv∗ ⊆ L(d(Γ)) and after extending 
v to a unitary u we get uBv∗vu∗ ⊆ L(d(Γ)). Using Theorem 2.7 again we have that 
uv∗v(B ∨ B′ ∩ pMp)v∗vu∗ ⊆ L(d(Γ)). As Γ is icc after perturbing u to a new unitary 
the previous relations imply that u(B ∨ B′ ∩ pMp)zu∗ ⊆ L(d(Γ)), where z is the central 
support of vv∗ ∈ B ∨B′ ∩ pMp. As A ⊆ B′ ∩ pMp is diffuse this contradicts the solidity 
of L(Γ). "

For further use, we record the following result which controls the intertwiners in 
algebras arising form certain subgroups. Its proof is essentially contained in [56, Theorem 
3.1] (see also [14, Lemma 2.7]) so it will be left to the reader.

Lemma 2.9. [56] Let H ! G be countable groups and let G " N be a trace preserving 
action. Let P ⊆ p(N ! H)p be a von Neumann subalgebra such that P ⊀N!H N !
(gHg−1 ∩H) for all g ∈ G \H.



12 I. Chifan et al. / Advances in Mathematics 412 (2023) 108797

Then for all elements x, x1, x2, ..., xl ∈ N ! G satisfying Px ⊆
∑l

i=1 xiP, we must 
have that xp ∈ N !H.

We also record the following result concerning von Neumann algebras of amalgamated 
free products and HNN-extension groups.

Lemma 2.10. [37, Theorem 1.1] Let G = H ∗ΣK be an amalgamated free product group or 
G = HNN(H, Σ, ϕ) is a HNN-extension group such that QN(1)

G (Σ) = Σ. Let P ⊂ pL(H)p
be a von Neumann subalgebra such that P ⊀L(G) L(Σ).

Then QN
(1)
pL(G)p(P)′′ ⊆ pL(H)p.

Proof. Firstly, notice that gHg−1 ∩H ⊂ Σ, for any g ∈ G \H. If G is an amalgamated 
free product group, this is always true. On the other hand, if G is an HNN-extension 
group as in the assumption, this follows from Lemma 6.1. The lemma follows now from 
Lemma 2.9. "

Lemma 2.11. Let Γ be a countable non-amenable group such that for every a ∈ Γ \ {1}
its centralizer CΓ(a) is amenable. Then the diagonal subgroup d(Γ) < Γ × Γ satisfies 
QN(1)

Γ×Γ(d(Γ)) = d(Γ).

Proof. Let (g, k) ∈ QN(1)
Γ×Γ(d(Γ)). Thus, one can find (gi, ki) ∈ Γ × Γ with 1 ≤ i ≤ n

such that d(Γ)(g, k) ⊆
⋃n

i=1(gi, ki)d(Γ). Thus, for every (λ, λ) ∈ d(Γ) there exist an i
and (δ, δ) ∈ d(Γ) so that (λ, λ)(g, k) = (gi, ki)(δ, δ). Basic calculations further imply 
that g−1

i λg = δ = k−1
i λk; in particular, we have λgk−1 = gik

−1
i λ. Thus, if we denote 

Ai = {λ ∈ Λ : g−1
i λg = δ = k−1

i λk}, the above relations entail that Γ =
⋃n

i=1 Ai. 
However, a simple calculation shows that Ai is either empty or Ai = λiCΓ(gk−1) for 
some λi ∈ Γ. Combining with the previous relation we get that Γ =

⋃
i λiCΓ(gk−1). In 

particular, we have [Γ : CΓ(gk−1)] < ∞ and as Γ is non-amenable we get that CΓ(gk−1)
is non-amenable as well. Then the hypothesis assumption implies that gk−1 = 1 and, 
hence, (g, k) ∈ d(Γ), as desired. "

We end this section by highlighting a result that allows us to obtain a genuine unitary 
conjugacy from some intertwining relations. The proof is essentially contained in the 
proof of [14, Theorem A] and we provide it for the reader’s convenience.

Theorem 2.12. [14] Let A < G be icc groups such that QN(1)
G (A) = A and denote by 

M = L(G) the corresponding von Neumann algebra. Assume that B < H are any groups 
satisfying M = L(H), L(A) ≺M L(B) and L(B) ≺s

M L(A). Let C < H be the subgroup 
generated by QN(1)

H (B).
Then [C : B] < ∞ and there exists a unitary w ∈ U(M) such that wL(A)w∗ = L(C).
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Proof. Since L(A) ≺M L(B), we can apply [24, Lemma 2.4(4)] and obtain a non-zero 
projection z ∈ Z(L(B)′ ∩ M) ⊂ L(C) such that L(A) ≺M L(B)q′, for any non-zero 
projection q′ ∈ Z(L(B)′ ∩M)z. We continue by showing that

L(B)z ⊀M L(gAg−1 ∩A), for any g ∈ G \A. (2.2)

Assume there exists g ∈ G such that L(B)z ≺M L(gAg−1 ∩A). By [63, Lemma 3.7], we 
have that L(A) ≺M L(gAg−1 ∩A). Since QN(1)

G (A) = A, it follows that QN
(1)
M (L(A)) =

L(A), and hence, L(A) ≺L(A) L(gAg−1 ∩ A). This implies by [24, Lemma 2.5] that 
[A : gAg−1 ∩A] < ∞. Hence, g ∈ QN(1)

G (A) = A, which proves (2.2).

Claim 1. There exists a unitary u ∈ U(M) such that uzL(C)zu∗ ⊂ L(A).

Proof of Claim 1. We first show that for any non-zero projection q′ ∈ (L(B)′ ∩ M)z, 
there exists a non-zero projection q′′ ∈ q′(L(B)′ ∩ M)q′ such that L(B)q′′ is unitarily 
conjugate into L(A). Since L(A) is a II1 factor, it will follow that

uL(B)zu∗ ⊂ L(A), for some unitary u ∈ U(M). (2.3)

Thus, take any non-zero projection q′ ∈ (L(B)′ ∩ M)z. Since L(B)q′ ≺M L(A), there 
exist projections q ∈ L(B), r ∈ L(A), a non-zero partial isometry w ∈ rMqq′ and a 
∗-homomorphism ϕ : qL(B)qq′ → rL(A)r such that ϕ(x)w = wx, for any x ∈ qL(B)qq′. 
We can moreover assume that the support projection of EL(Σ)(ww∗) equals r. Let P =
ϕ(qL(B)qq′) ⊂ rL(A)r and write w∗w = qq0 for a projection q0 ∈ q′(L(B)′ ∩M)q′. One 
can check that (2.2) implies that P ⊀L(A) L(gAg−1 ∩A), for any g ∈ G \A. By applying 
Lemma 2.9, we derive that ww∗ ∈ L(A), and thus, w(qL(B)qq0)w∗ ⊂ L(A). Let z0 be 
the central support of q in L(B). Since L(A) is a II1 factor, it follows that there exists 
η ∈ U(M) such that ηL(B)z0q0η∗ ⊂ L(A). We now take q′′ = z0q0 and therefore obtain 
that relation (2.3) holds.

Thus, we take a unitary u ∈ U(M) such that uL(B)zu∗ ⊂ L(A) and let e =
uzu∗ ∈ L(A). By (2.2), we have that QN

(1)
eMe(uL(B)zu∗) ⊂ eL(A)e. By using the 

quasi-normalizer formulas Lemma 2.4 and Lemma 2.6, we deduce that uzL(C)zu∗ ⊂
eL(A)e. #

Claim 2. There exists a non-zero projection z′ ∈ zL(C)z such that uz′L(C)z′u∗ =
pL(A)p.

Proof of Claim 2. Denote Q = uL(B)zu∗ ⊂ eL(A)e and notice that eL(A)e ≺M Q since 
L(A) is a II1 factor. Thus, there exist projections p ∈ eL(A)e, q ∈ Q, a non-zero partial 
isometry v ∈ qMp and a ∗-homomorphism θ : pL(A)p → qQq such that θ(x)v = vx, for 
any x ∈ pL(A)p. Since Q ⊂ eL(A)e, we derive that v ∈ QN

(1)
M (L(A) = L(A). Moreover, 

we may assume that v∗v = p and p ∈ Q since L(A) is a II1 factor.
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Next, if x ∈ pL(A)p, then vx(pQp) ⊂ (qQq)v. Hence, vx ∈ W ∗(QN
(1)
eL(A)e(Q))

(see the proof of [56, Lemma 3.5]). This shows that pL(A)p ⊂ W ∗(QN
(1)
eMe(Q)). 

Since QN
(1)
eMe(Q) ⊂ uzL(C)zu∗, we derive that pL(A)p ⊂ p(uzL(C)zu∗)p. By letting 

z′ = u∗pu ∈ zL(C)z, we have pL(A)p ⊂ uz′L(C)z′u∗. The claim is proven since the 
reversed inclusion follows from Claim 1. #

We continue by proving that [C : B] < ∞. One can check that (u∗vu)zL(C)z ⊂
L(B)zu∗vu and u∗vuL(B) ⊂ L(B)u∗vu. This shows that u∗vu ∈ zL(C)z and hence, 
L(C) ≺L(C) L(B). By applying [24, Lemma 2.5], we get that [C : B] < ∞. This implies 
that QN

(1)
M (L(C)) = L(C) and L(C) ≺s

M L(A). Since L(A) is a II1 factor, we can use 
Claim 2 combined with [14, Lemma 2.6] and derive that there exists a unitary w ∈ M
such that wL(A)w∗ = L(C). "

2.4. Relative amenability

A tracial von Neumann algebra (M, τ) is amenable if there exists a positive linear 
functional Φ : B(L2(M)) → C such that Φ|M = τ and Φ is M-central, meaning Φ(xT ) =
Φ(Tx), for all x ∈ M and T ∈ B(L2(M)). The celebrated theorem of Connes asserts 
that a von Neumann algebra M is amenable if and only if it is approximately finite 
dimensional [19].

We recall now the relative version of this notion due to Ozawa and Popa [47]. Let 
(M, τ) be a tracial von Neumann algebra. Let p ∈ M be a projection and P ⊂ pMp, Q ⊂
M be von Neumann subalgebras. Following [47, Definition 2.2], we say that P is amenable 
relative to Q inside M if there exists a positive linear functional Φ : p〈M, eQ〉p → C
such that Φ|pMp = τ and Φ is P-central. Note that P is amenable relative to C inside M
if and only if P is amenable. We also say that P is strongly non-amenable relative to Q
inside M if Pp′ is non-amenable relative to Q for any non-zero projection p′ ∈ P ′∩pMp.

The following lemma is well known and we leave the proof to the reader.

Lemma 2.13. Let Σ < Γ be countable non-amenable groups. Then L(Σ)q is non-amenable 
for any non-zero projection q ∈ L(Σ)′ ∩ L(Γ).

3. Bi-exact groups and an augmentation technique

One of the technical ingredients needed in the proof of Theorem A is Proposition 3.1
which provides some intertwining results in von Neumann algebras of products of bi-exact 
groups.

Proposition 3.1. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 1 non-amenable bi-exact 
icc groups and denote M = L(Γ). Assume that M = ⊗̄0≤j≤kPj is a decomposition into 
k + 1 II1 factors such that Pj is non-amenable for any 2 ≤ j ≤ k. Let Σ < Λ be some 
countable groups such that M = L(Λ) and ⊗̄1≤j≤kPj ≺M L(Σ).
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Then L(Σ) ⊀M L(ΓS), for any subset S ⊂ {1, . . . , n} that has at most k−1 elements.

Although is not needed for our proof, we mention that each tensor factor Pj has to 
be of a specific form. Indeed, the unique prime factorization result of Ozawa and Popa 
[46,6] implies that there exists a partition T0 8 T1 8 · · · 8 Tk = {1, . . . , n} such that for 
any j ∈ {0, 1, . . . , k}, Pj equals L(ΓTj ), up to unitary conjugacy and amplification.

In the particular case when L(Σ) ⊂ M is regular, the conclusion of Proposition 3.1
follows immediately by applying Theorem 3.2. Indeed, assume that L(Σ) ≺M L(ΓS)
for a subset S ⊂ {1, . . . , n} that has at most k − 1 elements. Then by [24, Lemma 
2.4(2)] and [63, Lemma 3.7] we get that ⊗̄1≤j≤kPj ≺M L(ΓS), which will imply by 
repeated application of Theorem 3.2 the contradiction that P1 is not diffuse. The general 
case is more subtle, the idea is to exploit the group von Neumann algebra structure of 
L(Σ) ⊂ L(Λ) and to make the analysis by considering a Bernoulli action of Λ.

We record now the following relative solidity result for von Neumann algebras arising 
from products of bi-exact groups. The result is a direct consequence of [6, Theorem 15.1.5 
and Lemma 15.3.3].

Theorem 3.2. [6] Let Γ = Γ1 × · · · × Γn be a product of n ≥ 1 non-amenable bi-exact 
groups and denote M = L(Γ). Let Q ⊂ qMq be a von Neumann subalgebra such that 
Q′ ∩ qMq is non-amenable.

Then there exists 1 ≤ i ≤ n such that Q ≺M L(Γî).

Before proceeding to the proof of Proposition 3.1, we need the following two useful 
lemmas.

Lemma 3.3. Let Λ " B be a trace preserving action and denote M = B!Λ. Let P ⊂ L(Λ)
and Q ⊂ M be some von Neumann subalgebras. Following [60], let ∆ : M → M⊗̄L(Λ)
be the ∗-homomorphism given by ∆(b) = b ⊗ 1, for any b ∈ B and ∆(vg) = vg ⊗ vg, for 
any g ∈ Λ.

Then the following are equivalent:

(1) ∆(P) ≺M⊗̄M M⊗̄Q.
(2) ∆(P) ≺M⊗̄M Q⊗̄M.

Moreover, if Λ is icc, Λ " B is weakly mixing and P ⊂ L(Λ) is regular, then the above 
statements are also equivalent to the following:

(3) ∆(P) ≺M⊗̄M Q⊗̄Q.

Proof. We will first show that (1) and (2) are equivalent. By Kaplansky’s density the-
orem, note that (1) does not hold if and only if there exists a sequence of unitaries 
(un)n ⊂ U(P) such that ‖EM⊗̄Q((1 ⊗ x)∆(un)(1 ⊗ y))‖2 → 0, for all x, y ∈ M. In this 
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case, notice that the Fourier coefficients of un =
∑

g∈Λ ang vg are scalars since un ∈ L(Λ). 
Therefore,

‖EM⊗̄Q((1 ⊗ x)∆(un)(1 ⊗ y))‖2
2 =

∑

g∈Λ
|ang |2‖EQ(xvgy)‖2

2

= ‖EQ⊗̄M((x⊗ 1)∆(un)(y ⊗ 1))‖2
2 → 0,

for all x, y ∈ M, which shows that (2) does not hold. Note that the previous formula 
actually shows that (1) and (2) are equivalent.

For proving the moreover part, we only have to show that (1) implies (3). Since 
Λ is icc and Λ " B is weakly mixing, it is a standard computation to check that 
∆(L(Λ))′ ∩ (M⊗̄M) = C1. Since P ⊂ L(Λ) is regular, it follows by [24, Lemma 2.4(2)]
that ∆(P) ≺s

M⊗̄M M⊗̄Q and ∆(P) ≺s
M⊗̄M Q⊗̄M. Finally, notice that Q⊗̄M, M⊗̄Q ⊂

M⊗̄M form a commuting square, so we can apply [22, Proposition 2.5] and derive that 
∆(P) ≺s

M Q⊗̄Q. "

Remark. Note that the moreover part in the previous theorem holds in the case B = C1
as well.

Lemma 3.4. Let Λ 
ρ" BΛ

0 be a Bernoulli action and denote by M = BΛ
0 !Λ the associated 

von Neumann algebra. Let ∆ : M → M⊗̄L(Λ) be the ∗-homomorphism given by ∆(b) =
b ⊗ 1, for any b ∈ BΛ

0 and ∆(vg) = vg ⊗ vg, for any g ∈ Λ. Let P, Q ⊂ L(Λ) be von 
Neumann subalgebras.

If ∆(P) ≺M⊗̄M L(Λ)⊗̄Q, then ∆(P) ≺L(Λ)⊗̄L(Λ) L(Λ)⊗̄Q.

Proof. Assuming the contrary, one can find a sequence of unitaries (un)n ⊂ U(P) such 
that

‖EL(Λ)⊗̄Q((1 ⊗ x)∆(un)(1 ⊗ y))‖2 → 0, for all x, y ∈ L(Λ). (3.1)

Observe that the Fourier coefficients of un =
∑

g∈Λ ang vg are scalars as un ∈ L(Λ). 
Therefore, to obtain a contradiction, it suffices to show that

‖EL(Λ)⊗̄Q((x0 ⊗ x)∆(un)(y0 ⊗ y))‖2 → 0, for all x0, y0 ∈ BΛ
0 and x, y ∈ M. (3.2)

Moreover, it is enough to consider x = avk, y = bvh, for some k, h ∈ Λ and a, b ∈ BΛ
0 . 

If a, b, x0, y0 ∈ C1, then we are done by (3.1). Hence, we can assume that a ∈ BF
0 , b ∈

BG
0 , x0 ∈ BH

0 , y0 ∈ BI
0 , where F, G, H, I ⊂ Λ are some finite subsets and at least one of 

a, b, x0, y0 has trace zero. Without any loss of generality, assume that τ(a) = 0. Since 
‖EQ(aρg(b)vg)‖2 ≤ ‖EL(Λ)(aρg(b)vg)‖2 = |τ(aρg(b))|, for any g ∈ Λ, we have
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‖EL(Λ)⊗̄Q((x0 ⊗ x)∆(un)(y0 ⊗ y))‖2
2 =

∑

g∈Λ
|ang |2|τ(x0ρg(y0))|2‖EQ(aρkg(b)vkgh)‖2

≤
∑

{g∈Λ :F∩kgG -=∅}

|ang |2|τ(x0ρg(y0))|2|τ(aρkg(b))|2.

Note that (3.1) implies that ang → 0, for any g ∈ Λ. As the last sum is a finite, this shows 
(3.2). "

Proof of Proposition 3.1. Assume by contradiction that there exists a subset S ⊂
{1, . . . , n} that has at most k − 1 elements satisfying L(Σ) ≺M L(ΓS). We perform 
the following construction. Let Λ " B be any Bernoulli action with abelian base and de-
note M̃ = B!Λ. Let ∆ : M̃ → M̃⊗̄L(Λ) be the ∗-homomorphism given by ∆(b) = b ⊗1, 
for any b ∈ B and ∆(vg) = vg ⊗ vg, for any g ∈ Λ as in [60].

Denote P = ⊗̄1≤j≤kPj . The assumption implies that P ≺M B ! Σ. Since Λ " B is 
free and mixing, we get that (B ! Σ)′ ∩ M = C1. By using [23, Lemma 2.3], we get 
that ∆(P) ≺M̃⊗̄M̃ ∆(B ! Σ)z, for any non-zero projection z ∈ ∆(B ! Σ)′ ∩ (M̃⊗̄M̃). 
On the other hand, since ∆(B ! Σ) ⊂ M̃⊗̄L(Σ), it follows by our assumption that 
∆(B ! Σ) ≺M̃⊗̄M̃ M̃⊗̄L(ΓS). Therefore, by applying [23, Lemma 2.4(2)], we get that 
∆(P) ≺M̃⊗̄M̃ M̃⊗̄L(ΓS). Using Lemma 3.3, we get that ∆(P) ≺M̃⊗̄M̃ L(ΓS)⊗̄L(ΓS)
and by Lemma 3.4 we deduce that ∆(P) ≺M⊗̄M M⊗̄L(ΓS). By applying once again 
Lemma 3.3, it follows that ∆(P) ≺M⊗̄M L(ΓS)⊗̄L(ΓS).

Since Γ is icc, it follows from a direct computation that ∆(M)′ ∩ (M⊗̄M) = C1. 
Since M = P0⊗̄P, we get that Z(∆(P)′ ∩ (M⊗̄M)) ⊂ ∆(M)′ ∩ (M⊗̄M), which shows 
that ∆(P)′ ∩ (M⊗̄M) is a II1 factor. We now apply [46, Proposition 12] and obtain a 
decomposition

M⊗̄M = L(ΓS)⊗̄L(ΓŜ)⊗̄L(ΓS)t⊗̄L(ΓŜ)1/t,

a positive number t > 0 and a unitary u ∈ U(M⊗̄M) such that u∆(P)u∗ ⊂
L(ΓS)⊗̄L(ΓS)t. Next, since ∆(Pk) is non-amenable, we use Theorem 3.2 and Lemma 3.3
and obtain an element s1 ∈ S such that ∆(⊗̄1≤i≤k−1Pi) ≺M⊗̄M L(ΓS\{s1})⊗̄L(ΓS\{s1}). 
By proceeding by induction, we get that ∆(P1) ≺M⊗̄M 1 ⊗ 1, showing that P1 is not 
diffuse, contradiction.

4. A class of groups of Ioana-Popa-Vaes

Following [38], we recall that the class IPV consists of all generalized wreath product 
groups Γ = A 'I G which satisfy the following properties:

(1) A ∼= Z2 or Z3;
(2) G is an icc nonamenable bi-exact group that contains an infinite property (T) normal 

subgroup;
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(3) The set I = G/K on which G acts is the set of left cosets with respect to an infinite 
amenable malnormal subgroup K < G.

Concrete examples of groups in IPV can be obtained by considering various classes of 
groups intensively studied in geometric group theory. Below are two such families of 
examples:

i) G is any torsion free, icc hyperbolic property (T) group (e.g. an uniform lattice in 
Sp(n, 1), n ≥ 2) and K ! G is any infinite maximal amenable subgroup;

ii) G is any torsion free, icc, property (T) group that is hyperbolic relative to a family of 
amenable subgroups {H1, H2, ..., Hn} (see [1, Theorem 1.1] and [1, Lemma 4.2(2)]) 
and K = Hi, for some i.

Next, we record several properties for groups that belong to class IPV that will be useful 
in the next sections.

Theorem 4.1. [21, Theorem 3.4.14] Any group in IPV is bi-exact.

Proof. Since the action G " G/K is by translation for any j = hK ∈ G/K, its stabilizer 
satisfies StabG(j) = hKh−1. As K is amenable so are its conjugates and hence StabG(j)
is amenable. Finally, since A is amenable then [21, Theorem 3.4.14] implies that Γ is 
bi-exact. "

Theorem 4.2. [38, Theorem 8.4] Let Γ ∈ IPV and let t > 0. Assume that Λ is an arbitrary 
group such that there exists a ∗-isomorphism φ : L(Γ) → L(Λ)t. Then t = 1 and there 
exist δ ∈ Isom(Γ, Λ), ω ∈ Char(Γ) and w ∈ U(L(Λ)) such that φ = ad(w) ◦ Ψω,δ, where 
Ψω,δ(ug) = ω(g)vδ(g), for any g ∈ Γ.

5. W ∗-superrigidity for product groups

In the first part of the section we prove Theorem A (see Theorem 5.2) and therefore 
generalize the main results from [11]. The technology that we use is slightly different 
from the one in [11], resembling more the methods developed in [24,22,23].

In the second part we use the product rigidity in combination with other prior re-
sults [38] to show that any direct product of groups in class IPV is W ∗-superrigid (see 
Corollary 5.3).

One of the crucial ingredients in the proof of Theorem 5.2 is an ultrapower technique 
[34], which we recall in the following form. This result is essentially contained in the 
proof of [34, Theorem 3.1] (see also [11, Theorem 3.3]), but the statement that we will 
use is a particular case of [24, Theorem 4.1].
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Theorem 5.1. [34] Let Λ be a countable icc group and denote by M = L(Λ). Let ∆ :
M → M⊗̄M be the ∗-homomorphism given by ∆(vλ) = vλ ⊗ vλ, for all λ ∈ Λ. Let 
P, Q ⊂ M be von Neumann subalgebras such that ∆(P) ≺M⊗̄M M⊗̄Q.

Then there exists a decreasing sequence of subgroups Σk < Λ such that P ≺M L(Σk), 
for every k ≥ 1, and Q′ ∩M ≺M L(∪k≥1CΛ(Σk)).

We are now ready to present the product rigidity result.

Theorem 5.2. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 1 icc, non-amenable, bi-exact 
groups and denote by M = L(Γ). Let Λ be any countable group and t > 0 such that 
Mt = L(Λ). Then there exist a direct product decomposition Λ = Λ1 × · · · × Λn, some 
scalars t1, . . . , tn > 0 with t1 · · · tn = t, and a unitary u ∈ Mt such that uL(Λi)u∗ =
L(Γi)ti , for any 1 ≤ i ≤ n.

Proof. Without any loss of generality we can assume t = 1, since the general case does 
not hide any technical difficulties. Let ∆ : M → M⊗̄M be the ∗-embedding given by 
∆(vλ) = vλ ⊗ vλ, for any λ ∈ Λ as in [60]. First we prove the following

Claim 1. For any 1 ≤ i ≤ n, we have ∆(L(Γî)) ≺M⊗̄M M⊗̄L(Γĵ) for some 1 ≤ j ≤ n.

Proof of Claim 1. Fix 1 ≤ i ≤ n. Since ∆(L(Γi)) and ∆(L(Γî)) are commuting non-
amenable subalgebras of L(Γ)⊗̄L(Γ), it follows by Theorem 3.2 that there exists 1 ≤
j ≤ n such that ∆(L(Γî)) ≺M⊗̄M M⊗̄L(Γĵ) or ∆(L(Γî)) ≺M⊗̄M L(Γĵ)⊗̄M. The claim 
follows by using Lemma 3.3; alternatively, one could use the flip automorphism σ of 
M⊗̄M since σ ◦ ∆ = ∆. #

Theorem 5.1 combined with Claim 1 imply that there exists a subgroup Σi < Λ
with non-amenable centralizer CΛ(Σi) such that L(Γî) ≺M L(Σi), for any 1 ≤ i ≤ n. 
Moreover, we show next that the following holds:

Claim 2. For any 1 ≤ k ≤ n, we have L(Γk̂) ≺s
M L(Σk) and L(Σk) ≺s

M L(Γk̂).

Proof of Claim 2. We will show the claim only for k = 1 as the other cases are sim-
ilar. First, we notice that since L(Γ1̂) ⊂ M is regular then by [24, Lemma 2.4(2)] we 
have that L(Γ1̂) ≺s

M L(Σ1). Next, we show the second intertwining relation. Using 
[24, Lemma 2.4(3)] there is a maximal projection ei ∈ Z(L(Σ1)′ ∩M), possibly the zero 
projection, such that

L(Σ1)ei ≺s
M L(Γî), for any 1 ≤ i ≤ n. (5.1)

Remark that e := e1 ∨ · · · ∨ en = 1. Indeed, otherwise the projection f := 1 − e ∈
Z(L(Σ1)′ ∩L(Λ)) is non-zero, and hence, L(CΛ(Σ1))f is non-amenable by Lemma 2.13. 
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Thus by Theorem 3.2 there exists 1 ≤ i ≤ n such that L(Σ1)f ≺M L(Γî). Since f ≤ 1 −ei
this contradicts the maximality of ei.

We continue by showing that for every 1 ≤ i ≤ n we have either ei = 0 or ei = 1. 
Denote by Ω0 the set of all λ ∈ Λ such that L(Γ1̂) ≺M L(λΣ1λ−1 ∩Σ1). First, we prove 
that

vλeiv
∗
λ = ei, for all λ ∈ Ω0 and 1 ≤ i ≤ n. (5.2)

If (5.2) does not hold, then one can find λ ∈ Ω0 and 1 ≤ i ≤ n such that vλeiv∗λ 3=
ei. Hence, there is j 3= i such that vλeiv∗λej 3= 0. By (5.1), we get that L(λΣ1λ−1 ∩
Σ1)vλeiv∗λ ≺s

M L(Γî) and L(λΣ1λ−1 ∩ Σ1)ej ≺s
M L(Γĵ). Using Lemma 2.2, we get non-

zero projections fi, fj ∈ Z(L(λΣ1λ−1 ∩ Σ1)′ ∩ M) with vλeiv∗λ ≤ fi and ej ≤ fj such 
that L(λΣ1λ−1 ∩ Σ1)fi ≺s

M L(Γî) and L(λΣ1λ−1 ∩ Σ1)fj ≺s
M L(Γĵ). Since vλeiv∗λej 3=

0, we get that f0 := fifj ∈ Z(L(λΣ1λ−1 ∩ Σ1)′ ∩ M) is a non-zero projection. By 
applying [24, Lemma 2.8(2)], we get that L(λΣ1λ−1 ∩ Σ1)f0 ≺s

M L(Γ{̂i,j}). Finally, 
using Proposition 3.1 and the fact that λ ∈ Ω0, we get a contradiction. Hence, relation 
(5.2) must hold.

If we let Ω be the subgroup generated by Ω0, we deduce that vλeiv∗λ = ei, for all λ ∈
Ω and 1 ≤ i ≤ n. By applying Lemma 2.3, we get that Ω < Λ has finite index. Since Λ
is icc, it follows that the set {λσλ−1 : λ ∈ Ω} is infinite for any σ ∈ Λ \ {1}. A standard 
computation reveals that (5.2) implies ei ∈ C1. Since ei is a projection, it follows that 
ei = 0 or ei = 1. Now, using e1 ∨ · · ·∨ en = 1, one can find i such that L(Σ1) ≺s

M L(Γî). 
Since L(Γ1̂) ≺s

M L(Σ1), then [63, Lemma 3.7] implies that L(Γ1̂) ≺s
M L(Γî). Since Γi is 

an infinite group, it follows that i = 1, thus ending the claim. #

Claim 3. There exists a subgroup Σ0 < Λ such that L(Σ0) ≺s
M L(Γ1) and L(Γ1) ≺s

M
L(Σ0).

Proof of Claim 3. From Claim 2 we have that L(Γ2̂) ≺s
M L(Σ2) and L(Γ3̂) ≺s

M L(Σ3). 
Using [64, Lemma 2.7] we find an element λ3 ∈ Λ such that L(Γ{̂2,3}) ≺

s
M L(Σ2 ∩

λ3Σ3λ
−1
3 ). From Claim 2 and [24, Lemma 2.8(2)] we deduce that L(Σ2 ∩ λ3Σ3λ

−1
3 ) ≺s

M
L(Γ{̂2,3}).

Proceeding by induction for every j ≥ 2, there exists λj ∈ Λ such that L(Γ ̂{2,...,j}) ≺
s
M

L(Σ2∩λ3Σ3λ
−1
3 ∩ · · ·∩λjΣjλ

−1
j ) and L(Σ2∩λ3Σ3λ

−1
3 ∩ · · ·∩λjΣjλ

−1
j ) ≺s

M L(Γ ̂{2,...,j}). 
Since ̂{2, . . . , n} = {1}, Claim 3 follows by taking Σ0 = Σ2 ∩ λ3Σ3λ

−1
3 ∩ · · · ∩ λnΣnλ−1

n . 
#

Using the Claims 2-3 in combination with [24, Theorem 6.1], one can find a product 
group decomposition Λ = Λ1 × Λ′

1, a tensor decomposition Mt = L(Γ1)t1⊗̄L(Γ1̂)1/t1 , 
for some scalar t1 > 0, and a unitary u ∈ U(M) such that uL(Λ1)u∗ = L(Γ1)tt1 and 
uL(Λ′

1)u∗ = L(Γ1̂)1/t1 . Since Γ1̂ is a product of n − 1 non-amenable bi-exact icc groups, 
we derive the conclusion by a standard induction argument. "
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Now combining our prior product rigidity results for bi-exact groups together with 
the superrigidity results from [38] we derive many examples of W ∗-superrigid groups of 
product type.

Corollary 5.3. Let Γ1, Γ2, . . . , Γk ∈ IPV and denote by Γ = Γ1 × Γ2 × · · · × Γk. Let 
t > 0 and assume that Λ is an arbitrary group such that there exists a ∗-isomorphism 
θ : L(Γ) → L(Λ)t. Then t = 1 and there exist δ ∈ Isom(Γ, Λ), ω ∈ Char(Γ) and 
u ∈ U(L(Λ)) such that θ = ad(u) ◦ Ψω,δ.

Proof. Using Theorems 4.1 and 5.2 there exist a k-folded product decomposition Λ =
Λ1 × ... × Λk, scalars t1, . . . , tk > 0 with t1t2 · · · tk = t and a unitary w ∈ U(L(Λ)) such 
that for every 1 ≤ i ≤ k we have

wθ(L(Γi))tiw∗ = L(Λi).

Since Γi ∈ IPV then Theorem 4.2 further implies that ti = 1 and there exist ωi ∈
Char(Γi), δi ∈ Isom(Γi, Λi) and wi ∈ U(L(Λi)) such that wθ(uγi)w∗ = ωi(γi)wivδi(γi)w

∗
i

for all γi ∈ Γi. Thus t = 1 and letting ω =
∏k

i=1 ωi, δ =
∏k

i=1 δi and u = w∗ ∏k
i=1 wi we 

get the desired conclusion. "

6. A class of iterated amalgamated free products and HNN extension groups

In this section we present several properties of groups that belong to class D and their 
associated von Neumann algebras.

Lemma 6.1. Let G = HNN(K, Σ, ϕ) be an HNN-extension where Σ < K are groups and 
ϕ : Σ → K is a monomorphism. Then the following hold:

(1) QN(1)
G (Σ) = Σ if and only if QN(1)

K (Σ) = Σ, QN(1)
K (ϕ(Σ)) = ϕ(Σ), [Σ : Σ ∩

gϕ(Σ)g−1] = ∞ and [ϕ(Σ) : ϕ(Σ) ∩ gΣg−1] = ∞ for all g ∈ K.
(2) Under the assumptions of 1. we have that K∩gKg−1 ! Σ ∩ϕ(Σ) for every g ∈ G \K.

Proof. 1. First we prove the forward implication. Since the first assertion follows trivially 
we will only justify the second one. Note that we can write G =< K, t : ϕ(σ) =
t−1σt, for any σ ∈ Σ >. Assume there is g ∈ K so that [Σ : Σ ∩ gϕ(Σ)g−1] < ∞. Using 
the HNN relation this implies that [Σ : Σ ∩gtΣ(gt)−1] < ∞ and hence gt ∈ QN(1)

G (Σ) = Σ. 
Thus t ∈ g−1Σ < K, a contradiction.

Now we prove the reverse implication. Fix g ∈ QN(1)
G (Σ). Thus one can find finite 

index subgroups Σ1, Σ2 ! Σ and a group isomorphism θ : Σ1 → Σ2 such that

θ(h) = ghg−1 for all h ∈ Σ1. (6.1)
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Using Britton’s lemma we can write g in reduced form, i.e. g = g0tε1g1tε2 ...gn−1tεngn
where gi ∈ K, εi ∈ {−1, 1} and the word g does not contain any substring of the form 
tht−1 for h ∈ Σ or t−1kt for k ∈ ϕ(Σ). Using this together with equation (6.1) we have 
that

1 = θ(h)gh−1g−1

= θ(h)g0t
ε1g1t

ε2 ...gn−1t
εngnh

−1g−1
n t−εng−1

n−1t
−εn−1 ...t−ε1g−1

0 for every h ∈ Σ1.
(6.2)

Therefore using the Britton’s normal form we have two cases to analyze: either I) 
gnhg−1

n ∈ Σ for all h ∈ Σ1 and εn = 1 or II) gnhg−1
n ∈ ϕ(Σ) for all h ∈ Σ1 and 

εn = −1.
Assume n ≥ 2. If we are in case I) then we see that gnΣ1g−1

n < Σ and hence gnΣ1g−1
n ∩Σ =

gnΣ1g−1
n . Thus [Σ : Σ ∩ g−1

n Σgn] = [gnΣg−1
n : gnΣg−1

n ∩ Σ] ≤ [gnΣg−1
n : gnΣ1g−1

n ∩ Σ] =
[gnΣg−1

n : gnΣg−1
n ] = [Σ : Σ1] < ∞. From the assumptions this implies that gn ∈ Σ. In 

particular we have that tεngnΣ1g−1
n t−εn = ϕ(Σ′

1) where Σ′
1 = gnΣ1g−1

n ! Σ is a finite 
index subgroup. Thus equation (6.2) again implies that either Ia) gn−1ϕ(Σ′

1)g−1
n−1 < Σ

and εn−1 = 1 or Ib) gn−1ϕ(Σ′
1)g−1

n−1 < ϕ(Σ) and εn−1 = −1.
Assume sub-case Ia). Thus [ϕ(Σ) : ϕ(Σ) ∩g−1

n−1Σgn−1] = [gn−1ϕ(Σ)g−1
n−1 :gn−1ϕ(Σ)g−1

n−1∩
ϕ(Σ)] ≤ [gn−1ϕ(Σ)g−1

n−1 : gn−1ϕ(Σ′
1)g−1

n−1 ∩ ϕ(Σ)] = [gn−1ϕ(Σ)g−1
n−1 : gn−1ϕ(Σ′

1)g−1
n−1] =

[ϕ(Σ) : ϕ(Σ′
1)] < ∞. However this contradicts the assumptions so this case cannot hold.

Now assume sub-case Ib). Then we see that [ϕ(Σ) : ϕ(Σ) ∩ g−1
n−1ϕ(Σ)gn−1] =

[gn−1ϕ(Σ)g−1
n−1 : gn−1ϕ(Σ)g−1

n−1 ∩ Σ] ≤ [gn−1ϕ(Σ)g−1
n−1 : gn−1ϕ(Σ′

1)g−1
n−1 ∩ Σ] =

[gn−1ϕ(Σ)g−1
n−1 : gn−1ϕ(Σ′

1)g−1
n−1] = [ϕ(Σ) : ϕ(Σ′

1)] < ∞. Using the assumptions we 
infer that gn−1 ∈ ϕ(Σ). However this together with the previous relations imply that 
tεn−1gn−1tεn = t−1gn−1t which contradicts that the word g is reduced. So sub-case Ib) 
is impossible as well.

Altogether these show that case I is impossible. Proceeding in a similar manner one 
can show case II is impossible as well. In conclusion we must have n ≤ 1.
Next assume n = 1. Also assume we are in case I. Proceeding as before we must have that 
g1 ∈ Σ and using equation (6.2) we see that g0Σ2g

−1
0 = g−1

0 θ(Σ1)g−1
0 = tg1Σ1g

−1
1 t−1 =

ϕ(g1Σ1g
−1
1 ). Since [Σ : Σ1] < ∞ we must have [Σ : g1Σ1g

−1
1 ] < ∞. Combining this 

with the previous relation this further entail that [g0Σg−1
0 : g0Σg−1

0 ∩ϕ(Σ)] ≤ [g0Σg−1
0 :

g0Σ2g
−1
0 ∩ ϕ(Σ)] = [Σ : Σ2] < ∞ thus contradicting the hypothesis assumptions. In a 

similar way case II also leads to a contradiction. Thus n = 0 and hence equation (6.1)
together with the hypothesis imply that g = g0 ∈ Σ, as desired.
Part 2. follows by similar computations. We leave the details to the reader. "

Theorem 6.2. If G ∈ Di, for some i ≥ 1, and ai(G) = Σ, then the following hold:

(1) QN(1)
G (Σ) = Σ;

(2) vCG(Σ) = 1.
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Proof. 1. This follows directly from the quasi-normalizers conditions from class D by 
applying [14, Lemma 2.11] and Lemma 6.1 inductively.
2. Let g ∈ vCG(Σ). Thus there exists a finite index subgroup Σ0 ! Σ so that g ∈ CG(Σ0); 
in particular g ∈ QNG(Σ0). However using the finite index condition one can easily check 
that QNG(Σ0) = QNG(Σ) and combining with the first part we conclude that g ∈ Σ. In 
particular, this shows that vCG(Σ) ⊂ Σ and since Σ is icc we conclude that vCG(Σ) = 1, 
as desired. "

Proposition 6.3. Let G ∈ Di with i ≥ 1 and write ai(G) = Σ. Assume that there exist 
g1, . . . , gk ∈ G such that ∩k

i=1giΣg−1
i is finite.

Then L(G) does not admit a diffuse amenable regular von Neumann subalgebra. In 
particular, G has trivial amenable radical.

Proof. Let A ⊂ L(G) be an amenable regular von Neumann subalgebra. First, we show 
that A ≺L(G) L(Σ). From the definition, G is either (1) an amalgamated free product 
G = H1 ∗Σ H2 with H1, H2 ∈ Di−1 and Σ amenable or (2) an HNN-extension G =
HNN(H1, Σ, φ) with H1 ∈ Di−1 and Σ amenable. By applying [66, Theorem A and 
Theorem 4.1], we deduce that A ≺L(G) L(Σ) holds in both cases. Next, by applying [31, 
Proposition 8] we derive that A ≺L(G) L(∩k

i=1giΣg−1
i ), implying that A is not diffuse.

For the last part of the proof notice that since G is icc, the first part of the proof 
implies that G has trivial amenable radical. "

Theorem 6.4. Let G ∈ D and denote by f(G) = {G1, G2, ..., Gn} its factor set. For 
every 1 ≤ i ≤ n denote by si ≥ 2 the integer such that Gi = Γi

1 × Γi
2 × ... × Γi

si , 
where Γi

j ∈ IPV. Denote M = L(G × G) and let p ∈ M be a projection. Assume that 
A, B ⊆ pMp are commuting von Neumann subalgebras which contain property (T) diffuse 
subalgebras A0 ⊆ A and B0 ⊆ B. Also assume that A0 ⊀M L(G ×A), A0 ⊀M L(A ×G), 
B0 ⊀M L(G ×A) and B0 ⊀M L(A ×G) for any amenable subgroup A ! G.

Then one can find 1 ≤ i ≤ n and 1 ≤ j ≤ si such that A ≺M L(G × Γi
ĵ
) or 

A ≺M L(Γi
ĵ
×G).

Here, we denoted by Γi
ĵ

the product group ×k∈ĵΓi
k.

Proof. If G ∈ D0, then the result follows from Theorem 3.2. Hence, we assume that 
G ∈ Dm with m ≥ 1 and denote am(G) = Σ. Firstly, we claim that there exist integers 
1 ≤ k, l ≤ n, a projection 0 3= z ∈ (A ∨ B)′ ∩M and unitary u ∈ M such that

u(A ∨ B)zu∗ ⊆ L(Gk ×Gl). (6.3)

From the definition, G is either an amalgamated free product G = H1 ∗Σ H2 with 
Hi ∈ Dm−1 and Σ amenable or an HNN-extension G = HNN(H1, Σ, φ) with H1 ∈ Dm−1
and Σ amenable. Thus M is canonically either an amalgamated free product or an HNN-
extension von Neumann algebra and since A0 ⊆ M is a property (T) subalgebra then 
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using either [37, Theorem 5.1] or [29, Theorem 3.4] we have that A0 ≺M L(G ×Hi) := Pi

for some Hi ∈ Dk−1. Thus one can find projections a ∈ A0, p ∈ Pi, a non-zero partial 
isometry v ∈ pMa, and an injective ∗-isomorphism φ : aA0a → φ(aA0a) := Q ⊆ pPip

so that φ(x)v = vx for all x ∈ aA0a. Moreover, v∗v ∈ aA0a′ ∩ aMa, vv∗ ∈ Q′ ∩ pMp

and we can assume that the support s(EPi(vv∗)) = q.
Next, observe that Q ⊀Pi L(G × Σ). Indeed, otherwise composing this intertwining 

with φ we would obtain that A0 ≺M L(G ×Σ). Since Σ is amenable this would contradict 
the hypothesis assumptions. Therefore, by Lemma 2.10, we have that vv∗ ∈ Q′∩pMp ⊆
L(G × Hi). In particular, we have vA0v∗ = Qvv∗ ⊆ L(G × Hi) and moreover, if u
is a unitary extending v∗v, we get that uv∗v(A0 ∨ A′

0 ∩ pMp)v∗vu∗ ⊆ L(G × Hi). 
As L(G × Hi) is a factor, after perturbing u to a new unitary we further get that 
u(A0∨A′

0∩pMp)zu∗ ⊆ L(G ×Hi), where z is the central support of v∗v in A ∨A′∩pMp. 
Thus u(A0 ∨ B)zu∗ ⊆ L(G × Hi) and in particular uBzu∗ ⊆ L(G × Hi). From the 
assumptions we also see that uBzu∗ ⊀Pi L(G × Σ) and therefore repeating the same 
argument as before on control of relative commutants we get that u(B′∩zMz) ∨Bzu∗ ⊆
L(G ×Hi); in particular, we conclude that u(A ∨B)zu∗ ⊆ L(G ×Hi). Now, notice that Az

and Bz are still commuting von Neumann subalgebras containing property (T) diffuse 
subalgebras A0z ⊆ Az and B0z ⊆ Bz. Therefore, one can repeat the same argument 
finitely many times so that in the end there exist Hk, Hl ∈ D0 a unitary still denoted by 
u ∈ M and a non-zero projection z ∈ (A ∨B)′∩M satisfying u(A ∨B)zu∗ ⊆ L(Hk×Hl). 
However, since the elements of D0 consist of factor subgroups of G, the claim (6.3) follows.

Finally, note that since the groups Γi
j’s are bi-exact and B is non-amenable, we can 

apply Theorem 3.2 and obtain the conclusion. "

We remark that the result above can also be obtained using bi-exactness methods 
from [52,6]. Moreover, the theorem still holds under the milder assumption that the 
algebras A and B have no amenable direct summand rather containing property (T) 
diffuse subalgebras. For the interested reader we also note this result can be proved either 
using bi-exactness methods from [52,53,6] or using Popa’s deformation/rigidity theory 
as in [13,29]. We opted for this leaner version only for the brevity of the exposition as it 
follows relatively easily from existing results in the literature.

Some examples of amalgamated free product groups in class D. Let K be a non-
elementary, torsion free, property (T) group that is hyperbolic relative to a finitely 
generated, icc amenable subgroup P < K; using [1, Theorem 1.1], for any given finitely 
generated group P , such a K always exists. Moreover, since amenable groups are biexact, 
then [53] (or [45, Theorem 1.1]) implies that K is biexact. Now fix g ∈ K \P a hyperbolic 
element and let B := E(g) < K be the (unique) maximal elementary subgroup defined 
by E(g) = {f ∈ K | f−1gnf = g±n, for some n ∈ N}. Observe that both P and B
are amenable and malnormal in K. Moreover, we have that P ∩ kBk−1 = 1, for all 
k ∈ K. The last two assertions follow from [1, Lemma 3.1] and [51, Theorem 1.4]. We 
consider the generalized wreath product H = Z2 'K/B K and notice that H ∈ IPV. Let 
G = ×n

i=1H ∈ D0 with n ≥ 2. Therefore, the following groups belong to D1:
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• G ∗Σ G, where Σ = ×n
i=1P < G is the natural direct product embedding.

• G ∗Σ G, where Σ < G is the diagonal product embedding of P ; more precisely, 
Σ = {(g, . . . , g) | g ∈ P}.

Moreover, note that these groups actually belong to Dm
1 . For examples of groups in Di

with i ≥ 2, one can easily iterate by following the procedure described in the definition 
of class D.

Some examples of HNN extensions in class D. Let K be a non-elementary, torsion 
free, hyperbolic group that admits a normal infinite property (T) subgroup. Assume that 
B, C, D < K are infinite cyclic subgroups that are malnormal and satisfy C ∩ gBg−1 =
D ∩ gBg−1 = C ∩ gDg−1 = 1, for all g ∈ K. Next we briefly indicate how to build 
such groups using Belegradek-Osin’s Rips construction in geometric group theory [5]. 
Consider the free group with three generators F3 = 〈a, b, c〉. Then using [5, Theorem 1.1]
there exist a torsion free, property (T) group N and an action by automorphisms F3 " N

such that the corresponding semidirect product K = N ! F3 is hyperbolic relative to 
F3. Since F3 is itself hyperbolic it follows that K is hyperbolic and also torsion free. 
Now consider the cyclic subgroups of K given by the generators of F3, B = 〈a〉 C = 〈b〉
D = 〈c〉. Since K is hyperbolic relative to F3 = B ∗ C ∗D then F3 is malnormal in K
and therefore one can check easily that B, C, D satisfy the required conditions. We also 
mention that one can build groups K with the required properties that actually have 
property (T) in a similar manner, but using [1, Theorem 1.1] instead of [5, Theorem 1.1].

Now, consider the generalized wreath product Γ = Z2'K/BK and notice that Γ ∈ IPV.
Next, we consider the canonical subgroups Ω = Z2 'K/B C and Υ = Z2 'K/B D

of Γ and we claim that Ω is isomorphic to Υ. Towards this, we first notice that the 
actions by left translations on the base sets C " K/B and D " K/B have trivial 
stabilizers. Indeed, for every gB ∈ K/B its stabilizer in C is gBg−1 ∩ C which by 
assumption is trivial. Moreover these actions have (countable) infinitely many orbits 
which are given specifically by the double cosets K = 8g∈F1 CgB = 8g∈F2 DgB, where 
|F1| = |F2| = ℵ0. Indeed, just notice that if Fi would be finite then it would imply that K
is boundedly generated. However this would contradict for instance [43] or [49, Theorem
1.9]. Using these observations one can see the following sequence of isomorphisms hold: 
Ω = Z2 'K/B C = ⊕g∈F1(⊕h∈CgBZ2) ! C ∼= ⊕g∈F1(⊕h∈CZ2) ! C ∼= ⊕N(⊕ZZ2) ! Z, 
where the last semidirect product is associated with diagonal action of Bernoulli actions 
of Z on ⊕N(⊕ZZ2). A similar argument shows that Υ = Z2 'K/BD ∼= ⊕N(⊕ZZ2) !Z and 
combining with the above we get the claim. Next, fix a group isomorphism ψ : Ω → Υ.

Now, let n ≥ 2 be any integer and consider the n-folded product H = Γ × ... × Γ
together with the n-folded product subgroup Σ = Ω × ... × Ω. Also denote by ϕ :
Ω × ... × Ω → Υ × ... × Υ the n-folded isomorphism induced by ψ. Now one can check 
that Σ < H and ϕ(Σ) < H satisfy all the conditions enumerated in Lemma 6.1 and 
consequently the one-sided quasinormalizer conditions in the definition of class D. So 
using this construction in conjunction with amalgamation and HNN-extensions we can 
build iteratively various examples of groups in the class D such as:
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HNN(H,Σ,ϕ) ∈ D1, HNN(H,Σ,ϕ) ∗Σ (H ∗Σ H) ∈ D2,

(HNN(H,Σ,ϕ) ∗Σ (H ∗Σ H)) ∗Σ (HNN(H,Σ,ϕ) ∗Σ (H ∗Σ H)) ∈ D3, etc.

7. A class of semidirect product groups with non-amenable core

Our class A introduces a new family of semidirect product groups G whose von Neu-
mann algebras L(G) display excellent rigidity properties, as we will see in the next 
sections. We continue by recalling the definition of class A.

Let Γ be a non trivial, icc, bi-exact, torsion free, property (T) group. Let n ≥ 2 be 
a positive integer and let Γ1, Γ2, ..., Γn be isomorphic copies of Γ. For every 1 ≤ i ≤ n

consider the action Γ "ρi Γi by conjugation, i.e. ρiγ(λ) = γλγ−1 for all γ ∈ Γ, λ ∈ Γi. 
Next consider the action Γ "ρ Γ1 ∗Γ2 ∗ ... ∗Γn on the free product group Γ1 ∗Γ2 ∗ ... ∗Γn

given by the canonical free product automorphism ργ = ρ1
γ ∗ ρ2

γ ∗ ... ∗ ρnγ for all γ ∈ Γ
and let G = (Γ1 ∗ Γ2 ∗ ... ∗ Γn) !ρ Γ be the corresponding semidirect product.

The class of these semidirect product groups is denoted throughout the paper by Class 
A.
Representation as amalgams. The groups in the class A can be viewed alternatively as 
free product groups amalgamated over the acting group. Namely, one can canonically 
decompose G = (Γ1 ∗Γ2 ∗ .... ∗Γn) !ρ Γ = (Γ1 !ρ1 Γ) ∗Γ (Γ2 !ρ2 Γ) ∗Γ ... ∗Γ (Γn !ρn Γ). In 
addition, the semidirect product Γi!ρiΓ can be canonically identified with the semidirect 
product (Γ × 1) !ρ d(Γ) where d(Γ) = {(γ, γ) : γ ∈ Γ} ! Γ × Γ is the diagonal group 
and the action is given by ρ(γ,γ)(λ, 1) = (γλγ−1, 1) for all γ, λ ∈ Γ. In particular, this 
canonically shows that Γi !ρi Γ ∼= Γ × Γ. Thus, using the aforementioned identifications 
we have

G =
(
(Γ1 × 1) !ρ1 d(Γ)

)
∗d(Γ)

(
(Γ2 × 1) !ρ2 d(Γ)

)
∗d(Γ)...∗d(Γ)((Γn × 1) !ρn d(Γ)) . (7.1)

This amalgam decomposition of G along the retracts will be used extensively in the 
proofs of our main structural results.

We end this section by recording a list of algebraic properties of groups in class A
that are relevant to our von Neumann algebraic results.

Proposition 7.1. Let G = (Γ1 ∗ Γ2 ∗ ... ∗ Γn) !ρ Γ ∈ A. Then the following hold:

1) G has trivial amenable radical, i.e. the only normal amenable subgroup of G is the 
trivial one.

2) If Γ is residually finite then so is G.
3) The class A has 2ℵ0 elements.

Proof. 1) Denote by K = Γ1 ∗ ... ∗Γn and note that G = K!ρ Γ. Fix Σ !G an amenable 
normal subgroup. First we argue that Σ ∩K = 1. Since Σ is normal in G, then Σ ∩K

is also normal in K. As Σ ∩ K < K = Γ1 ∗ Γ2 ∗ ... ∗ Γn then by Kurosh’s subgroup 
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theorem we have that Σ ∩ K = F ∗ (∗kj=1N
γj

j ), where F is a free group, Nj ! Γij

1 ≤ ij ≤ n are subgroups, and γj ∈ K. Here, we denoted Nγj

j = γjNjγ
−1
j . As Σ ∩ K

is amenable and torsion free we must have that either (a) F = 1 and k = 1, or (b) 
F = Z and k = 0. By assuming (a), it follows that Σ ∩ K = (Σ ∩ K)γ−1

1 = N1 < Γi1 . 
Now, pick γ ∈ K \ Γi1 . Since Γi1 is malnormal in K and Σ ∩K is normal in K, we get 
(Σ ∩K) = (Σ ∩K) ∩ (Σ ∩K)γ < Γi1 ∩ Γγ

i1
= 1, as claimed. Assume now that (b) holds 

and let a = a1 . . . as be a generator of F written as a reduced word in Γ1 ∗ · · · ∗ Γn. If 
s = 1, then the argument follows as in (a). If s = 2, note that any element in F can 
be written as a reduced word of even length. Since F < K is normal, it follows that 
the reduced word of a1aa

−1
1 ∈ F has length 3, contradiction. In the case that s ≥ 3, we 

proceed as follows. Since gag−1 is also a generator of F for any g ∈ K, we derive that 
we either reduce to the case s ∈ {1, 2} or we can assume that a1 and as do not belong 
to the same subgroup Γj of K. In this second case, note that any element of F can be 
written as a reduced word of for which its length is a multiple of s. However, the length 
of the reduced word of a1aa

−1
1 ∈ F equals s + 1, contradiction. Therefore, Σ ∩K = 1.

Next, notice that since Σ and K are normal in G it follows that the commutator 
[Σ, K] < Σ ∩ K = 1; in particular, Σ < CG(K). Next, we argue that the centralizer 
CG(K) = 1, which in particular gives the desired conclusion. Fix γ = kl ∈ CG(K), 
where k ∈ K and l ∈ Γ. This implies that for all s ∈ K we have sγ = γs which implies 
skl = kls and hence k−1sk = ρl(s). If we let s ∈ Γi we see the previous relation together 
with the malnormality of Γi in K imply that k ∈ Γi. Since this holds for all i then 
k ∈ ∩n

i=1Γi = 1 and so k = 1. In conclusion, we must have that s = ρl(s) for all s ∈ K

and since Γ is icc this further implies that l = 1; hence γ = 1, which finishes the proof.
2) Notice that since Γ is residually finite then so is Γ ×Γ and hence, Γi!ρi Γ is residually 
finite for all 1 ≤ i ≤ n. Then using the amalgam decomposition of G along retracts (7.1)
together with [3, Theorem 1], iteratively, we get that G is residually finite as well.
3) We will present a construction of a continuum of elements in A that relies heavily 
on several deep results in geometric group theory [1,50]. We start by noticing that for 
every finitely generated, torsion free group K there exists a group H(K) containing K
as proper subgroup and satisfying the properties that H(K) is torsion free, has property 
(T) and is hyperbolic relative to K. This essentially follows from the same arguments 
presented in the proof of [1, Theorem 1.1]. However, since in the aforementioned result 
the authors do not emphasize the torsion free aspect we repeat here a simplified version 
of their argument addressing this part. To this end, let T be any torsion free, property 
(T), hyperbolic group (e.g. any uniform lattice in Sp(n, 1), n ≥ 2) and let F be a finite set 
of generators of K. Now consider the free product G = T ∗K and notice G is hyperbolic 
relative to {K}. In addition, notice that T is a suitable subgroup of G in the sense of [50, 
Definition 2.2]. Then using [50, Theorem 2.4] one can find an epimorphism φ : G → H

satisfying the following properties: a) the restriction φ|K is injective; b) the group H
is hyperbolic relative to φ(K); c) φ(F ) ⊂ φ(T ); d) every element of finite order in H
is the image under φ of an element of finite order in G. Clearly, a) and b) imply that 
φ(K) ∼= K and H is hyperbolic relative φ(K). Since T and K are torsion free then so is 
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G and by d) it follows that H is torsion free as well. Finally, condition c) implies that 
H = φ(T ∗K) = φ(T ) and since T has property (T) then H has property (T) as well. 
Letting, H(K) := H we get the desired statement.

Next, we claim that there exists a continuum family K̃ of pairwise non-isomorphic non-
elementary amenable groups, that are torsion free and have infinite center. Indeed, from 
[30, Theorem 6] there exists a continuum family K of groups Ki that are 2-generated, 
torsion free, and solvable (in particular amenable). Using this we define a new continuum 
family of groups K̃ as follows. First eliminate all possible elementary groups from K which 
are at most countably many so we are left again with a continuum family which we still 
denote by K. Consider Kc ⊆ K the subset of the groups in K with infinite center. If 
|Kc| = 2ℵ0 then let K̃ := Kc. If |Kc| 3= 2ℵ0 then |K\Kc| = 2ℵ0 . Moreover, since all groups 
involved are torsion free then K \Kc consists only of groups with trivial center. Then in 
this scenario we define K̃ := {Z ×K : K ∈ K \ Kc}. This proves the claim.

Now, we argue that the groups H(Si) where Si ∈ K̃ form a continuum family of 
pairwise non-isomorphic, icc, bi-exact property (T), torsion free groups. To conclude 
this we only need to show the non-isomorphism part as the rest follows from the prior 
paragraph. Assume θ : H(Si) → H(Sj) be a group isomorphism. Fix an infinite order 
central element a ∈ Z(Si). Thus, θ(a) ∈ H(Sj) is an infinite order element as well. As-
sume θ(a) is a hyperbolic element of H(Sj) = B. Thus, by [50, Theorem 2.1] there exists 
an elementary group EB(θ(a)) such that B is hyperbolic relative to {Sj} ∪ {EB(θ(a))}. 
In particular, EB(θ(a)) is malnormal in B. As 〈θ(a)〉 commutes with θ(Si) it follows 
that θ(Si) < EB(θ(a)) which further entails that θ(Si) and hence Si is elementary, a 
contradiction. In conclusion, θ(a) is parabolic and hence there exists h ∈ B such that 
〈θ(a)〉h ⊆ Sj . Again since Sj < B is malnormal and θ(Si)h commutes with 〈θ(a)〉h it 
follows that θ(Si)h < Sj . Using a similar argument for θ−1 one can find k ∈ B such 
that θ(Si)k < Sj and by malnormality again there is s ∈ B such that θ(Si)s = Sj ; in 
particular, Si

∼= Sj and hence i = j which finishes the argument.
Finally, it is a basic exercise to see that if one starts with K = H(Si), Si ∈ K̃ in 

the semidirect product construction in the class A one gets non-isomorphic groups for 
different i’s. We leave the details to the reader. "

8. Height of elements in group von Neumann algebras and techniques for 
discretization of countable groups

The notion of height of elements in crossed products and group von Neumann algebras 
was introduced and developed in [33] and [38] and was highly instrumental in many of 
the recent classification results in von Neumann algebras [33,38,41,14,17,10,9]. Following 
[38, Section 3] for every x ∈ L(Γ) we denote by hΓ(x) the largest Fourier coefficient of 
x, i.e., hΓ(x) = maxγ∈Γ |τ(xu∗

γ)|. Moreover, for every subset G ⊆ L(Γ), we denote by 
hΓ(G) = infx∈G hΓ(x), the height of G with respect to Γ. Using the notion of height Ioana, 
Popa and Vaes proved in their seminal work, [38, Theorem 3.1] that whenever Γ, Λ are icc 
groups such that L(Γ) = L(Λ) and hΓ(Λ) > 0, then Γ and Λ are isomorphic. Therefore, 
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in order to reconstruct the underlying groups from their von Neumann algebras a first 
step is to develop an adequate analysis to control the lower bound of their height.

There have been a few situations in the literature where it was possible to obtain 
lower bounds for the height. At the heart of these results is the following common 
philosophy that was extensively exploited: given two group von Neumann decompositions 
of M = L(Γ) = L(Λ), to conclude that the height hΓ(Λ0) > 0 for some subgroup Λ0 < Λ
sometimes it suffices to check that there are only a few subgroups Γi ∈ Sub(Γ) and 
Λi ∈ Sub(Λ) such that their von Neumann algebras can be identified L(Γi) = L(Λi) in 
M or just merely intertwined into each other. For example, this is the case of certain 
wreath products Γ = A(H) !H in [38] and left-right wreath products Γ = A(H) ! (H ×
H) in [8] where the von Neumann algebras of the core groups A(H) and of the acting 
groups H and respectively H ×H could be identified with the von Neumann algebras of 
certain subgroups in the mystery group Λ. A similar statement was proved for semidirect 
products with no non-trivial stabilizers in [10,9].

Next, we highlight a rather different situation where one can control the lower bound 
for height of unitary elements in the context of direct product groups. This is reminiscent 
to some of the techniques from [14]. To properly state our result we first introduce the 
following definition:

Definition 8.1.

(1) Let n ≥ 3 be a positive integer and let I 8J = {1, 2..., n} be a partition with |I| ≥ 2. 
Let Σ, Γ1, ..., Γn ∈ Sub(Γ) be a collection of subgroups and consider the (ordered) 
n-tuple of subgroups F = (Γ1, Γ2, ..., Γn) ∈ Sub(Γ)n. We say that Σ is I-J-fixable 
with respect to F if the following property holds: for any finite subsets Fi, Ki ⊂ Γ
where 1 ≤ i ≤ n there exist a finite set Gj ⊂ FjΓjKj when j ∈ J and li injective 
maps σk

i : Σ\ {1} → Γ for 1 ≤ k ≤ li and i ∈ I such that whenever g ∈ Σ \ {1}
and gi ∈ FiΓiKi \ {1} for 1 ≤ i ≤ n are elements satisfying gj ∈ FjΓjKj \ Gj for 
j ∈ J and gg1g2...gn = 1, then for every i ∈ I we must have gi = σk

i (g) for some 
1 ≤ k ≤ li.

(2) If J = ∅ in (1), we simply say that Σ is fixable with respect to F .
(3) If we have a tuple of subgroups G = (Γ1, Γ2, ..., Γm) ∈ Sub(Γ)m and Γi is fixable 

with respect to Ĝi = (Γ1, Γ2, ..., Γi−1, Γi+1, ..., Γm) for all 1 ≤ i ≤ m, then we say 
that G is fixable.

While this definition seems somewhat technical there are in fact many natural exam-
ples of groups Σ < Γ such that Σ is fixable with respect to certain families of subgroups 
of Γ. This includes, for instance, the collections of the so-called “diagonal subgroups”. 
More precisely, we have the following result for which the proof we leave it to the reader.

Proposition 8.2.
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(1) Let n ≥ 2 be a positive integer and let Σ, Γ1, Γ2, ..., Γn be some groups. Assume that 
πi : Σ → Γi is a monomorphism for all 1 ≤ i ≤ n and consider the diagonal subgroup 
δ(Σ) = {(π1(g), π2(g), ..., πn(g)) ∈ Γ1×Γ2×· · ·×Γn : γ ∈ Σ} ! Γ1×Γ2×· · ·×Γn = Γ. 
Then the (n + 1)-tuple F = (δ(Σ), Γ1, Γ2, ..., Γn) ∈ Sub(Γ)n+1 is fixable.

(2) Let Γ = A !ρ G be a semidirect product and let H ! G be a subgroup. Assume that 
there exists a map c : H → A \ {1} such that cgh = cgρg(ch) for all g, h ∈ H. If we 
denote by δ(H) = {chh : h ∈ H}, then δ(H) is fixable with respect to {A, G}.

(3) Let Γ = A !ρ G be a semidirect product group. Then G is {1, 3}-{2}-fixable with 
respect to F = (A, G, A) ∈ Sub(Γ)3.

With these preparations at hand we are now ready to derive the first main result of 
the section. Specifically, we show that in the presence of groups that are I-J-fixable, it 
is possible to control the lower bound for the heights of elements that satisfy various 
relations in the von Neumann algebra setting.

Lemma 8.3. Let Σ ! Γ be an inclusion of groups and let F, K ⊂ Γ be subsets. Then for 
every x ∈ L(Γ) we have

‖PFΣK(x)‖∞ ≤ (2|F ||K| − 1)‖x‖∞. (8.1)

Proof. We only need to show (8.1) when F and K are finite, the other cases being 
tautological. Towards this, observe that for every s, t ∈ Γ and x ∈ L(Γ) we have that 
PsΣt(x) = usEL(Σ)(us−1xut−1)ut. In particular, we have ‖PsΣt(x)‖∞ ≤ ‖x‖∞. This 
already proves our statement when F and K are singletons. The general case follows 
from this combined with the inclusion-exclusion principle for orthogonal projections. To 
see this, consider the sets Σs,t = sΣt for s ∈ F , t ∈ K and enumerate them as {Si}i, for 
1 ≤ i ≤ k where k = |F ||K|. Thus, one can check that

PFΣK = P∪k
i=1Si

=
k∑

i=1
(−1)i+1

∑

1≤j1<···<ji≤k

PSj1∩···∩Sji
(8.2)

Next, we notice that if Σ′ < Σ is a subgroup and s, t ∈ Γ, then Σ′∩sΣt is either trivial or 
of the form aΣ′′ for some subgroup Σ′′ < Σ′ and a ∈ Γ. Indeed, if Σ′ ∩ sΣt is not trivial, 
then there exist σ′ ∈ Σ′ and σ ∈ Σ such that σ′ = sσt. Hence, Σ′∩sΣt = Σ′∩σ′t−1Σt =
σ′(Σ′ ∩ t−1Σt).

Now, the previous paragraph implies that every Sj1 ∩ · · · ∩ Sji is either empty 
or of the form gΣ′h for some subgroup Σ′ ! Γ and g, h ∈ Γ. Hence, the first 
part of the proof implies that ‖PSj1∩···∩Sji

(x)‖∞ ≤ ‖x‖∞, for all 1 ≤ i ≤ k and 
x ∈ L(Γ). This together with (8.2) and the triangle inequality imply that ‖PFΣK(x)‖∞ ≤∑k

i=1
∑

1≤j1<···<ji≤k ‖PSj1∩···∩Sji
(x)‖∞ ≤ (2k − 1)‖x‖∞, as desired. "

Theorem 8.4. Let Σ, Γ1, ..., Γn ! Γ with n ≥ 2 and let I 8 J = {1, ..., n} be a partition. 
Assume that Σ is I-J-fixable with respect to F = (Γ1, . . . , Γn). Also let M1, ..., Mn ⊆
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L(Γ) = M be von Neumann subalgebras such that Mi ≺s
M L(Γi) for all i ≥ 1. Also for 

every j ∈ J assume (xj
k)k ⊆ (Mj)1 is a sequence so that xj

k → 0 in the WOT topology, 
as k → ∞. Let G ⊆ U(L(Σ)) such that for every x ∈ G there exist some elements 
xi ∈ U(Mi) for i ∈ I such that for all k ∈ N we have xa1

ka
2
k...a

n
k = 1, where aik = xi if 

i ∈ I and ajk = xj
k if j ∈ J . Then the height hΣ(G) > 0.

Proof. By hypothesis we have Mt ≺s
M L(Γt) for all t ≥ 1. Fix 0 < ε < 1

3 . Using [64]
recursively, for every 1 ≤ t ≤ n one can find finite subsets Ft, Kt ⊂ Γ so that for all 
y ∈ (Mt)1 we have

‖y − PFtΓtKt(y)‖2 ≤ ε

n
∏t−1

m=1 2|Fm||Km|
. (8.3)

Here, and throughout the rest of the proof we make the convention that 
∏0

m=1 2|Fm||Km|=
1.

Fix x ∈ G. By hypothesis we have that xa1
ka

2
k...a

n
k = 1, where aik = xi if i ∈ I and 

ajk = xj
k if j ∈ J . Also for simplicity of the writing denote by Si = FiΓiKi for 1 ≤ i ≤ n. 

From Lemma 8.3 we have that ‖PSi(x)‖∞ ≤ 2|Fi||Ki|‖x‖∞ for all x ∈ M. Using this in 
combination with the triangle inequality and inequalities (8.3) we see that

‖1 − x
n∏

t=1
PSt(atk)‖2 = ‖xa1

ka
2
k...a

n
k − x

n∏

t=1
PSt(atk)‖2

≤
n∑

t=1
‖(

t−1∏

m=1
PSm(xm

k ))(atk − PSt(atk))(
n∏

m=t+1
amk )‖2

≤
n∑

t=1

t−1∏

m=1
‖PSm(xm

k )‖∞‖atm − PSt(atk)‖2 (8.4)

≤
n∑

t=1

t−1∏

m=1
2|Fm||Km| ε

n
∏t−1

m=1 2|Fm||Km|

=
n∑

t=1

ε

n
= ε.

Combining the previous inequality with |1 −τ(x 
∏n

t=1 PSt(atk))| ≤ ‖1 −x 
∏n

t=1 PSt(atk)‖2
and the triangle inequality we further see that for all k we have

1 − ε ≤ |τ(x
n∏

t=1
PSt(atk))|. (8.5)

For every j ∈ J pick a finite subset Gj ⊂ FjΓjKj = Sj satisfying the condition in 
Definition 8.1. Let J = {j1, j2, ..., jr} for some r. Using that xj

k → 0 in WOT as k → ∞
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for every j ∈ J , we can choose an k such that for every 1 ≤ s ≤ r there is a finite set 
Rjs ⊂ FjsΓjsKjs \Gjs satisfying

‖xjs
k − PRjs

(xjs
k )‖2 ≤ 2ε

n(
∏

i∈I 2|Fi||Ki|)(
∏s−1

v=1 |Rjv |)(
∏r

v=s+1 |2|Fjv ||Kjv |)
. (8.6)

Again, in these formulas we convene that 
∏0

v=1 |Rjv | =
∏r

v=r+1 2|Fjv ||Kjv | = 1.
Exploiting (8.6) and (8.5), in the same way as in (8.4) we get that 1 − 3ε ≤

|τ(x 
∏n

t=1 PWt(atk))| where we have denoted by Wi = Si if i ∈ I and Wj = Rj if j ∈ J . 
This further implies that

1 − 3ε ≤ |τ(x
n∏

t=1
PWt(atk))|

= |
∑

g∈Σ
gt∈Wt,1≤t≤n
gg1g2...gn=1

τ(xug−1)
n∏

t=1
τ(atkug−1

t
)|

≤
∑

g∈Σ
gt∈Wt,1≤t≤n
gg1g2...gn=1

|τ(xug−1)|
n∏

t=1
|τ(atkug−1

t
)|.

(8.7)

Next, since Σ is I-J-fixable with respect to F = (Γ1, ..., Γn) and gg1g2...gn = 1 then for 
every t ∈ I there are injections σs

t : Σ \ {1} → G for 1 ≤ s ≤ lt such that gt = σst
t (g)

for some 1 ≤ st ≤ lt. Choose σs
t (1) ∈ G such that σs

t : Σ → G is still injective. Let 
I = {i1, i2, . . . , ip} for some p ≥ 2. This together with Cauchy-Schwarz inequality show 
the last term in (8.7) is smaller than

∑

g∈Σ
gt∈Wt,1≤t≤n
gg1g2...gn=1

|τ(xug−1)|
n∏

t=1
|τ(atkug−1

t
)|

≤ hΣ(x)
∑

g∈Σ
gt∈Wt,1≤t≤n
gg1g2...gn=1

∏

t∈I

|τ(xtug−1
t

)|
∏

t∈J

|τ(xt
kug−1

t
)|

≤ hΣ(x)
∑

g∈Σ
gt∈Wt,t∈J

∏

t∈I

|τ(xtuσ
st
t (g)−1)|

∏

t∈J

|τ(xt
kug−1

t
)|

≤ hΣ(x)
∑

g∈Σ
gt∈Wt,t∈J

∏

t∈I

|τ(xtuσ
st
t (g)−1)|

≤ hΣ(x)(
∏

t∈J

|Wt|)
∑

g∈Σ

∏

t∈I

(
∑

1≤s≤lt

|τ(xtuσs
t (g)−1)|)
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≤ hΣ(x)(
∏

t∈J

|Wt|)(
∏

t∈I\{i1,i2}

lt)(
∑

g∈Σ
1≤s≤li1
1≤r≤li2

|τ(xi1uσs
i1 (g)−1)||τ(xi2uσr

i2 (g)−1)|)

≤ hΣ(x)(
∏

t∈J

|Wt|)(
∏

t∈I\{i1,i2}

lt)(
∑

g∈Σ
1≤s≤li1
1≤r≤li2

|τ(xi1uσs
i1 (g)−1)|2)1/2(

∑

g∈Σ
1≤s≤li1
1≤r≤li2

|τ(xi2uσr
i2 (g)−1)|2)1/2

≤ hΣ(x)(
∏

t∈J

|Wt|)(
∏

t∈I\{i1,i2}

lt)(li1 li2)1/2‖xi1‖2(li1 li2)1/2‖xi2‖2

= hΣ(x)(
∏

t∈J

|Wt|)(
∏

t∈I

lt).

Altogether, these imply that hΣ(x) ≥ 1−3ε
(
∏

t∈J |Wt|)(
∏

t∈I lt) for all x ∈ F , as desired. "

The next corollary will be particularly useful in the proofs of the main results.

Corollary 8.5. Let Γ be an icc nonamenable bi-exact group and denote by M = L(Γ ×Γ). 
Let Λ be an arbitrary group together with a subgroup Ω ! Λ such that M = L(Λ) and 
L(d(Γ)) = L(Ω).

Then one can find a unitary w ∈ M such that Tw(Γ × Γ)w∗ = TΛ.

Proof. Denote by Γ1 = Γ × 1 and Γ2 = 1 × Γ. Next, we claim that the conditions 
of [14, Theorem 5.1] are satisfied for Σ = d(Γ). Towards this, let ρi : Γ1 × Γ2 → Γi

be the canonical group projection ρi(g1, g2) = gi, for i = 1, 2. Now notice that the 
restrictions ρi : Σ → Γi are injective. Fix hi ∈ Γi \{1}. From definitions one can see that 
{ρi(g, g)hiρi(g, g)−1 : (g, g) ∈ Σ} = {ghig−1 : g ∈ Γi}. As Γi is icc, it follows that the 
previous set is infinite which yields our claim.

Thus, using the conclusion of [14, Theorem 5.1] one can find a unitary u ∈ M and a 
product decomposition Λ = Λ1 × Λ2 such that uL(Γ1)u∗ = L(Λ1), uL(Γ2)u∗ = L(Λ2)
and TuΣu∗ = TΩ. Moreover, the second paragraph of the proof of [14, Theorem 5.1]
shows that the restriction of the projection Λ → Λi to Ω is a monomorphism for any 
i ∈ {1, 2}. Note also that we can identify Ω by {(π1(γ), π2(γ)) : γ ∈ Ω}. Thus, denoting 
by Gi := uΓiu∗ and H := uΣu∗ we have

L(G1) = L(Λ1), L(G2) = L(Λ2), and TH = TΩ. (8.8)

Notice that by part 1) in Proposition 8.2 the triple (Λ1, Λ2, Υ) ∈ Sub(Λ)3 is fixable. 
Also for every g × 1 ∈ G1 we have that ug×1ug−1×g−1u1×g = 1 where ug×1 ∈ L(G1), 
ug−1×g−1 ∈ L(H) and u1×g ∈ L(G2). Thus using relations (8.8) and Theorem 8.4 we have 
that hΛ1(G1) > 0. Therefore by [38, Theorem 3.1] there exists a unitary u1 ∈ L(Λ1) such 
that Tu1G1u∗

1 = TΛ1. By a similar argument there is a unitary u2 ∈ L(Λ2) such that 
Tu2G2u∗

2 = TΛ2. Altogether, these relations imply that T (u1⊗u2)u(Γ ×Γ)u∗(u∗
1⊗u∗

2) =
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T (u1 ⊗ u2)(G1 × G2)(u∗
1 ⊗ u∗

2) = TΛ and letting w = (u1 ⊗ u2)u we get the desired 
conclusion. "

We end this section with two technical results regarding discretization of underlying 
groups in the von Neumann algebra regime. These will be used in an essential way to 
derive the main results of the next sections.

The first result asserts that the discretization of two subgroups with infinite and 
“sufficiently malnormal” intersection can be bumped up to the group they generate.

Theorem 8.6. Let Γ1, Γ2 ! Γ be groups. Assume that the subgroup Σ = Γ1∩Γ2 ! Γ is icc 
and satisfies QN(1)

Γ (Σ) = Σ. Let Λ be an arbitrary group such that N = L(Γ) = L(Λ). 
Assume there exist w1, w2 ∈ U(N ) and subgroups Λ1, Λ2 ! Λ such that Tw1Γ1w∗

1 = TΛ1
and Tw2Γ2w∗

2 = TΛ2.
Then one can find a unitary w ∈ U(N ) such that Tw(Γ1 ∨ Γ2)w∗ = T (Λ1 ∨ Λ2).

Proof. From assumptions there are group isomorphisms δi : Γi → Λi and characters 
ηi : Γi → T so that

wiuγiw
∗
i = ηi(γi)vδi(γi) for all γi ∈ Γi and 1 ≤ i ≤ 2. (8.9)

These relations show that for all γ ∈ Σ = Γ1 ∩ Γ2 we have η1(γ)w∗
1vδ1(γ)w1 = uγ =

η2(γ)w∗
2vδ2(γ)w2. Thus, if we let dγ = η1(γ)−1η2(γ), we see that

vδ1(γ) = dγw1w
∗
2vδ2(γ)w2w

∗
1 for all γ ∈ Σ. (8.10)

In particular, this relation entails that L(δ1(Σ)) ≺N L(δ2(Σ)). By [14, Lemma 2.6] one 
can find λ ∈ Λ such that [δ1(Σ) : λδ2(Σ)λ−1 ∩ δ1(Σ)] < ∞. Therefore, replacing w2 by 
vλw2 and δ2 by ad(λ) ◦ δ2, we can assume that [δ1(Σ) : δ2(Σ) ∩ δ1(Σ)] < ∞ and relations 
(8.9) still hold.

Also, (8.9) show that η1(δ−1
1 (λ))−1w1uδ−1

1 (λ)w
∗
1 = vλ = η2(δ−1

2 (λ))−1w2uδ−1
2 (λ)w

∗
2 for 

every λ ∈ δ1(Σ) ∩ δ2(Σ). Letting eλ = η1(δ−1
1 (λ))−1η2(δ−1

2 (λ)) ∈ T and w = w∗
2w1 this 

further shows that

eλwuδ−1
1 (λ) = uδ−1

2 (λ)w for all λ ∈ δ1(Σ) ∩ δ2(Σ). (8.11)

Since δ−1
1 (δ1(Σ) ∩ δ2(Σ)) ! Σ has finite index there are h1, ..., hn ∈ Σ such that 

Σ =
⋃n

i=1 δ
−1
1 (δ1(Σ) ∩ δ2(Σ))hi. Using this in combination with (8.11) and δ−1

2 (δ1(Σ) ∩
δ2(Σ)) ! Σ we get that

wL(Σ) ⊆
n∑

i=1
wL(δ−1

1 (δ1(Σ) ∩ δ2(Σ))uhi

=
n∑

i=1
L(δ−1

2 (δ1(Σ) ∩ δ2(Σ))wuhi ⊆
n∑

i=1
L(Σ)wuhi .
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In particular, this shows that w ∈ QN
(1)
L(Γ)(L(Σ))′′ = L(QN(1)

Γ (Σ)) = L(Σ). Consider 
the Fourier decomposition w =

∑
γ aγuγ in L(Σ). Then using this in combination with 

relation (8.11) it follows that aγ = eλaδ−1
2 (λ)γδ−1

1 (λ−1) for all λ ∈ δ1(Σ) ∩δ2(Σ), γ ∈ Σ. As 
|eλ| = 1 this implies that aγ 3= 0 only if the set Oγ = {δ−1

2 (λ)γδ−1
1 (λ)−1 : λ ∈ δ1(Σ) ∩

δ2(Σ)} is finite. This implies that there exists a finite index subgroup Σγ ! δ1(Σ) ∩δ2(Σ)
such that δ−1

2 (λ)γδ−1
1 (λ−1) = γ and hence

δ−1
2 (λ) = γδ−1

1 (λ)γ−1 for all λ ∈ Σγ . (8.12)

Next, let γ, µ ∈ Σ such that Oγ and Oµ are finite. By (8.12), for every λ ∈ Σγ ∩ Σµ

we get µδ−1
1 (λ)µ−1 = δ−1

2 (λ) = γδ−1
1 (λ)γ−1 and hence µ−1γ ∈ CΓ(δ−1

1 (Σλ ∩ Σµ)); 
in particular, the unitary uµ−1γ ∈ L(δ−1

1 (Σλ ∩ Σµ))′ ∩ L(Σ). Now, notice that since 
[Σ : δ−1

1 (δ1(Σ) ∩ δ2(Σ))] < ∞, [δ1(Σ) ∩ δ2(Σ) : Σλ], [δ1(Σ) ∩ δ2(Σ) : Σµ] < ∞, we deduce 
that [Σ : δ−1

1 (Σλ∩Σµ)] < ∞. Therefore, L(δ−1
1 (Σλ∩Σµ))′∩L(Σ) ⊆ L(vCΣ(Σ)). Since Σ is 

icc, we have that vCΣ(Σ) = 1, and thus, we conclude that L(δ−1
1 (Σλ∩Σµ))′∩L(Σ) = C1. 

In particular, this implies that uµ−1γ = 1 and hence γ = µ. Altogether, this shows that 
w = cuσ for some σ ∈ Σ and c ∈ T . Thus relations (8.9) become w2uσγ1σ−1w∗

2 =
η1(γ1)vδ1(γ1) for all γ1 ∈ Γ1 and w2uγ2w

∗
2 = η2(γ2)vδ2(γ2) for all γ2 ∈ Γ2. These relations 

clearly imply that Tw2(Γ1 ∨ Γ2)w∗
2 = T (Λ1 ∨ Λ2), as desired. "

The second result asserts that the elements that conjugate discretized subgroups can 
be discretized.

Theorem 8.7. Let Θ, Ω ! Γ be groups and let Σ ! Θ be a subgroup so that vCΓ(Σ) = 1. 
Let φ : Σ → Ω be a group homomorphism and t ∈ Γ such that φ(σ) = tσt−1 for all 
σ ∈ Σ. Let Λ be an arbitrary group such that N = L(Γ) = L(Λ). Also assume there 
exist subgroups Φ, Υ ! Λ and unitaries x, y ∈ U(N ) such that TxΘx∗ = TΦ and 
TyΩy∗ = TΥ.

Then one can find λ ∈ Λ such that yutx∗ ∈ Tvλ.

Proof. From the assumptions there exist group monomorphisms δ : Θ → Φ, ω : Ω → Υ
and characters η : Θ → T , ν : Ω → T such that

η(γ)xuγx
∗ = vδ(γ) for all γ ∈ Θ

ν(γ)yuγy
∗ = vω(γ) for all γ ∈ Ω

(8.13)

Using this in combination with the hypothesis we see that for every σ ∈ Σ we have that 
ut = uφ(σ)−1utuσ = dσy∗vω(φ(σ))−1yutx∗vδ(σ)x and hence

yutx
∗ = dσvω(φ(σ))−1yutx

∗vδ(σ), (8.14)

where we have denoted by dσ = ν(φ(σ))η(σ−1).
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Consider the Fourier decomposition yutx∗ =
∑

λ cλvλ with respect to N = L(Λ). 
Using this in (8.14) we see that cλ = dσcω(φ(σ))λδ(σ)−1 for every σ ∈ Σ, λ ∈ Λ. As 
|dσ| = 1 it follows that |cλ| = |cω(φ(σ))λδ(σ)−1 | for every σ ∈ Σ, λ ∈ Λ. This implies that 
cλ 3= 0 only if the set Oλ = {ω(φ(σ))λδ(σ)−1 : σ ∈ Σ} is finite. This implies that there 
exists a finite index subgroup Σλ ! Σ such that ω(φ(σ))λδ(σ)−1 = λ and hence

ω(φ(σ)) = λδ(σ)λ−1 for all σ ∈ Σλ. (8.15)

Next, let λ, µ ∈ Λ such that Oλ and Oµ are finite. By (8.15), for every σ ∈ Σλ ∩ Σµ we 
get µδ(σ)µ−1 = δ(φ(σ)) = λδ(σ)λ−1 and hence µ−1λ ∈ CΛ(δ(Σλ ∩ Σµ)); in particular, 
the unitary uµ−1λ ∈ L(Σλ ∩Σµ)′ ∩N = L(Σλ ∩Σµ)′ ∩L(Γ). Now, notice that since [Σ :
Σλ], [Σ : Σµ] < ∞ then [Σ : Σλ ∩Σµ] < ∞. Therefore, L(Σλ ∩Σµ)′ ∩L(Γ) ⊆ L(vCΓ(Σ))
and since vCΓ(Σ) = 1 we conclude that L(Σλ ∩ Σµ)′ ∩ L(Γ) = C1. In particular, this 
implies that uµ−1λ = 1 and hence λ = µ. Altogether, this shows that there exists λ0 ∈ Λ
such that yutx∗ = cλ0vλ0 . As ut is unitary we have that |cλ0 | = 1, as desired. "

Corollary 8.8. Let Σ ! Θ ! Γ be groups such that vCΓ(Σ) = 1. Let φ : Σ → Θ be a group 
homomorphism and t ∈ Γ such that φ(σ) = tσt−1 for all σ ∈ Σ. Let Λ be an arbitrary 
group such that N = L(Γ) = L(Λ). Assume there exist a subgroup Φ ! Λ and a unitary 
w ∈ U(N ) such that TwΘw∗ = TΦ. Then one can find a subgroup Φ < Ξ ! Λ such that 
Tw〈Θ, t〉w∗ = TΞ.

Proof. Applying Theorem 8.7 result for Ω = Θ, Υ = Φ and x = y = w, there exist c ∈ T
and λ ∈ Λ such that wutw∗ = cvλ. Thus, the result follows by letting Ξ = 〈Φ, λ〉 ! Λ. "

Corollary 8.9. Let Σ ! Γ be groups so that vCΓ(Σ) = 1 and QN(1)
Γ (Σ) = Γ. Let Λ be an 

arbitrary group such that N = L(Γ) = L(Λ). Assume there exist a subgroup Υ ! Λ and 
a unitary u ∈ U(N ) so that TuΣu∗ = TΥ. Then we have TuΓu∗ = TΛ.

Proof. Fix an arbitrary g ∈ Γ = QN(1)
Γ (Σ). Since [Σ : gΣg−1 ∩ Σ] < ∞, we derive that 

vCΓ(gΣg−1∩Σ) = vCΓ(Σ) = 1. By applying Corollary 8.8 for the map φ : gΣg−1∩Σ → Σ
defined by φ(σ) = g−1σg for all σ ∈ gΣg−1 ∩ Σ, we deduce that there is a subgroup 
Υg < Λ such that Tu〈Σ, g〉u∗ = TΥg. Since this is true for any g ∈ Γ, we deduce that 
TuΓu∗ = T (∨g∈ΓΥg) = TΛ. "

9. Identification of “peripheral structure”

In this section we present several technical results that will be used for reconstructing 
the factor subgroups of G from the von Neumann algebra L(G), whenever G belongs to 
D or A. Specifically, this means that whenever L(G) = L(H), for an arbitrary group H, 
then for every factor subgroup G0 < G one can find a subgroup H0 < H and a unitary 
u ∈ L(G) such that L(G0) = uL(H0)u∗. In other words, we can identify a collection of 
subgroups of H that up to von Neumann equivalence play the same role as the factor 
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subgroups of G. Such a result is called identification of peripheral structure. Our first 
result introduces sufficient conditions for identification of peripheral structure, up to 
corners.

Theorem 9.1. Let G be an icc non-amenable group and denote M = L(G). Let K ! H !
G be an inclusion of icc non-amenable groups satisfying the following properties:

(1) QNG(K) = QN(1)
G (H) = H, and [H : KCH(K)] < ∞;

(2) For every p ∈ P(L(H)) and every von Neumann algebra with no amenable direct 
summand A ⊆ pL(H)p such that A′ ∩ pMp is diffuse, we have that A′ ∩ pMp ⊆
pL(H)p;

(3) For every pi ∈ P(L(H)) and von Neumann algebras Ai ⊆ piL(H)pi with i = 1, 2
such that A1 has no amenable direct summand and A′

1 ∩ p1L(H)p1 is diffuse, if 
A1 ≺M A2 then A1 ≺L(H) A2;

(4) For every p ∈ P(L(H)), whenever D, E , F ⊆ pL(H)p are mutually commuting von 
Neumann subalgebras so that D is isomorphic to a corner of L(K) and E has no 
amenable direct summand then F is purely atomic.

Let Λ be an arbitrary group such that M = L(Λ) and assume there is a subgroup Ω < Λ
with non-amenable centralizer CΛ(Ω) such that L(K) ≺M L(Ω).

Then one can find a subgroup ΩCΛ(Ω) ! QNΛ(Ω) ! Σ < Λ with [Σ : QNΛ(Ω)] < ∞
and QN(1)

Λ (Σ) = Σ, a non-zero projection c ∈ Z(L(Σ)) and w0 ∈ U(M) with w0cw∗
0 =

n ∈ L(H) such that w0L(Σ)cw∗
0 = nL(H)n.

Proof. Since L(K) ≺M L(Ω) one can find projections a ∈ L(K), f ∈ L(Ω), a non-zero 
partial isometry v ∈ fMa and a ∗-isomorphism onto its image φ : aL(K)a → B :=
φ(aL(K)a) ⊆ fL(Ω)f such that

φ(x)v = vx for all x ∈ aL(K)a. (9.1)

Notice that vv∗ ∈ B′∩fMf and v∗v ∈ aL(K)a′∩aMa. The equation (9.1) implies that 
Bvv∗ = vL(K)v∗ = u1L(K)v∗vu∗

1, where u1 ∈ M is a unitary extending v. Taking rela-
tive commutants we get vv∗(B′∩fMf)vv∗ = u1v∗v((aL(K)a)′∩aMa)v∗vu∗

1. Condition 
(1) implies that vCG(K) ! H, and hence, L(K)′ ∩M ⊂ L(vCG(K)) ⊂ L(H). It follows 
that vv∗(B ∨ B′ ∩ fMf)vv∗ = Bvv∗ ∨ vv∗(B′ ∩ fMf)vv∗ ⊆ u1L(H)u∗

1. Therefore, since 
L(H) is a factor one can find a new unitary u2 ∈ U(M) such that

(B ∨ B′ ∩ fMf)z2 ⊆ u2L(H)u∗
2, (9.2)

where z2 is the central support of vv∗ in B ∨ B′ ∩ fMf . In particular, we have z2 ∈
Z(B′ ∩ fMf) and vv∗ ≤ z2 ≤ f .

Observe that L(CΛ(Ω))z2 ⊆ ((fL(Ω)f)′ ∩ fMf)z2 ⊆ (B′ ∩ fMf)z2 ⊆ u2L(H)u∗
2. As 

z2 ∈ (L(CΛ(Ω))f)′∩fMf then using hypothesis (2) we further have that z2(L(CΛ(Ω))f∨
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(L(CΛ(Ω))f)′ ∩ fMf)z2 ⊆ u2L(H)u∗
2. Again since L(H) is a factor there is u ∈ U(M)

so that

(L(CΛ(Ω))f ∨ (L(CΛ(Ω))f)′ ∩ fMf)z ⊆ uL(H)u∗, (9.3)

where z is the central support of z2 in L(CΛ(Ω))f ∨ (L(CΛ(Ω))f)′ ∩ fMf . In particular, 
we have vv∗ ≤ z2 ≤ z ≤ f . Now, since fL(Ω)f ⊆ (L(CΛ(Ω))f)′ ∩ fMf , then by (9.3)
we get (fL(Ω)f ∨ L(CΛ(Ω))f)z ⊆ uL(H)u∗ and hence

u∗(L(CΛ(Ω))f ∨ fL(Ω)f)zu ⊆ L(H). (9.4)

Since vv∗ ≤ z ∈ (fL(Ω)f)′ ∩ fMf and B is a factor then the map φ′ : aL(K)a →
u∗Bzu ⊆ fL(Ω)fz given by φ′(x) = u∗φ(x)zu still defines a ∗-isomorphism that satisfies 
φ′(x)w = wx, for any x ∈ aL(K)a, where w = u∗zv is a non-zero partial isometry. Hence, 
L(K) ≺M u∗fL(Ω)fzu. By the hypothesis (3), it follows that L(K) ≺L(H) u

∗fL(Ω)fzu.
To this end using [18, Proposition 2.4] and its proof we can find non-zero p ∈ P(L(K)), 

r = u∗ezu ∈ u∗fL(Ω)fzu with e ∈ P(fL(Ω)f), a von Neumann subalgebra C ⊆
u∗eL(Ω)ezu, and a ∗-isomorphism θ : pL(K)p → C such that the following properties 
are satisfied:

a) the inclusion C ∨ (C′ ∩ u∗eL(Ω)ezu) ⊆ u∗eL(Ω)ezu has finite index in the sense of 
Pimsner-Popa [58];

b) there is a non-zero partial isometry y ∈ L(H) such that θ(x)y = yx for all x ∈
pL(K)p, where y∗y ∈ pL(K)p′ ∩ pMp ⊂ pL(H)p and yy∗ ∈ C′ ∩ rMr.

Note that C, C′ ∩ u∗eL(Ω)ezu and u∗L(CΛ(Ω))ezu are commuting subalgebras of 
u∗ezL(H)zeu. Since CΛ(Ω) is non-amenable, it follows that u∗L(CΛ(Ω))ezu has no 
amenable direct summand. Hence, since C is isomorphic to a corner of L(K), it fol-
lows from hypothesis (4) that C′ ∩ u∗eL(Ω)ezu is purely atomic. Thus, one can find a 
non-zero projection q ∈ Z(C′ ∩u∗eL(Ω)ezu) such that (C′ ∩u∗eL(Ω)ezu)q = Cq. Hence, 
after compressing the containment in a) by q and replacing C by Cq, y by qy and θ(x) by 
θ(x)q in b) we can assume in addition that C ⊆ u∗eL(Ω)ezu is a finite index inclusion of 
non-amenable II1 factors. By [58, Proposition 1.3], it follows that C ⊆ u∗eL(Ω)ezu ad-
mits a finite Pimsner-Popa basis, which implies that there exist x1, . . . , xm ∈ u∗eL(Ω)ezu
such that u∗eL(Ω)ezu =

∑m
i=1 xiC. Note also that u∗eL(Ω)ezu ⊂ rMr since r = u∗ezu. 

Hence,

QN rMr(C)′′ = QN rMr(u∗eL(Ω)ezu)′′. (9.5)

Also, the intertwining relation in b) shows that Cyy∗ = ypL(K)py∗ = lpL(K)py∗yl∗, 
where yy∗ ∈ C′ ∩ rMr and l ∈ L(H) is a unitary extending y (i.e. y = ly∗y). Therefore, 
using the quasi-normalizer formulas for group von Neumann algebras and for compres-
sions, Lemma 2.6 and Lemma 2.4 (and Remark 2.5), respectively, we see that
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ly∗yL(H)y∗yl∗ = ly∗yL(QNG(K))y∗yl∗ L.2.6= ly∗yQNM(L(K))′′y∗yl∗

L.2.4= QN ly∗yMy∗yl∗(lpL(K)py∗yl∗)′′ = QN yy∗Myy∗(Cyy∗)′′

R.2.5= yy∗QN rMr(C)′′yy∗ (9.5)= yy∗QN rMr(u∗eL(Ω)ezu)′′yy∗

L.2.4= yy∗u∗zeQNL(Λ)(L(Ω))′′ezuyy∗ L.2.6= yy∗u∗zeL(QNΛ(Ω))ezuyy∗.
(9.6)

In the above equalities, we also used that yMy∗ = yy∗Myy∗ and u∗eL(Ω)ezu =
ru∗L(Ω)ur.

Next, denote by Υ = QNΛ(Ω) and by Υ < Σ = 〈QN(1)
Λ (Υ)〉 < Λ. As QN(1)

G (H) = H, 
then formula (9.6) together with the corresponding formulas for one-sided quasinormal-
izers, Lemma 2.4 and Lemma 2.6, show that

yy∗u∗zeL(Υ)ezuyy∗ = yy∗u∗zeL(Σ)ezuyy∗ = ly∗yL(H)y∗yl∗. (9.7)

In particular, by [14, Lemma 2.2] we have [Σ : Υ] < ∞, and hence, QN(1)
Λ (Σ) =

QN(1)
Λ (Υ) = Σ. By applying Lemma 2.6, we obtain

QN (1)
M (L(Σ)) = L(Σ). (9.8)

Notice that relation (9.7) also shows that yy∗ = u∗du for some projection d ∈ zeL(Σ)ez, 
and thus, (9.7) entails that u∗dL(Σ)du = ly∗yL(H)y∗yl∗. By letting w0 := ul ∈ U(M)
and t := y∗y ∈ L(H), we conclude that w∗

0dL(Σ)dw0 = tL(H)t. Since l∗yy∗l = w∗
0dw0

and yy∗ = ly∗, we have t = w∗
0dw0. Moreover, if we replace w∗

0Σw0 by Σ and use 
w∗

0dw0 = t, we have that tL(Σ)t = tL(H)t.
Next, as L(H) is a factor one can find a unitary w1 ∈ M such that L(Σ)c ⊆

w1L(H)w∗
1 , where c denotes the central support of t ∈ L(Σ). In particular, it follows 

that there exists a projection h ∈ L(H) such that t = w1hw∗
1 . Moreover, since L(H) is a 

factor and t ∈ L(H), there is a unitary w2 ∈ L(H) so that t = w2hw∗
2 . Altogether, these 

relations show that wt = tw, where w := w1w∗
2 . Also, note that L(Σ)c ⊆ wL(H)w∗. 

Multiplying on both sides by t, we get

tL(H)t = tL(Σ)t ⊆ twL(H)w∗t. (9.9)

Multiplying on the left by tw∗ and using that tw = wt, we further obtain that 
tw∗tL(H)t ⊆ tL(H)tw∗t. In particular, using the hypothesis (1) together with Lem-
mas 2.4 and 2.6, we get w∗t = tw∗t ∈ QN (1)

tMt(tL(H)t) = tL(H)t, and hence, 
wt ∈ tL(H)t. Using relation (9.9), we deduce that tL(Σ)t = tL(H)t = wtL(H)tw∗. 
By using relation (9.8) and L(Σ)c ⊆ cwL(H)w∗c, we apply the moreover part of [14, 
Lemma 2.6] and derive that L(Σ)c = cwL(H)w∗c. This shows the desired conclusion. "

Next, we present a technical result that will be needed to derive the main superrigidity 
results for groups G in the classes D and A. The result is essentially showing that if G0
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is a factor subgroup of G, then we can upgrade from recognizing some subalgebras in 
corners of L(G0), to recover the corners of L(G0). The proof of this result generalizes 
the proof of [14, Theorem 3.2] and for reader’s convenience we include all the details.

Theorem 9.2. Assume that G is a group in one of the following classes:

(i) G ∈ D and let f(G) = {G1, ..., Gn} be its canonical factors.
(ii) G = (Γ1 ∗ Γ2 ∗ ... ∗ Γn) !ρ Γ ∈ A and denote by Gi = Γi !ρi Γ for all 1 ≤ i ≤ n.

Let Λ be a group such that N = L(G) = L(Λ). In addition, assume that for every 
i ∈ {1, ..., n} there is a subgroup Λi ! Λ satisfying the following relations:

(1) Λi contains two commuting non-amenable subgroups;
(2) QN(1)

Λ (Λi) = Λi;
(3) There is a subset i ∈ Ji ⊆ {1, ..., n}, projections 0 3= zik ∈ Z(L(Λi)) with k ∈ Ji

which satisfy 
∑

k∈Ji
zik = 1;

(4) There is ui ∈ U(N ) such that

uiL(Λi)ziiu∗
i = piL(Gi)pi, where pi = uiz

i
iu

∗
i ∈ P(L(Gi)), and

uiL(Λi)ziju∗
i ⊂ L(Gj) for all j ∈ Ji \ {i}.

(9.10)

Then one can find a partition T1 8 · · ·8 Tl = {1, ..., n} and for every 1 ≤ i ≤ l there is a 
subgroup Ωi ! Λ such that the following relations hold:

(1) QN(1)
Λ (Ωi) = Ωi;

(2) There are projections 0 3= z̃ik ∈ Z(L(Ωi)) with k ∈ Ti which satisfy 
∑

k∈Ti
z̃ik = 1;

(3) There exist ũi ∈ U(N ) such that ũiL(Ωi)z̃ikũ∗
i = pikL(Gk)pik, where pik = ũiz̃ikũ

∗
i ∈

P(L(Gk)), for every k ∈ Ti.

Proof. From the hypothesis, for every 1 ≤ i ≤ n there is a subgroup Λi ! Λ such that 
QN(1)

Λ (Λi) = Λi. Moreover, there exist i ∈ Ji ⊆ {1, ..., n} and 0 3= zik ∈ P(Z(L(Λi))), 
k ∈ Ji which satisfy

∑

k∈Ji

zik = 1. (9.11)

and there is ui ∈ U(N ) such that

uiL(Λi)ziiu∗
i = piL(Gi)pi, where pi = uiz

i
iu

∗
i ∈ P(L(Gi)), and

uiL(Λi)ziku∗
i ⊂ L(Gk) for all k ∈ Ji \ {i}.

(9.12)

Fix k ∈ J1. Since u1z1
ku

∗
1, pk ∈ L(Gk) are non-zero projections and L(Gk) is a factor 

one can find a projection L(Gk) < q ≤ u1z1
ku

∗
1 and a unitary w ∈ L(Gk) such that 
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wqw∗ ≤ pk. This together with relations (9.12) imply that qu1L(Λ1)z1
ku

∗
1q ⊆ qL(Gk)q ⊆

w∗pkL(Gk)pkw = w∗ukL(Λk)zkku∗
kw. In particular, we have L(Λ1) ≺N L(Λk) and hence 

by [14, Lemma 2.6] there is a hk ∈ Λ such that [Λ1 : hkΛkh
−1
k ∩ Λ1] < ∞. Therefore 

replacing Λk by hkΛkh
−1
k , relations (9.12) still hold and in addition we can assume that

[Λ1 : Λk ∩ Λ1] < ∞ for all k ∈ J1. (9.13)

Next, we claim that for all i ∈ J1, j ∈ Jk satisfying i 3= j we have z1
i z

k
j = 0. To see this, 

assume by contradiction there are J1 < i 3= j ∈ Jk so that z1
i z

j
k 3= 0. Relations (9.12) give 

that u1L(Λk ∩ Λ1)z1
i u

∗
1 ⊆ L(Gi) and ukL(Λk ∩ Λ1)zkj u∗

k ⊆ L(Gj). Thus, by [14, Lemma 
2.4] one can find g ∈ G such that

L(Λk ∩ Λ1) ≺ L(Gi ∩ gGkg
−1). (9.14)

From here we treat each case separately. First, assume (i). Since i 3= j then Gi∩gGjg−1 is 
amenable which forces Λk∩Λ1 amenable. Using (9.13) we would get that Λ1 is amenable 
which is a contradiction. Next, assume (ii). Since i 3= j then Gi ∩ gGjg−1 is either 
trivial or it is equal to d(Γ). First possibility is obviously impossible so assume that 
Gi ∩ gGkg−1 = d(Γ). From condition (1) and (9.13) it follows that Λk ∩Λ1 contains two 
non-amenable commuting subgroups. This however together with (9.14) contradicts the 
fact that d(Γ) is bi-exact. This concludes our claim.

Now, fix an arbitrary i ∈ J1. By (9.11) there exists l ∈ Jk such that z1
i z

k
l 3= 0. Then 

the above claim implies that l = i and also z1
i ≤ zki by using once again (9.11). In 

particular, we have J1 ⊆ Jk. Arguing by symmetry we conclude that

J1 = Jk and z1
i = zki for all i ∈ J1. (9.15)

Next, we notice that relations (9.12) imply u1L(Λk ∩ Λ1)z1
i u

∗
1 ⊆ L(Gi) and ukL(Λk ∩

Λ1)zki u∗
k ⊆ L(Gi) for all i ∈ J1. We continue by arguing that in both cases we have

u1L(Λk ∩ Λ1)z1
i u

∗
1, ukL(Λk ∩ Λ1)zki u∗

k ⊀L(Gi) L(Gi ∩Gj) for all j 3= i. (9.16)

In case (i) this is immediate because Gi ∩Gj is amenable while Λk ∩ Λ1 is not. In case 
(ii) this follows because Gi ∩ Gj = d(Γ) is a bi-exact group while, as before, Λk ∩ Λ1
contains two commuting non-amenable subgroups.

Next, since (u1zki u
∗
k)ukL(Λk ∩Λ1)zki u∗

k = u1L(Λk ∩Λ1)z1
i u

∗
1(u1zki u

∗
k) then (9.16) and 

[37, Theorem 1.2.1] further imply that u1zki u
∗
k ∈ L(Gi) for all i ∈ J1. Thus conjugating 

the algebras in (9.12) by u1zki u
∗
k we can assume without any loss of generality that uk =

u1. In particular, we have u1L(Λ1)z1
1u

∗
1 = p1L(G1)p1 and u1L(Λk)zk1u∗

1 ⊂ L(G1). Since 
by (9.15) we have zi1 = zk1 and u1z1

1u
∗
1 = p1 these relations imply that u1L(Λk)zk1u∗

1 ⊂
p1L(G1)p1 = u1L(Λ1)zk1u∗

1. Thus L(Λk)zk1 ⊂ L(Λ1)zk1 and moreover L(Λk ∩ Λ1)zk1 ⊆
L(Λk)zk1 ⊆ L(Λ1)zk1 . Thus by (9.13) the inclusion L(Λk ∩ Λ1)zk1 ⊆ L(Λk)zk1 admits a 
finite Pimsner-Popa basis and hence [Λk : Λk ∩ Λ1] < ∞ by [14, Lemma 2.6]. However, 
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this combined with (9.13) and part (2) imply that Λk = Λ1. Altogether, these and (9.12)
show that u1L(Λ1)z1

1u
∗
1 = p1L(G1)p1 and u1L(Λ1)z1

ku
∗
1 = pkL(Gk)pk. Since the above 

arguments work for all k ∈ J1, letting T1 := J1 and p1
k := pk for k ∈ T1 we get the 

statement for the first element of the partition. Also we let Ω1 := Λ1.
If T1 = {1, ..., n} the proof is completed. If not, pick the smallest s ∈ {1, ..., n} \ T1

and repeat the same arguments as before starting with set Js, etc. We leave the details 
to the reader. "

10. Superrigidity results for groups in class D

In this section we derive the main superrigidity results for von Neumann algebras L(G)
associated with groups in class G ∈ D. These add numerous examples of W ∗-superrigid 
amalgams to the ones found in [14] and also give the first examples of W ∗-superrigid 
HNN extensions. Next we highlight a point of contrast between our results and the prior 
results [14]. In the one hand, the factor subgroups fi(G) of our groups G consist of direct 
products of groups in the class IPV which is slightly more restrictive when compared 
to the factor subgroups of the amalgamated free products considered in [14]. On the
other hand, the amalgamated subgroups ai(G) of our G are more general, exceeding 
the specific case of diagonal subgroups used in [14]. For instance, our examples cover 
amalgamated subgroups which are of direct product type themselves.

The following is the main result of the section and it should be compared with [14, 
Theorem A].

Theorem 10.1. Let G ∈ D and let f(G) = {G1, G2, ..., Gn} be its factor set. Assume that 
Λ is an arbitrary group such that M = L(G) = L(Λ).

Then one can find a unitary ui ∈ U(M) and a subgroup Λi < Λ such that uiL(Λi)u∗
i =

L(Gi) for any 1 ≤ i ≤ n.

Proof. First, if G ∈ D!, then the conclusion follows from Corollary 5.3. Hence, we assume 
G ∈ Dm for some m ≥ 1 and denote am(G) = Σ. Next, we prove the following claim:

Claim. For every 1 ≤ i ≤ n there exists a subgroup Λi < Λ satisfying the following 
relations:

(1) Λi contains two commuting non-amenable subgroups;
(2) QN(1)

Λ (Λi) = Λi;
(3) There is a subset i ∈ Ji ⊆ {1, ..., n} and projections 0 3= zik ∈ Z(L(Λi)) with k ∈ Ji

so that 
∑

k∈Ji
zik = 1;

(4) There exist ui ∈ U(N ) such that

(a) uiL(Λi)ziiu∗
i = piL(Gi)pi, where pi = uiziiu

∗
i ∈ P(L(Gi)), and

(b) uiL(Λi)ziku∗
i ⊂ L(Gi) for all k ∈ Ji \ {i}.
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Proof of the claim. Let Gi = Γi
1 × · · ·×Γi

si be a product of groups that belong to IPV, 
for any 1 ≤ i ≤ n. We denote by Γi

ĵ
the product group ×k∈ĵΓi

k, for any 1 ≤ j ≤ si. 
Consider ∆ : M → M⊗̄M the comultiplication along Λ, given by ∆(vλ) = vλ ⊗ vλ for 
all λ ∈ Λ. Fix 1 ≤ i ≤ n and consider the inclusion ∆(L(Gi)) ⊆ M⊗̄M = L(G × G). 
Fix 1 ≤ j ≤ si and denote by A := ∆(L(Γi

ĵ
)) and B = ∆(L(Γi

j)) and notice that A
and B are commuting von Neumann algebras with no amenable direct summand. Thus 
by [38, Proposition 7.2(4)] it follows that A ⊀M⊗̄M L(G × A), A ⊀M⊗̄M L(A × G), 
B ⊀M⊗̄M L(G × A) and B ⊀M⊗̄M L(A × G), for every amenable subgroup A < G. 
Hence, Theorem 6.4 further implies that one can find 1 ≤ k ≤ n and 1 ≤ l ≤ sk such 
that

A ≺M⊗̄M L(G× Γk
l̂
) or L(Γk

l̂
×G). (10.1)

By symmetry it suffices to treat only the first case. Using Theorem 5.1 one can find a 
non-amenable subgroup Ω < Λ with non-amenable centralizer CΛ(Ω) so that

L(Γi
ĵ
) ≺M L(Ω). (10.2)

To this end, we notice that if we let K = Γĵ
i we see that all the conditions (1)-(4) in 

the Theorem 9.1 are satisfied. Therefore, the conclusion of Theorem 9.1 implies that 
there exist a subgroup QN1

Λ(Ω) <f Λi < Λ with QN(1)
Λ (Λi) = Λi and Λi contains two 

commuting non-amenable subgroups, a central projection zii ∈ L(Λi) and a unitary 
ui
i ∈ M with tii = ui

izi(ui
i)∗ ∈ L(Gi) so that

ui
iL(Λi)zii(ui

i)∗ = tiiL(Gi)tii. (10.3)

Now, for every 1 ≤ k ≤ n let yik ∈ Z(L(Λi)) be the maximal projection for which there 
exists a unitary vik ∈ M such that

vikL(Λi)yik(vik)∗ ⊆ tikL(Gk)tik, (10.4)

where tik = viky
i
k(vik)∗. It is an easy exercise to see that since L(Gk) is a factor such 

projections always exist. We also notice that yik are mutually orthogonal. Indeed, other-
wise by [14, Lemma 2.4] we would get that L(Λi) ≺ L(Σ) which is not possible as Λi is 
non-amenable while Σ is amenable.

Next, we show that 
∑

k y
i
k = 1. Towards this let z = 1 −

∑
k y

i
k ∈ Z(L(Λi)) and assume 

by contradiction that z 3= 0. Now since Ω and CΛ(Ω) are commuting non-amenable 
subgroups and G is bi-exact relative to f(G) (in the sense of [6, Definition 15.1.2]), then 
by [6, Theorem 15.1.5] there is 1 ≤ l ≤ n such that L(Ω)z ≺M L(Gl). Thus, one can 
find some projections r ∈ L(Ω)z, q ∈ L(Gl), a non-zero partial isometry v ∈ qMr and 
a ∗-isomorphism onto its image Φ : rL(Ω)r → D := Φ(rL(Ω)r) ⊆ qL(Gl)q such that 
Φ(x)v = vx for all x ∈ rL(Ω)r. Since Σ is an amenable group and D has no amenable 
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summand, then D ⊀ L(Σ). Therefore, by using Lemma 2.10 we have D′ ∩ qMq ⊆
qL(Gl)q. In particular, vv∗ ∈ qL(Gl)q and hence the intertwining relation implies that 
vrL(Ω)rv∗ ⊆ L(Gl). Thus since L(Gl) is a factor one can find a unitary w ∈ M such that 
wL(Ω)row∗ ⊆ L(Gl) where ro is the central support of r in L(Ω). From the conclusion 
of Theorem 9.1 we have that QN(1)

Λ (QN1
Λ(Ω)) = Λi and therefore repeating the same 

arguments as before (two times) one can find a new unitary w1 ∈ M and a projection 
a ∈ Z(L(Λi)) with a ≥ ro ≥ r such that w1L(Λi)aw∗

1 ⊆ L(Gl). Notice by construction we 
have that 0 3= b := az ∈ Z(L(Λi)). In particular, byil = 0 and since w1L(Λi)bw∗

1 ⊆ L(Gl), 
vilL(Λi)yil (vil)∗ ⊆ L(Gl) and L(Gl) is a factor one can perturb w1 to a new unitary such 
that that there exists t ∈ U(M) satisfying tL(Λi)(yil + b)t∗ ⊆ L(Gl). This obviously 
contradicts the maximality of yil , so z = 1.

We continue by showing that zii = yii . From construction we have that zii ≤ yii and 
assume by contradiction c := yii − zii 3= 0. Notice that viiL(Λi)c(vii)∗ ⊆ L(Gi) and 
ui
iL(Λi)zii(ui

i)∗ = tiiL(Gi)tii. Since L(Gi) is a factor we can perturb vii to a new unitary 
so that there is a projection e ∈ L(Gi) satisfying etii = 0 and viiL(Λi)c(vii)∗ ⊆ eL(Gi)e. 
Thus, the element f = viic +ui

iz
i
i satisfies f∗f = c +zii , ff∗ = e +tii and fL(Λi)(c +zii)f∗ ⊆

(e + tii)L(Gi)(e + tii). Also, by using Lemma 2.6 we have that QN
(1)
fMf (fL(Λi)(c +zii)f) =

fL(Λi)(c + zii)f and then obviously QN
(1)
(e+tii)L(Gi)(e+tii)

(fL(Λi)(c + zii)f) = fL(Λi)(c +
zii)f . Therefore, since (e + tii)L(Gi)(e + tii) is a factor, applying the moreover part in [14, 
Lemma 2.6] we conclude that fL(Λi)(c + zii)f∗ = (e + tii)L(Gi)(e + tii). However this is 
impossible as the center of the algebra on the left-hand side is two-dimensional while the 
center the right-hand side one is one-dimensional. In conclusion, zii = yii .

Next, we denote zik := yik, ui
k := vik and Ji = {1 ≤ k ≤ n : zik 3= 0}. Since the common 

part L(Σ) is a II1 factor by perturbing the (ui
k)’s to new unitaries one can assume that 

(tik)k ⊂ L(Σ) are mutually orthogonal projections satisfying 
∑

k t
i
k = 1. These relations 

imply that ui =
∑

j u
i
kz

i
k ∈ M is a unitary and moreover the equations (10.3) and 

(10.4) entail that uiL(Λi)ziku∗
i ⊆ L(Gk) for all k 3= i and uiL(Λi)ziiu∗

i = tiiL(Gi)tii. This 
concludes the proof of the claim. #

To this end, we note that the Claim together with Theorem 9.2 imply that one can 
find a partition J1 8 · · · 8 Jl = {1, ..., n} and for every 1 ≤ i ≤ l there is a subgroup 
Ωi ! Λ such that the following relations hold:

(1) QN(1)
Λ (Ωi) = Ωi;

(2) There are projections 0 3= zik ∈ Z(L(Ωi)) with k ∈ Ji which satisfy 
∑

k∈Ji
zik = 1;

(3) There exist ui ∈ U(N ) such that uiL(Ωi)ziku∗
i = pikL(Gk)pik, where pik = uiziku

∗
i ∈

P(L(Gk)).

Next, we claim that l = n and each set Ji consists of a singleton. Indeed, assume by 
contradiction there is i such that |Ji| ≥ 2. Also by replacing Λ by uiΛu∗

i we can assume 
that L(Ωi)zik = zikL(Gk)zik for all k ∈ Ji. Note that 

⋂
k∈Ji

Gk = Σ. Now using the 
same argument from the proof of [14, Proposition 4.1] together with Theorem 2.9 one 
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obtains a contradiction with Σ being icc. Thus, the Ji’s are singletons and therefore for 
every 1 ≤ i ≤ n one can find a unitary ui ∈ M and an icc subgroup Ωi < Λ with 
QN(1)

Λ (Ωi) = Ωi such that uiL(Gi)u∗
i = L(Ωi). "

Theorem 10.2. Let G ∈ D. Assume that Λ is an arbitrary group and let θ : L(G) → L(Λ)
be a ∗-isomorphism. Then there exist δ ∈ Isom(G, Λ), ω ∈ Char(G) and u ∈ U(L(Λ))
such that θ = ad(u) ◦ Ψω,δ.

Proof. Let f(G) = {G1, ..., Gn} be the factor set of G. From the hypothesis we have 
θ(L(Γ)) = L(Λ) and using the previous theorem one can find for each 1 ≤ i ≤ n a 
unitary ui ∈ M and subgroup Λi < Λ such that uiL(Gi)u∗

i = L(Λi). Using Theorem 4.2
after perturbing the ui’s to new unitaries we have that Tuiθ(Gi)u∗

i = TΛi. Then using 
Theorem 8.6 and Corollary 8.8 iteratively after finitely many steps one can find a unitary 
u ∈ M such that Tuθ(G)u∗ = TΛ, which gives the desired conclusion. "

This result also implies that the groups in class D are completely recognizable from 
the C∗-setting as well. This adds a new class of non-amenable C∗-superrigid groups to 
the only other previously known [14,12].

Next we record two immediate applications of the prior result. For the definition of 
∪i≥1Dm

i we encourage the reader to revisit Section 6.

Corollary 10.3. Let G ∈ ∪i≥1Dm
i . Assume that Λ is an arbitrary group and let θ :

C∗
r (G) → C∗

r (Λ) be a ∗-isomorphism. Then there exist δ ∈ Isom(G, Λ), ω ∈ Char(G)
and u ∈ U(L(Λ)) such that θ = ad(u) ◦ Ψω,δ.

Proof. Note that G has trivial amenable radical by Proposition 6.3. Then it follows from 
[4] that C∗

r (G) has unique trace and thus θ lifts to a ∗-isomorphism of the corresponding 
von Neumann algebras θ : L(G) → L(Λ). The statement follows then from the previous 
theorem. "

Corollary 10.4. Let G ∈ ∪i≥1Dm
i . Then for any θ ∈ Aut(C∗

r (G)) there exist δ ∈ Aut(G), 
ω ∈ Char(G) and u ∈ U(L(G)) such that θ = ad(u) ◦ Ψω,δ.

11. Superrigidity results for groups in class A

In this section we show that the semidirect product groups in class A are both W ∗ and 
C∗- superrigid. These add new examples, to the prior ones found in [38,8,2]. The only 
known examples of C∗-superrigid groups were found in [14]. Our results provide a second 
such class and the first of semidirect product type. After this work was completed, the 
authors found a second class of C∗-superrigid semidirect products, this time from the 
realm of generalized wreath product groups with nonamenable core, [12].
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Theorem 11.1. Let G = (Γ1 ∗Γ2 ∗ ... ∗Γn) !ρ Γ ∈ A. Assume that Λ is an arbitrary group 
such that M = L(G) = L(Λ).

Then one can find a unitary ui ∈ U(M) and a subgroup Λi < Λ such that uiL(Λi)u∗
i =

L(Γi !ρi Γ) for any 1 ≤ i ≤ n.

Proof. The proof will be obtained in several steps. Some of them follow directly from 
the prior results in [14] while for the others we include detailed proofs. We encourage 
the reader to consult beforehand [14, Theorem A and Proposition 4.1] as some parts of 
the proofs rely heavily on these results. We start by proving the following:

Claim. For every 1 ≤ i ≤ n there exists a property (T) subgroup Λi < Λ satisfying the 
following relations:

(1) QN(1)
Λ (Λi) = Λi;

(2) There is a subset i ∈ Ji ⊆ {1, ..., n} and projections 0 3= zik ∈ Z(L(Λi)) with k ∈ Ji
so that 

∑
k∈Ji

zik = 1;
(3) There exist ui ∈ U(M) such that

(a) uiL(Λi)ziiu∗
i = piL(Γi ! Γ)pi, where pi = uiziiu

∗
i ∈ P(L(Γi ! Γ)), and

(b) uiL(Λi)ziku∗
i ⊂ L(Γk ! Γ) for all k ∈ Ji \ {i}.

Proof of the claim. Denote by G1
i × G2

i = Gi = Γi !ρi Γ where Gj
i
∼= Γ. By using 

(7.1), we view G as an amalgam G = G1 ∗Σ G2 ∗Σ ... ∗Σ Gn where Σ = d(Γ). Consider 
∆ : M → M⊗̄M the commultiplication along Λ, given by ∆(vλ) = vλ⊗vλ for all λ ∈ Λ. 
Fix 1 ≤ i ≤ n and consider the inclusion ∆(L(Gi)) ⊆ M⊗̄M = L((∗jΣGj) × (∗lΣGl)). 
Using [37, Theorem 5.1] and the fact that Gi has property (T), there exist 1 ≤ j, l ≤ n, 
a projection 0 3= z ∈ ∆(L(Gi))′ ∩M⊗̄M and u ∈ U(M⊗̄M) such that

u∆(L(Gi))zu∗ ⊆ L(Gj ×Gl). (11.1)

Since G1
j , G

2
j , G

1
l , G

2
l are bi-exact we get by Theorem 3.2 that there exist 1 ≤ k, t ≤ 2 such 

that ∆(L(Gk
i ))z ≺ L(Gj ×Gt

l) or ∆(L(Gk
i ))z ≺ L(Gt

j ×Gl). Due to symmetry, it suffices 
to treat only one of these possibilities; thus, assume ∆(L(Gk

i ))z ≺M⊗̄M L(Gj × Gt
l). 

Using Theorem 5.1 one can find a non-amenable subgroup Ω < Λ with non-amenable 
centralizer CΛ(Ω) so that

L(Gk
i ) ≺M L(Ω). (11.2)

Next, we notice that if we let Gk
i = K then all conditions (1)-(4) in the Theorem 9.1 are 

satisfied. Therefore, the conclusion of Theorem 9.1 implies that there exist a subgroup 
ΩCΛ(Ω) < Λi < Λ with QN(1)

Λ (Λi) = Λi, a central projection zii ∈ L(Λi) and a unitary 
ui
i ∈ M with tii = ui

izi(ui
i)∗ ∈ L(Gi) so that
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ui
iL(Λi)zii(ui

i)∗ = tiiL(Gi)tii. (11.3)

Since L(Gi) has property (T), then (11.3), [14, Lemma 2.13] and [20] show that Λi is 
a property (T) group as well. Thus, using [37, Theorem 5.1] again for every j 3= i one 
can find projections zij ∈ L(Λi)′ ∩ M with 

∑
j -=i z

i
j = 1 − zii , unitaries ui

j ∈ M and 
projections tij ∈ L(Gj) such that

ui
jL(Λi)zij(ui

j)∗ ⊆ tijL(Gj)tij . (11.4)

Also notice that since the common part L(Σ) is a II1 factor by perturbing the (ui
j)’s 

to new unitaries one can assume that (tij)j ⊂ L(Σ) are mutually orthogonal projections 
satisfying 

∑
j t

i
j = 1. These relations imply that ui =

∑
j u

i
jz

i
j ∈ M is a unitary and 

moreover the equations (11.3) and (11.4) entail that uiL(Λi)ziju∗
i ⊆ L(Gj) for all j 3= i

and uiL(Λi)ziiu∗
i = tiiL(Gi)tii. By letting Ji = {1 ≤ j ≤ n : zij 3= 0}, this concludes the 

proof of the claim. #

To this end, we note that the Claim together with Theorem 9.2 imply that one can 
find a partition J1 8 · · · 8 Jl = {1, ..., n} and for every 1 ≤ i ≤ l there is a property (T) 
subgroup Λi ! Λ such that the following relations hold:

(1) QN(1)
Λ (Λi) = Λi;

(2) There are projections 0 3= zik ∈ Z(L(Λi)) with k ∈ Ji which satisfy 
∑

k∈Ji
zik = 1;

(3) There exist ui ∈ U(M) such that uiL(Λi)ziku∗
i = pikL(Γk !ρk Γ)pik, for any k ∈ Ji, 

where pik = uiziku
∗
i ∈ P(L(Gk)).

Next, we claim that l = n and each set Ji consists of a singleton. Indeed, if we assume 
that for some i we have |Ji| ≥ 2 then applying verbatim the arguments from the proofs 
of [14, Proposition 4.1 and Theorem A] one obtains a contradiction. We leave the details 
to the reader. In particular, our claim entails that for every 1 ≤ i ≤ n there is a unitary 
ui ∈ M so that uiL(Λi)u∗

i = L(Γi ! Γ). "

Now, we are ready to derive the main results of the section.

Theorem 11.2. Let G = (Γ1 ∗ Γ2 ∗ ... ∗ Γn) !ρ Γ ∈ A. Assume that Λ is an arbitrary 
group and let θ : L(G) → L(Λ) be a ∗-isomorphism. Then there exist δ ∈ Isom(G, Λ), 
ω ∈ Char(Γ) and u ∈ U(L(Λ)) such that θ = ad(u) ◦ Ψω,δ.

Proof. From the hypothesis we have that θ(L(G)) = L(Λ). Thus by Theorem 11.1 there 
exists a unitary u ∈ U(M) and for each 1 ≤ i ≤ n there is a subgroup Λi < Λ so that 
θ(L(Γi !ρi Γ)) = uL(Λi)u∗. Therefore Λ admits an amalgam decomposition Λ = Λ1 ∗Ω
Λ2∗Ω .... ∗ΩΛn and viewing Γi!ρi Γ as Γi×Γi and the acting group as the diagonal group 
d(Γ) we have that θ(L(Γi×Γi) = uL(Λi)u∗ and θ(d(Γ)) = uL(Ω)u∗ for all 1 ≤ i ≤ n. By 
Corollary 8.5 there is a unitary ui ∈ L(Λi) such that Tθ(Γi × Γi) = TuiΛiu∗

i . Therefore 
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using Lemma 2.11 and Theorem 8.6 recursively one can find a unitary u ∈ U(M) such 
that Tθ(G) = TuΛu∗. This gives the desired conclusion. "

This result also implies that the groups in class A are completely reconstructible from 
the C∗-setting as well. This adds a new class of nonamenable C∗-superrigid groups to 
the only other previously known, [14].

Corollary 11.3. Let G ∈ A. Assume that Λ is an arbitrary group and let θ : C∗
r (G) →

C∗
r (Λ) be a ∗-isomorphism. Then there exist δ ∈ Isom(G, Λ), ω ∈ Char(G) and u ∈

U(L(Λ)) such that θ = ad(u) ◦ Ψω,δ.

Proof. Note that G has trivial amenable radical by Proposition 7.1. Then it follows from 
[4] that C∗

r (G) has unique trace and thus θ lifts to an ∗-isomorphism of the corresponding 
von Neumann algebras θ : L(G) → L(Λ). The statement follows then from the previous 
theorem. "

Corollary 11.4. Let G ∈ A. Then for any θ ∈ Aut(C∗
r (G)) there exist δ ∈ Aut(G), 

ω ∈ Char(G) and u ∈ U(L(G)) such that θ = ad(u) ◦ Ψω,δ.

Appendix A

In this appendix we provide an alternative proof of the direct product rigidity The-
orem 5.2 for groups in the class IPV which by-passes the usage of prior techniques for 
bi-exact groups. This approach builds upon the methods developed in [48,15,11].

A key ingredient for our proof is a structural result which classifies all weak compact 
embeddings into tensor products by wreath product von Neumann algebras in the same 
spirit with some results in [15]. In fact this result does not appear anywhere in the 
literature and deserves some attention on its own. This is one of the main reasons we 
decided to include this appendix in the paper. To properly introduce the result we first 
recall briefly the definition of a weakly compact action introduced in [47].

Definition A.1. Let A ⊆ M be an inclusion of tracial von Neumann algebras and consider 
a subgroup of normalizers H ! NM(A). Then the conjugation action H " A is called 
weakly compact if we can find a net ηn ∈ L2(A⊗̄Ā) of positive unit vectors satisfying 
the following conditions:

(1) limn ‖(a⊗ a)ηn − ηn‖2 = 0, for all a ∈ U(A),
(2) limn ‖[u⊗ u, ηn]‖2 = 0, for all u ∈ H,
(3) 〈(x ⊗ 1)ηn, ηn〉 = 〈(1 ⊗ x)ηn, ηn〉 = τ(x), for all n and x ∈ A.

With this definition at hand we are now ready to state and prove the result.
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Theorem A.2. Let K0 < G0 and A be some countable groups such that K0 and A are 
amenable. Let M be a finite von Neumann algebra and denote by N := M⊗̄L(A 'K0 G0). 
Let B ⊂ pNp be a diffuse von Neumann subalgebra and let H ⊂ NpNp(B) a subgroup of 
normalizers such that the natural action by conjugation H " B is weakly compact.

If the von Neumann algebra H′′ is strongly non-amenable relative to M ⊗ 1, then the 
deformation 1 ⊗ αt → id uniformly on the unit ball (B)1.

Here the path αt is the wreath product core-length deformation on L(A 'G0/K0 G0)
introduced in [32] (see also [38]).

Proof. Our proof is similar to [48, Theorem B] and [15, Theorem 6.2]. For the proof we 
can assume without loss of generality that p ∈ M⊗̄L(G0) and therefore (1 ⊗αt)(p) = p, 
for all t ∈ R. Let z0 ∈ Z(H′ ∩ pNp) be the maximal projection such that αt → id

uniformly on the unit ball of Bz0. Assume by contradiction that z0 3= 1 and take an 
arbitrary non-zero projection z ∈ Z(H′ ∩ pNp) with z ≤ 1 − z0. This implies that 1 ⊗αt

does not converge uniformly on U(Bz). Using the transversality property of αt from [59, 
Lemma 2.1] there exists c > 0 and sequences tk ↘ 0 and (ukz)k ⊂ U(Bz) such that

‖(1 ⊗ αtk)(ukz) − EN ((1 ⊗ αtk)(ukz))‖2 ≥ c‖z‖2, for all k ∈ N.

Using Pythagoras’s theorem we get that

‖EN ((1 ⊗ αtk)(ukz))‖2 ≤
√

1 − c2‖z‖2, for all k ∈ N.

Now, pick 0 < δ < 1−
√

1−c2

6 ‖z‖2. Choose and fix k ∈ N such that α = αtk satisfies 
the following relations

a. ‖z − α(z)‖2 < δ

Let v = uk and let (ηn)n be a net of vectors as in Definition A.1 which corresponds to 
the weakly compact action H " B and consider the following notations

b. η̃j,n = (αtj ⊗ id)(ηn) ∈ L2(Ñ ) ⊗ L2(N )
c. bj,n = (eN ⊗ 1)(η̃j,n) ∈ L2(N ) ⊗ L2(N )
d. b⊥j,n = η̃j,n − bj,n ∈ (L2(Ñ ) 5 L2(N )) ⊗ L2(N ).

For ease of notation, denote η̃n = η̃k,n, bn = bk,n and b⊥n = b⊥k,n. Notice that (p ⊗1)b⊥n (p ⊗
1) = b⊥n and

‖(xp⊗ 1)η̃n‖2 = τ(EN (α−1(px∗xp))) = ‖xp‖2
2.

Also, as in the proof of [48, Theorem 4.9] we get

‖[u⊗ ū, b⊥n ]‖2 ≤ ‖(α⊗ 1)([u⊗ ū, ηn])‖2 + 2‖u− α(u)‖2, for all u ∈ U.
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Next, we claim that

lim
n

‖(z ⊗ 1)b⊥n ‖2 ≥ δ.

Assume this is not the case, since eN z = zeN and zv = vz we get that

lim
n

‖(z ⊗ 1)η̃n − (eNα(v)z ⊗ v)bn‖2

≤ lim
n

‖(z ⊗ 1)η̃n − (eNα(v)z ⊗ v)η̃n‖2 + lim
n

‖(z ⊗ 1)b⊥n ‖2

≤ lim
n

‖(z ⊗ 1)η̃n − (eN zα(v) ⊗ v)η̃n‖2 + ‖[α(v), z]‖2 + δ

≤ lim
n

‖α⊗ 1(ηn − (v ⊗ v)ηn)‖2 + 4δ = 4δ.

Therefore, this further implies that

‖EN (α(vz))‖2 ≥ ‖EN (α(v))z‖2 − ‖z − α(z)‖2 ≥ lim
n

‖EN (α(v))z ⊗ vη̃n‖2 − δ

≥ lim
n

‖(eNα(v)z ⊗ v)bn‖2 − δ ≥ lim
n

‖(z ⊗ 1)η̃n‖2 − 5δ ≥ ‖z‖2 − 5δ ≥
√

1 − c2‖z‖2

which contradicts ‖EN ((1 ⊗ αtk)(ukz))‖2 ≤
√

1 − c2‖z‖2, for all k ∈ N. This concludes 
the proof of the claim.

Pick n large enough such that b = b⊥n ∈ (L2(Ñ ) 5 L2(N )) ⊗ L2(N ). For any x ∈ N
we have that

‖(x⊗ 1)b⊥‖2
2 = ‖(x⊗ 1)(e⊥M ⊗ 1)η̃n‖2

2 = ‖(e⊥M ⊗ 1)(x⊗ 1)b̃n‖2
2 ≤ ‖(x⊗ 1)η̃n‖2

2 = ‖x‖2
2.

Next, we employ an argument similar with the proof of [48, Theorem B]. Denote by 
K = L2(Ñ ) 5L2(N ) and notice that it is an N -bimodule with the natural left and right 
action by N . Also, consider the von Neumann algebra P = B(K) ∩ρ(N op)′, where ρ(N op)
is the right action on K. Let ηn,k = ‖(z⊗1)b⊥k,n‖−1(z⊗1)b⊥k,n and consider the functional 
φk : P → C given by φk(x) = limn 〈(x⊗ 1)ηk,n, ηk,n〉. Now, φk is a well-defined state on 
P satisfying φk(zx) = φk(xz) = φk(x), for all x ∈ P.

Now, we prove the following:

Claim. For every y ∈ H′′ we have that

lim
k

|φk(xy) − φk(yx)| = 0,

uniformly for x ∈ (P)1.
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Proof of the Claim. Fix u ∈ H. Then, for every x ∈ P we have

|φk(uxu∗) − φk(x)| = lim
n

|〈(uxu∗ ⊗ 1)ηk,n, ηk,n〉 − 〈(x⊗ 1)ηk,n, ηk,n〉|

= lim
n

1
‖bk,n‖2 |〈(x⊗ 1)(u⊗ u)b⊥k,n(u∗ ⊗ u∗), (u⊗ u)b⊥k,n(u∗ ⊗ u∗)〉 − 〈(x⊗ 1)b⊥k,n, b⊥k,n〉|

≤ 2‖x‖∞ lim
n

‖[u⊗ u, b⊥k,n]‖2

‖b⊥k,n‖
≤ 4

δ
‖x‖∞‖u− αk(u)‖2.

Thus, for ever y ∈ spanH we have that

lim
k

|φk(yx) − φk(xy)| = 0,

uniformly on x ∈ (P)1.
Using (5) one can check that

lim
k

|φk(xy)| ≤ lim
k

1
‖b⊥k,n‖2 |〈(xy ⊗ 1)b⊥k,n, b⊥k,n〉| ≤

1
δ
‖x‖∞‖y‖2.

The same inequality can be proven for φk(yx) and using Kaplansky’s density theorem 
we get the claim. #

We notice that by the calculation done in [15, Lemma 4.2] we have that K = L2(Ñ ) 5
L2(N )) ? ⊕sL2(〈N , eM⊗̄Ks

〉) where Ks = L(AI−∆s 'stabG0(η̃s)) where ∆s is the support 
of η̃s. Therefore, using Connes fusion we have K ? ⊕s

[
L2(N ) ⊗M⊗Ks L

2(N )
]
. Since, Ks

is amenable we get that L2(N ) ⊗M⊗̄Ks
L2(N ) is weakly contained in L2(N ) ⊗M L2(N )

for every s ∈ S. Therefore, K is weakly contained in L2(N ) ⊗M L2(N ) =: T . Using [39, 
Lemma A.3] one can find a ucp map

Φ : Q := B(T ) ∩ ρ(N op)′ → B(K) ∩ ρ(N op)′ = P

such that Φ(λT (n)) = λK(n) for all n ∈ N and the sub script denotes the actions of N on 
T and K, respectively. Now, consider the state ψk : Q → C given by ψk = φk ◦ Φ. Since 
the left action is in the multiplicative domain of Φ using the Claim, for every u ∈ H′′ we 
have that

lim
k

|ψk((uz)∗xuz − x)| = lim
k

|φk(Φ((uz)∗xuz) − Φ(x))| = lim
k

|φk(uΦ(x)u∗ − Φ(x))| = 0

uniformly for x ∈ (Q)1. Now, using a standard averaging argument in conjunction with 
Hahn-Banach separation theorem and the functional calculus one can find βk ∈ L1(Q)+
such that 0 ≤ E(βk) ≤ 1 and for all u ∈ H′′ we have

lim
k

‖βk − (uz)∗βkuz‖1 = 0.
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Here E : L1(Q) → L1(N ) is the canonical map such that τ(E(s)x) = Tr(sx), for all 
x ∈ N , s ∈ Q. Using an appropriate normalization we can assume that βk = zβkz and 
‖βk‖1 = 1. Letting zk = β1/2

k and using the generalized Power-Stormer inequality we 
further get

lim
k

‖zk − (uz)zk(uz)∗‖2 = 0,

for all u ∈ H′′. Now, fix F ⊂ H′′ an arbitrary finite subset. Using the identification 
L2(Q) = T ⊗M T , assuming zk ∈ T ⊗M T and using the above equality, we get that

|F | = lim
k

‖
∑

u∈F

zk‖2 ≤ lim
k

∑

u∈F

‖zk − (uz)zk(uz)∗‖2 + lim
k

‖
∑

u∈F

(uz)zk(uz)∗‖2

≤ lim
k

‖
∑

u∈F

uz ⊗ uz‖T ⊗MT .

Since this holds for all z ∈ Z(H′∩N ) and all F ⊂ H′′ finite it follows from [62, Corollary 
2.4] that T is a left amenable N − N bimodule over H′′. Since T can be identified to 
L2(N ) ⊗M⊗1L2(N ), then H′′ is amenable relative to M ⊗1 inside N , which contradicts 
our assumption. "

Theorem A.3. Let G1, ..., Gm ∈ IPV and let G = G1 × ... × Gm. Assume that H is 
an arbitrary group and let θ : L(G) → L(H) be a ∗-isomorphism, then there exist u ∈
U(L(H)) and H1, ..., Hm ! H such that H = H1 × ... ×Hm and t1, ..., tm > 0 such that 
t1...tm = 1 and uθ(L(Gi))tiu∗ = L(Hi), for any 1 ≤ i ≤ m.

Proof. For the reader’s convenience we recycle the notations used in [11, Theorems 4.3 
and 4.16]. In fact we follow the proofs of these theorems only adding in the new aspects 
of the technique. Thus, we suggest the reader review these proofs beforehand as we only 
include a proof of Claim 4.8, this being the only piece needed.

Claim. Σ ∩ Ω is finite.

Let O′
i = Oi ∩Σ and notice that Σ ∩Ω =

⋃∞
i=1 O

′
i. For every k consider Rk = 〈O′

i, i ∈
{1, .., k}〉 and notice that it forms an ascending sequence of normal subgroups of Σ such 
that 

⋃
k Rk = Σ ∩ Ω. Moreover, [Σ : Σk] < ∞ where Σk = CΣ(Rk). Since, Rk ∩ Σk is 

abelian and [Σ : Σk] < ∞ it follows that Rk is virtually abelian. In particular, Σ ∩Ω is an 
amenable group. In the first part of the proof of [11, Theorem A] we have obtained that 
Q ⊂ qL(Σ)q is a finite index inclusion of II1 factors. Letting z = z(q) ∈ Z(L(Σ)) be the 
central support of q, we have that for s > 0, Qs ⊆ (qL(Σ)q)s = L(Σ)z is a finite inclusion 
of II1 factors. Then perform the basic construction for Qs ⊆ L(Σ)z ⊆ 〈L(Σ)z, eQs〉 = Qµ

where µ = s[qL(Σ)q : Q]2. First, we argue that each Rk is finite. Since Ck = Rk∩Σk ! Rk

has finite index, it suffices to show that Ck is finite. From construction, we have that
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L(Ck) ⊆ Z(L(Σk)) ⊆ L(Σk)′ ∩ L(Σ).

By passing to a finite index subgroup we can assume that Σk ! Σ is normal and [Σ :
Σk] = r < ∞. Let γ1, γ2, ..., γr be a complete set of representatives for Σk ! Σ. One can 

check that the map E : L(Σk)′∩L(Σ) → Z(L(Σ)) given by EZ(L(Σ))(x) = 1
r

r∑
i=1

uγixuγ−1
i

is a conditional expectation satisfying:

‖EZ(L(Σ))(x)‖2
2 ≥ r−1‖x‖2

2

and hence [L(Σk)′∩L(Σ) : Z(L(Σ))] ≤ r and thus (L(Σk) ∩L(Σ))z is finite dimensional. 
Hence, there exists a z0 ∈ P(L(Σk)′ ∩L(Σ)) such that (L(Σk)′ ∩L(Σ))z0 = Cz0. This of 
course implies that L(Ck)z0 = Cz0. By [11, Corollary 2.7] one gets that Ck is finite.

We now show that Σ ∩ Ω is finite. Assume by contradiction that Σ ∩ Ω is infinite. 
Now, L(Σ ∩ Ω)z ⊂ L(Σ)z is a diffuse subalgebra where z ∈ Z(L(Σ)) ⊆ L(Σ ∩ Ω) and 
Z(L(Σ)) = Cz. Let H = {uσz : σ ∈ Σ} ⊂ NL(Σ)z(L(Σ ∩ Ω)z) and notice that the 
action H " L(Σ ∩ Ω)z is weakly compact. Indeed, consider the self-adjoint element 
ξk = |Rk|−

1
2

∑
a∈Rk

uaz ⊗ uaz ∈ L(Rk)z⊗̄L(Rk)z. Note that (uγz ⊗ uγz)ξk = ξk(uγz ⊗

uγz), ∀γ ∈ Σ. Now, for all a ∈ Rk, l ≥ k we have (uaz ⊗ uaz)ξl = ξl and hence 
limn ‖(uaz ⊗ uaz)ξn − ξn‖2,z = 0, for all a ∈ Σ ∩ Ω. Here, ‖ · ‖2,z is the 2-norm induced 
by the trace τz(y) = τ(yz)

τ(z) on L(Σ)z where τ is the canonical trace on L(Σ).
To this end notice we also have that

〈(xz ⊗ z)ξk, ξk〉 = |Rk|−1
∑

a,b∈Rk

〈xuaz, ubz〉〈uaz, ubz〉

= |Rk|−1
∑

a,b∈Rk

τ(xuazub−1)τ(zua−1b) = |Rk|−1
∑

a,s∈Rk

τ(xuazus−1a−1)τ(zus)

= |Rk|−1
∑

a∈Rk

τ(xuaz(
∑

s∈Rk

τ(zus)us−1)ua−1) (A.1)

= |Rk|−1
∑

a∈Rk

τ(xuazEL(Rk)(z)ua−1) = τ(xzEL(Rk)(z)).

Since 
⋃

k Rk = Σ ∩ Ω we have that

lim
k

〈(xz ⊗ z)ξn, ξn〉z = lim
k

τz(xzEL(Rk)(z)) = τz(x).

Similarly, limk 〈(z ⊗ xz)ξk, ξk〉 = τz(x), for all x ∈ L(Σ). Since Qµ = L(GI)t where 
t = τ(p)µ and I = 1̂, from above we have that

L(Ω ∩ Σ)z ⊂ L(Σ)z ⊂ L(GI)t.

Note that the last inclusion is an irreducible inclusion of finite index II1 factors. 
Next, we show this leads to a contradiction. When |I| = 1 this already follows from 
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[16, Theorem 6.1], so assume that |I| ≥ 2. Write L(GI)t = e(L(GI) ⊗ Mn(C))e for 
some projection e ∈ P(L(GI) ⊗ Mn(C)). Fix, i ∈ I. First, we observe that L(Σ)z
is strongly non-amenable relative to L(GI−{i}) ⊗ Mn(C). Assume otherwise, since 
L(Σ)z ⊂ L(GI)t has finite index then L(GI)t is amenable relative to L(GI−{i}) ⊗Mn(C). 
Thus, by [47, Proposition 2.4(3)] we would have that L(GI)t is amenable relative to 
L(GI−{i}) ⊗Mn(C) and thus Gi is amenable, a contradiction.

Then by Theorem A.2 we get that 1 ⊗αi
t → id uniformly on (L(Ω ∩Σ)z)1. Here, 1 ⊗αi

t

is defined on (L(GI−{i} ⊗Mn(C)) ⊗ L(Gi) where αi
t is the core length deformation on 

the wreath product algebra L(Gi) = L(Ai 'G0/K0 G
i
0). Thus, using [38, Theorem 4.2] one 

of the following must hold:

(1) L(Ω ∩ Σ) A L(GI−{i}) ⊗Mn(C);
(2) L(Σ)z A L(GI−{i}) ⊗Mn(C)⊗̄L(Ai ! stabGi

0
(hK0));

(3) there exists v partial isometry such that vv∗ = z and vL(Σ)zv∗ ⊂ L(Gi) ⊗
Mn(C)⊗̄L(Gi

0).

Notice that (L(Σ)z)′ ∩ L(GI)t = Cz. Then by [24, Lemma 2.4] all intertwinings in 1) 
and 2) are strong. Next, we argue that 2) and 3) do not hold.

Assume 2) holds. Since L(Σ)z ⊆ L(GI)t is finite index we have by [23, Lemma 2.9(2)]
that

L(GI)t A L(GI−{i}) ⊗Mn(C)⊗̄L(Ai ! stabGi
0
(hK0))

but this implies that the inclusion Ai ! stabGi
0
(hK0) ! Gi has finite index which con-

tradicts the fact that stabGi
0
(hK0) = hK0h−1 is amenable and Gi is non-amenable.

Now, assume that 3) holds. Reasoning the same way, we have that

L(GI)t A L(GI−{i}) ⊗Mn(C)⊗̄L(Gi
0)

which further implies that the inclusion Gi
0 ! Gi has finite index, a contradiction.

In conclusion, we have obtained that for all i ∈ I we have

L(Ω ∩ Σ)z As L(GI−{i}) ⊗Mn(C).

Combining this with [24, Lemma 2.8] inductively we get that

L(Ω ∩ Σ)z As
⋂

i∈I

L(GI−{i}) ⊗Mn(C) = 1 ⊗Mn(C).

This implies that a corner of L(Ω ∩ Σ)z is atomic and hence, there exists a non-zero 
projection z0 ∈ Z(L(Ω ∩ Σ)z) such that L(Ω ∩ Σ)z0 = Cz0. Thus, by applying [11, 
Corollary 2.7] we get that Ω ∩ Σ is finite, contradiction. "
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