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1. Introduction
1.1. Background

The group von Neumann algebra L£(I') of a countable discrete group I' is defined
as the weak operator closure of complex group algebra C[I'] acting by left convolution
on the Hilbert space £?T" of square-summable functions on I', [42]. The classification of
group von Neumann algebras has since been a main theme in operator algebras centered
around the following question: How does L(I') depend on T'? The question is particularly
interesting when all non-trivial conjugacy classes of I are infinite (abbrev. I is icc), which
corresponds to L£(I") being a II; factor. While this is a fairly broad thematic, the main
interest is to identify what purely algebraic aspects of T' could be recovered from L(T")
which in essence is a highly analytic environment. This is a rather complicated task as in
general £(I') tends to have only a “faded memory” of I'. Perhaps the best illustration in
this direction is A. Connes’ celebrated result [19] which asserts that for any icc amenable
groups I" and A the corresponding von Neumann algebras are isomorphic, £L(T') 2 L(A).
Thus besides amenability, a representation theoretic property of the group, £(I") has no
recollection of any algebraic structure of the underlying group I'.

In the non-amenable case the situation is even more complex. For instance, methods
in free probability show that for any collections of infinite amenable groups I'1, ', ..., T',,
and A1, Ao, ..., A, where n > 2, the potentially non-isomorphic free products I' = I'y x'g %
.+, and A = Ay % Ay ... x A, always give rise to isomorphic von Neumann algebras,
L(T) =2 L(A) [25]. Other examples of isomorphic von Neumann algebras arising from
non-isomorphic non-amenable groups can be constructed using wreath products, see for
instance [32,7,38].

Over the years however there have been discovered a variety of instances where £(T")
is sensitive to various algebraic, analytic and representation theoretic properties of T.
A significant part of this progress was achieved through the emergence of Popa’s de-
formation/rigidity theory in the early 2000. This is a remarkably powerful conceptual
framework that allows for various algebraic, dynamical, geometric and cohomological
information of groups to be completely recovered from their von Neumann algebras.

In this paper we are interested in an absolute form of reconstruction, namely when,
up to isomorphism, I is entirely recoverable from L£(I"). Specifically, a group I is called
W*-superrigid if the following holds: given any group A and any x-isomorphism 0 :
L(T) — L(A), then one can find a group isomorphism § € Isom(T, A), a multiplicative
character w € Char(T'), and a unitary w € L(A) such that 8 = ad(w) o U, 5; here ¥y, 5
denotes the canonical x-isomorphism given by W, 5(ug) = w(g)vs(g), for all g € T', where
{ug : g € T} and {vy, : h € A} are the canonical group unitaries of L(I') and L(A),
respectively.

The first examples of W*-superrigid groups were discoverd by Ioana, Popa, and Vaes
in their groundbreaking work [38]. Moreover, their paper is particularly important as it
introduces a conceptual approach towards the study of W*-superrigidity through several
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novel techniques such as the analysis of comultiplication and height arguments. Develop-
ing several new technological aspects of these methods, a few other classes of examples
of W*-superrigid groups were found subsequently in [8,2,14].

1.2. Statements of the main results

In this paper we introduce several methods of constructing W*-superrigid groups.
Some on them are entirely new while others rely on prior constructions, mainly from
[38,14]. We start by introducing our classes of groups, highlighting their features and
importance along with the main results in the von Neumann algebraic setting and various
applications for the study of C*-algebras.

Class ZPV. As already mentioned, the first examples of W*-superrigid groups were
discovered by Ioana, Popa and Vaes in [38]. Their groups arise via a specific generalized
wreath product construction and some of its algebraic features play a key role in our
work too. Therefore, to properly introduce our results, we briefly recall some of these
examples below. Throughout the paper we denote by class ZPV the collection of all
generalized wreath product groups I' = A ¢y G satisfying the following conditions:

(1) The base group A = Zs or Zs;

(2) The acting group G is any icc, non-amenable bi-exact group that contains an infinite
property (T) normal subgroup;

(3) The underlying set I = G/K on which G acts is the set of left cosets with respect
to an infinite amenable malnormal* subgroup K < G.

There are many natural examples of groups in class ZPV, e.g. one can let G be any
uniform lattice in Sp(n,1) n > 2 and K be any maximal amenable subgroup of G (see
Section 4 for other concrete examples of groups that belong to the class ZPV).

Besides being W*-superrigid another important feature for us is that all groups in ZPV
are bi-exact [6,21]. Recall that a countable group I is called bi-ezact (in the sense of [53])
if it is exact and admits a map p : I' =Prob(T") such that limy,_, o [|p(ghk) — gu(h)|| — 0,
for all g, k € T. Other examples of bi-exact groups include all hyperbolic groups [52] and
Z*xSLo(Z) [54].

The first main result of our paper is establishing product rigidity for von Neumann
algebras of bi-exact groups, in the same vein with [11, Theorem A]. Namely, we have the
following result:

Theorem A. LetT' =Ty x---xI',, be a product of n > 1 icc, non-amenable, bi-exact groups

and denote M = L(T'). Let A be any countable group and t > 0 such that M = L(A).
Then there exist a product decomposition A = Ay x --- x Ay, scalars t1,...,t, >0

with t1 -+ -t, = t, and a unitary uw € M" such that uL(A;)u* = L(T;)" for all1 <i<n.

4 A subgroup K < G is called malnormal if gKg~' N K =1, for any g € G \ K.
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In fact this generalizes the main results from [11] in two ways. Firstly, it allows one
to remove the weak amenability condition on the underlying groups in [11, Theorem A].
Secondly, it extends [11, Theorem B] from direct products of two to any finite number
of groups.

Consequently, when Theorem A is combined with [38, Theorem 8.4] we obtain the
following examples of W*-superrigid of direct product type.

Corollary B. Let I'1,T's,...,T",, € TPV and the product group I' = T'y x I's x ... x [',.
Assume that t > 0 is a scalar, A is an arbitrary group and let 6 : L(T') — L(A) be an
arbitrary x-isomorphism.

Then t = 1 and there exist § € Isom(I',A), w € Char(T") and u € UW(L(A)) such that
0 =ad(u)o ¥, ;.

The class of all non-trivial finite product groups in class ZPV can be used in con-
junction with other canonical constructions in group theory to provide new examples of
W*-superrigid groups. Therefore, we introduce a family of groups that is constructed
iteratively from the class ZPV via a mix of two operations: amalgamated free product
and HNN-extensions of groups belonging to a certain class of groups.

Class D. Let Dgy be the class of all groups G =T'; x I's x -+ x 'y, where I'; € TPV
and n > 2. Also, for any G € Dy we consider the set of factor subgroups fo(G) = {G}
and the amalgamated subgroup ao(G) = 1. Then for every ¢ > 1 we define inductively
D, and for every G € D; its factor subgroups set f;(G) and its amalgamated subgroup
a;(G) as follows. Assuming these are constructed, let D;11 be the collection of all the
groups that appear via one of the following constructions:

i) amalgamated free product groups G = G; *x, Go with G1,G2 € D; and ¥ is an
infinite, icc, amenable group such that QNgl)(E)'S: QN&)(E) = Y and whenever
i > 1 we require that a;(G1) = a;(G2) = %;

ii) HNN-extension groups G = HNN(H, X, ¢) with ¢ : ¥ — H is a monomorphism such
that H € D; and QN (%) = £, QN (p(2)) = ¢(2), [2: £ N gp(£)g~"] = oo and
[0(2) : () NgXg™!] = oo, for all g € H. Also, whenever i > 1 we require that
a;(H) =X.

In case i) we define f;11(G) = f;(G1) U fi(Gs) for the factor subgroups and a;+1(G) =
¥ for the amalgamated subgroup set. In case ii) we define f;1(G) = f;(H) and a;11(G) =
3., respectively. When is no confusion we will drop the i-subscript from the definitions
of factors and amalgamated subgroups sets. For ¢ > 1, we denote by D}* the subclass of

5 If £ < G is a subgroup, then QN(Gl)(Z) denotes the one-sided quasi-normalizer of ¥ in G and it is defined
as the semigroup of all g € G for which there exists a finite set F* C G such that Xg C F'Y; see Section 2.3
for a more detailed account on the properties of quasi-normalizers.
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groups G € D, for which there exist g1, ..., gx € G such that ﬂlegingl is finite, where
a(G) = X. Finally, denote by D = U2 D;.

Theorem C. Every group G € D is W*-superrigid.

We refer the reader to the second part of Section 6 for concrete examples of groups
that belong to D. We also note that whenever G € D; for some ¢ > 1 and a;(G) = {Z},
then QN(G})(Z) =X (see Theorem 6.2).

All known examples of semidirect product groups that are W*-superrigid are gen-
eralized wreath product groups A ; G for which the base group A is a finite abelian
group [38,8,2]. Therefore, it is natural to investigate whether there are other kinds of
W*-superrigid semidirect groups beyond this family of examples which could poten-
tially lead to new technological advancements. The following class of groups contains the
first examples of W*-superrigid groups that are semidirect product groups arising from
actions on non-amenable groups.

Class A. Let T be a non-trivial, icc, bi-exact, torsion free, property (T) group. Let n > 2
be an integer and let I'y, I's, ..., I',, be isomorphic copies of I'. For every 1 < i < n
consider the action T' ~*' T'; by conjugation, i.e. pfy(/\) =~y Lforally € T,\ €T,
Then let I' ~° I'y %'y %... %", be the action of I' on the free product group I'y *x['go*...xI",
induced by the canonical free product automorphism p, = p,ly * p,% *...xpl forally €T
and denote by G = (I'y x 'y % ... xI'),) %, I', the corresponding semidirect product.

Developing several new techniques in deformation/rigidity theory we were able to
show that all groups in class A are completely recognizable from their von Neumann
algebras.

Theorem D. Every semidirect product group G € A is W*-superrigid.

Many concrete examples of groups G € A can be obtained appealing to methods
in geometric groups theory, see Section 7. For example, one can start with any group
I’ in any of the following categories: any uniform lattice in Sp(k,1) with & > 2; any
torsion free property (T) group that is hyperbolic relative to any given finitely generated
amenable subgroup via the method described in [1, Theorem 1.1]. In fact, it is worth
noting that using methods in [50,1] one can show that class A is uncountable (see item
3) in Proposition 7.1) and that Theorem D provides new examples of residually finite
W*-superrigid groups (see item 2) in Proposition 7.1) which add to the ones discovered
previously in [8, Theorem B].

Another problem, closely related to W*-superrigidity, is to investigate groups G which
are completely recognizable from their reduced C*-algebra, C(G); these are termed
in the literature as C*-superrigid groups. Philosophically speaking, since C}(G) is a
much “smaller” object than £(G) it is reasonable to expect there should exist many
C*-superrigid groups. Despite this, unfortunately, very few examples are known in this
direction.
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The only examples of C*-superrigid amenable groups are: all torsion free abelian
groups by a classic result [61], certain Bieberbach groups [27], some families of 2-step
nilpotent groups [26], and all free nilpotent groups of finite class and rank [44]. The
only known examples of non-amenable C*-superrigid groups are the amalgamated free
product groups from [14].

There are a couple of points of contrast between these results. In the amenable case all
groups are torsion free while the ones in the non-amenable setting could contain any type
of torsion. In the amenable case all the results rely more or less on the C*-superrigidity of
abelian groups [61] as these are the building blocks for the groups considered. In the non-
amenable case on the other hand the methods rely on deformation/rigidity arguments
and their von Neumann algebraic superrigid behavior. Finally, in the amenable case the
results always proceed by showing that an *-isomorphism between the C*-algebras entail
an abstract isomorphism between the underlying groups without explicitly connecting
the two. By contrast, in the non-amenable case the methods used allow one to explicitly
relate the two, essentially classifying all such *-isomorphisms.

In the same vein, our aforementioned rigidity results in the von Neumann algebraic
setting shed new light towards the C*-superrigidity problem by providing many new
examples of such non-amenable groups. Specifically, many of our groups have trivial
amenable radical (see Propositions 6.3 and 7.1). Therefore, their C*-algebras have unique
trace by [4, Theorem 1.3] and hence, any *-isomorphism of these algebras will “lift” to the
corresponding von Neumann algebras and using Theorems C and D we get the following:

Corollary E. Let G € U;>1D"UA. Let A be an arbitrary group and let § : C(G) — C(A)
be an arbitrary x-isomorphism. Then there exist § € Isom(G,A), w € Char(G) and
u € U(L(A)) such that 0 = ad(u) o ¥y, .

This result automatically enables us to describe all symmetries (automorphisms) of
these algebras.

Corollary F. Let G € U;>1D"UA. Then for any 0 € Aut(C}(G)) there exist § € Aut(G),
w € Char(G) and v € W(L(G)) such that 8 = ad(u) o ¥, 5.

A similar statement for the amalgamated free products considered in [14] follows
directly from [14, Corollary C]. To our knowledge, besides the Corollary F above these
are the only cases known of icc groups G with £(G) full factor for which the symmetries
of C¥(G) can be described entirely.

1.8. Organization of the paper
Besides the introduction there are ten other sections and Appendix A in the paper.

In Section 2 we recall some preliminaries and prove a few useful lemmas needed in the
remainder of the paper. In Section 3 we use a new augmentation technique to prove
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an intertwining result in von Neumann algebras that arise from products of bi-exact
groups. We then continue in Section 4 with recalling some useful properties for groups
that belong to the class ZPV. In Section 5 we use the result from Section 3 to prove
our first main result, Theorem A, and derive Corollary B from it. We then continue in
Sections 6 and 7 by presenting several properties for groups that belong to the classes
D and A, respectively. In Section 8 we provide a new situation where we can control
the lower bound for height of certain unitary elements (Theorem 8.4) and two technical
results that provide “discretization” results (Theorems 8.6 and 8.7). In Section 9 we
present several results that allow us to reconstruct at the von Neumann algebra level the
“peripheral structure” of groups that belong to the classes D and A. Finally, by using
the machinery established in the previous sections, we present in Sections 10 and 11 the
proofs of the remaining main results that are stated in the introduction.

1.4. Acknowledgments

We are grateful to Stefaan Vaes for helpful comments and for kindly bringing to our
attention that the W*-superrigid groups from [8] are residually finite. We also want to
thank the anonymous referee for their numerous comments and suggestions which greatly
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2. Preliminaries
2.1. Notations and terminology

Throughout this document all von Neumann algebras are denoted by calligraphic
letters e.g. A, B, M, N/, etc. Given a von Neumann algebra M, we will denote by U(M)
its unitary group, by Z(M) its center, by P(M) the set of all its nonzero projections
and by (M); its unit ball. Given a unital inclusion N/ C M of von Neumann algebras
we denote by NN M = {z € M : [z, N] = 0} the relative commutant of A inside M
and by Ny(N) = {u € WM) : uNu* = N} the normalizer of N inside M. We say
that NV is regular in M if Ny (N)” = M. We also denote by W*(S) the von Neumann
algebra generated by a subset S C M.

All von Neumann algebras M considered in this document will be tracial, i.e. endowed
with a unital, faithful, normal linear functional 7 : M — C satisfying 7(zy) = 7(yx)
for all 2,y € M. This induces a norm on M by the formula ||z||s = 7(2*2)/? for all
x € M. The || - ||2-completion of M will be denoted by L*(M). For any von Neumann
subalgebra N/ C M we denote by FEx : M — N the T-preserving condition expectation
onto N. We denote the orthogonal projection from L?(M) — L?(N) by enr. The Jones’
basic construction [40, Section 3] for N C M will be denoted by (M, exr).

For any group G we denote by (ug)gec C U(F2G) its left regular representation, i.e.
ug(0p) = dgn where dp, : G — C is the Dirac function at {h}. The weak operator closure
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of the linear span of {u, : g € G} in B(£?G) is called the group von Neumann algebra
of G and will be denoted by L£(G); this is a II; factor precisely when G has infinite
non-trivial conjugacy classes (icc). Throughout this paper, for every subset K C G we
denote by Py the orthogonal projection from ¢2(G) onto the Hilbert subspace generated
by the linear span of {J, : g € K}.

All groups considered in this paper are countable and will be denoted by capital letters
A, B,G, H,Q, N, M, etc. Given groups @, N and an action @ ~° N by automorphisms
we denote by N x, @ the corresponding semidirect product group. A group inclusion
H < G of finite index will be denoted by H <y G. For any subgroup H < G we denote by
Cao(H) ={g € G|[g, H] = 1} its centralizer in G and by vCe(H) = {g € G| |g"| < o}
its wirtual centralizer. Note that vCq(G) = 1 precisely when G is icc. Throughout the
paper, we will also use the following observation: if H < G is a subgroup satisfying
vCq(H) =1 (e.g. if G is icc and H < G has finite index), then £L(H)' N L(G) = 1.

Let G be a group together with a family of subgroups F. A set K C G is called small
over F if there exist finite subsets R,T C G and G C F such that K C UgcrR¥T. We
denote by Sub(G) the set of all the subgroups of G. If G ~ I is an action and i € I, we
denote by Stabg (i) = {g € G| g - i = i} the stabilizer of i inside G.

Finally, for any subset S C {1,...,n} we deni)je its complement by S = {1,...,n}\S.
If S = {i}, we will simply write 7 instead of {i}. Also, given any product group G =
G1 X -+ x G, we will denote the subproduct supported on S by Gg = X;csG;.

2.2. Popa’s intertwining techniques

Over fifteen years ago, S. Popa introduced in [56, Theorem 2.1 and Corollary 2.3]
powerful analytic methods for identifying intertwiners between arbitrary subalgebras of
tracial von Neumann algebras. These tools are now termed in the literature as Popa’s
intertwining-by-bimodules techniques and were highly instrumental to the classification
of von Neumann algebras program via Popa’s deformation/rigidity theory.

Theorem 2.1 ([56]). Let (M, T) be a separable tracial von Neumann algebra and let P C
pMp, Q C gMgq be von Neumann subalgebras. Let G C U(P) be a group such that
G" = P. Then the following are equivalent:

(1) There exist pg € P(P),q0 € P(Q), a x-homomorphism 0 : poPpy — qoQqo and a
partial isometry 0 # v € gMp such that 0(x)v = vz, for all x € pyPpy.

(2) There is no sequence (uy)n C G satisfying ||Eg(zuny)||2 — 0, for all x,y € M.

(3) There exist finitely many x;,y; € M and C > 0 such that Y, || Eq(xiuy;)||3 > C for
allu e U(P).

If one of these equivalent conditions holds true, then one writes P <, @, and says
that a corner of P embeds into Q inside M. Furthermore, if Pp’ < Q for any non-zero
projection p’ € P’ N pMp (equivalently, for any projection 0 # p’ € Z(P' N pMp)), then
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we write P <%, Q. We refer the readers to the survey papers [57,65,35,36] for recent
progress in von Neumann algebras using deformation/rigidity theory.

In the remaining part of the section we highlight a few technical intertwining results
that will be used in an essential way to derive the main results of the paper. Some
of them are either direct generalizations or follow from existent results in which case
we only include some succinct proofs. For the new results we include more elaborated
explanations.

The first lemma is a consequence of [24, Lemma 2.4] and we omit its proof.

Lemma 2.2. Let (M, 1) be a tracial von Neumann algebra and let P C pMp and Q C
gMgq be von Neumann subalgebras. Assume Pp’ <5, Q for some non-zero projection
p' € P'NpMp. Then there exists a non-zero projection z € Z(P' N pMp) with p' < z
such that Pz <5, Q.

In the proof of Theorem 5.2 we will need the following result that is essentially con-
tained in [31]. Its proof is similar to the proof of [34, Lemma 6.2], and we include it only
for the reader’s convenience.

Lemma 2.3 ([31]). Let £ < T' be countable groups and denote M = L(T"). Let B C M be
a von Neumann subalgebra for which the quasi-normalizer of B in M is dense and B <\
L(X). Let Q be the subgroup of ' generated by all vy € T' such that B <y L(ySy~1NY).
Then Q has finite indez in T'.

We refer the reader to Section 2.3 for the definition of a quasi-normalizer of a subal-
gebra.

Proof. Let {u,} er be the canonical unitaries that generate £(I"). Following [31, Section
4], one can associate a projection z(X%1) € M to any subgroup ¥; < I" such that 2(%1) # 0
if and only if B <a L£(31). Moreover, z(yX177") = uyz(31)ul, for any v € T and
z2(X1 NXg) = 2(X1)2(22), for any subgroup ¥y < T

If Q does not have finite index in I', then there exists a sequence of elements
(Yn)n C T such that B £ E('y;l'ijvfl'yi N Y), for all i # j. This is equivalent to
2(7;%v; Nyi¥y:) = 0, for all i # j. Hence, the projections u.,z(X)u’,, i > 1, are mutu-
ally orthogonal. Therefore, we deduce that z(X) = 0, which implies that B Ay L(X),
contradiction. MW

2.3. Quasinormalizers of groups and von Neumann algebras

Given a group inclusion H < G, the one-sided quasi-normalizer QNS)(H ) is the
semigroup of all ¢ € G for which there exists a finite set F' C G such that Hg C FH
[28, Section 5]; equivalently, g € QNg)(H) if and only if [H : gHg~! N H] < oo. The
quasi-normalizer QN (H) is the group of all g € G for which exists a finite set FF C G
such that Hg C FH and gH C HF.
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Given an inclusion A/ C M of finite von Neumann algebra we define the quasi-
normalizer QN y((A\) as the set of all elements z € M for which there exist z1, ..., z,, € M
such that Nz C > ;N and N C Y Nz, (see [55, Definition 4.8]). Also the one-sided
quasi-normalizer QNg\lA) (N) is defined as the set of all elements x € M for which there
exist z1,...,z, € M such that Nz C >z, [28].

We record now some formulas for the quasi-normalizer of corners.

Lemma 2.4. [56,28] Let P C M be tracial von Neumann algebras. For any projection
p € P, the following hold:

(1) W*(QN, (0Pp)) = pW* (AN (P))p.
(2) W*(QNyptp (0PP)) = pW* QN (P))p.

We also mention the following remark which can be deduced directly from the defini-
tion.

Remark 2.5. Let P C M be tracial von Neumann algebras. For any projection p €
PN M, we have W*(QNp pmp (Pp')) = W (AN M (P))p'.

The following result provides a relation between the group theoretical quasi-normalizer
and the von Neumann algebraic one.

Lemma 2.6. [28, Corollary 5.2] Let H < G be countable groups. Then the following hold:

(1) W*(QN(S()G)(E(H))) = L(K), where K < G is the subgroup generated by QNg)(H)
In particular, if QNS)(H) = H, then QN (L(H)) = L(H).

£(G)
(2) W*(QN,6)(L(H))) = LIQNg(H)).

We continue by emphasizing a few technical results regarding the control of quasinor-
malizers of von Neumann algebras subalgebras in various constructions including crossed
products which are inspired by [56, Theorem 3.1]. We present a brief proof explaining
how the same arguments from [56] can be used.

Theorem 2.7. Let A, 3 be countable groups, let A ~P 3 be an action by automorphisms
and consider the corresponding semidirect product I' = ¥ x, A. Denote by M = L(T')
and P = L(A) assume that N C P C M is a von Neumann subalgebra such that
N #4p L(Stabp (o)) for all o € ¥\ {1}. Then we have that QNg\l,l) (N)" CP.

Proof. The conclusion follows immediately using the same arguments from [56, Theo-
rem 3.1] once we show the following property: given any sequence (z,) C N satisfying
| EL(staby (o)) (a2nb)|l2 — 0 for all a,b € P and o € ¥\ {1} we have that

|Ep(cznd)||2 — 0 for all ¢,d € M & P. (2.1)
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Using basic || - ||2-approximations of ¢ and d together with the P-bimodularity of Ep one
can easily see that it suffices to show (2.1) only for ¢ = u,, d = u, for p,o € ¥\ {1}.
Under these assumptions if we denote by A, , = {A € A : pr(o) = p~'} basic
computations show that Ep(czn,d) = Ep(uunus) = Y\ T(Xnur-—1)T(Uye, (0))Ux =
Z/\eAW, T(xpuy-1)uy. Since A, , = vStaby(o) for some v € A, , the above equa-
tion shows that Ep(cr,d) = u,Er(staby (o)) (Uy-12,) and using the hypothesis we get
[ EP(cznd)||2 = | Eg(staba (o)) (Uv-125)[l2 = 0asn —oco. W

For the following result, recall that a II; factor M is called solid if for any diffuse
subalgebra A C M, the relative commutant A’ N M is amenable. We refer the reader to
Section 2.4 for the notion of an amenable von Neumann algebra.

Corollary 2.8. Let T be an icc, torsion free group such that L(T') is a solid von Neumann
algebra. Consider the product group G = T' x T' together with its diagonal subgroup
dT) = {(v,7) € G : v €T} < G. Let p € L(G) = M be a projection and assume
that A, B C pL(G)p are diffuse commuting von Neumann subalgebras such that B has no
amenable direct summand. Then B Aap L(d(T)).

Proof. Assume by contradiction that B <x¢ £(d(T')). Thus, one can find projections
be B, ce L£(dT)), a non-zero partial isometry v € cMb and a *-isomorphism onto its
image ¢ : bBb — Q := ¢(bBb)) C cL(d(T))c such that ¢(z)v = vz for all x € bBb. Also
note that vv* € Q' NeMe and v*v € bBY N bMb.

Next, we observe that the group G = I' xI" can be written alternatively as a semidirect
product G = (I' x 1) x, d(I") with respect to the action by conjugation of d(I") ~°
[ x 1, ie pryy(A1) = (yAy™11), for all (y,7) € d(T) and (A, 1) € I’ x 1. Then one
can see that the stabilizers satisfy that Stabgr)(A,1) = d(Cr())), where Cr() is the
centralizer of A in I'. Since I is torsion free and £(I") is solid it follows that the centralizer
Cr()) and, hence, Stabgry(A, 1) is amenable for all A # 1. Since Q has no amenable
direct summand, we have that Q A L(Stabgry(A, 1)) and by Theorem 2.7 we get that
' € QNeae(Q)” C L(d(T)). Thus vbBbv* = Quv* C L(d(T)) and after extending
v to a unitary u we get uBv*vu* C L(d(T")). Using Theorem 2.7 again we have that
wo*v(BV B NpMp)v*vu* C L(d(T)). As T is icc after perturbing u to a new unitary
the previous relations imply that u(BV B’ NpMp)zu* C L(d(T")), where z is the central
support of vv* € BV B' NpMp. As A C B NpMp is diffuse this contradicts the solidity
of L(T'). M

For further use, we record the following result which controls the intertwiners in
algebras arising form certain subgroups. Its proof is essentially contained in [56, Theorem
3.1] (see also [14, Lemma 2.7]) so it will be left to the reader.

Lemma 2.9. [56] Let H < G be countable groups and let G ~ N be a trace preserving
action. Let P C p(N x H)p be a von Neumann subalgebra such that P £Anxxg N X
(gHg ' N H) forallge G\ H.
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Then for all elements x,x1,2,...,2; € N x G satisfying Px C Zi:l z; P, we must
have that xp € N x H.

We also record the following result concerning von Neumann algebras of amalgamated
free products and HNN-extension groups.

Lemma 2.10. [37, Theorem 1.1] Let G = Hxx K be an amalgamated free product group or
G = HNN(H, X, ) is a HNN-extension group such that QNS)(E) =X. Let P C pL(H)p
be a von Neumann subalgebra such that P Az gy L(X).
1
Then ONU) ) (P)" C pL(H)p.

Proof. Firstly, notice that gHg~ ' N H C X, for any g € G\ H. If G is an amalgamated
free product group, this is always true. On the other hand, if G is an HNN-extension
group as in the assumption, this follows from Lemma 6.1. The lemma follows now from
Lemma 2.9. W

Lemma 2.11. Let T' be a countable non-amenable group such that for every a € T\ {1}
its centralizer Cr(a) is amenable. Then the diagonal subgroup d(I') < T' x I' satisfies

QNU)L((T)) = d(T).

Proof. Let (g,k) € QNgiF(d(F)). Thus, one can find (g;,k;) € T xT' with 1 <i<n
such that d(')(g,k) C U;—,(g:, ki)d(T). Thus, for every (A, A) € d(T") there exist an i
and (4,0) € d(T') so that (\,A\)(g,k) = (gs,k:)(0,9). Basic calculations further imply
that gi_l)\g =6 = ki_l/\k; in particular, we have \gk~! = giki_l)\. Thus, if we denote
A = {N €A : g7'\g = 6 = k' Ak}, the above relations entail that T' = |JI_, 4;.
However, a simple calculation shows that A; is either empty or A; = \;Cr(gk~1) for
some \; € I'. Combining with the previous relation we get that I' = (J; A;Cr (gk~1). In
particular, we have [I' : Cr(gk~!)] < co and as I is non-amenable we get that Cr(gk™!)
is non-amenable as well. Then the hypothesis assumption implies that gk~' = 1 and,
hence, (g,k) € d(T'), as desired. W

We end this section by highlighting a result that allows us to obtain a genuine unitary
conjugacy from some intertwining relations. The proof is essentially contained in the
proof of [14, Theorem A] and we provide it for the reader’s convenience.

Theorem 2.12. [14] Let A < G be icc groups such that QNS)(A) = A and denote by
M = L(G) the corresponding von Neumann algebra. Assume that B < H are any groups
satisfying M = L(H), L(A) <y L(B) and L(B) <5, L(A). Let C < H be the subgroup
generated by QN(I}[)(B).

Then [C : B] < oo and there exists a unitary w € UW(M) such that wL(A)w* = L(C).
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Proof. Since £(A) <y L(B), we can apply [24, Lemma 2.4(4)] and obtain a non-zero
projection z € Z(L(B) N M) C L(C) such that £L(A) <y L(B)q', for any non-zero
projection ¢’ € Z(L(B)' N M)z. We continue by showing that

L(B)z Am L(gAg™t N A), for any g € G\ A. (2.2)

Assume there exists g € G such that £(B)z <, L(gAg~' N A). By [63, Lemma 3.7], we
have that £(A) < L(gAg™" N A). Since QNU (4) = A, it follows that QNY) (£(A)) =
L(A), and hence, L(A) <4y L(gAg~' N A). This implies by [24, Lemma 2.5] that
[A:gAg~' N A] < co. Hence, g € QNS)(A) = A, which proves (2.2).

Claim 1. There ezists a unitary v € UW(M) such that uzL(C)zu* C L(A).

Proof of Claim 1. We first show that for any non-zero projection ¢’ € (£(B)' N M)z,
there exists a non-zero projection ¢” € ¢'(L(B) N M)q' such that £(B)q” is unitarily
conjugate into £(A). Since L£(A) is a IT; factor, it will follow that

ul(B)zu* C L(A), for some unitary u € U(M). (2.3)

Thus, take any non-zero projection ¢’ € (£(B)' N M)z. Since L(B)q' <m L(A), there
exist projections ¢ € L(B),r € L(A), a non-zero partial isometry w € rMgqq’ and a
s-homomorphism ¢ : ¢£(B)qq’ — rL(A)r such that ¢(z)w = wz, for any = € ¢L(B)qq’.
We can moreover assume that the support projection of E.(s)(ww*) equals r. Let P =
p(qL(B)qq’) C rL(A)r and write w*w = qqo for a projection qp € ¢'(L(B)' N M)q’. One
can check that (2.2) implies that P A4y L(gAg~' N A), for any g € G\ A. By applying
Lemma 2.9, we derive that ww* € L(A), and thus, w(¢L(B)gqo)w* C L(A). Let zy be
the central support of ¢ in £(B). Since L£(A) is a II; factor, it follows that there exists
n € U(M) such that nL(B)zoqon* C L(A). We now take ¢"” = zpqo and therefore obtain
that relation (2.3) holds.

Thus, we take a unitary u € U(M) such that ul(B)zu* C L(A) and let e =
uzu®* € L(A). By (2.2), we have that QNS\),le(uE(B)zu*) C eL(A)e. By using the
quasi-normalizer formulas Lemma 2.4 and Lemma 2.6, we deduce that uzL(C)zu* C
eL(A)e. O

!, %

Claim 2. There ewxists a non-zero projection z' € zL(C)z such that uz’L(C)z'u* =

pL(A)p.

Proof of Claim 2. Denote Q = ul(B)zu* C eL(A)e and notice that eL(A)e < @ since
L(A) is a II; factor. Thus, there exist projections p € eL(A)e,q € @, a non-zero partial
isometry v € ¢Mp and a *-homomorphism 0 : pL(A)p — ¢Qq such that 6(x)v = vz, for
any x € pL(A)p. Since Q C eL(A)e, we derive that v € QNS\IA) (L(A) = L(A). Moreover,
we may assume that v*v = p and p € Q since L£(A) is a II; factor.
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Next, if z € pL(A)p, then vx(pQp) C (¢Qq)v. Hence, vz € W*(QNSE)(A)S(Q))

(see the proof of [56, Lemma 3.5]). This shows that pL(A)p C W*(QN&%E(Q))
Since QNS\)/M(Q) C uzL(C)zu*, we derive that pL(A)p C p(uzL(C)zu*)p. By letting
2l = u*pu € zL(C)z, we have pL(A)p C uz'L(C)z'u*. The claim is proven since the
reversed inclusion follows from Claim 1. O

We continue by proving that [C' : B] < oo. One can check that (u*vu)zL(C)z C
L(B)zu*vu and vw*vul(B) C L(B)u*vu. This shows that u*vu € z£(C)z and hence,
L(C) <r(cy L(B). By applying [24, Lemma 2.5], we get that [C': B] < oo. This implies
that QNS\Z)(E(C)) = L(C) and L(C) <5 L(A). Since L(A) is a II; factor, we can use
Claim 2 combined with [14, Lemma 2.6] and derive that there exists a unitary w € M
such that wl(A)w* = L(C). A

2.4. Relative amenability

A tracial von Neumann algebra (M, 1) is amenable if there exists a positive linear
functional @ : B(L?(M)) — C such that ® x4 = 7 and ® is M-central, meaning ®(2T') =
®(Tx), for all z € M and T € B(L?*(M)). The celebrated theorem of Connes asserts
that a von Neumann algebra M is amenable if and only if it is approximately finite
dimensional [19].

We recall now the relative version of this notion due to Ozawa and Popa [47]. Let
(M, 7) be a tracial von Neumann algebra. Let p € M be a projection and P C pMp, Q C
M be von Neumann subalgebras. Following [47, Definition 2.2], we say that P is amenable
relative to @ inside M if there exists a positive linear functional ® : p(M,eg)p — C
such that @, = 7 and @ is P-central. Note that P is amenable relative to C inside M
if and only if P is amenable. We also say that P is strongly non-amenable relative to @
inside M if Pp’ is non-amenable relative to @ for any non-zero projection p’ € P'NpMp.

The following lemma is well known and we leave the proof to the reader.

Lemma 2.13. Let ¥ < T be countable non-amenable groups. Then L(X)q is non-amenable
for any non-zero projection ¢ € L(X) N L(T).

3. Bi-exact groups and an augmentation technique

One of the technical ingredients needed in the proof of Theorem A is Proposition 3.1
which provides some intertwining results in von Neumann algebras of products of bi-exact
groups.

Proposition 3.1. Let I' = T'y x --- x I';, be a product of n > 1 non-amenable bi-exact
icc groups and denote M = L(I'). Assume that M = ®o<;<iP; is a decomposition into
k+ 1 II; factors such that P; is non-amenable for any 2 < j < k. Let ¥ < A be some
countable groups such that M = L(A) and @1<;<iPj <m L(X).
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Then L(X) Am L(T's), for any subset S C {1,...,n} that has at most k—1 elements.

Although is not needed for our proof, we mention that each tensor factor P; has to
be of a specific form. Indeed, the unique prime factorization result of Ozawa and Popa
[46,6] implies that there exists a partition To UTy U --- U Ty = {1,...,n} such that for
any j € {0,1,...,k}, Pj equals L(I'r;), up to unitary conjugacy and amplification.

In the particular case when £(3) C M is regular, the conclusion of Proposition 3.1
follows immediately by applying Theorem 3.2. Indeed, assume that £(X) <y L(T's)
for a subset S C {1,...,n} that has at most k — 1 elements. Then by [24, Lemma
2.4(2)] and [63, Lemma 3.7] we get that ®1<j<xP; <m L(I'g), which will imply by
repeated application of Theorem 3.2 the contradiction that P; is not diffuse. The general
case is more subtle, the idea is to exploit the group von Neumann algebra structure of
L(X) C L(A) and to make the analysis by considering a Bernoulli action of A.

We record now the following relative solidity result for von Neumann algebras arising
from products of bi-exact groups. The result is a direct consequence of [6, Theorem 15.1.5
and Lemma 15.3.3].

Theorem 3.2. [6] Let T' =Ty x --- x ', be a product of n > 1 non-amenable bi-exact
groups and denote M = L(I"). Let Q C gMgq be a von Neumann subalgebra such that
Q' N gMgq is non-amenable.

Then there exists 1 < i < n such that Q < £(F;).

Before proceeding to the proof of Proposition 3.1, we need the following two useful
lemmas.

Lemma 3.3. Let A ~ B be a trace preserving action and denote M = BxA. Let P C L(A)
and Q C M be some von Neumann subalgebras. Following [60], let A : M — MQL(A)
be the x-homomorphism given by A(b) =b® 1, for any b € B and A(vg) = vy ® vy, for
any g € A.

Then the following are equivalent:

(1) AP) <mam M&Q.
(2) A(P) <mam QM.

Moreover, if A is icc, A ~ B is weakly mixing and P C L(A) is regular, then the above
statements are also equivalent to the following:

(3) A(P) <mam QBQ.

Proof. We will first show that (1) and (2) are equivalent. By Kaplansky’s density the-
orem, note that (1) does not hold if and only if there exists a sequence of unitaries
(Un)n C U(P) such that |Erz0((1 @ 2)A(u,)(1®@y))|l2 — 0, for all z,y € M. In this
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case, notice that the Fourier coeflicients of u,, = > "4 are scalars since u, € L(A).

geEA a’g
Therefore,

1Emao((1@2)Au) (1@ y)3 =Y lag*| Bolzvgy)|3
geA

= [ Bogm((z ® 1)A(un)(y @ 1) — 0,

for all z,y € M, which shows that (2) does not hold. Note that the previous formula
actually shows that (1) and (2) are equivalent.

For proving the moreover part, we only have to show that (1) implies (3). Since
A is icc and A ~ B is weakly mixing, it is a standard computation to check that
A(L(A)) N (MRM) = C1. Since P C L(A) is regular, it follows by [24, Lemma 2.4(2)]
that A(P) < ga M@Qand A(P) <5z 1, Q®M. Finally, notice that Qo M, M®Q C
MEM form a commuting square, so we can apply [22, Proposition 2.5] and derive that

A(P) <5 Q®Q. N

Remark. Note that the moreover part in the previous theorem holds in the case B = C1
as well.

Lemma 3.4. Let A A B be a Bernoulli action and denote by M = B) x A the associated
von Neumann algebra. Let A : M — MQL(A) be the x-homomorphism given by A(b) =
b® 1, for any b € B and A(v,) = v, @ vy, for any g € A. Let P,Q C L(A) be von
Neumann subalgebras.

If A(P) = pmam LIN®Q, then A(P) <a)zcm) LA)RQ.

Proof. Assuming the contrary, one can find a sequence of unitaries (u,), C U(P) such
that

1E20)@2e((1®2)A(u,)(1®y))ll2 — 0, for all z,y € L(A). (3.1)
Observe that the Fourier coefficients of u, = 3 ., agv, are scalars as u, € L(A).
Therefore, to obtain a contradiction, it suffices to show that

1Ecme0((To @ 2)A(un)(yo @ y))ll2 — 0, for all xq,yo € Bé‘ and z,y e M. (3.2)

Moreover, it is enough to consider © = avg,y = bvy, for some k,h € A and a,b € B.
If a,b,z0,y0 € C1, then we are done by (3.1). Hence, we can assume that a € BL',b €
BS,xo € BL ,yo € BL, where F,G, H,I C A are some finite subsets and at least one of
a,b, zo,yo has trace zero. Without any loss of generality, assume that 7(a) = 0. Since
[Eg(apy(b)vg)ll2 < [ Eria)(apg(b)vg)ll2 = [T(apy(b))], for any g € A, we have
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1Em@o((z0 ® 2)Aun)(yo @ y)I5 = D lag Pl (zopy (40) P | Ea(apig (b)vign) |2
geA

< > |ag 2|7 (20pg (40)) 2T (aprg (D).
{gEN : FNkgG#£0}

Note that (3.1) implies that ay — 0, for any g € A. As the last sum is a finite, this shows
(3.2). 1

Proof of Proposition 3.1. Assume by contradiction that there exists a subset S C
{1,...,n} that has at most k — 1 elements satisfying £(X) <y L(I's). We perform
the following construction. Let A ~ B be any Bernoulli action with abelian base and de-
note M = BxA. Let A : M — M®L(A) be the x-homomorphism given by A(b) = b® 1,
for any b € B and A(vy) = vy ® vy, for any g € A as in [60].

Denote P = ®1<;<kP;. The assumption implies that P < B x 3. Since A ~ B is
free and mixing, we get that (B x X)’ N M = C1. By using [23, Lemma 2.3], we get
that A(P) <z A(B x X))z, for any non-zero projection z € A(B x )" N (M&M).
On the other hand, since A(B x X) C M®L(X), it follows by our assumption that
A(B 3 X) < e M®L(T's). Therefore, by applying [23, Lemma 2.4(2)], we get that
A(P) <o MBL(Ts). Using Lemma 3.3, we get that A(P) < g L(Ts)@L(Ts)
and by Lemma 3.4 we deduce that A(P) <gym MRL(I's). By applying once again
Lemma 3.3, it follows that A(P) < ygm L(Ts)RL(Ts).

Since T is icc, it follows from a direct computation that A(M)' N (M&M) = C1.
Since M = Py@P, we get that Z(A(P) N (MIM)) C A(M)' N (M&M), which shows
that A(P)' N (MERM) is a II; factor. We now apply [46, Proposition 12] and obtain a
decomposition

MEM = L(Ts)BL(T 3)DL(Ts) LT ),

a positive number ¢ > 0 and a unitary v € U(MRM) such that uA(P)u* C
L(Ts)RL(Ts)t. Next, since A(Py) is non-amenable, we use Theorem 3.2 and Lemma 3.3
and obtain an element s; € S such that A(®1<i<k—1Pi) <pmam L(Cs\(511) QLT s\ f5,3)-
By proceeding by induction, we get that A(P1) <apaa 1 @ 1, showing that Py is not
diffuse, contradiction.

4. A class of groups of Ioana-Popa-Vaes

Following [38], we recall that the class ZPV consists of all generalized wreath product
groups I' = A}y G which satisfy the following properties:

(1) A= ZQ or Zg;
(2) G is an icc nonamenable bi-exact group that contains an infinite property (T) normal
subgroup;
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(3) The set I = G/K on which G acts is the set of left cosets with respect to an infinite
amenable malnormal subgroup K < G.

Concrete examples of groups in ZPV can be obtained by considering various classes of
groups intensively studied in geometric group theory. Below are two such families of
examples:

i) G is any torsion free, icc hyperbolic property (T) group (e.g. an uniform lattice in
Sp(n,1), n > 2) and K < G is any infinite maximal amenable subgroup;

ii) G is any torsion free, icc, property (T) group that is hyperbolic relative to a family of
amenable subgroups {Hy, Ha, ..., H,} (see [1, Theorem 1.1] and [1, Lemma 4.2(2)])
and K = H;, for some i.

Next, we record several properties for groups that belong to class ZPV that will be useful

in the next sections.
Theorem 4.1. [21, Theorem 3.4.14] Any group in TPV is bi-exact.

Proof. Since the action G ~ G/K is by translation for any j = hKK € G/K, its stabilizer
satisfies Stabg(j) = hKh~!. As K is amenable so are its conjugates and hence Stabg ()
is amenable. Finally, since A is amenable then [21, Theorem 3.4.14] implies that I" is
bi-exact. W

Theorem 4.2. [38, Theorem 8.4] LetI' € TPV and let t > 0. Assume that A is an arbitrary
group such that there ewists a x-isomorphism ¢ : L(T) — L(A)t. Then t = 1 and there
exist 6 € Isom(I',A), w € Char(T") and w € U(L(A)) such that ¢ = ad(w) o ¥, 5, where

Wy 5(ug) = w(g)vs(g), for any g € T
5. W*-superrigidity for product groups

In the first part of the section we prove Theorem A (see Theorem 5.2) and therefore
generalize the main results from [11]. The technology that we use is slightly different
from the one in [11], resembling more the methods developed in [24,22,23].

In the second part we use the product rigidity in combination with other prior re-
sults [38] to show that any direct product of groups in class ZPV is W*-superrigid (see
Corollary 5.3).

One of the crucial ingredients in the proof of Theorem 5.2 is an ultrapower technique
[34], which we recall in the following form. This result is essentially contained in the
proof of [34, Theorem 3.1] (see also [11, Theorem 3.3]), but the statement that we will
use is a particular case of [24, Theorem 4.1].
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Theorem 5.1. [34] Let A be a countable icc group and denote by M = L(A). Let A :
M = MM be the x-homomorphism given by A(vy) = vy ® vy, for all X € A. Let
P,Q C M be von Neumann subalgebras such that A(P) <y MQ.

Then there exists a decreasing sequence of subgroups Xy < A such that P <y L(Zk),
for every k> 1, and Q' N M <y L(Up>1CA(Zk)).

We are now ready to present the product rigidity result.

Theorem 5.2. Let ' =Ty x --- x '), be a product of n > 1 icc, non-amenable, bi-exact
groups and denote by M = L(T'). Let A be any countable group and t > 0 such that
M = L(A). Then there exist a direct product decomposition A = Ay X -+ x A,,, some
scalars t1,...,t, > 0 with ty---t, = t, and a unitary u € M? such that uL(A;)u* =
LT, forany 1 <i<n.

Proof. Without any loss of generality we can assume ¢ = 1, since the general case does
not hide any technical difficulties. Let A : M — M®M be the *-embedding given by
A(vy) = vy @ vy, for any A € A as in [60]. First we prove the following

Claim 1. For any 1 <14 < n, we have A(L(T;)) < pem MRL(T;) for some 1 < j < n.

Proof of Claim 1. Fix 1 < ¢ < n. Since A(L(T;)) and A(L(I';)) are commuting non-
amenable subalgebras of L(I')®L(T), it follows by Theorem 3.2 that there exists 1 <
j < nsuch that A(L(T;)) < pem MEL(T;) or AL(T;)) <y £(T;)@M. The claim
follows by using Lemma 3.3; alternatively, one could use the flip automorphism o of
MM sincecoA=A. O

Theorem 5.1 combined with Claim 1 imply that there exists a subgroup X; < A
with non-amenable centralizer Cy(%;) such that £(I';) <aq £(3;), for any 1 < i < n.
Moreover, we show next that the following holds:

Claim 2. For any 1 < k <n, we have L(I';) <5 L(Xx) and L(Xy) <5 L(T'})-

Proof of Claim 2. We will show the claim only for kK = 1 as the other cases are sim-
ilar. First, we notice that since £(I'j) C M is regular then by [24, Lemma 2.4(2)] we
have that £(I';) <5, £(X1). Next, we show the second intertwining relation. Using
[24, Lemma 2.4(3)] there is a maximal projection e; € Z(L(X1)"' N M), possibly the zero
projection, such that

L(31)e; <3 L(I;), for any 1 <i <n. (5.1)

Remark that e := e; V --- Ve, = 1. Indeed, otherwise the projection f :=1—e €
Z(L(X1)' N L(A)) is non-zero, and hence, L(Cy(X1))f is non-amenable by Lemma 2.13.
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Thus by Theorem 3.2 there exists 1 < i < n such that £(X1) f < £(T;). Since f < 1—e;
this contradicts the maximality of e;.

We continue by showing that for every 1 < ¢ < n we have either ¢; = 0 or ¢; = 1.
Denote by Qg the set of all A € A such that £(I';) < L(AX1 A7 NX4). First, we prove
that

vae Uy =e;, forall A€ Qpand 1 <4 <n. (5.2)

If (5.2) does not hold, then one can find A € Qp and 1 < i < n such that vye;v} #
e;. Hence, there is j # i such that vye;vie; # 0. By (5.1), we get that L(AX; A7 N
Si)vreivy <5 L(T;) and LOZIATI N Xy )e; <5 /.’,(Fj.). Using Lemma 2.2, we get non-
zero projections fi, f; € Z(LAT1ATI NE1) N M) with vye;vs < f; and e; < f; such
that E()\El)\*l n El)fz <?\4 [:(F;) and E()\El/\71 N El)fj <.S/Vl ,C(Fﬁ) Since Uxewiej 7&
0, we get that fo = fif; € Z(LAZ1A"1 N 1)’ N M) is a non-zero projection. By
applying [24, Lemma 2.8(2)], we get that LA AT N 1) fo <5y E(F{TJ\}) Finally,
using Proposition 3.1 and the fact that A € Qg, we get a contradiction. Hence, relation
(5.2) must hold.

If we let €2 be the subgroup generated by €, we deduce that vye;v} = e;, for all A €
Q and 1 <7 < n. By applying Lemma 2.3, we get that 2 < A has finite index. Since A
is icc, it follows that the set {A\c At : X\ € Q} is infinite for any o € A\ {1}. A standard
computation reveals that (5.2) implies e; € C1. Since ¢; is a projection, it follows that
e; =0ore; =1. Now, using e; V--- Ve, = 1, one can find i such that £(3;) <5, L(T;).
Since L(I'y) <%, £(X1), then [63, Lemma 3.7] implies that £(T';) <5, £(I';). Since I'; is
an infinite group, it follows that ¢+ = 1, thus ending the claim. O

Claim 3. There exists a subgroup o < A such that L(X¢) <5 L(I'1) and L(T'1) <5,
L(%o).

Proof of Claim 3. From Claim 2 we have that £(T's) <5, £(22) and L(I'y) <5, £(33).
Using [64, Lemma 2.7] we find an element A3 € A such that L(I'z=) <5 £(X2N

{2,3}
A3¥3A; ). From Claim 2 and [24, Lemma 2.8(2)] we deduce that £(32 N A3Z3A5") <3,

Proceeding by induction for every j > 2, there exists A; € A such that ﬁ(F{ﬁ}) =M
L(X2N X383 NN S and £(S2NAsE3A; 1 N---NAE;ATT) <y LT 5—))-

Since {2, ...,n} = {1}, Claim 3 follows by taking X5 = 2 N AsD3A5 M-+ N ApZnAs L.
O

Using the Claims 2-3 in combination with [24, Theorem 6.1], one can find a product
group decomposition A = A; x A, a tensor decomposition M* = L(I'1)"@L(T;),
for some scalar t; > 0, and a unitary u € U(M) such that uL(A;)u* = L(T1)""* and
ul(A))u* = L£(T;)"/*. Since T; is a product of n — 1 non-amenable bi-exact icc groups,
we derive the conclusion by a standard induction argument. W
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Now combining our prior product rigidity results for bi-exact groups together with
the superrigidity results from [38] we derive many examples of W*-superrigid groups of
product type.

Corollary 5.3. Let I'1,I's,..., Ty € ZPV and denote by I' = T'y x I'g x --- x 'y Let
t > 0 and assume that A is an arbitrary group such that there exists a *-isomorphism
0 : L(T) — L(A)'. Then t = 1 and there exist 6 € Isom(I',A), w € Char(T') and
u € U(L(A)) such that 6 = ad(u) o ¥, 5.

Proof. Using Theorems 4.1 and 5.2 there exist a k-folded product decomposition A =
Ay X ... X Ag, scalars t1,...,t, > 0 with 13-+t = ¢ and a unitary w € U(L(A)) such
that for every 1 < ¢ < k we have

Since I'; € ZPV then Theorem 4.2 further implies that ¢; = 1 and there exist w; €
Char(T';), ¢; € Isom(I';, A;) and w; € U(L(A;)) such that wo(u, )w* = w; (Vi) wivs, () w;
for all v; € T';. Thus t = 1 and letting w = Hle wi, 0 = Hle 0; and u = w* H?Zl w; we
get the desired conclusion. W

6. A class of iterated amalgamated free products and HNN extension groups

In this section we present several properties of groups that belong to class D and their
associated von Neumann algebras.

Lemma 6.1. Let G = HNN(K, 3, ¢) be an HNN-extension where ¥ < K are groups and
p % — K is a monomorphism. Then the following hold:

(1) QN(2) =  if and only if QNP(2) = £, QNP (p(2) = (%), [£ : ©n
ge(X)g71] =00 and [p(X) : p(X) N gXg~] = o0 for allg € K.
(2) Under the assumptions of 1. we have that KNgKg=' < LNp(X) for every g € G\ K.

Proof. 1. First we prove the forward implication. Since the first assertion follows trivially
we will only justify the second one. Note that we can write G =< K,t : (o) =
t~lot, for any o € ¥ >. Assume there is g € K so that [ : X N gp(X)g~!] < oo. Using
the HNN relation this implies that [ : ¥NgtX(gt) "] < 0o and hence gt € QNS)(E) =X
Thus t € g~ '¥ < K, a contradiction.

Now we prove the reverse implication. Fix g € QNg)(E). Thus one can find finite
index subgroups 1,39 < X and a group isomorphism 6 : 31 — 35 such that

0(h) = ghg™* for all h € %;. (6.1)
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Using Britton’s lemma we can write g in reduced form, i.e. g = got**g1t°2...gn—1t°" gy,
where g; € K, g; € {—1,1} and the word g does not contain any substring of the form
tht=! for h € ¥ or t~ 1kt for k € p(X). Using this together with equation (6.1) we have
that

1=0(h)gh~'g™" 62)
= 0(h)got™ g1t°2...gn 115" gnh g, g L T 7S gt for every h € X;. .

Therefore using the Britton’s normal form we have two cases to analyze: either I)
gnhg,t € ¥ for all h € ¥; and ¢, = 1 or II) g,hg, ' € ©(X) for all h € ¥; and
en = —1.
Assume n > 2. If we are in case I) then we see that gnElggl < ¥ and hence gnElgglﬂZ =
gn¥19, " Thus [2: 2N g, " Bg,] = [9.2g, " : 9nBg, ' NZ] < [922g,, " ¢ 9uDng, ' NE] =
(9,29, : gnXg, '] = [X : ¥1] < co. From the assumptions this implies that g, € ¥. In
particular we have that t# g, %1 g, 't~ = p(%}) where ¥} = ¢,319,! < ¥ is a finite
index subgroup. Thus equation (6.2) again implies that either Ta) g, 10(X})g, ", < %
and &,_1 = Lor Ib) g,_10(Z4)g, L, < @(E) and €,-1 = —1.
Assume sub-case Ia). Thus [¢(2) : ©(2)Ng, 1200 -1] = [gn10(2) g, 1 1 gn_10(X) g, 1N
(X)) < [9a-12(2)97 21 2 gn10(Z1) 9721 N@(D)] = [9a-10(2)97 21+ gn10(E1)g521] =
[0(2) : ¢(X))] < co. However this contradicts the assumptions so this case cannot hold.
Now assume sub-case Ib). Then we see that [p(X) : ©(X) N g, ' 0(X)gn_1] =
[9n-10(2)9,21 ¢ gn10(2)9,2 N ] < ga19(D)gnlty ¢ ga19(Z)gpt N T =
[9n—10(2)g 0 gn10(ED g ] = [p(Z) : 9(27)] < oo. Using the assumptions we
infer that g,—1 € ¢(X). However this together with the previous relations imply that
ten-1g,_1t*» = t~'g,_1t which contradicts that the word ¢ is reduced. So sub-case Ib)
is impossible as well.

Altogether these show that case I is impossible. Proceeding in a similar manner one
can show case II is impossible as well. In conclusion we must have n < 1.
Next assume n = 1. Also assume we are in case I. Proceeding as before we must have that
g1 € ¥ and using equation (6.2) we see that goXagy ' = g5 '0(X1)gy ' = tg1X1g; 't =
(915197 1). Since [Z : $1] < oo we must have [Z : ¢1%19; '] < co. Combining this
with the previous relation this further entail that [goXgy ' : 90295 ' N ()] < [90Xg "
902295 N@(X)] = [ : Xy] < oo thus contradicting the hypothesis assumptions. In a
similar way case II also leads to a contradiction. Thus n = 0 and hence equation (6.1)
together with the hypothesis imply that g = gy € 3, as desired.
Part 2. follows by similar computations. We leave the details to the reader. B

Theorem 6.2. If G € D;, for some i > 1, and a;(G) = %, then the following hold:

(1) QNG ()

) vecs
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Proof. 1. This follows directly from the quasi-normalizers conditions from class D by
applying [14, Lemma 2.11] and Lemma 6.1 inductively.

2. Let g € vCq(X). Thus there exists a finite index subgroup ¥ < ¥ so that g € Cg(30);
in particular g € QN4 (X). However using the finite index condition one can easily check
that QN (o) = QN&(X) and combining with the first part we conclude that g € ¥. In
particular, this shows that vC¢(2) C ¥ and since X is icc we conclude that vCq(X) = 1,
as desired. W

Proposition 6.3. Let G € D; with i > 1 and write a;(G) = X. Assume that there exist
g1, .-+, 9k € G such that ﬂlegingl is finite.

Then L(G) does not admit a diffuse amenable reqular von Neumann subalgebra. In
particular, G has trivial amenable radical.

Proof. Let A C £(G) be an amenable regular von Neumann subalgebra. First, we show
that A <,(q) £(X). From the definition, G is either (1) an amalgamated free product
G = H; xx Hy with Hy,Hy; € D;,_; and ¥ amenable or (2) an HNN-extension G =
HNN(H,, %, ¢) with Hy € D;,—; and ¥ amenable. By applying [66, Theorem A and
Theorem 4.1], we deduce that A <, (g) £(X) holds in both cases. Next, by applying [31,
Proposition 8] we derive that A <) L£(Nk_,g;%g; "), implying that A is not diffuse.

For the last part of the proof notice that since G is icc, the first part of the proof
implies that G has trivial amenable radical. W

Theorem 6.4. Let G € D and denote by f(G) = {G1,Ga,...,G,} its factor set. For
every 1 < i < n denote by s; > 2 the integer such that G; = I”i X I‘% X ... X I‘fw
where F; € IPV. Denote M = L(G x G) and let p € M be a projection. Assume that
A, B C pMp are commuting von Neumann subalgebras which contain property (T) diffuse
subalgebras Ag C A and By C B. Also assume that Ay Am L(G X A), Ay Am L(AXG),
Bo Am L(G x A) and By Am L(A X G) for any amenable subgroup A < G.

Then one can find 1 < i < n and 1 < j < s; such that A <y L(G % ].";) or
A <M E(P; X G).

Here, we denoted by F; the product group Xkeirfr

Proof. If G € Dy, then the result follows from Theorem 3.2. Hence, we assume that
G € D, with m > 1 and denote a,,(G) = X. Firstly, we claim that there exist integers
1 < k,l < n, a projection 0 # z € (AV B)’ N M and unitary u € M such that

u(AV B)zu* C L(Gg X G}). (6.3)

From the definition, G is either an amalgamated free product G = H; xy Hs with
H; € D,,—1 and ¥ amenable or an HNN-extension G = HNN(Hy, X, ¢) with Hy € Dy,
and ¥ amenable. Thus M is canonically either an amalgamated free product or an HNN-
extension von Neumann algebra and since 4y C M is a property (T) subalgebra then
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using either [37, Theorem 5.1] or [29, Theorem 3.4] we have that Ay < L(Gx H;) :==P;
for some H; € Dy_1. Thus one can find projections a € Ay, p € P;, a non-zero partial
isometry v € pMa, and an injective *-isomorphism ¢ : adpa — ¢(aApa) := Q C pP;p
so that ¢(z)v = vz for all x € aApa. Moreover, v*v € adpa’ N aMa, vv* € Q NpMp
and we can assume that the support s(Ep,(vv*)) = q.

Next, observe that Q Ap, L(G x %). Indeed, otherwise composing this intertwining
with ¢ we would obtain that Ay <a L(G % X). Since X is amenable this would contradict
the hypothesis assumptions. Therefore, by Lemma 2.10, we have that vv* € Q' NpMp C
L(G x H;). In particular, we have vAgv* = Quv* C L(G x H;) and moreover, if u
is a unitary extending v*v, we get that wv*v(Ay vV Ay N pMp)v*vu* C L(G x H;).
As L(G x H;) is a factor, after perturbing u to a new unitary we further get that
u( AoV A NpMp)zu* C L(G x H;), where z is the central support of v*v in AV.A'NpMp.
Thus u(Ap V B)zu* C L(G x H;) and in particular uBzu* C L(G x H;). From the
assumptions we also see that uBzu* £p, L(G x X) and therefore repeating the same
argument as before on control of relative commutants we get that u(B8'NzMz)V Bzu* C
L(G x H;); in particular, we conclude that u(AVB)zu* C L(G x H;). Now, notice that Az
and Bz are still commuting von Neumann subalgebras containing property (T) diffuse
subalgebras Apz C Az and Byz C Bz. Therefore, one can repeat the same argument
finitely many times so that in the end there exist Hy, H; € D¢y a unitary still denoted by
u € M and a non-zero projection z € (AVB)' NM satisfying u(AV B)zu* C L(Hj, x Hy).
However, since the elements of Dy consist of factor subgroups of G, the claim (6.3) follows.

Finally, note that since the groups F;’s are bi-exact and B is non-amenable, we can
apply Theorem 3.2 and obtain the conclusion. H

We remark that the result above can also be obtained using bi-exactness methods
from [52,6]. Moreover, the theorem still holds under the milder assumption that the
algebras A and B have no amenable direct summand rather containing property (T)
diffuse subalgebras. For the interested reader we also note this result can be proved either
using bi-exactness methods from [52,53,6] or using Popa’s deformation/rigidity theory
as in [13,29]. We opted for this leaner version only for the brevity of the exposition as it
follows relatively easily from existing results in the literature.

Some examples of amalgamated free product groups in class D. Let K be a non-
elementary, torsion free, property (T) group that is hyperbolic relative to a finitely
generated, icc amenable subgroup P < K; using [1, Theorem 1.1], for any given finitely
generated group P, such a K always exists. Moreover, since amenable groups are biexact,
then [53] (or [45, Theorem 1.1]) implies that K is biexact. Now fix g € K \ P a hyperbolic
element and let B := F(g) < K be the (unique) maximal elementary subgroup defined
by E(g) = {f € K|f~'g"f = g, for some n € N}. Observe that both P and B
are amenable and malnormal in K. Moreover, we have that P N kBk~! = 1, for all
k € K. The last two assertions follow from [I, Lemma 3.1] and [51, Theorem 1.4]. We
consider the generalized wreath product H = Z3 {x/p K and notice that H € ZPV. Let
G = x*1H € Dy with n > 2. Therefore, the following groups belong to D;:
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o G xx G, where ¥ = x}__| P < G is the natural direct product embedding.
e G *x G, where ¥ < @G is the diagonal product embedding of P; more precisely,

Y¥={(g,...,9)|g € P}.

Moreover, note that these groups actually belong to DI*. For examples of groups in D;
with ¢ > 2, one can easily iterate by following the procedure described in the definition
of class D.

Some examples of HNN extensions in class D. Let K be a non-elementary, torsion
free, hyperbolic group that admits a normal infinite property (T) subgroup. Assume that
B,C, D < K are infinite cyclic subgroups that are malnormal and satisfy C N gBg~! =
DNgBg~! = CnNngDg™! =1, for all g € K. Next we briefly indicate how to build
such groups using Belegradek-Osin’s Rips construction in geometric group theory [5].
Consider the free group with three generators Fs = (a, b, ¢). Then using [5, Theorem 1.1]
there exist a torsion free, property (T) group N and an action by automorphisms F3 ~ N
such that the corresponding semidirect product K = N x Fj3 is hyperbolic relative to
F3. Since Fj3 is itself hyperbolic it follows that K is hyperbolic and also torsion free.
Now consider the cyclic subgroups of K given by the generators of F3, B = (a) C = (b)
D = (¢). Since K is hyperbolic relative to F5 = B x C x D then Fj is malnormal in K
and therefore one can check easily that B, C, D satisfy the required conditions. We also
mention that one can build groups K with the required properties that actually have
property (T) in a similar manner, but using [1, Theorem 1.1] instead of [5, Theorem 1.1].

Now, consider the generalized wreath product I' = Zalx /g K and notice that I' € ZPV.

Next, we consider the canonical subgroups 2 = Z3 lgx/p C and T = Z igx/p D
of I' and we claim that € is isomorphic to Y. Towards this, we first notice that the
actions by left translations on the base sets C' ~ K/B and D ~ K/B have trivial
stabilizers. Indeed, for every gB € K/B its stabilizer in C is gBg~' N C which by
assumption is trivial. Moreover these actions have (countable) infinitely many orbits
which are given specifically by the double cosets K = | |,cp, CgB = | | e, DgB, where
|F1| = |Fa| = Ng. Indeed, just notice that if F; would be finite then it would imply that K
is boundedly generated. However this would contradict for instance [43] or [49, Theorem
1.9]. Using these observations one can see the following sequence of isomorphisms hold:
Q= Z2 kB C = Oyer, (OrecygZz) X C = Byer, (Brecls) ¥ C = ON(DzZ2) X Z,
where the last semidirect product is associated with diagonal action of Bernoulli actions
of Z on ®n(®zZ2). A similar argument shows that T = Zylx/p D = ®n(DzZ2) X Z and
combining with the above we get the claim. Next, fix a group isomorphism ¢ : Q — 1.

Now, let n > 2 be any integer and consider the n-folded product H =T x ... x I
together with the n-folded product subgroup ¥ = Q x ... x Q. Also denote by ¢ :
Qx...x0Q—=7Tx..x7T the n-folded isomorphism induced by . Now one can check
that ¥ < H and ¢(X) < H satisfy all the conditions enumerated in Lemma 6.1 and
consequently the one-sided quasinormalizer conditions in the definition of class D. So
using this construction in conjunction with amalgamation and HNN-extensions we can
build iteratively various examples of groups in the class D such as:
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HNN(H,X,¢) € Dy,  HNN(H, X, ¢) #s (H +x H) € Dy,
(HNN(H, X, @) *s (H *x H)) s (HNN(H, X, ¢) *x (H s H)) € D3, etc.

7. A class of semidirect product groups with non-amenable core

Our class A introduces a new family of semidirect product groups G whose von Neu-
mann algebras L£(G) display excellent rigidity properties, as we will see in the next
sections. We continue by recalling the definition of class A.

Let T' be a non trivial, icc, bi-exact, torsion free, property (T) group. Let n > 2 be
a positive integer and let I'y, I's, ..., I';, be isomorphic copies of I'. For every 1 <i < n
consider the action I' ~*' I'; by conjugation, i.e. pi/()\) =y y "t forall vy eI, \eTly.
Next consider the action I' ~* I'y x's % ... % ';; on the free product group I'y *«I'o % ... x ',
given by the canonical free product automorphism p, = p% * P% ...k pl for ally € T’
and let G = (I'y 'y ... % I'y) %, ' be the corresponding semidirect product.

The class of these semidirect product groups is denoted throughout the paper by Class
A.

Representation as amalgams. The groups in the class A can be viewed alternatively as
free product groups amalgamated over the acting group. Namely, one can canonically
decompose G = (I'y # Lo ....xT',) X, T = (I'y X1 I) sp (P X p2 ) #p cokp (I, X ). In
addition, the semidirect product I'; X, I' can be canonically identified with the semidirect
product (I' x 1) x, d(I") where d(I') = {(v,7) : v € T} < I x I is the diagonal group
and the action is given by p(y,)(X\, 1) = (yMy~1,1) for all v, € I'. In particular, this
canonically shows that I'; x, ' 2 ' x I'. Thus, using the aforementioned identifications
we have

G = ((Ty x 1) %1 d(T))saqry (T2 x 1) %2 d(T)) s ary--aqry (Tn X 1) xn d(T)). (7.1)

This amalgam decomposition of G along the retracts will be used extensively in the
proofs of our main structural results.

We end this section by recording a list of algebraic properties of groups in class A
that are relevant to our von Neumann algebraic results.

Proposition 7.1. Let G = (T'y « Ty % ... % I'y,) 1, I' € A. Then the following hold:

1) G has trivial amenable radical, i.e. the only normal amenable subgroup of G is the
trivial one.

2) IfT is residually finite then so is G.

3) The class A has 2%0 elements.

Proof. 1) Denote by K =T'; *...xT',, and note that G = K x,I'. Fix ¥ <G an amenable
normal subgroup. First we argue that > N K = 1. Since ¥ is normal in G, then ¥ N K
is also normal in K. As XN K < K =Ty x5 * ... x[';, then by Kurosh’s subgroup
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theorem we have that X N K = F x (*;?ZIN;“), where F' is a free group, N; < T,
1 < 4; < n are subgroups, and v; € K. Here, we denoted N;Yj = A/ijyjfl. As ¥NK
is amenable and torsion free we must have that either (a) FF = 1 and k = 1, or (b)
F = Z and k = 0. By assuming (a), it follows that ¥ N K = (¥ N K)Vl_1 =N <Ty,.
Now, pick v € K\ I';,. Since I';, is malnormal in K and ¥ N K is normal in K, we get
(ENK)=(XEnNK)N(ENK)Y <, NT] =1, as claimed. Assume now that (b) holds
and let a = a7 ...as be a generator of F' written as a reduced word in I'y % --- % I',,. If
s = 1, then the argument follows as in (a). If s = 2, note that any element in F' can
be written as a reduced word of even length. Since F' < K is normal, it follows that
the reduced word of alaal_1 € F has length 3, contradiction. In the case that s > 3, we

Lis also a generator of F for any g € K, we derive that

proceed as follows. Since gag™
we either reduce to the case s € {1,2} or we can assume that a; and as do not belong
to the same subgroup I'; of K. In this second case, note that any element of F' can be
written as a reduced word of for which its length is a multiple of s. However, the length
of the reduced word of alaal_l € F equals s + 1, contradiction. Therefore, X N K = 1.
Next, notice that since > and K are normal in G it follows that the commutator
[X,K] < ¥N K = 1; in particular, ¥ < Cg(K). Next, we argue that the centralizer
Ce(K) = 1, which in particular gives the desired conclusion. Fix v = kl € Cg(K),
where k € K and [ € T". This implies that for all s € K we have sy = s which implies
skl = kls and hence k~'sk = p;(s). If we let s € I'; we see the previous relation together
with the malnormality of I'; in K imply that k£ € T';. Since this holds for all i then
ken? T, =1 and so k = 1. In conclusion, we must have that s = p;(s) for all s € K
and since I' is icc this further implies that [ = 1; hence v = 1, which finishes the proof.
2) Notice that since I' is residually finite then so is I' x I" and hence, I'; x,: I is residually
finite for all 1 <4 < n. Then using the amalgam decomposition of G along retracts (7.1)
together with [3, Theorem 1], iteratively, we get that G is residually finite as well.
3) We will present a construction of a continuum of elements in A that relies heavily
on several deep results in geometric group theory [1,50]. We start by noticing that for
every finitely generated, torsion free group K there exists a group H(K) containing K
as proper subgroup and satisfying the properties that H(K) is torsion free, has property
(T) and is hyperbolic relative to K. This essentially follows from the same arguments
presented in the proof of [1, Theorem 1.1]. However, since in the aforementioned result
the authors do not emphasize the torsion free aspect we repeat here a simplified version
of their argument addressing this part. To this end, let T be any torsion free, property
(T), hyperbolic group (e.g. any uniform lattice in Sp(n, 1), n > 2) and let F' be a finite set
of generators of K. Now consider the free product G = T * K and notice G is hyperbolic
relative to { K'}. In addition, notice that T is a suitable subgroup of G in the sense of [50,
Definition 2.2]. Then using [50, Theorem 2.4] one can find an epimorphism ¢ : G - H
satisfying the following properties: a) the restriction ¢ is injective; b) the group H
is hyperbolic relative to ¢(K); ¢) ¢(F) C ¢(T); d) every element of finite order in H
is the image under ¢ of an element of finite order in G. Clearly, a) and b) imply that
¢(K) = K and H is hyperbolic relative ¢(K). Since T and K are torsion free then so is
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G and by d) it follows that H is torsion free as well. Finally, condition c) implies that
H = ¢(T « K) = ¢(T) and since T has property (T) then H has property (T) as well.
Letting, H(K) := H we get the desired statement.

Next, we claim that there exists a continuum family K of pairwise non-isomorphic non-
elementary amenable groups, that are torsion free and have infinite center. Indeed, from
[30, Theorem 6] there exists a continuum family K of groups K, that are 2-generated,
torsion free, and solvable (in particular amenable). Using this we define a new continuum
family of groups K as follows. First eliminate all possible elementary groups from K which
are at most countably many so we are left again with a continuum family which we still
denote by K. Consider K. C K the subset of the groups in K with infinite center. If
K| = 280 then let K := K. If |K | # 280 then |K\ K.| = 2%°. Moreover, since all groups
involved are torsion free then K\ K. consists only of groups with trivial center. Then in
this scenario we define K := {Z x K : K € K\ K.}. This proves the claim.

Now, we argue that the groups H(S;) where S; € K form a continuum family of
pairwise non-isomorphic, icc, bi-exact property (T), torsion free groups. To conclude
this we only need to show the non-isomorphism part as the rest follows from the prior
paragraph. Assume 60 : H(S;) — H(S;) be a group isomorphism. Fix an infinite order
central element a € Z(S;). Thus, 8(a) € H(S;) is an infinite order element as well. As-
sume 6(a) is a hyperbolic element of H(S;) = B. Thus, by [50, Theorem 2.1] there exists
an elementary group Ep(f(a)) such that B is hyperbolic relative to {S;} U {FEg(0(a))}.
In particular, Fp(f(a)) is malnormal in B. As (6(a)) commutes with 6(S;) it follows
that 0(S;) < Ep(6(a)) which further entails that 6(S;) and hence S; is elementary, a
contradiction. In conclusion, #(a) is parabolic and hence there exists h € B such that
(0(a))" C S;. Again since S; < B is malnormal and 6(S;)" commutes with (6(a))" it
follows that 6(9;)" < S;. Using a similar argument for 6~! one can find k¥ € B such
that 0(S;)* < S; and by malnormality again there is s € B such that 6(S;)* = S;; in
particular, S; = S; and hence ¢ = j which finishes the argument.

Finally, it is a basic exercise to see that if one starts with K = H(S;), S; € K in
the semidirect product construction in the class A one gets non-isomorphic groups for
different i’s. We leave the details to the reader. W

8. Height of elements in group von Neumann algebras and techniques for
discretization of countable groups

The notion of height of elements in crossed products and group von Neumann algebras
was introduced and developed in [33] and [38] and was highly instrumental in many of
the recent classification results in von Neumann algebras [33,38,41,14,17,10,9]. Following
[38, Section 3] for every « € L(I') we denote by hr(x) the largest Fourier coefficient of
z, i.e., hr(z) = max,er |7(zu})|. Moreover, for every subset G C L(I'), we denote by
hr(G) = inf,eg hr(x), the height of G with respect to I'. Using the notion of height Ioana,
Popa and Vaes proved in their seminal work, [38, Theorem 3.1] that whenever T, A are icc
groups such that £(I') = £(A) and Ap(A) > 0, then I' and A are isomorphic. Therefore,
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in order to reconstruct the underlying groups from their von Neumann algebras a first
step is to develop an adequate analysis to control the lower bound of their height.

There have been a few situations in the literature where it was possible to obtain
lower bounds for the height. At the heart of these results is the following common
philosophy that was extensively exploited: given two group von Neumann decompositions
of M = L(T') = L(A), to conclude that the height hr(Ag) > 0 for some subgroup Ay < A
sometimes it suffices to check that there are only a few subgroups I'; € Sub(T") and
A; € Sub(A) such that their von Neumann algebras can be identified £(I';) = £(A;) in
M or just merely intertwined into each other. For example, this is the case of certain
wreath products I' = AH) x H in [38] and left-right wreath products I' = A1) x (H x
H) in [8] where the von Neumann algebras of the core groups AU and of the acting
groups H and respectively H x H could be identified with the von Neumann algebras of
certain subgroups in the mystery group A. A similar statement was proved for semidirect
products with no non-trivial stabilizers in [10,9].

Next, we highlight a rather different situation where one can control the lower bound
for height of unitary elements in the context of direct product groups. This is reminiscent
to some of the techniques from [14]. To properly state our result we first introduce the
following definition:

Definition 8.1.

(1) Let n > 3 be a positive integer and let TU.J = {1,2...,n} be a partition with |I| > 2.
Let X,Tq,...,T', € Sub(T") be a collection of subgroups and consider the (ordered)
n-tuple of subgroups F = (I'1,T'g,...,T;,) € Sub(I")". We say that ¥ is I-J-fizable
with respect to F if the following property holds: for any finite subsets F;, K; C T’
where 1 < ¢ < n there exist a finite set G; C F;I';K; when j € J and [; injective
maps oF : ¥\ {1} = T' for 1 < k < [; and i € I such that whenever g € X\ {1}
and g; € FiI;K; \ {1} for 1 < i < n are elements satisfying g, € F;I';K; \ G, for
j € J and gg192...9, = 1, then for every ¢ € I we must have g; = Uf(g) for some
1< k<1,

(2) If J =0 in (1), we simply say that 3 is fizable with respect to F.

(3) If we have a tuple of subgroups G = (I'1,Tg,...,TI';y) € Sub(I")™ and T; is fixable
with respect to G; = (T1,T2, ., Ti1, Tig1,y oy Ty for all 1 < 4 < m, then we say
that G is fizable.

While this definition seems somewhat technical there are in fact many natural exam-
ples of groups ¥ < I" such that X is fixable with respect to certain families of subgroups
of I'. This includes, for instance, the collections of the so-called “diagonal subgroups”.
More precisely, we have the following result for which the proof we leave it to the reader.

Proposition 8.2.
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(1) Let n > 2 be a positive integer and let ¥,1'1,T's, ..., T, be some groups. Assume that
m; » % — Iy is a monomorphism for all 1 <1i < n and consider the diagonal subgroup
(X)) = {(m1(g), m2(g)s ...y Tn(g)) € T1xTax---xT',, : vy € B} < Ty xTyx---xI'y, =T.
Then the (n + 1)-tuple F = (6(%),I'1, g, ...,[,) € Sub(I')"*! is fizable.

(2) LetT' = A x, G be a semidirect product and let H < G be a subgroup. Assume that
there exists a map ¢ : H — A\ {1} such that cg, = cqpg(ch) for all g,h € H. If we
denote by 6(H) = {cph : h € H}, then 6(H) is fizable with respect to {A,G}.

(3) Let T' = A x, G be a semidirect product group. Then G is {1,3}-{2}-fizable with
respect to F = (A, G, A) € Sub(T)3.

With these preparations at hand we are now ready to derive the first main result of
the section. Specifically, we show that in the presence of groups that are I-J-fixable, it
is possible to control the lower bound for the heights of elements that satisfy various
relations in the von Neumann algebra setting.

Lemma 8.3. Let X < T' be an inclusion of groups and let F, K C I' be subsets. Then for
every x € L(T") we have

1Prsk (@)l < @FIET = 1)]2]|oc. (8.1)

Proof. We only need to show (8.1) when F and K are finite, the other cases being
tautological. Towards this, observe that for every s,t € T' and « € L(T") we have that
Pssi(xz) = usEps)(ug—12u-1)us. In particular, we have ||Poxy(2)]|oo < ||#|loo. This
already proves our statement when F and K are singletons. The general case follows
from this combined with the inclusion-exclusion principle for orthogonal projections. To
see this, consider the sets 3, ; = sXt for s € F, t € K and enumerate them as {5, };, for

1 < i <k where k = |F||K|. Thus, one can check that

k
Prsk = Por_ s, = Z(fl)“r1 Z Ps; n-ns;, (8.2)

i=1 1< <+ <gi<k

Next, we notice that if ¥/ < X is a subgroup and s,t € T, then X' NsXt is either trivial or
of the form aX” for some subgroup X" < ¥’ and a € I". Indeed, if ¥/ N sXt is not trivial,
then there exist 0/ € ¥/ and ¢ € ¥ such that o/ = sot. Hence, ¥/ NsXt = X' No't ™13t =
o (X Ntixe).

Now, the previous paragraph implies that every S; N --- NS, is either empty
or of the form ¢gX'h for some subgroup X' < T and g,h € T. Hence, the first
part of the proof implies that [[Ps; n..ns; ()[lcc < [[2[loo, for all 1 < i < k and
x € L(T'). This together with (8.2) and the triangle inequality imply that || Prs i (2)]|c <
Zf:l Zl§j1<---<ji§k ||PSj1ﬂ”‘ﬂSji (@)[loo < (28 = 1)[J]|c, as desired. W

Theorem 8.4. Let ¥, T, ....,T,, < T withn > 2 and let TUJ = {1,...,n} be a partition.
Assume that X is I-J-fizable with respect to F = (I'y,...,Ty). Also let My, .... M,, C
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L(I') = M be von Neumann subalgebras such that M; <3 L(I';) for all i > 1. Also for
every j € J assume (xk) C (Mj)1 is a sequence so that xk — 0 in the WOT topology,
as k — oco. Let § C U(L(X)) such that for every x € G there exist some elements
x; € WM ) for i€ I such that for all k € N we have zajai...a} =1, where ai, = x; if
i€l and a), = xk if j € J. Then the height hx(G) > 0.

Proof. By hypothesis we have M, <3, L£(I'y) for all ¢t > 1. Fix 0 < ¢ < 1. Using [64]
recursively, for every 1 < ¢t < m one can find finite subsets F;, Ky C I' so that for all
y € (My)1 we have

€

_p < _ 8.3
Iy Prr )l < e e 53

Here, and throughout the rest of the proof we make the convention that H Q‘F 1Ko =

1.

Fix z € §. By hypothesis we have that xa,lcai...a;; = 1, where a}; =ux; if i € I and
ai = x{c if j € J. Also for simplicity of the writing denote by S; = F;I'; K; for 1 <i < n.
From Lemma 8.3 we have that ||Ps, (2)]/e < 2/F/1Kil||2| o for all z € M. Using this in
combination with the triangle inequality and inequalities (8.3) we see that

n

||1_xHPSt H2—H9Caka% ak_UUHPSt ag,)|l2

t=1
n t—1
<Y UCIT Ps.. (=) (ak — Ps, (a})) H ar’)l2
t=1 m=1 m=t+1
n t—1
<> I 1Ps,. @) llcllah, — Ps, (ap)l2 (8.4)
t=1 m=1
n t—1
<Y T 2l <

=1 nH::ll 2|FMHKM|

T
3

I
(]
Slo
I
™

“
Il
—

Combining the previous inequality with |1 —7(z ]}, Ps,(a}))| < 1=z I}, Ps,(a})|2
and the triangle inequality we further see that for all k& we have

1—¢ <|r(z [] Ps.(ab))]- (8.5)
t=1

For every j € J pick a finite subset G; C F;I';K; = S; satisfying the condition in
Definition 8.1. Let J = {j1, j2, ..., jr} for some r. Using that 27, — 0 in WOT as k — oo
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for every j € J, we can choose an k such that for every 1 < s < r there is a finite set
R; C F;,T';, K;, \ G;, satistying

s—1 26 r . (86)
n([Lie 2F MK (TT20 (R )Ty [21F5 1K)

ek = Pr,, ()2 <

Again, in these formulas we convene that ]_[2:1 |R;,| = H:}:T,H 215 1K | = 1.

Exploiting (8.6) and (8.5), in the same way as in (8.4) we get that 1 — 3e <
|7(x [T}, Pw,(a}))| where we have denoted by W; = S; if i € I and W; = R; if j € J.
This further implies that

1 =3¢ < |r(z ] Pw.(a}))|

t=1
n
=1 Y rlaug) [T r(aku,0)l
=1
gtEV[gflzgtgn K (8.7)
99192-.-gn=1
n
< Z |T(zug-1)] H |T(a§cugt_1)\,
geS t=1
gt EW,1<t<n
99192---gn=1

Next, since ¥ is I-J-fixable with respect to F = (T'y,...,I',,) and gg192...gn = 1 then for
every t € I there are injections of : ¥\ {1} — G for 1 < s < [; such that g; = 07*(9)
for some 1 < s; < [l;. Choose o7 (1) € G such that o] : ¥ — G is still injective. Let
I = {i1,42,...,4p} for some p > 2. This together with Cauchy-Schwarz inequality show
the last term in (8.7) is smaller than

Y Irlwugn)[ I In(aku, )]

geES
gt €W, 1<t<n
99192...gn=1
<hs(®) Y. [, ] In@hu, )l
geEY tel teJ

gL €W, 1<t<n
99192.--gn=1

< hy(z) Z H \T(l‘tugjt(g)—lﬂ H |T($§c“g;1)|

geX tel teJ
greEW tedJ

<hs(@) > ] Ir@eugs g1l

geS tel
grEW teJ

< hs@)([TWD Y TIC D Ir@iugsg-2)I)

teJ geS tel 1<s<l,
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<he@TWDC TT 00 Y 1oy o)l @ator (-2))

teJ tel\{i1,i2} geS
1<s<ly,
1<r<ls,
<he@(ITWDC TT 00 Y r@iues )P0 Y Ir(@iter g-1)F)?
teJ te[\{il,ig} geED geES
1<s<ly, 1<s<ly,
1<r<ly, 1<r<ly,
<hs@(IDC T 0@ l) 2l N2 1) 2 |, 2
teJ tel\{i1,i2}
= hz(fc)(H |Wt|)(Hlt)
teJ tel
Altogether, these imply that hy(z) > 1-3¢ for all z € F, as desired. W

(Ilees Wi leer 1)

The next corollary will be particularly useful in the proofs of the main results.

Corollary 8.5. Let I' be an icc nonamenable bi-exact group and denote by M = L(I'xT).
Let A be an arbitrary group together with a subgroup < A such that M = L(A) and
L) = L(Q).

Then one can find a unitary w € M such that Tw(I' x I')w* = TA.

Proof. Denote by I't1 = I' x 1 and I's = 1 x I'. Next, we claim that the conditions
of [14, Theorem 5.1] are satisfied for ¥ = d(I'). Towards this, let p; : 'y x I's — T
be the canonical group projection p;(g1,92) = ¢i, for i = 1,2. Now notice that the
restrictions p; : ¥ — I'; are injective. Fix h; € I'; \ {1}. From definitions one can see that
{pi(g,9)hipi(g,9)7 : (9,9) € B} = {ghig™! : g € I;}. As T is icc, it follows that the
previous set is infinite which yields our claim.

Thus, using the conclusion of [14, Theorem 5.1] one can find a unitary v € M and a
product decomposition A = Ay x A such that ul(T'y)u* = L(A1), ul(T2)u* = L(A2)
and TuXu* = TQ. Moreover, the second paragraph of the proof of [14, Theorem 5.1]
shows that the restriction of the projection A — A; to £ is a monomorphism for any
i € {1,2}. Note also that we can identify by {(m1(y),72(y)) : v € Q}. Thus, denoting
by G; := ul';u* and H := uXu* we have

E(Gl) = E(Al), ﬁ(Gg) = E(AQ), and TH=TQ. (88)

Notice that by part 1) in Proposition 8.2 the triple (A1, A2, T) € Sub(A)? is fixable.
Also for every g x 1 € G1 we have that ugxiug-14,-1U1xg = 1 where ugy; € L(G1),
Ug-1xg-1 € L(H) and u1 4 € L(G2). Thus using relations (8.8) and Theorem 8.4 we have
that h, (G1) > 0. Therefore by [38, Theorem 3.1] there exists a unitary u; € £(A1) such
that Tu;Giuf = TA;. By a similar argument there is a unitary us € L£(A3) such that
TusGauiy = T Ag. Altogether, these relations imply that T (u; ®@us)u(T'xT)u* (vl @us) =
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T(u1 @ u2)(G1 X Ga)(uf @ uy) = TA and letting w = (u; ® uz)u we get the desired
conclusion. W

We end this section with two technical results regarding discretization of underlying
groups in the von Neumann algebra regime. These will be used in an essential way to
derive the main results of the next sections.

The first result asserts that the discretization of two subgroups with infinite and
“sufficiently malnormal” intersection can be bumped up to the group they generate.

Theorem 8.6. Let I'y, Ty < T' be groups. Assume that the subgroup ¥ =T1 Ny < T s ice
and satisfies QN(FU(E) =Y. Let A be an arbitrary group such that N = L(T') = L(A).
Assume there exist wy,wy € U(N) and subgroups A1, Ay < A such that TwTiw} = TA,
and Twal'sws = T As.

Then one can find a unitary w € U(N') such that Tw(Ty V Ty)w* = T (A1 V Ag).

Proof. From assumptions there are group isomorphisms §; : I'; — A; and characters
n; : 'y = T so that

Wity Wi = 1;(7:)Vs,(~,) for all 7z € Ty and 1 <4 < 2. (8.9)

These relations show that for all v € ¥ = I'y NIy we have 71 (y)wjvs, (w1 = uy =
N2(7)wsvs, (yywe. Thus, if we let dy = n1(7) " n2(7), we see that

Vs, (y) = Ay w1505, (yywow; for all v € ¥. (8.10)

In particular, this relation entails that £(61(X)) <ar £(62(2)). By [14, Lemma 2.6] one
can find A € A such that [§1(2) : A52(Z)A"E N §1(2)] < oo. Therefore, replacing wo by
vawse and de by ad(A) o dz, we can assume that [61(2) : §2(X) Nd1(X)] < oo and relations
(8.9) still hold.

Also, (8.9) show that nl(éfl(A))*lwluéfl(A)wT =uvy = 172(5271()\))*11112%;1()\)11); for
every A € 61(%) N da(X). Letting ex = 01 (67 1(N) "'na(d5 1 (N) € T and w = wjw, this
further shows that

exwis—1(y) = ug=1yw for all A € 61(X) N 62(X). (8.11)
Since 6;1(01(X) N 62(X)) < ¥ has finite index there are hi,...,h, € ¥ such that

Y =", 671 (61(X) N 2(X))h;. Using this in combination with (8.11) and &5 *(51(Z) N
52(X)) < 2 we get that

wL(d7 ' (61(%) N 62())un,

-

-
Il
-

wl(X)

Il

-
Il
-

L(65 1 (01(B) N 62(B))wun, €Y L(S)wup,.
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In particular, this shows that w € QNE(F (LX) = E(QNQ)(E)) = L(¥). Consider
the Fourier decomposition w = Z ayu, in £(X). Then using this in combination with
relation (8.11) it follows that a, = €21 (n)yst (A1) forall A € 01(X)Nd2(X),y € . As
lex] = 1 this implies that a, # 0 only if the set O, = {55 '(A\)yd; ' (A) ™! = A € 61(2) N
d2(X)} is finite. This implies that there exists a finite index subgroup ¥, < 01(2)Nd2(X)
such that ;1 (A)y6; 1 (A~!) = 4 and hence

55 A =407 M)y forall A € X, (8.12)

Next, let v, € ¥ such that O, and O, are ﬁnite. By (8.12), for every A € ¥, NX%,
we get udy t(A\)pt = 651\ = o7 (A ) ~! and hence p~'y € Cr(67 (Zx N ,));
in particular, the unitary u,-1, € L£(d] (E)\ NX,)) N L(X). Now, notice that since
(20671 (01(2) N d2(X))] < 00, [01(X) Nd2(Z) = Xa], [01(2) Nd2(X) : B,] < oo, we deduce
that [2 : 671 (,N2,)] < oo. Therefore, L(07 1 (ZANE,)) NL(E ) C L(vCx(X)). Since X is
icc, we have that vCx (%) = 1, and thus, we conclude that £(5; *(Z,NY,)) NL(Z) = C1.
In particular, this implies that u,-1, = 1 and hence v = u. Altogether, this shows that
w = cu, for some o € ¥ and ¢ € T. Thus relations (8.9) become Wty ,~1 w5 =
N1(71)Vs, (4,) for all 41 € T'1 and waty, w5 = 12(72)Vs, (1,) for all y2 € I'y. These relations
clearly imply that Tws(I'; V T'o)ws = T (A1 V Az), as desired. W

The second result asserts that the elements that conjugate discretized subgroups can
be discretized.

Theorem 8.7. Let ©,Q < T be groups and let ¥ < © be a subgroup so that vCr(X) = 1.
Let ¢ : ¥ — Q be a group homomorphism and t € T such that ¢(c) = tot=' for all
o € X. Let A be an arbitrary group such that N = L(T') = L(A). Also assume there
exist subgroups ®, Y < A and unitaries v,y € UN) such that TxOz* = TP and
TyQy*=TT.

Then one can find X € A such that yux™ € Toy.

Proof. From the assumptions there exist group monomorphisms § : @ — @, w: Q2 — T
and characters n: © — T, v: Q — T such that

n(y)zu,z* = vg() for all v € ©
()™ = st (8.13)

v(7)yuyy" = vy(q) for all v € Q

Using this in combination with the hypothesis we see that for every o € 3 we have that
Ut = Ug(o)-1UtUs = Aoy Uy (p(o))~1YUtT Vs(o)@ and hence

Yurr™ = do Vi (p(o)) -1 YUtT V505 (8.14)

where we have denoted by d, = v(¢(c))n(c™1).
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Consider the Fourier decomposition yu,z* = Y, cxvx with respect to N' = L(A).
Using this in (8.14) we see that cx = dyCy(p(o))rs(s)-1 for every o € X, X € A. As
|ds| = 1 it follows that |cx| = |cu(p(o))r0(0)-1| for every o € ¥, A € A. This implies that
cx # 0 only if the set Oy = {w(¢(c))A5(0)~! : o € X} is finite. This implies that there
exists a finite index subgroup ¥y < ¥ such that w(¢(c))Ad(c)~ = X and hence

w(p(o)) = A5(a)A ™! for all o € Xy (8.15)

Next, let A, € A such that Oy and O, are finite. By (8.15), for every o € ¥, N X, we
get ud(o)p™t = 6(¢p(0)) = Ad(o)A ™! and hence p~'X € Cx(6(Xx N X,)); in particular,
the unitary u,-1y € L(ExNX,) NN =L(ExNX,) NLT). Now, notice that since [X :
Y2l [ :3,] < oo then [¥: ¥\ NX,] < co. Therefore, L(XxNX,) NLT) C L(vCr (X))
and since vCr(X) = 1 we conclude that £(Xy NX,) N L(I") = CL. In particular, this
implies that u,-1) = 1 and hence A = u. Altogether, this shows that there exists A\g € A
such that yu,z* = cy,va,. As u is unitary we have that |cy,| = 1, as desired. W

Corollary 8.8. Let ¥ < © < T be groups such that vCr(X) = 1. Let ¢ : ¥ — © be a group
homomorphism and t € T such that ¢(c) = tot™! for all o € . Let A be an arbitrary
group such that N'= L(T') = L(A). Assume there ezist a subgroup ® < A and a unitary
w € UN) such that TwOw* = T. Then one can find a subgroup ® < = < A such that
Tw(O, tyw* = TE.

Proof. Applying Theorem 8.7 result for Q = O, T = & and z = y = w, there exist c€ T
and A € A such that wu,w* = cvy. Thus, the result follows by letting = = (®,A) < A. W

Corollary 8.9. Let ¥ < T be groups so that vCr(X) =1 and QN{})(E) =T. Let A be an
arbitrary group such that N'= L(T') = L(A). Assume there exist a subgroup T < A and
a unitary v € UN) so that TuXu* = TY. Then we have Tul'u* = TA.

Proof. Fix an arbitrary g € I' = QNQ)(E). Since [X : g¥g~ ! N Y] < oo, we derive that
vCr(gXg~tNY) = vCr(X) = 1. By applying Corollary 8.8 for the map ¢ : g¥g~ !N — X
defined by ¢(c) = g tog for all 0 € g¥g~' N'Y, we deduce that there is a subgroup
T, < A such that Tu(X, g)u* = TY,. Since this is true for any g € I', we deduce that
Tul'u* =T (VgerTy) =TA. R

9. Identification of “peripheral structure”

In this section we present several technical results that will be used for reconstructing
the factor subgroups of G from the von Neumann algebra £(G), whenever G belongs to
D or A. Specifically, this means that whenever £(G) = L(H), for an arbitrary group H,
then for every factor subgroup Gy < G one can find a subgroup Hy < H and a unitary
u € L(G) such that £(Gp) = wL(Hp)u*. In other words, we can identify a collection of
subgroups of H that up to von Neumann equivalence play the same role as the factor
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subgroups of G. Such a result is called identification of peripheral structure. Our first
result introduces sufficient conditions for identification of peripheral structure, up to
corners.

Theorem 9.1. Let G be an icc non-amenable group and denote M = L(G). Let K < H <
G be an inclusion of icc non-amenable groups satisfying the following properties:

(1) QNG(K) = QNS (H) = H, and [H : KCp(K)] < oo;

(2) For every p € P(L(H)) and every von Neumann algebra with no amenable direct
summand A C pL(H)p such that A’ N pMp is diffuse, we have that A’ N pMp C
pL(H)p;

(8) For every p; € P(L(H)) and von Neumann algebras A; C p; L(H)p; with i = 1,2
such that Ay has no amenable direct summand and Ay N p1 L(H)py is diffuse, if
A1 < As then Aq <c(H) Ao

(4) For every p € P(L(H)), whenever D,E,F C pL(H)p are mutually commuting von
Neumann subalgebras so that D is isomorphic to a corner of L(K) and € has no
amenable direct summand then F is purely atomic.

Let A be an arbitrary group such that M = L(A) and assume there is a subgroup < A
with non-amenable centralizer Cp () such that L(K) <am L().

Then one can find a subgroup QCA(Q) < QNL(Q) < 2 < A with [X: QN (Q)] < 0o
and QNS)(E) = %, a non-zero projection ¢ € Z(L(X)) and wy € UW(M) with wocwg =
n € L(H) such that woL(X)cw§ = nL(H)n.

Proof. Since L(K) < £(2) one can find projections a € L(K), f € £L(f), a non-zero
partial isometry v € fMa and a x-isomorphism onto its image ¢ : aL(K)a — B :=
p(aL(K)a) C fL(Q) S such that

¢(xz)v = vz for all z € al(K)a. (9.1)

Notice that vo* € B'N fM [ and v*v € aL(K)a' NaMa. The equation (9.1) implies that
Bov* = vL(K)v* = uy L(K)v*vu], where u; € M is a unitary extending v. Taking rela-
tive commutants we get vv*(B'N fM flov* = wyv*v((aL(K)a) NaMa)v*vuj. Condition
(1) implies that vCq(K) < H, and hence, L(K)' N M C L(vCq(K)) C L(H). It follows
that vv*(BV B' N fMf)ov* = Bov* Vou*(B' N fMfov* Cug L(H)uf. Therefore, since
L(H) is a factor one can find a new unitary us € U(M) such that

(BV B N fMf)za CuglL(H)us, (9.2)

where 2o is the central support of vo* in BV B' N fMf. In particular, we have 2z €
ZB'NfMf)and vo* < z5 < f.

Observe that L(CA(2))z2 C ((FLOQ) ) NfMfza C(B'NfMf)za CusL(H)uj. As
za € (L(CA(Q)) f) NfMf then using hypothesis (2) we further have that zo(L(Cy () fV
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(LICA(D) Y N fM[)ze C usL(H)uj. Again since L(H) is a factor there is u € U(M)
so that

(LICAQ)f V (LCA(D)f) N fMS)z S ul(H)u", (9:3)

where z is the central support of z2 in L(C(Q))fV (L(CA(Q))f)' N fMf. In particular,
we have vv* < z5 < z < f. Now, since fL(Q)f C (L(CA(Q))f) N fM[, then by (9.3)
we get (fL(Q)fV LCA(Q))f)z Cul(H)u* and hence

u"(L(CA()) [V FLEQ) f)zu C LIH). (9-4)

Since vv* < z € (fLQ)f) N fMf and B is a factor then the map ¢ : aL(K)a —
uw*Bzu C fL(Q)fz given by ¢'(x) = u*¢(x)zu still defines a *-isomorphism that satisfies
@' (x)w = wz, for any x € aL(K)a, where w = u*zv is a non-zero partial isometry. Hence,
L(K) <pm u* fL(Q) fzu. By the hypothesis (3), it follows that L(K) <,y u* fL() fzu.

To this end using [18, Proposition 2.4] and its proof we can find non-zero p € P(L(K)),
r = u'ezu € uw*fL(Q)fzu with e € P(fL(Q)f), a von Neumann subalgebra C C
u*eL(Q)ezu, and a *-isomorphism 6 : pL(K)p — C such that the following properties
are satisfied:

a) the inclusion C V (C' Nu*eL(N)ezu) C u*eL(NQ)ezu has finite index in the sense of
Pimsner-Popa [58];

b) there is a non-zero partial isometry y € L(H) such that 0(z)y = yx for all z €
pL(K)p, where y*y € pL(K)p' NpMp C pL(H)p and yy* € C' NrMr.

Note that C, C' Nu*eL(N)ezu and u*L(CA(Q))ezu are commuting subalgebras of
u*ezL(H)zeu. Since Cx(€2) is non-amenable, it follows that u*L(Cy(2))ezu has no
amenable direct summand. Hence, since C is isomorphic to a corner of L(K), it fol-
lows from hypothesis (4) that C' N u*eL(Q)ezu is purely atomic. Thus, one can find a
non-zero projection ¢ € Z(C' Nu*eL(N)ezu) such that (C' Nu*el(Q)ezu)q = Cq. Hence,
after compressing the containment in a) by ¢ and replacing C by Cq, y by qy and 6(z) by
6(x)q in b) we can assume in addition that C C u*eL(Q)ezu is a finite index inclusion of
non-amenable IT; factors. By [58, Proposition 1.3], it follows that C C u*eL(2)ezu ad-
mits a finite Pimsner-Popa basis, which implies that there exist x1, ..., z,, € u*eL(Q)ezu
such that u*eL(Q)ezu = Y./, 2,C. Note also that u*eL(Q)ezu C rMr since r = u*ezu.
Hence,

ON A (C) = ON o par (U eL(Q)ezu)”. (9.5)

Also, the intertwining relation in b) shows that Cyy* = ypL(K)py* = IpL(K)py*yl*,
where yy* € (' NrMr and | € L(H) is a unitary extending y (i.e. y = ly*y). Therefore,
using the quasi-normalizer formulas for group von Neumann algebras and for compres-
sions, Lemma 2.6 and Lemma 2.4 (and Remark 2.5), respectively, we see that
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* * 7% * x g% L.2.6 * * 7%
ly*yL(H)y yl* = ly*yL(QNG(K))y yl* “=° ly*y ON pm(L(K))"y* yl
L.2.4 * 7% *
= Qle*yMy*yl* (lpE(K)py yl )/I = QJ\/’yy*Myy* (ny )/I
9.5

5 * « (9.5) * * *
Yy ONar (C)'yy™ =" yy" QN e (u*eL(Q)ezu) yy

! Yy u*zeQN £(2)(L())" ezuyy* L.26 yy urzeL(QN, (Q))ezuyy™.
(9.6)

R.

It

L.

[lto

In the above equalities, we also used that yMy* = yy*Myy* and u*elL(Q)ezu =
ru* L(Q)ur.

Next, denote by T = QN, () and by T < ¥ = (QN{)(1)) < A. As QNS (H) = H,
then formula (9.6) together with the corresponding formulas for one-sided quasinormal-
izers, Lemma 2.4 and Lemma 2.6, show that

yy uzeL(Tezuyy™ = yy*u*zeL(X)ezuyy™ = ly*yL(H)y yl*. (9.7)

In particular, by [14, Lemma 2.2] we have [X : T] < oo, and hence, QN%)(Z) =
QNS\D(T) = Y. By applying Lemma 2.6, we obtain

QN (L(E)) = L(E). (9.8)

Notice that relation (9.7) also shows that yy* = u*du for some projection d € zeL(X)ez,
and thus, (9.7) entails that u*dL(X)du = ly*yL(H)y*yl*. By letting wo := ul € U(M)
and t := y*y € L(H), we conclude that widL(X)dwy = tL(H)t. Since I*yy*l = w{dwy
and yy* = ly*, we have t = wjdwy. Moreover, if we replace wiXwy by ¥ and use
wgdwy = t, we have that tL(X)t = tL(H)t.

Next, as L(H) is a factor one can find a unitary w; € M such that £L(X)e C
w1 L(H)w;, where ¢ denotes the central support of ¢ € £(X). In particular, it follows
that there exists a projection h € L(H) such that ¢t = w;hw}. Moreover, since L(H) is a
factor and ¢t € L(H), there is a unitary we € L(H) so that t = wohwj. Altogether, these
relations show that wt = tw, where w = wywj. Also, note that L(X)c C wL(H)w*.
Multiplying on both sides by t, we get

tL(H)t = tL(S)t C twl(H)w"t. (9.9)

Multiplying on the left by tw* and using that tw = wt, we further obtain that
tw*tL(H)t C tL(H)tw*t. In particular, using the hypothesis (1) together with Lem-
mas 2.4 and 2.6, we get w*t = tw*t € QNS\)/“(tE(H)t) = tL(H)t, and hence,
wt € tL(H)t. Using relation (9.9), we deduce that tL(X)t = tL(H)t = wtL(H )tw*.
By using relation (9.8) and L(X)c C cwL(H)w*e, we apply the moreover part of [14,
Lemma 2.6] and derive that £(3)c = cwL(H )w*c. This shows the desired conclusion. W

Next, we present a technical result that will be needed to derive the main superrigidity
results for groups G in the classes D and A. The result is essentially showing that if G
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is a factor subgroup of G, then we can upgrade from recognizing some subalgebras in
corners of L(Gy), to recover the corners of £(Gyp). The proof of this result generalizes
the proof of [14, Theorem 3.2] and for reader’s convenience we include all the details.

Theorem 9.2. Assume that G is a group in one of the following classes:

(i) G € D and let f(G) = {G1,...,Gn} be its canonical factors.
(i) G =1 *Tyx...xTy) x, ' € A and denote by G; =T 1, I' for all 1 <i < n.

Let A be a group such that N = L(G) = L(A). In addition, assume that for every
i € {1,...,n} there is a subgroup A; < A satisfying the following relations:

(1) A; contains two commuting non-amenable subgroups;
1
(2) QN (M) = Ay; |
(3) There is a subset i € J; C {1,...,n}, projections 0 # z, € Z(L(A;)) with k € J;
which satisfy D ;.c ;. zi =1;
(4) There is u; € WN') such that

uzﬁ(AZ)z:uf = p,L(G;)p;, where p; = uzzfu;" € P(L(Gy)), and

. (9.10)

w L(A;)z5u; C L(Gy) for all j € J;\ {i}.
Then one can find a partition Ty U---UT; = {1,...,n} and for every 1 <i <1 there is a
subgroup Q; < A such that the following relations hold:

(1) QN (@) = Qs | |

(2) There are projections 0 # z}, € Z(L(S%)) with k € T; which satisfy > . 2, = 1;

(3) There exist i; € UW(N) such that @, L(Q;)Za; = piL(Gy)pl, where pi = 4;Zia} €
P(L(G)), for every k € T;.

Proof. From the hypothesis, for every 1 < ¢ < n there is a subgroup A; < A such that
QN%)(Ai) = A;. Moreover, there exist i € J; C {1,...,n} and 0 # 2z, € P(Z(L(A:))),
k € J; which satisfy

> z=1 (9.11)
keJ;
and there is u; € U(N) such that
w L(Ay)ziu; = piL(Gy)pi, where p; = uiziuf € P(L(G;)), and

. (9.12)

Fix k € Ji. Since uiziuj,pr € L(Gy) are non-zero projections and L£(Gy) is a factor
one can find a projection £(Gy) 2 ¢ < wiziuj and a unitary w € L£(Gy) such that



1. Chifan et al. / Advances in Mathematics 412 (2023) 108797 41

wqw* < py. This together with relations (9.12) imply that qui £(A1)ziuiq C ¢L(Gy)q C
w*pk L(Gr)prw = w*ur L(Ay)zFujw. In particular, we have £(A1) <x £(Ag) and hence
by [14, Lemma 2.6] there is a hy € A such that [A; : hkAkhgl N A1] < oo. Therefore
replacing A by hkAkh,;17 relations (9.12) still hold and in addition we can assume that

[A1: A NAy] <ooforall ke J. (9.13)

Next, we claim that for all i € J1,j € Ji satisfying ¢ # j we have z}zf = 0. To see this,
assume by contradiction there are J; 3 i # j € Jj so that 2 z] # 0. Relations (9.12) give
that u1 £L(Ax N A1)ziul C L(G;) and upL(Ay, ﬂAl)z uj, C L(G ). Thus, by [14, Lemma
2.4] one can find g € G such that

L(AxNAy) < L(G;iNgGrg™). (9.14)
From here we treat each case separately. First, assume (i). Since i # j then G;NgG 97! is
amenable which forces Ay N A; amenable. Using (9.13) we would get that A; is amenable
which is a contradiction. Next, assume (ii). Since i # j then G; N gG;g~' is either
trivial or it is equal to d(T'). First possibility is obviously impossible so assume that
GiNgGrg~' = d(T'). From condition (1) and (9.13) it follows that Ax N A; contains two
non-amenable commuting subgroups. This however together with (9.14) contradicts the
fact that d(T") is bi-exact. This concludes our claim.
Now, fix an arbitrary ¢ € Jy. By (9.11) there exists [ € J such that zllzlk # 0. Then

1

the above claim implies that | = i and also 2} < zF by using once again (9.11). In

particular, we have J; C Ji. Arguing by symmetry we conclude that
Ji = Jy and 2} = 2F for all i € J;. (9.15)

Next, we notice that relations (9.12) imply uy L(Ax N Ay)ztui € L(G;) and upL(Ag N
Av)zFul C L(G;) for all i € J;. We continue by arguing that in both cases we have

w L(Ax N A1)zt uf, ue L(Ax N A1) 2Euf, Ay £(Gi N Gj) for all j # i. (9.16)

In case (i) this is immediate because G; N G; is amenable while A; N A is not. In case
(i) this follows because G; N G; = d(I") is a bi-exact group while, as before, Ax N A4
contains two commuting non-amenable subgroups.

Next, since (u1zFuf)ur L(Ax N A1) zFu} = ulﬁ(Ak N A1) ztu(urzFug) then (9.16) and
[37, Theorem 1.2.1] further 1mply that uizFu} € L£(G;) for all i € J;. Thus conjugating
the algebras in (9.12) by u1zFu i we can assume without any loss of generality that us =
u1. In particular, we have ulL’(Al)zlul = p1 L(G1)p1 and u1 L(Ay)zFui € L(G1). Since
by (9.15) we have zi = 2 and ujziu} = p; these relations imply that u; £L(Ag)zFui C
p1L(G1)p1 = uiL(Ay)zFui. Thus L(Ag)z¥ € L(A1)2¥ and moreover L(Ay, N Ay)zk C
L(Ay)z¥ C L(A1)zF. Thus by (9.13) the inclusion £(Aj N A;)z¥ C L(Ag)z¥ admits a
finite Pimsner-Popa basis and hence [Ag : A N A1] < oo by [14, Lemma 2.6]. However,
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this combined with (9.13) and part (2) imply that Ay = A;. Altogether, these and (9.12)
show that ui L(A1)z{u} = p1L£(G1)p1 and ui L(A1)z}u} = prL(Gy)p. Since the above
arguments work for all k£ € Jp, letting 77 := J; and p,1c = pi for k € T1 we get the
statement for the first element of the partition. Also we let 7 := Aj.

If Ty = {1,...,n} the proof is completed. If not, pick the smallest s € {1,...,n} \ Th
and repeat the same arguments as before starting with set Js, etc. We leave the details
to the reader. W

10. Superrigidity results for groups in class D

In this section we derive the main superrigidity results for von Neumann algebras L(G)
associated with groups in class G € D. These add numerous examples of W*-superrigid
amalgams to the ones found in [14] and also give the first examples of W*-superrigid
HNN extensions. Next we highlight a point of contrast between our results and the prior
results [14]. In the one hand, the factor subgroups f;(G) of our groups G consist of direct
products of groups in the class ZPV which is slightly more restrictive when compared
to the factor subgroups of the amalgamated free products considered in [14]. On the
other hand, the amalgamated subgroups a;(G) of our G are more general, exceeding
the specific case of diagonal subgroups used in [14]. For instance, our examples cover
amalgamated subgroups which are of direct product type themselves.

The following is the main result of the section and it should be compared with [14,
Theorem A].

Theorem 10.1. Let G € D and let f(G) = {G1,Ga, ..., Gn} be its factor set. Assume that
A is an arbitrary group such that M = L(G) = L(A).

Then one can find a unitary u; € U(M) and a subgroup A; < A such that u; L(A;)uf =
L(G;) for any 1 <i<n.

Proof. First, if G € D, then the conclusion follows from Corollary 5.3. Hence, we assume
G € Dy, for some m > 1 and denote a,,(G) = X. Next, we prove the following claim:

Claim. For every 1 < i < n there exists a subgroup N; < A satisfying the following
relations:

(1) A; contains two commuting non-amenable subgroups;

(2) QN (As) = Ay

(8) There is a subset i € J; C {1,...,n} and projections 0 # z; € Z(L(A;)) with k € J;
s0 that Y ., zp = 1;

(4) There exist u; € UN) such that

(a) w;L(A;)ziu; = p L(Gy)pi, where p; = wiziu} € P(L(G;)), and
(b) wiL(A;)ziulr C L(G;) for all k € J; \ {i}.
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Proof of the claim. Let G; =T'% x --- x 1"; be a product of groups that belong to ZPV,
for any 1 < i < n. We denote by I‘; the product group Xkejriv forany 1 < j < s;.
Consider A : M — M®M the comultiplication along A, given by A(vy) = vy ® vy for
all A € A. Fix 1 < ¢ < n and consider the inclusion A(L(G;)) € MM = L(G x G).
Fix 1 < j < s; and denote by A := A([,(I‘;)) and B = A(E(I‘;)) and notice that A
and B are commuting von Neumann algebras with no amenable direct summand. Thus
by [38, Proposition 7.2(4)] it follows that A Ayem L£(G X A), A Zymam L(A x G),
B Zmam L(G x A) and B Aygm L(A x G), for every amenable subgroup A < G.
Hence, Theorem 6.4 further implies that one can find 1 < k < n and 1 <[ < s; such
that

A=< pmam LG xTF) or LT} x G). (10.1)

By symmetry it suffices to treat only the first case. Using Theorem 5.1 one can find a
non-amenable subgroup € < A with non-amenable centralizer Cy (£2) so that

c(r;;) <M L(Q). (10.2)

To this end, we notice that if we let K = Fg we see that all the conditions (1)-(4) in
the Theorem 9.1 are satisfied. Therefore, the conclusion of Theorem 9.1 implies that
there exist a subgroup QN3 (Q) <; A; < A with QN%)(Ai) = A; and A; contains two
commuting non-amenable subgroups, a central projection 2! € L(A;) and a unitary
ul € M with t! = ulz;(ul)* € L(G;) so that

w L(A) 2 (u))" = HL(G)E. (10.3)

Now, for every 1 < k < n let yi € Z(L(A;)) be the maximal projection for which there
exists a unitary v,i € M such that

Vi LAk (01)" C GL(Gr)t,, (10.4)

where t}, = vyl (vi)*. It is an easy exercise to see that since £(Gy) is a factor such
projections always exist. We also notice that yi are mutually orthogonal. Indeed, other-
wise by [14, Lemma 2.4] we would get that £(A;) < £(X) which is not possible as A; is
non-amenable while 3 is amenable.

Next, we show that Y, yi = 1. Towards thislet z = 1=, yi € Z(L(A;)) and assume
by contradiction that z # 0. Now since 2 and Ci () are commuting non-amenable
subgroups and G is bi-exact relative to f(G) (in the sense of [6, Definition 15.1.2]), then
by [6, Theorem 15.1.5] there is 1 < < n such that £(Q)z <a¢ L£(G;). Thus, one can
find some projections r € L(Q)z, ¢ € L(G)), a non-zero partial isometry v € ¢Mr and
a *-isomorphism onto its image ® : rL(Q)r — D := ®(rL(Q)r) C qL(G;)q such that
®(z)v = vz for all x € rL(Q)r. Since ¥ is an amenable group and D has no amenable
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summand, then D A L(X). Therefore, by using Lemma 2.10 we have D' N gMq C
qL(G})g. In particular, vo* € ¢£(G;)q and hence the intertwining relation implies that
vrL(Q)rv* C L(G)). Thus since L(G)) is a factor one can find a unitary w € M such that
wL(Q)row* C L(G)) where r, is the central support of r in £(Q2). From the conclusion
of Theorem 9.1 we have that QNE\D(QN}\(Q)) = A, and therefore repeating the same
arguments as before (two times) one can find a new unitary w; € M and a projection
a € Z(L(A;)) with a > 7, > r such that w1 L(A;)aw] C L(G;). Notice by construction we
have that 0 # b := az € Z(L(A;)). In particular, by! = 0 and since w1 L(A;)bw} C L(G)),
vIL(A;)yl(v)* C L(G;) and L(G)) is a factor one can perturb w; to a new unitary such
that that there exists t € U(M) satisfying tL(A;)(yi + b)t* € L(G)). This obviously
contradicts the maximality of yli, so z=1.

We continue by showing that z! = yi. From construction we have that z! < y! and
assume by contradiction ¢ := y! — z! # 0. Notice that viL(A;)c(v))* C L(G;) and
wlL(A;)2E(ul)* = tLL(G;)te. Since L(G;) is a factor we can perturb v to a new unitary
so that there is a projection e € L(G;) satisfying et! = 0 and v!L(A;)c(vi)* C eL(G;)e.
Thus, the element f = vict+ulz! satisfies f*f = c+2i, ff* = e+ti and fL(A;)(c+28) f* C
(e+tH)L(G;)(e+1t!). Also, by using Lemma 2.6 we have that QN;?Af(fE(Ai)(C—&-zf)f) =
FL(A;)(e+ zi) f and then obviously QNEilt;{)E(Gi)(e+t;§)(f‘C(Ai)(c +20f) = fLA:)(c+
z!) f. Therefore, since (e +t2)L(G;)(e+t?) is a factor, applying the moreover part in [14,
Lemma 2.6] we conclude that fL(A;)(c+ 28)f* = (e + ) L(G;)(e + t%). However this is
impossible as the center of the algebra on the left-hand side is two-dimensional while the
center the right-hand side one is one-dimensional. In conclusion, z! = yL.

Next, we denote 2} := yi, ut := v} and J; = {1 <k <n : z} # 0}. Since the common
part £(X) is a II; factor by perturbing the (u%)’s to new unitaries one can assume that
(ti )k C L(X) are mutually orthogonal projections satisfying >, ti = 1. These relations
imply that u; = >, uizi € M is a unitary and moreover the equations (10.3) and
(10.4) entail that u; £(A;)ziu; C L(Gy) for all k # i and u; L(A;)ziu; = t1L(G;)te. This
concludes the proof of the claim. [

To this end, we note that the Claim together with Theorem 9.2 imply that one can
find a partition J; U--- U J; = {1,...,n} and for every 1 < ¢ < [ there is a subgroup
Q; < A such that the following relations hold:

(1) QN () = Qi3 | |

(2) There are projections 0 # 2}, € Z(L(£;)) Wiﬁh ke JZ which §atisfy ZkEJi 2y, = 1;

(3) There exist u; € U(N) such that w; L()z)uf = p}, L(Gr)p}, where pi = u;zju; €
PIL(GR))-

Next, we claim that [ = n and each set J; consists of a singleton. Indeed, assume by
contradiction there is i such that |J;| > 2. Also by replacing A by u;Au} we can assume
that £(€)zj, = 2,.L(Gy)z, for all k € J;. Note that (,c, Gx = . Now using the
same argument from the proof of [14, Proposition 4.1] together with Theorem 2.9 one
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obtains a contradiction with X being icc. Thus, the J;’s are singletons and therefore for
every 1 < ¢ < n one can find a unitary u; € M and an icc subgroup €; < A with
QN (€;) = Q; such that u,L(G)ul = £(;). W

Theorem 10.2. Let G € D. Assume that A is an arbitrary group and let 0 : L(G) — L(A)
be a x-isomorphism. Then there exist § € Isom(G,A), w € Char(G) and u € U(L(A))
such that 0 = ad(u) o Uy, 5.

Proof. Let f(G) = {Gy,...,G,} be the factor set of G. From the hypothesis we have
(L)) = L(A) and using the previous theorem one can find for each 1 < i < n a
unitary u; € M and subgroup A; < A such that u; £(G;)uf = L(A;). Using Theorem 4.2
after perturbing the u;’s to new unitaries we have that Tw;0(G;)u; = TA;. Then using
Theorem 8.6 and Corollary 8.8 iteratively after finitely many steps one can find a unitary
u € M such that Tud(G)u* = TA, which gives the desired conclusion. W

This result also implies that the groups in class D are completely recognizable from
the C*-setting as well. This adds a new class of non-amenable C'*-superrigid groups to
the only other previously known [14,12].

Next we record two immediate applications of the prior result. For the definition of
Ui>1D]" we encourage the reader to revisit Section 6.

Corollary 10.3. Let G € U;>1D*. Assume that A is an arbitrary group and let 6 :
CHG) — Cx(A) be a x-isomorphism. Then there exist 6 € Isom(G,A), w € Char(G)
and v € U(L(A)) such that 0 = ad(u) o ¥, 5.

Proof. Note that G has trivial amenable radical by Proposition 6.3. Then it follows from
[4] that C}(G) has unique trace and thus 6 lifts to a *-isomorphism of the corresponding
von Neumann algebras 6 : £L(G) — L(A). The statement follows then from the previous
theorem. W

Corollary 10.4. Let G € U;>1 D", Then for any 6 € Aut(C;(G)) there exist § € Aut(G),
w € Char(G) and v € UW(L(G)) such that § = ad(u) o U, 5.

11. Superrigidity results for groups in class A

In this section we show that the semidirect product groups in class A are both W* and
C*- superrigid. These add new examples, to the prior ones found in [38,8,2]. The only
known examples of C*-superrigid groups were found in [14]. Our results provide a second
such class and the first of semidirect product type. After this work was completed, the
authors found a second class of C*-superrigid semidirect products, this time from the
realm of generalized wreath product groups with nonamenable core, [12].
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Theorem 11.1. Let G = (I'y *T'ax...xT',) x,I" € A. Assume that A is an arbitrary group
such that M = L(G) = L(A).

Then one can find a unitary u; € UW(M) and a subgroup A; < A such that u; L(A;)ul =
L(T; 1, T) for any 1 <i < n.

Proof. The proof will be obtained in several steps. Some of them follow directly from
the prior results in [14] while for the others we include detailed proofs. We encourage
the reader to consult beforehand [14, Theorem A and Proposition 4.1] as some parts of
the proofs rely heavily on these results. We start by proving the following;:

Claim. For every 1 < i < n there exists a property (T) subgroup A; < A satisfying the
following relations:

(1) QNY(A) = A

(2) There is a subset i € J; C {1,...,n} and projections 0 # zi € Z(L(A;)) with k € J;
s0 that Y ., zp = 1;

(3) There exist u; € U(M) such that

(a) w;L(A;)ztu; = p; L(T; x T)p;, where p; = u;ziuf € P(L(T; x T)), and
(b) wiL(A;)ztur C L(Ty xT) for all k € J; \ {i}.

Proof of the claim. Denote by G} x G? = G; = I'; x,; I' where G} = T'. By using
(7.1), we view G as an amalgam G = G *y Gg *yx ... xx G, where 3 = d(T"). Consider
A M — MRM the commultiplication along A, given by A(vy) = vy ®w) for all A € A.
Fix 1 < i < n and consider the inclusion A(L(G;)) € MM = E((*JiGj) x (¥5G))).
Using [37, Theorem 5.1] and the fact that G; has property (T), there exist 1 < j,1 <n,
a projection 0 # z € A(L(G;)) N M@&M and u € U(MERM) such that

’UJA(E(Gl))ZU* - ﬁ(G] X Gl) (11.1)

Since G}, G?, G}, G? are bi-exact we get by Theorem 3.2 that there exist 1 < k, ¢ < 2 such
that A(L(G))z < L(G; x G)) or A(L(G}))z < L(G" x Gy). Due to symmetry, it suffices
to treat only one of these possibilities; thus, assume A(L(G¥))z <o L(Gj x G).
Using Theorem 5.1 one can find a non-amenable subgroup 2 < A with non-amenable
centralizer C (2) so that

L(GF) < L(D). (11.2)

Next, we notice that if we let G¥ = K then all conditions (1)-(4) in the Theorem 9.1 are
satisfied. Therefore, the conclusion of Theorem 9.1 implies that there exist a subgroup
QCA(Q) < A; < A with QNE\l)(Ai) = A;, a central projection z! € £(A;) and a unitary
ul € M with ¢! = ulz;(ul)* € L(G;) so that
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ui L(A) 2} (uj)" = L(Go)E (11.3)

Since £(G;) has property (T), then (11.3), [14, Lemma 2.13] and [20] show that A; is
a property (T) group as well. Thus, using [37, Theorem 5.1] again for every j # i one
can find projections z; € L(A;)' N M with 3., 2t = 1 — 2}, unitaries v} € M and
projections t; € L£(G;) such that

ui L(Aq) 25 (uj)" CEEL(GH)ES. (11.4)
Also notice that since the common part £(X) is a IT; factor by perturbing the (u})’s
to new unitaries one can assume that (t%); C £(X) are mutually orthogonal projections
satisfying > ;=1 These relations imply that u; = Zj ujz; € M is a unitary and
moreover the equations (11.3) and (11.4) entail that u; £(A;)zjuf C L(G;) for all j # i
and u; L(Ai)zjuf = ;L(Gy)t;. By letting J; = {1 < j <n : 2} # 0}, this concludes the
proof of the claim. [

To this end, we note that the Claim together with Theorem 9.2 imply that one can
find a partition J; U---UJ; = {1,...,n} and for every 1 <14 <[ there is a property (T)
subgroup A; < A such that the following relations hold:

(1) QN (A:) = Ay

(2) There are projections 0 # 2, € Z(£(A;)) with k € J; which satisfy 5, 2. = 1;

(3) There exist u; € U(M) such that u; £(A;)zpu; = pjL(Tk X, D)pj, for any k € J;,
where p}, = u;zjul € P(L(G)).

Next, we claim that [ = n and each set J; consists of a singleton. Indeed, if we assume
that for some i we have |J;| > 2 then applying verbatim the arguments from the proofs
of [14, Proposition 4.1 and Theorem A] one obtains a contradiction. We leave the details
to the reader. In particular, our claim entails that for every 1 < i < n there is a unitary
u; € M so that v, L(A)uf = L(T; xT). A

Now, we are ready to derive the main results of the section.

Theorem 11.2. Let G = (I'y Ty % ... x ') x, ' € A. Assume that A is an arbitrary
group and let 0 : L(G) — L(A) be a x-isomorphism. Then there exist § € Isom(G, A),
w € Char(T") and u € U(L(A)) such that 0 = ad(u) o ¥y, 5.

Proof. From the hypothesis we have that 8(£(G)) = £(A). Thus by Theorem 11.1 there
exists a unitary u € U(M) and for each 1 < ¢ < n there is a subgroup A; < A so that
O(L(I; %, I')) = ul(As)u*. Therefore A admits an amalgam decomposition A = A; *q
Az xq....xq A, and viewing I'; X, I" as I'; x I'; and the acting group as the diagonal group
d(T") we have that 0(L(T; xT';) = uL(A;)u* and 0(d(T")) = uL(Q)u* for all 1 < i < n. By
Corollary 8.5 there is a unitary u; € £(A;) such that TO(T; x I';) = Tu;A;uf. Therefore
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using Lemma 2.11 and Theorem 8.6 recursively one can find a unitary u € U(M) such
that TO(G) = TuAu*. This gives the desired conclusion. W

This result also implies that the groups in class A are completely reconstructible from
the C*-setting as well. This adds a new class of nonamenable C*-superrigid groups to
the only other previously known, [14].

Corollary 11.3. Let G € A. Assume that A is an arbitrary group and let 0 : C*(G) —
Cr(A) be a x-isomorphism. Then there exist § € Isom(G,A), w € Char(G) and u €
U(L(N)) such that 6 = ad(u) o ¥, 5.

Proof. Note that G has trivial amenable radical by Proposition 7.1. Then it follows from
[4] that C*(G) has unique trace and thus 8 lifts to an *-isomorphism of the corresponding
von Neumann algebras 0 : L(G) — L(A). The statement follows then from the previous
theorem. M

Corollary 11.4. Let G € A. Then for any 6 € Aut(C(G)) there exist 6 € Aut(G),
w € Char(G) and u € W(L(G)) such that § = ad(u) o U, 5.

Appendix A

In this appendix we provide an alternative proof of the direct product rigidity The-
orem 5.2 for groups in the class ZPV which by-passes the usage of prior techniques for
bi-exact groups. This approach builds upon the methods developed in [48,15,11].

A key ingredient for our proof is a structural result which classifies all weak compact
embeddings into tensor products by wreath product von Neumann algebras in the same
spirit with some results in [15]. In fact this result does not appear anywhere in the
literature and deserves some attention on its own. This is one of the main reasons we
decided to include this appendix in the paper. To properly introduce the result we first
recall briefly the definition of a weakly compact action introduced in [47].

Definition A.1. Let A C M be an inclusion of tracial von Neumann algebras and consider
a subgroup of normalizers H < N((A). Then the conjugation action H ~ A is called
weakly compact if we can find a net 7, € L?(A®.A) of positive unit vectors satisfying
the following conditions:

(1) lim, [[(e @ @)np, — nnll2 = 0, for all a € U(A),
(2) lim, ||[u ® @, n,]ll2 =0, for all u € H,
(3) ((x @ D)1, mn) = (1 @ T)Np, M) = 7(2), for all n and z € A.

With this definition at hand we are now ready to state and prove the result.
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Theorem A.2. Let Ky < Gg and A be some countable groups such that Ky and A are
amenable. Let M be a finite von Neumann algebra and denote by N := MRL(Alk, Go)-
Let B C pN'p be a diffuse von Neumann subalgebra and let H C Nppnrp(B) a subgroup of
normalizers such that the natural action by conjugation H ~ B is weakly compact.

If the von Neumann algebra H" is strongly non-amenable relative to M ® 1, then the
deformation 1 ® oy — id uniformly on the unit ball (B);.

Here the path ay is the wreath product core-length deformation on L(Aq,/x, Go)
introduced in [32] (see also [38]).

Proof. Our proof is similar to [48, Theorem B] and [15, Theorem 6.2]. For the proof we
can assume without loss of generality that p € M®L(Gp) and therefore (1 ® at)(p) = p,
for all t € R. Let zg € Z(H' N pNp) be the maximal projection such that a; — id
uniformly on the unit ball of Bzy. Assume by contradiction that zy # 1 and take an
arbitrary non-zero projection z € Z(H' NpNp) with z < 1 — zg. This implies that 1 ® ay
does not converge uniformly on U(Bz). Using the transversality property of ay from [59,
Lemma 2.1] there exists ¢ > 0 and sequences ¢ N\, 0 and (uz)r C U(Bz) such that

(1 ® oy, )(upz) — Ex((1 ® g, ) (urz))|l2 > c||z]]2, for all k € N.
Using Pythagoras’s theorem we get that

IEx((1® ag )(ugz))ll2 < vV'1-—c?|z|2, forall ke N.

Now, pick 0 < § < 1=v1=¢ \/61762HZH2 Choose and fix £ € N such that a = a4, satisfies
the following relations

a. ||z —a(z)]2 <6

Let v = ug and let (9,,), be a net of vectors as in Definition A.1 which corresponds to
the weakly compact action H ~ B and consider the following notations

b. jn = (O‘tj ®id)(nn) € LQ(-/V) ® L2(N)
¢ bjn = (ex @ 1)(7jn) € L*(N) ® L*(N)
d. bl = fljn = bjn € (L*(W) © L2 (V) @ L2(N).

For ease of notation, denote 7, = 7k n, bp = by » and bi = btn. Notice that (p@1)b (p®
1) = b;- and

[(zp ® V)itnll2 = T(Ex(a™ (pz*zp))) = [lzp]3-
Also, as in the proof of [48, Theorem 4.9] we get

fu@a,by]ll2 < (@@ 1)([u® @,m])llz2 + 2lu — alu)]2, for all ue U
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Next, we claim that
lim||(z ® )b ]|z > 6.
Assume this is not the case, since exrz = zen and zv = vz we get that
lim [|(z @ 1)7n — (exa(v)z @ D)ball2
<lim||(z @ 1)7jn — (exa(v)z @ V)ijn]|2 + lim [|(z @ 1)by |12
<lim [|(z @ 1) — (exza(v) @ V)i 2 + [[[a(v), 2][[2 + 6
< li7rln la®1(n, — (v @T)n,)||2 + 46 = 44.
Therefore, this further implies that
[En(a(v2))ll2 2 [[Ex(a(v)2]l2 = ||z = a(z)lls = lim | Epr(a(v))z @ Vija[lo — 6
> lim [(exar(v)z @ 0)bullz = 6 > lim [[(z @ 1)ijall2 = 55 > [|zl2 = 58 > /1 = e2]|z]l2

which contradicts ||En((1 ® oy, )(urz))ll2 < V1 —c?||z]|2, for all k& € N. This concludes
the proof of the claim.

Pick n large enough such that b = b~ € (L*(N) © L*(N)) @ L*(N). For any z € N/
we have that

Iz ® D13 = [I(z ® 1)(exq ® Vi3 = (e @ 1)z @ Dbal3 < (2 @ 1)jall3 = [|3-

Next, we employ an argument similar with the proof of [48, Theorem B]. Denote by
K = L*(N) © L?*(N) and notice that it is an AV-bimodule with the natural left and right
action by A/. Also, consider the von Neumann algebra P = B(K)Np(N°P), where p(N°P)
is the right action on K. Let n, . = [[(z@1)bi,[| 7 (©1)by;,, and consider the functional
¢ : P — C given by ¢r(x) = lim, ((z ® 1)Nkn, Mk,n). Now, ¢y is a well-defined state on
P satistying ¢ (zx) = ¢p(z2) = dr(z), for all x € P.

Now, we prove the following:

Claim. For every y € H" we have that

lim |9y, (xy) — du(y2)| = 0,

uniformly for x € (P);.
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Proof of the Claim. Fix u € H. Then, for every x € P we have
|k (uru”) = ()] = lim [((uzu™ @ 1), n) = (€ © 1) 00 ) |

1 _ _
= lim WK(%’ ®1)(u @ Wby, (u* @ W), (u @ Wb, (u* @ uF)) = (2 @ V)b big) |
n k,n
[ ® @, by, ]|l

4
k,n

< 2||z] 0o lim
n

Thus, for ever y € spanH{ we have that
lim ok (yz) — dr(2y)| =0,

uniformly on = € (P);.
Using (5) one can check that

. . 1
lim |y (zy)| < li {(zy © )b, bn)| < sllleclyllz-

1
m—
kb2

The same inequality can be proven for ¢ (yx) and using Kaplansky’s density theorem
we get the claim. O

We notice that by the calculation done in [15, Lemma 4.2] we have that K = L?(N) &
L2(N) =~ @&, L2((N, epaic. ) where Ky = L(AT =2 1stabg, (]s)) where Ay is the support
of 7j,. Therefore, using Connes fusion we have K ~ @, [L*(N) @ mar, L*(N)]. Since, Ky
is amenable we get that L?(N) ® vz, L?(N) is weakly contained in L?(N) @ L2(N)
for every s € S. Therefore, K is weakly contained in L2(N) @ oy L2(N) =: T. Using [39,
Lemma A.3] one can find a ucp map

$:Q:=B(T)Np(NP) — B(K)Np(NP) =P

such that ®(A7(n)) = Ac(n) for all n € N and the sub script denotes the actions of A" on
T and K, respectively. Now, consider the state 9y : @ — C given by ¥y = ¢ o ®. Since
the left action is in the multiplicative domain of ® using the Claim, for every u € H" we
have that

lim [ (u2)* 2z — )| = lim |64 ((u2)"wuz) — B(a)| = lim o (uB(r)u — ()| = 0
uniformly for z € (Q);. Now, using a standard averaging argument in conjunction with
Hahn-Banach separation theorem and the functional calculus one can find 8, € L'(Q)

such that 0 < £(8x) < 1 and for all u € H"” we have

lim || By, — (uz)" Buz]1 = 0.
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Here £ : L'(Q) — L*(N) is the canonical map such that 7(£(s)z) = Tr(sx), for all
z € N,s € Q. Using an appropriate normalization we can assume that 8y = z8,z and
|Bklli = 1. Letting 2 = 6,1/ * and using the generalized Power-Stormer inequality we
further get

lim [}z — (uz) 2 (u2)"[l2 = 0,

for all u € H"”. Now, fix F© C H"” an arbitrary finite subset. Using the identification
L?(Q) =T @m T, assuming 2z € T @ T and using the above equality, we get that

F|=1 <l — * li *
|l =tim | Y zrllz <lim Y o — (uz)zn(uz) 2+ lim | Y (uz)zk(uz)|l2

uelF ueF ueF
<lin | Y w0 Wl
ueF

Since this holds for all z € Z(H'NN) and all F C H” finite it follows from [62, Corollary
2.4] that T is a left amenable N' — N bimodule over H". Since 7 can be identified to
L2(N) @pme1 L2(N), then H” is amenable relative to M ® 1 inside A/, which contradicts
our assumption. W

Theorem A.3. Let G1,...,G,, € IPV and let G = Gy X ... X Gp,. Assume that H is
an arbitrary group and let 0 : L(G) — L(H) be a x-isomorphism, then there exist u €
W(L(H)) and Hy,...,H,, < H such that H = Hy X ... X Hp, and t1,...,t,, > 0 such that
t1.tm =1 and ub(L(G;)) u* = L(H;), for any 1 <i < m.

Proof. For the reader’s convenience we recycle the notations used in [11, Theorems 4.3
and 4.16]. In fact we follow the proofs of these theorems only adding in the new aspects
of the technique. Thus, we suggest the reader review these proofs beforehand as we only
include a proof of Claim 4.8, this being the only piece needed.

Claim. X N Q is finite.

Let O; = O; NY and notice that X NQ = |J;2, O For every k consider Ry, = (O}, i €
{1,..,k}) and notice that it forms an ascending sequence of normal subgroups of ¥ such
that | J, Rr = X N Q. Moreover, [¥ : ¥;] < co where X = Cx(Ry). Since, Ry N Yy, is
abelian and [¥ : ¥j] < oo it follows that Ry, is virtually abelian. In particular, ¥N§2 is an
amenable group. In the first part of the proof of [11, Theorem A] we have obtained that
Q C ¢L(X)q is a finite index inclusion of II; factors. Letting z = z(¢) € Z(L(X)) be the
central support of ¢, we have that for s > 0, Q° C (¢£(X)q)* = L(X)z is a finite inclusion
of II; factors. Then perform the basic construction for Q° C L(X)z C (L(X)z,eqs) = Q¥
where p = s[qgL(X)q : QJ?. First, we argue that each Ry, is finite. Since Cy = RyNZ; < Ry
has finite index, it suffices to show that C} is finite. From construction, we have that
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L(Ck) C Z(L(Sk)) C L(Zk) NL(S).

By passing to a finite index subgroup we can assume that ¥, < ¥ is normal and [X :

Y] =7 < oo. Let 41,72, ..., be a complete set of representatives for X5 < 3. One can

check that the map E : L(X;) NL(X) — Z(L(X)) given by Ex(ssy)(z) = 1 3 uy,zu
i=1

1=

-1
Yi

is a conditional expectation satisfying:

1Bz @)ll3 = v~ l2ll3

and hence [L£(2) NL(E) : Z(L(X))] < r and thus (L(X;)NL(X))z is finite dimensional.
Hence, there exists a z9 € P(L(Zg)' N L(X)) such that (L(Zg) N L(XZ))z0 = Czp. This of
course implies that £(Cy)zo = Czg. By [11, Corollary 2.7] one gets that C}, is finite.
We now show that X N Q is finite. Assume by contradiction that X N € is infinite.
Now, L(ZNQ)z C L(X)z is a diffuse subalgebra where z € Z(L(X)) C L(X N Q) and
Z(L(X)) = Cz Let H = {uoz : 0 € B} C Ngw)-(L£(X N Q)z) and notice that the
action H ~ L(X N Q)z is weakly compact. Indeed, consider the self-adjoint element
& = |Re|™2 Y a2 ®@Uaz € L(Ry)2®L(Ry)z. Note that (uyz ® T2)E = Ex(uyz ®

a€Ry,
uyz), Vy € X. Now, for all @ € Ry, | > k we have (usz @ Wgz)§ = & and hence
lim, || (uez @ Ua2)€n — &nll2,z = 0, for all a € £ N Q. Here, || - ||2,, is the 2-norm induced

by the trace 7,(y) = % on L(X)z where 7 is the canonical trace on £(X).

To this end notice we also have that

(22 ® 2)&, &) = |Re| ™ Z (Tuaz, upz)(Uaz, wZz)

a,bERy,
= |Ry|™! Z T(2Ug 21 )T (2Uq-1p) = |Re| ™" Z T(TugzUg—14-1)T(2Us)
a,beERy, a,sERy
= |Re| ™" ) m(ruaz( Y m(2us)ug—1 )ug-1) (A1)
a€Ry sERy
= Ry, Z T(xuazEr(Ry) (2)ua-1) = T(22EL(R,) (2))-

a€Ry,
Since |J, R = X N Q2 we have that
h]gn <(1’Z ® Z)gna£n>z = h}cn Tz(xZEL(Rk)(Z)) = Tz(x)'

Similarly, limy, ((z ® T2)&, &) = 72(x), for all € L(X). Since Q" = L(G)" where
t = 7(p)p and I = 1, from above we have that

LQNXE)z C LX)z C L(G)".

Note that the last inclusion is an irreducible inclusion of finite index II; factors.
Next, we show this leads to a contradiction. When |I| = 1 this already follows from
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[16, Theorem 6.1], so assume that |I| > 2. Write L(G1)! = e(L(Gr) @ M,,(C))e for
some projection e € P(L(G;) ® M, (C)). Fix, i € I. First, we observe that L£(X)z
is strongly non-amenable relative to L(Gj_g1) ® M, (C). Assume otherwise, since
L(¥)z C L(G1)" has finite index then £(G)" is amenable relative to L(Gr_ ;1) @ M, (C).
Thus, by [47, Proposition 2.4(3)] we would have that £(G)! is amenable relative to
L(Gr—fiy) ® My (C) and thus G; is amenable, a contradiction.

Then by Theorem A.2 we get that 1®@a! — id uniformly on (£(22NX)2);. Here, 1®al
is defined on (L(G_g;3 ® My (C)) @ L(G;) where of is the core length deformation on
the wreath product algebra £(G;) = L(A" ¢, /K, G)- Thus, using [38, Theorem 4.2] one
of the following must hold:

(1) £L(@Nnx) = E(Gl—{i}) ® My (C);

(2) L(B)z = L(G_{iy) @ M, (C)RL(A" x stabg; (hKo));

(3) there exists v partial isometry such that vv* = 2z and vL(X)zv* C L(G;) ®
M, (C)RL(GY).

Notice that (£(X)z)' N L(G[)! = Cz. Then by [24, Lemma 2.4] all intertwinings in 1)
and 2) are strong. Next, we argue that 2) and 3) do not hold.

Assume 2) holds. Since £(X)z C L(Gy)! is finite index we have by [23, Lemma 2.9(2)]
that

L(G1)" 2 L(G1-(1y) @ My (C)RL(A; x stabg; (hKo))
but this implies that the inclusion A4; x stabg; (hKp) < G; has finite index which con-

tradicts the fact that stabg; (hKo) = hKoh™! is amenable and G; is non-amenable.
Now, assume that 3) holds. Reasoning the same way, we have that

L(G1)' 2 L(Gr-(iy) ® My, (C)RL(GY)

which further implies that the inclusion Gé < G; has finite index, a contradiction.
In conclusion, we have obtained that for all i € I we have

LONE)z =° L(G_153) ® My (C).
Combining this with [24, Lemma 2.8] inductively we get that

LQNE)z =° [ L(Gr-i}) @ My (C) =1® M, (C).

iel

This implies that a corner of £(Q N X)z is atomic and hence, there exists a non-zero
projection zg € Z(L(2 N X)z) such that £(Q N X)zg = Czp. Thus, by applying [11,
Corollary 2.7] we get that Q@ NX is finite, contradiction. W
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