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Abstract— Unmanned aerial vehicles (UAVs) are becoming
more common, presenting the need for effective human-robot
communication strategies that address the unique nature of
unmanned aerial flight. Visual communication via drone flight
paths, also called gestures, may prove to be an ideal method.
However, the effectiveness of visual communication techniques
is dependent on several factors including an observer’s position
relative to a UAV. Previous work has studied the maximum
line-of-sight at which observers can identify a small UAV [1].
However, this work did not consider how changes in distance
may affect an observer’s ability to perceive the shape of a
UAV’s motion. In this study, we conduct a series of online
surveys to evaluate how changes in line-of-sight distance and
gesture size affect observers’ ability to identify and distinguish
between UAV gestures. We first examine observers’ ability to
accurately identify gestures when adjusting a gesture’s size
relative to the size of a UAV. We then measure how observers’
ability to identify gestures changes with respect to varying
line-of-sight distances. Lastly, we consider how altering the
size of a UAV gesture may improve an observer’s ability to
identify drone gestures from varying distances. Our results
show that increasing the gesture size across varying UAV to
gesture ratios did not have a significant effect on participant
response accuracy. We found that between 17 m and 75 m
from the observer, their ability to accurately identify a drone
gesture was inversely proportional to the distance between the
observer and the drone. Finally, we found that maintaining a
gesture’s apparent size improves participant response accuracy
over changing line-of-sight distances.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have increasingly been
deployed in diverse contexts by hobbyists, researchers, and
industry professionals. As UAV use continues to expand
across broad human interaction domains, the need for ef-
fective human-robot communication strategies will grow.
Such strategies may be implemented via multiple modalities,
including light, sound, or motion; however, clear communi-
cation techniques that are both robust and common across
domains have yet to be realized. UAVs may present unique
constraints when considering the development of a com-
munication system. For example, the effectiveness of audio
communication techniques may degrade at long operational
distances and in the presence of environmental noise [1].
Light-based mechanisms may have varying effectiveness in
different lighting conditions and would require the addition
of hardware which increases vehicle weight and reduces
overall flight durations. Motion-based communication tech-
niques may be ideal for UAV systems as they are lightweight,
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Fig. 1: Perceived Figure-Eight gesture at four line-of-sight
distances, (a) 17 m, (b) 46 m, (c) 75 m, and (d) 151 m

software-only solutions and may be perceivable at longer
ranges than audio.

In this work, we focus on motion-based UAV communica-
tion. Communicative flight paths, which are also referred to
as ‘gestures,” leverage the motion of a UAV to communicate
meaning to an observer. UAV gestures have shown promise in
their ability to communicate with observers [2]-[5]; however,
variance in an observer’s line-of-sight position may affect
their ability to accurately perceive a gesture [6]. For example,
an observer that is five meters away from a UAV may
be able to more easily identify the shape of a gesture’s
motion than another observer who is fifty meters away. Fig. 1
demonstrates how the perceived shape of a Figure-Eight
gesture may change from four observer distances. In this
paper, we seek to identify and quantify how changes in line-
of-sight distance and gesture size affect an observer’s ability
to classify and distinguish between a set of UAV gestures.
We address the following three research questions:

R1: Does variance in the ratio of gesture size to UAV size
affect an observer’s ability to perceive a gesture?

R2: How do long and short line-of-sight distances affect an
observer’s ability to perceive a gesture?

R3: Can gestures be modified to ensure high classification
accuracy across varying line-of-sight distances?

Our findings demonstrate that gesture perception accuracy
degrades as the distance from an observer increases. We
discuss how both the actual and perceived size of a gesture
matters for classification outcomes and show how mainte-
nance of a constant visual angle may alleviate distance-based
classification degradation. This work contributes a charac-
terization of the relationship between observer distance and
gesture classification accuracy alongside a technique for
improving gesture perception from long distances.



II. RELATED WORK

In recent years, UAVs have been leveraged across diverse
contexts including emergency and disaster response [7], [8],
environmental data collection and crop surveying [9], [10],
and delivery of medicine and disease testing kits [11]. As
UAV usage becomes increasingly integrated into human-
interaction domains, effective human-robot communications
strategies will be even more critical. In this section we give
a brief overview of the most relevant work in visual robot
communication, viewpoint variance, and depth perception.

A. Visual Robot Communication

Researchers have highlighted the importance of robots
having the ability to communicate and express their inten-
tions for successful human-robot interaction and collabo-
ration [2], [12]-[14]. A study by Dragan et al. found a
participant working collaboratively with a robot to complete
a task of fulfilling coffee orders was able to achieve the
task more quickly when the robot’s motion was designed to
be legible, expressing the robot’s intent to the participant,
rather than when the motion was designed to be purely
functional. In the same study, participants also had a more
positive perception of the collaboration when the robot’s
motion was designed to be legible [13]. While previous
studies on robot communication have largely focused on
ground-based and anthropomorphic robots, there is evidence
that the ability to express intent may also benefit human-UAV
collaboration. Szafir et al. found that participants preferred
and felt safer working with drones whose flight paths were
manipulated to more quickly communicate their intended
target position than drones whose flight paths were purely
functional and designed to reach their target position as
efficiently as possible [2].

While this study does not attempt to associate meaning to
the drone gestures used, other studies have demonstrated the
feasibility of using drone movements to convey information
to observers [5], [15]. A study by Bevins et al. found that
novice drone users showed some agreement in attributing
meaning (e.g. landing, follow the drone, avoid the area)
to certain drone movements [5]. Colley et al. investigated
the potential for drones to be used as pedestrian navigation
guides and found that most participants intuitively under-
stood certain gestures to communicate “follow me” and “turn
a corner” [15].

B. Observer Viewpoint Variance

Applying the need for intent-expressive communication to
UAVs requires considering the unique challenges of UAV
communication. Previous studies have shown that observer
location affects the effectiveness of gestural communication.
Nikolaidis et al. demonstrated how viewpoint can affect
observers ability to interpret robot’s intention through a study
that found that generating motions for an anthropomorphic
robot which account for the observer’s point of view were
more legible to participants than motions that assumed an
omniscient observer [16]. Fletcher et al. investigated the

ability of observers to identify gestures from different an-
gles using dot animations. This study found that viewpoint
rotation significantly affected classification accuracy [6].

C. Depth Perception

Another important consideration in UAV communication
is that the communication may be taking place over large
distances. A study by Li et al. tested the ability of observers
to detect a drone flying at various distances. The study
found that 245 m was the maximum distance at which
the majority of the observers could detect a small drone,
a Phantom 4, in good weather conditions [1]. A follow-up
study identified 307 m as the approximate distance at which
50% or more of observers where able to detect a Mavic
Air [17]. This gives an approximate maximum distance at
which a similarly-sized drone might be able to communicate
with observers through gestures. Li’s studies also found that
auditory detection of the drone was significantly less reliable
than visual detection over large distances. As these findings
suggest that people can still see UAVs at distances beyond
which sound is inaudible, visual communication methods in
place of, or in addition to, auditory communication methods
may be especially useful in some contexts.

III. BACKGROUND

The goal of this study is to explore how line-of-sight
distance affects an observer’s ability to accurately perceive a
UAV gesture’s motion. In particular, we seek to characterize
the visual perceptibility for gestures from a range of observer
distances and examine how actual and apparent gesture sizes
affect observer classification accuracy. To do so, we con-
ducted three online gesture perception surveys and explored
the following hypotheses:

HI1: Observers’ ability to accurately identify gestures will
gradually improve, then plateau, as the size of the
gesture relative to the UAV increases.

H2: Observers’ ability to accurately identify equal-sized
gestures will degrade as the distance between the drone
and the observer increases.

H3: Observers’ ability to identify gestures of the same visual
angle will remain constant even as the UAV’s distance
from the observer increases.

A. Gesture Set

Fig. 2 outlines the shape of motion for each of the gestures
used in this study. This gesture set was used throughout this
survey as the set of possible responses given to participants.
Survey I tested the participants’ ability to identify the loop,
clover, b-shape, and diamond animations. Surveys II and III
tested the the participants’ ability to identify the undulate,
figure-eight, x-shape, and u-shape animations. We adopted
this gesture set from previous work that explored how
untrained observers perceive meaning from UAV gestures
[3]-[5] and how observer viewpoint variance affects percep-
tibility [6]. All of the gestures included in the set were two-
dimensional, meaning their motion was limited to the (y,z)
plane where the z-axis is perpendicular to the ground and
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Fig. 2: Set of participant response options

the y-axis is perpendicular to the observer’s point of view.
Two dimensional motions may be ideal for UAV gestures
for a number of reasons. UAVs are often operated at long
distances. At great distances, human ability to perceive small
changes in depth perception degrades [18]. In this way,
motion along the respective x-axis (depth) may not be visible
at relatively close distances. Two dimensional gestures can
also display their full shape of motion at an ideal viewpoint
angle [6], whereas some motions may be occluded from
all viewpoints for three-dimensional gestures. The gesture
trajectories also formed generally familiar shapes (diamond,
star, etc). These types of gestures may be especially useful
because observers may be able to recognize and describe
them more easily than other complex motions.

B. Gesture Animations

We created UAV gesture animations to visually represent
gesture motions in our online perception surveys. We chose
to use gesture animations rather than video of UAVs for a
number of reasons. Visual perception of a UAV can be influ-
enced by a number of factors including visual noise. Variance
in the light environment or visual background can impact
an observer’s ability to perceive a UAV. Using animation
techniques also allow for highly precise and reproducible
motions that may not have been possible in a field video
context. In this way, we use gesture animation to reduced
the potential for confounding influence and leave studies
of perception in field contexts to future work. All of the
UAV animations were generated using MATLAB. Each of
the animations were defined by 128-130 waypoints and were
13 seconds long. The animations showed a UAV performing
a gesture once, then repeating the gesture in reverse.

C. Visual Angle Calculations

To compare the size and distance of gestures viewed on
participants’ screen to gestures performed by a small UAV,
the visual angle of the animated drone was computed using
the visual angle calculation (1) [19]. This visual angle was
then used to calculate the approximate distance at which the
UAV would form the same apparent size,

V =2 xarctan(S/2D) (1)
where,
V = visual angle;

S = size of the object; and
D = distance of the object from the observer.
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Fig. 3: Equal visual angles of different-sized gestures with
S| and S, representing different gesture sizes, D; and D,
representing different distances, VA representing some
visual angle, and R representing some retinal image size

For our visual angle calculations we used 63.5 cm as the
average distance between a participant and their computer
screen [20] and 26.67 cm as the width of the real drone (a
DIJI Flame Wheel F330).

The relationship between visual angle, distance, and size
is illustrated in Figure 3. Although the gestures are different
sizes, they subtend the same visual angle, meaning that rays
extending from the boundaries of the gestures will enter the
eye at the same angle VA and project the same retinal image
size R onto the retina. The retinal image size determines the
apparent size of an image [19].

Fig 4 illustrates the difference between the actual and
apparent size of a gesture. The top half of the image shows
two gestures that are the same size. However, the image
that is farther away subtends a smaller visual angle and will
appear smaller to the observer. Meanwhile, the bottom half
of the figure shows the farther gesture enlarged to form the
same visual angle and thus the two images will have the
same apparent size to the observer.

IV. SURVEY APPROACH

Our study was comprised of three parts, each testing one of
our three hypotheses. In each, we used surveys to collect data

Fig. 4: Actual vs apparent gesture size



on participants’ ability to identify the shape of UAV gestures.
This section provides details on the implementation and goals
of each of the components of our study. The surveys used in
this study were created using Qualtrics and participants were
recruited using Amazon’s Mechanical Turk. Responses from
over 350 unique participants were collected for this study.
Participants were asked to watch several short animations of
a UAV moving along specific flight paths. After watching
a gesture animation, they were asked to choose the gesture
shape that they thought corresponded to the UAV’s motion.
Multiple attention tests were incorporated into the studies.
Messages were included at the end of both an instruction
video and an additional gesture video asking participants to
enter a random number on the next page to confirm that
they had fully watched the videos. Different surveys were
created to display the gesture videos in different orders and
the multiple choice options were randomized to account for
the possibility of order bias.

A. Survey I

For part 1 of our study we tested our first hypothesis in
order to determine how the size of a UAV gesture trajectory
relative to the size of the UAV might affect observers’ ability
to identify the gesture. To do so we created three surveys
with animations of different-sized UAVs performing identical
gestures. We recruited 36 participants for each survey and
tested them on four different UAV gestures, providing 144
responses per survey. The purpose of this study was to
determine how gesture size impacts perception and thus
determine how UAV operators could adjust their flight paths
to improve gestural communication.

B. Survey Il

The purpose of part 2 of our study was to test our
second hypothesis and learn how distance might affect an
observer’s ability to accurately identify a UAV gesture. To do
so we created four different gesture animations in which the
apparent size of the UAV and the UAV gesture changed. The
visual angles for our animated UAVs and the corresponding
distances at which our DJI F330 would form the same visual
angle were calculated using equation (1). Table I shows the
visual angles and the corresponding real distances tested in
our surveys. We again recruited 36 participants for each
survey and tested them on four different UAV gestures.

C. Survey III

For part 3 of our study we tested our third hypothesis
by comparing gestures of equal actual size and gestures of
equal apparent size over the same distance range. This was
done to determine whether the apparent size of the UAV

[ Visual Angle (rad)  Distance (m) ||

0.016 17
0.0058 46
0.0035 75
0.0018 151

TABLE I: Visual angles and distances
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Fig. 5: Identification accuracy for equal visual angles

or the apparent size of the gesture has a greater effect on
accuracy. This is useful in determining if UAV operators
can increase their ability to use gestural communication over
large distances by adjusting the UAV flight path.

V. RESULTS
A. Gesture Size Ratio

In Survey 1, participants viewed one of three gesture
animations with different UAV-to-gesture size ratios. We
compared the accuracy for gestures in which the ratio of
the UAV width to the gesture width was 4:9, 2:9, and 1:9
given that the 4:9 ratio reflects a context where a UAV is 4
m away from an observer, the gesture width is 60 cm, and
the UAV width is 26.67 cm. The results of this survey can be
seen in Figure 5. Overall, there appeared to be improvement
in participants’ ability to correctly identify the gestures as the
size of the gesture relative to the size of the drone increased.
However, these results had a p-value of 0.2053 and thus were
not statistically significant. As it yielded the highest overall
accuracy, we elected to use the 1:9 ratio for the next portion
of our study.

B. Variance in Observer Line-of-Sight Distance

In Survey 2, participants viewed one of four different
surveys in which the animations displayed a UAV that
appeared to be flying at different distances. In these an-
imations the apparent size of the gesture become smaller
as its visual angle decreased. The animations represented
same-sized gestures that would subtend smaller visual angles
at the greater distances. The approximate distances were
calculated using equation (1). The results of this study can
be seen in Figure 6. These results show an overall decline in
participants’ ability to identify the gestures over a 17 m to
151 m range. These results were statistically significant with
a p-value of 0.0028. We noted that the greatest decrease in
accuracy occurred between 17 m and 46 m. When viewed
individually, identification accuracy varies by gesture. The U-
shape gesture demonstrated the most degraded accuracy with
respect to distance with classification accuracy ranging from
0.86 at the smallest distance to 0.42 at the farthest distance.
While the X-Shape and Figure-Eight gestures demonstrated
some decrease in accuracy at greater distances, the Undulate
gesture demonstrated no significant change in accuracy.
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Fig. 6: Gesture classification accuracy for gestures at
varying observer line-of-sight distances with * indicating a
p-value less than 0.05, ** indicating a p-value less than
0.01, and *** indicating a p-value less than 0.001

Overall, participants showed aptitude to correctly identifying
gestures across all line-of-sight distances tested, with over
75% accuracy at even the greatest distance.

In order to model the overall change in gesture classifi-
cation accuracy across observer line-of-sight distances, we
conducted a logistic regression analysis on all participant
responses. Fig. 7 shows the logistic model of an observer’s
ability to identify the shape of the UAV’s motion at a
given distance. The logistic regression models a significant
relationship with a p-value less than 0.05. Red dots indicate
the average identification accuracy that we observed in our
study and the dashed line predicts how further increasing the
distance between UAV and observer could affect accuracy.

C. Constant Actual and Apparent Size Over Distance

In Survey III, we compared participants’ ability to identify
gestures at different distances given a gesture of the same
apparent size and a gesture of the same actual size. Fig. 4
(a) demonstrates how an observer may perceive a gesture
when the actual size remains constant over distance while
in (b), the apparent gesture size remains constant over
distance. To maintain a constant apparent size, the actual
size of the gesture is proportionally increased to maintain
a constant visual angle. Figure 8 outlines the participant
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Fig. 7: Logistic regression model for participant gesture
identification accuracy
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Fig. 8: Identification accuracy of actual equal-sized and
apparent equal-sized gestures with * indicating a p-value
less than 0.05

response results from Survey III for identification accuracy at
17 m and 46 m. The accuracy at 46 m represents accuracy
at identifying gestures of either equal actual size or equal
apparent size compared to the gestures performed at 17 m.
Overall, maintenance of a constant apparent size yielded
significantly higher response accuracy when compared with
responses from animations with a constant actual size. To
evaluate this relationship, we conducted a two-proportion
z-test between response accuracy values in both conditions
and the results are significant with a p-value less than 0.05.
The U-Shape demonstrated a significant change in accuracy
when comparing apparent and actual gesture size responses.
While other gestures demonstrate a similar trend, the result-
ing differences between each condition are not significant.
Overall, maintaining a constant visual angle results in similar
identification accuracy at 17 m and 46 m while identification
of equal-sized gestures at 46 m was significantly lower than
identification at 17 m.

VI. DISCUSSION

In the following section we discuss our three hypotheses
in light of the results yielded by this study. We also address
some limitations of our study and consider how physical
constraints may limit UAV operators’ ability to adjust their
flight paths to benefit visual communication as we propose.

A. Hypotheses

Hypothesis 1: Observers ability to accurately identify
gestures will gradually improve, then plateau, as the size
of the gesture relative to the UAV increases. For the three
UAV-to-gesture ratios tested, there was not a significant
difference between observers’ ability to identify the gesture
shape. While further investigation may reveal that larger
ratios have a more noticeable effect on gesture identification,
there are also practical constraints on the ability of UAV
operators to manipulate the size of their flight paths as are
detailed below. Thus there is a need to weigh the benefits of
manipulating flight paths to aid observers’ visibility of them
against other considerations for UAV operators such as time,
battery power, and flight mission.

Additionally, this study demonstrates how gestures of the
same visual angle are perceived. The gestures all formed a



visual angle of 0.0016 radians and had the same apparent size
to the participant. There was not a significant change in the
participants’ ability to identify the gestures which supports
the hypothesis that observers will have similar success rates
in identifying gestures of the same apparent size.

Hypothesis 2: Observers ability to accurately identify ges-
tures will degrade as the distance between the drone and the
observer increases. Between 17 m and 151 m there was an
overall decline in participants’ ability to identify the gestures
at the tested distances. This suggests that distance will hinder
the effectiveness of visual human-UAV communication and
should be considered by UAV operators. Interestingly, the
most significant decrease in accuracy occurred between the
two closest distances while accuracy appeared to remain
fairly consistent between 75 m and 151 m.

Hypothesis 3: Observers’ ability to identify gestures of the
same visual angle will remain constant even as the UAV’s
distance from the observer increases. In our comparison of
identification accuracy between gestures with the same actual
size and gestures with the same apparent size, we found that
participants’ ability to identify gestures with the same actual
size decreased over the tested distance range, but remained
steady over the same range when viewing gestures with the
same apparent size. This indicates that the apparent size
of the gesture is a greater factor than the apparent size of
the UAV and thus we propose that visual communication
can be maintained over larger distances by adjusting the
UAV’s flight path to perform larger gestures if attempting
to communicate with an observer positioned farther away.
However, as noted previously there are constraints on the
ability and usefulness of operators to do so that should be
considered.

B. Variance Among Gestures

We found that the individual gestures tested showed vary-
ing identification accuracy and variation due to changes in
distance from the observer. This may have been caused by
the fact that some gestures were more similar to others in
the gesture set, such as the U-Shape and the Checkmark, and
thus more easily mistaken for each other. Another possible
cause of this variation is the speed of the UAV motion. The
gestures in this study were defined by a consistent number
of waypoints and thus the animations displayed each of the
gestures over a constant period of time. This meant that sim-
pler gestures such as the Diamond and U-shape, which had
the lowest overall accuracy of the tested gestures, appeared
to move at slower speeds than more complex gestures. This
could indicate that observers had more difficulty determining
the shape of the UAV’s motion for slower gestures. Table
II lists the estimated average speeds of a UAV performing
the 1:9 ratio gestures from Part 1 and their accuracy for
that size. Table III lists the estimated average speeds of a
UAV performing the gestures from Part 2 in the same 13
second time frame as our animated gestures and the average
identification accuracy of those gestures. While more testing
would be needed to confirm a correlation between gesture
speed and identification, it is useful to consider that there

[ Gesture  Average Speed (m/sec)  Accuracy(%) ||
Clover 1.30 94.4
Loop 1.87 86.1
B-Shape 0.953 86.1
Diamond 0.997 69.4

TABLE II: Average UAV speeds for gesture set 1

[ Gesture Average Speed (m/sec)  Accuracy(%) ||
Undulate 1.38 95.8
Figure-Eight 1.72 84.7
X-Shape 1.36 82.6
U-Shape 0.844 63.2

TABLE III: Average UAV speeds for gesture set 2

may be a lower bound on the speed at which most observers
can identify gestures.

C. Physical Constraints

While this study seeks to determine how size and dis-
tance can be manipulated to improve observers’ gesture
classification accuracy, there are some practical constraints
on the drone operator’s ability to do so. The first is that
an observer’s ability to identify a small UAV over great
distances is limited. In this paper, we have followed the
guideline established by Li et al. that 300 m is the maximum
distance at which a small UAV can be seen by a majority
of individuals with normal visual acuity [17]. Conversely,
a UAV may be unable to communicate effectively using
gestural communication if it is flying too close to an observer
for the observer to have the full motion in their field of view.

An additional constraint is that increasing a gesture’s size
requires increasing either the time required to complete the
gesture or the speed at which the gesture is performed.
Increasing the time at which the gesture is performed may
impractical. As we are investigating the use of gestures as a
communication method, there is a clear incentive for gestures
to be completed in a timely manner as more time-consuming
gestures would hinder the drone operator’s ability to commu-
nicate important information quickly or may interfere with
the UAV operator’s main mission. However, there is also a
limit on the capability of the operator to increase the speed
of the UAV to perform larger gestures more quickly based
on the hardware limitation of their UAV or the operator’s
ability to fly safely at higher speeds. In addition, changing
the speed or duration of the gesture may negatively affect
observers’ ability to identify the gesture if the gesture is too
large or moving too quickly for them to identify the flight
pattern. Thus there is a need to weigh the potential benefits of
manipulating flight paths to aid observers’ visibility against
other considerations for UAV operators such as time, speed,
battery power, and flight mission.

VII. LIMITATIONS

We conducted animation surveys in order to reduce the
potential for confounding effects such as variance in light
environments of visual background noise. However, the re-
sults of this work have yet to be confirmed or applied in field



contexts with real UAVs. Although visual angle and apparent
image size provide an approximation of how observers will
perceive UAV flights, there are additional factors that may
affect an observer’s visual perception of gestural motion
which are not addressed via digital animation. While other
factors may affect the specific accuracy values yielded from
studies conducted in field settings, we expect the results
to demonstrate similar relationships to those discussed in
this work, including the relationship between line-of-sight
distance and gesture identification accuracy.

While we conducted studies on two separate gesture sets
in this work, this study does not represent an exhaustive
test across many gesture sets. The U-Shape demonstrated
significant accuracy degradation across observer distances,
however, the same degree of change in accuracy was not
observed across all gestures. Similarly, the Undulate ges-
ture demonstrated little change in accuracy across observer
distances. While this may be the case, we also did not
observe any significant improvement in response accuracy as
observer distance increased. We suggest that some gestures
may be easier to identify than others such that increasing the
line-of-sight distance degrades response accuracy at different
rates for different gestures. In addition to having investigated
a limited gesture set in this study, we also restricted our study
to the assumption that participants are viewing the gestures
from a single perspective where the UAV is directly in front
of the observer and the UAV’s full motion is visible and
unobstructed. This may not be the case in a field setting
where a UAV may be flying above the observer’s eye level
and where the drone’s motion may be partly obscured by an
object or by the observer’s viewpoint.

VIII. CONCLUSION AND FUTURE WORK

Based on the results of this study, we find that distance
does have an effect on an observers ability to perceive
UAV visual communication such that there was an overall
decline in observers’ ability to identify equal-sized gestures
between 17 m and 151 m. However, there was no signif-
icant difference in participants’ ability to identify gestures
of equal apparent size, even as the apparent size of the
UAV decreased. Thus, we suggest that UAV operators can
manipulate the size of their flight paths in order to maintain
visual communication with observers over large distances.
Additionally, we found that participants’ ability to identify
the shape of the UAV’s motion varied among the tested
gestures and propose that the speed of the UAV may affect
observer’s perception of the UAV’s motion. Future work is
planned to verify the findings of this study with real UAV
gestures and further explore the impact that variation in
distance, gesture size, speed, and duration have on gesture
identification accuracy.
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