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ABSTRACT: Cytochromes P450 (CYPs) are a superfamily of en-
zymes responsible for biosynthesis and drug metabolism. Moni-
toring the activity of CYP3A4, the major human drug-metabolizing
enzyme, is vital for assessing metabolism of pharmaceuticals and
identifying harmful drug-drug interactions. Existing probes for
CYP3A4 are irreversible turn-on substrates that monitor activity at
specific time points in end-point assays. To provide a more dy-
namic approach, we designed, synthesized and characterized
emissive Ir(lll) and Ru(ll) complexes that allow monitoring of
CYP3A4 active site occupancy in real time. In the bound state,
probe emission is quenched by the active site heme. Upon dis-
placement from the active site by CYP3A4-specific inhibitors or
substrates, these probes show high emission turn-on. Direct probe
binding to the CYP3A4 active site was confirmed by X-ray crystal-
lography. The lead Ir(Ill)-based probe has nanomolar Kqand high
selectivity for CYP3A4, efficient cellular uptake, and low toxicity in
CYP3A4-overexpressing HepG2 cells.

Cytochromes P450 are crucial enzymes responsible for biomol-
ecule synthesis and drug metabolism. Among 57 human CYPs,
CYP3A4 is the major drug-metabolizing enzyme responsible for ox-
idizing the majority of pharmaceuticals.! Due to high substrate
promiscuity and plasticity of the active site, CYP3A4 is implicated
in many drug-drug interactions that can cause drug toxicity.2-> Ad-
ditionally, CYP3A4 displays genetic polymorphism where muta-
tions facilitate or slow down drug metabolism, thereby affecting
therapeutic efficiency.®8 These attributes make CYP3A4 an im-
portant target for activity monitoring, especially in complex sys-
tems such as liver microsomes and hepatocytes that model human
drug metabolism in vitro. Current methods for monitoring CYP3A4
activity involve marker substrates, which require cumbersome

and costly HPLC analyses conducted over multiple time points, or
irreversible turn-on reagents that make it difficult to monitor
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Figure 1. Emissive probes for monitoring metabolism by
CYP3A4.

changes to CYP3A4 activity over time (Figure 1A).>14 As an alter-
native approach to these classical methods, in this communication
we report emissive Ir(lll) and Ru(ll) complexes that allow sensing
of occupancy of the CYP3A4 active site (Figure 1B).

We chose to examine Ir(Ill) and Ru(ll) complexes as probes for
CYP3A4 because they are powerful tools for monitoring biological
activity.1>-24 Probes of this class have long luminescence lifetimes,
ranging from hundreds of nanoseconds up to ~100 ps,116.2> which
allows for time-resolved gating that can be used to exclude back-
ground emission from biomolecules and fluorogenic substrates.



Thus, these compounds were expected to provide a distinct ad-
vantage over previous CYP3A4 probes containing organic-based
fluorescent groups,26 whose low nanosecond lifetimes preclude
the measurement of CYP activity in human liver microsomes, the
gold standard in drug metabolism.

Transition metal-based probes were designed to interact with a
hydrophobic surface within the substrate access channel of
CYP3A4,%7 and included a pyridyl side chain (see R;, Figure 2) to
anchor the complex to the enzyme through direct heme iron co-
ordination. Emissive sensors 2-5 were synthesized as racemic mix-
tures of A and A isomers (Figure 2A). Ligand 1 was heated with
Ru(ll) precursors cis-[Ru(L1)2Cl2] (L1 = 2,2’-bipyridine or 1,10-phe-
nanthroline), which gave compounds 2 and 3. Alternatively, treat-
ing 1 with [Ir(p-CI)(CAN),], [CAN = 2-phenylpyridine (ppy) or 2-phe-
nylquinoline (pqg)] gave complexes 4 and 5. Complexes 2-5 were
characterized by *H NMR, IR and electronic absorption spectros-
copies and electrospray mass spectrometry. All data were con-
sistent with the structures shown in Figure 2. Importantly, elec-
tronic absorption and emission spectra for 2-5 were in good
agreement with data for the parent Ru(ll) or Ir(lll) complexes de-
void of the R; side chain.28-30 All complexes emit brightly when ex-
cited with 435 nm light (Figure S7), with 4 having the highest emis-
sion quantum yield of 0.086(9) and a remarkable lifetime of 1.6 s,
over twice as long as 2 and 3 (Table 1).
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Figure 2. Synthesis (A) and structures (B) of Ir(Ill) and Ru(ll)
CYP3A4 photosensors 2-5.

Equilibrium titration of CYP3A4 with 2-5 showed that all com-
plexes exhibit type Il binding, indicative of strong pyridine nitrogen
coordination to the heme (Figures 3A, C-F). Spectral dissociation
constants for 2-5 are listed in Table 1. Complexes 4 and 5 are far
more potent than Ru(ll) inhibitors 2 and 3, indicating that CYP3A4
preferably binds monocationic over dicationic complexes. Im-
portantly, attachment of the R; side chain dramatically increases
the inhibitory potency, by nearly 100-fold. Control compound 6
shows type | binding (blue shift in the Soret band) and is a weak

inhibitor with a Kq of 11.2 + 0.08 uM, whereas analog 5 with the
pyridyl containing R; chain exhibits type Il binding, with a stronger
affinity of 130 £ 11 nM. Both the binding affinity determined from
the equilibrium titrations and the 1Cso data indicated that Ir(ll1)
sensors bind tighter and inhibit CYP3A4 more potently than Ru(ll)
compounds, with tunable K4 values as low as 70 £ 2 nM for 4.
Table 1. Dissociation constants (Kg), ICso values for CYP3A4
(uM) and emission quantum yields for sensors 2 — 5.

Com- Kd* ICso? P’ T/ s
pound (M) (M) (H,0) (H20)
2 5344 6.0£0.5 0.046(3) 0.66

3 23+2 3.1£04  0.042(9) 0.75
4 0.070£.0.002  0.25+0.02  0.086(9) 1.6
5 0.130+0.011  0.20+0.01  0.007(1) 0.062
6 11.240.8 1.02+0.02 ND ND

“Determined by spectrophotometric titration assay. "CYP3A4 activity as-
say with BFC, 293 + 3K, 0.2 uM CYP3A4, 0.3 uM cytochrome P450 re-
ductase, vs. DMSO control (100% activity), standard error <10%. “Emis-
sion spectra of absorption matched solutions in argon sparged H2O (A4ss ~

0.07), Lex = 435 nm, 455 nm longpass filter, referenced to Ru(bpy)s Pem=
0.042.

Next, Ir(Ill) complexes 4 and 5 were co-crystallized with CYP3A4
(Figure 3C-F, S8). In both structures, the inhibitor’s Ry side chain
curls above the heme and the terminal pyridine nitrogen ligates to
the heme iron (Fe-N distance of 2.20-2.23 A). Hydrophobic resi-
dues Phe108, Phe220, Phe57, and Leu482 are in close contact with
the ppy and pqg groups of 4 and 5, respectively. Electron density
was well defined for the heme-ligating pyridine, part of the tether,
and the Ir(ll1) cores. The Ir ligands were poorly defined, which sug-
gests that both the A and A isomers of 4 and 5 were bound to the
active site. Stereochemistry was not specified during structural re-
finement, but the A and A isomers (shown in Figure 3C-F) were
preferably selected for 4 and 5, respectively, and fit into electron
density maps by the refining program. Importantly, 4 and 5 are the
first iridium complexes characterized to bind to a CYP enzyme.31~
38

To ensure that 4 binds to CYP3A4 more selectively than to other
CYP isoforms, 1Cses of 4 against CYP3A4, CYP1A2, and CYP2C9 were
determined using commercially available inhibitor screening kits
(BioVision). Data from these kits vs. the soluble reconstituted
system in Table 1 can not be compared directly because they were
acquired under different conditions.?” Derived ICsq values were 2.8
+ 1.0 uM, >100 pM and 79 £ 6 uM for CYP3A4, CYP2C9 and
CYP1A2, respectively (Figure 3G). The 28- and >36-fold difference
in 1Csp demonstrates the high selectivity and preferential binding
of 4 to a larger and expandable active site of CYP3A4 (Figure S8).
For comparison, the volume of the active site cavity in ligand-free
CYP3A4 is 1400 A3 as compared to 375 A3 and 470 A2 in CYP1A2
and CYP2C9, respectively.”3%40

With compound 4 identified as a lead, we evaluated its ability
to act as an active site photosensor by measuring changes in emis-
sion upon addition of ligand-free or substrate/inhibitor-bound
CYP3A4 (Figure 3H). Strong luminescence quenching was ob-
served when 4 (5 uM) was mixed with ligand-free CYP3A4 (3 uM),
consistent with other emissive probes for P450 enzymes.41-4> The
quenching was partial when CYP3A4 was bound to a substrate or
inhibitor prior to addition of 4. Importantly, the emission levels
were ligand dependent and correlated with the ligands’ binding



affinity: the strongest CYP3A4 binder, ritonavir (K4 = 19 nM), was
the most difficult to displace, whereas the weakly bound sub-
strate, testosterone (Kg of 1.5 uM and 30 uM for two binding
sites), was expelled by the probe more easily.
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recovers in a manner proportional to the binding affinity of
CYP3A4 substrates and inhibitors. Furthermore, photosensor 4
penetrates and inhibits CYP3A4 in hepatic cells, and emits brightly
in the intracellular environment. This new class of photosensors is
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Figure 3. (A) Spectral changes observed during equilibrium titration of CYP3A4 with 4, inset is difference spectra; (B) Titration plot
with derived K, value; (C, D) Crystal structure of the 4-CYP3A4 complex at 2.78 A resolution (PDB ID 7UAY). (E, F) Crystal struc-
ture of the 5-CYP3A4 complex at 2.65 A resolution (PDB ID 7UAZ). Blue and green mesh in panels H and J are 2F,-F. and polder
omit electron density maps contoured at 1 and 3o levels, respectively; (G) Inhibition of CYP3A4, CYP1A4, CYP2C9 activity by 4;
(H) Fluorescence spectra of 4 (5 uM) in the absence and presence of CYP3A4 (3 uM) bound to different substrates and inhibitors (10—
20 pM) showing ligand-dependent emission yields (0.1 M PBS, pH 7.4, 10% glycerol, Aex =433 nm); (I) CYP3 A4 activity with 4
(0.3—-10 pM) determined by P450-Glo CYP3A4 Assay or ketoconazole (1 pM) as positive control; Concentrations 0.3 — 10 uM are
statistically significant from control containing vehicle; *P < 0.05; (J) Fluorescence microscopy images (GFP filter) of HepG2-
CYP3A4 cells treated with 4 (5 uM), (J) Inset is control fluorescence from vehicle treated cells; (K) Cell viability at different concen-
trations of 4 (0.05-50 uM) determined by a cellular viability assay (MTT, 72 h).

To further substantiate the scope of our lead compound 4, we
assessed its inhibitory properties in HepG2 human hepatoma cells,
where expression of most drug-metabolizing CYPs is negligible or
absent. However, when HepG2 cells are stably engineered with
vectors expressing CYPs, protein levels reach those in primary
human hepatocytes, which makes this model cell line a convenient
in vitro tool to mimic drug metabolism in the liver.4¢4¢ To
determine the CYP3A4 inhibitory activity of 4, HepG2 cells
overexpressing CYP3A4 were used in conjuction with a
bioluminiscent P450-Glo CYP3A4 assay. Importantly, a strong
concentration-dependent decrease in activity was observed, with
statistically significant inhibition at 300 nM (Figure 3I, ~20%
inhibition, P < 0.05 vs control). These data confirm that 4 is able to
efficiently penetrate HepG2-CYP3A4 cells and inhibit CYP3A4
activity at nanomolar concentrations.

Finally, to demonstrate that our photosensors can be visualized
in cells, we employed fluorescence microscopy. HepG2-CYP3A4
cells were treated with 4 (5 uM) for 1 h (Figure 3J), then rinsed
with PBS (pH 7.0) and imaged using the GFP channel. We found
that 4 is cell-permeable and can be visually detected at concentra-
tions as low as 5 uM. Utilization of metal complexes at such low
concentrations limits their cell toxicity. In fact, 4 is well tolerated
by HepG2-CYP3A4 cells (ECso > 50 uM), as judged by a cellular via-
bility assay (Figure 3K, MTT, 72 h). This result provides strong evi-
dence that cell toxicity can be avoided or largely minimized when
Ir(Ill) complexes are used as photosensors at low concentrations
(<10 pMm).

In summary, Ir(lll) compound 4 is a potent and specific inhibitor
that serves as a photosensor for CYP3A4 active site occupancy.
The luminescence of 4 is quenched upon binding to CYP3A4 and

expected to provide a significant advantage over traditional end-
point assays currently used for detection of drug-drug interactions
of CYP3A4 in cells. Another beneficial property of our photosen-
sors is their prolonged luminescence lifetimes, which allows time-
resolved fluorescence measurements for excluding autofluores-
cence, a major problem in bio-imaging that cannot be addressed
with current sensors. Studies are now underway in our laborato-
ries to further develop this class of compounds and utilize Ir(Ill)
photosensors for monitoring CYP3A4 active site occupancy in cel-
lulo.
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TOC Synopsis: Potent and selective Ir(lll)-based CYP3A4 inhibitors were designed and synthesized to act as chemical tools for probing
CYP3A4 active site occupancy. Importantly, our Ir(lll) probes are highly emissive and have long emission lifetimes. Emission of Ir(Ill) be-
comes quenched in the CYP3A4 active site and addition of substrate or inhibitors of CYP3A4 results in emission turn-on.



