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A B S T R A C T   

Cost optimal design of osmotic membrane processes requires an accurate estimate of membrane transport pa
rameters across their full operational range. However, standard approaches for estimating these parameters rely 
on empirical methods, the accuracy of which remains unquantified as a function of temperature, salinity, and 
measurement error. Herein, we present a systematic accuracy analysis of previously developed methods for 
estimation of membrane transport properties in reverse osmosis, high-pressure reverse osmosis, forward osmosis, 
pressure retarded reverse osmosis, and osmotically assisted reverse osmosis. We use a Monte Carlo approach to 
sample the full range of feasible membrane water permeabilities, salt permeabilities, structural parameters, and 
operating conditions for these processes. These material and process parameters are then incorporated into a 
physical transport model for each process. Our analysis shows that the statistical uncertainty of current empirical 
methods for estimating membrane parameters increases by 5 times from low-salinity to high-salinity conditions. 
The result of this work demonstrates that empirical methods are inadequate for precisely estimating membrane 
transport properties at high salinity and highlight a critical need for the development of statistically validated 
higher accuracy methods.   

1. Introduction 

The design of optimal membrane-based desalination systems re
quires accurate estimates of membrane performance across the full 
range of operational salinities and temperatures [1–3]. Extending this 
operational range for enhanced recovery and separation efficiency is a 
design feature of several emerging processes, including osmotically 
assisted reverse osmosis (OARO) [1], cascading osmotically mediated 
reverse osmosis (COMRO) [4], low-salt-rejection reverse osmosis 
(LSSRO) [5], high pressure reverse osmosis (HPRO) [6], closed circuit 
reverse osmosis (CCRO) [7], batch reverse osmosis [8], and forward 
osmosis (FO) [9]. These processes are often designed as multi-stage 
systems, further widening the range of temperature and salinity that 
membranes experience [9]. Accurately estimating the water perme
ability (A), salt permeability (B), and structural parameter (S) of these 
membranes across the range of operating conditions is critical to cost 
optimal process design. 

While membrane parameters are commonly treated as constants in 
process design, transport theory suggests that water and salt perme
ability are a function of solution salinity and temperature. Free volume 

theory states that the transport of water and salt in membrane materials 
increases with an increase in fractional water volume or water uptake by 
the polymer [10,11]. This theory is supported by experimental work 
using positron annihilation lifetime spectroscopy (PALS) which quanti
tatively correlated increase in free volume with increase in polymeric 
membrane water and salt permeability [12–14]. 

Theory also suggests that increased external salt concentration or 
decreased temperature decreases the thermodynamic activity of water 
in the solution and induces osmotic de-swelling of the polymeric 
membrane. The reduced water uptake leads to a decrease in water and 
salt permeability of the membrane [12,15–19]. For charged membrane 
materials, such as polyamide (PA), Donnan theory states that salt 
transport increases with decreases in polymer charge and increases in 
salinity, which screens the polymer charge [19–24]. 

Experimental observations also suggest the transport of water and 
salt in polymers is dependent on salinity and temperature. The effect of 
salinity on transport of water and salt in polymers varies between un
charged and charged polymers [10]. For instance, Jang et al. reported 
that the water uptake in uncharged poly (ethylene glycol diacrylate) 
polymers decreased by 20% when the external NaCl concentration 
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increased from 0 mol/L to 1 mol/L, resulting in a 15% decrease in salt 
permeability [25]. In contrast, Geise et al. reported that the salt 
permeability of charged sulfonated polymers increased by 10 times 
when the polymer water content decreased by 50% when NaCl con
centration increased from 0 mol/L to 1 mol/L [26]. Past work has also 
extensively documented the increase in permeation of water and salt 
permeability with the increase in temperature in reverse osmosis (RO) 
and FO experiments. For instance, Ng et al. observed a ~30% increase in 
water permeance in FO experiment when the ambient temperature rose 
from 30 ◦C to 50 ◦C [27]. Similarly, Goosen et al. reported a ~50% in
crease in water permeance in RO experiment when the feed temperature 
increased from 20 ◦C to 40 ◦C [28]. 

Despite theoretical and experimental evidence that water and salt 
transport parameters are a function of feed water salinity and temper
ature, efforts to rigorously quantify these effects over the operational 
range of emerging processes are incomplete. While relating membrane 
performance to ex-situ structure is standard practice [12,29], we are 
unaware of direct methods for in-situ/operando measurement of mem
brane transport properties. Instead, researchers use indirect 

measurements coupled with empirical methods for approximating 
membrane parameters. The accuracy of these estimates is dependent on 
the completeness of the empirical model, the validity of the model across 
a wide range of salinities and temperatures, and the robustness of the 
empirical method to measurement error. As a result, we have limited 
ability to resolve changes in membrane transport parameters introduced 
by changes in salinity, pressure, or temperature. This resolution is 
particularly limited at high salinities, as evidenced by the inconclusive 
determination of trends in B values with increase in salinity in several 
recent studies [4,30]. 

Current empirical approaches for estimating membrane parameters 
across a wide range of salinities and temperatures suffer several short
comings. When pressure is the sole driving force of the process (i.e., RO, 
CCRO, and batch RO), water permeability (A) and salt permeability (B) 
are calculated by fitting spatially and temporally averaged experimental 
operating conditions (e.g., pressure, flow rate) and measured water flux 
and salt flux to a classic RO mass transport model (Fig. 1A) [31]. This RO 
model assumes that external concentration polarization is either well 
defined by the mass transport model or is negligible due to the inclusion 

Fig. 1. Empirical methods used for estimation of membrane water, salt permeability, and structural parameters in (A) reverse osmosis (RO), (B) forward osmosis 
(FO), pressure retarded reverse osmosis (PRO), and osmotic assisted reverse osmosis (OARO). In RO and HPRO, water and salt permeability coefficients are directly 
calculated using the RO transport model with measured experimental conditions. In FO, PRO, and OARO, a single experiment is divided into multiple stages, each 
using a different concentration of draw/feed solution. The measured water and salt flux in each stage are simultaneously fitted to the respective transport model by 
performing a non-linear regression, using A, B, and S as regression parameters. Method 1 is developed by Tiraferri et al. for FO [33], method 2 is developed by Nagy 
et al. and Bui et al. for FO [34,35], method 3 is developed by Chowdhury et al. and Martin et al. for FO and PRO [36,37]. 
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of a spacer. Rigorous implementations of this approach also account for 
the effect of solute concentration and temperature on solution proper
ties. Despite the well established approach for calculating A and B pa
rameters using the classical RO model, the accuracy of this direct 
calculation method is contingent upon the precise measurement of 
process parameters. Its application is further limited to feed salinities of 
less than ~100 g/L as standard RO systems and membranes are designed 
to operate below ~85 bar. Only recently has work explored significantly 
higher pressures [6,32]. In addition, the spatial and temporal averaged 
values obtained from this approach are only valid if the inlet and outlet 
feed salinities and temperatures are approximately equal. 

Existing methods for measuring A and B parameters in osmotically 
driven membrane processes rely on assumptions that further hinder 
accurate estimates of membrane parameters across a wide range of sa
linities and temperatures. In contrast to RO process, osmotic processes 
need to account for mass transfer resistance in the asymmetric mem
brane support layer, which is captured by the structural parameter (S). 
Reported approaches for FO, pressure retarded reverse osmosis (PRO), 
and OARO require simultaneous estimation of three membrane param
eters. This is achieved by collecting water and salt flux data over several 
different draw/feed solution concentrations [33] and using non-linear 
regression, with A, B, and S as regression parameters, to simulta
neously fit the measured water and salt fluxes for each condition to the 
respective transport model (Fig. 1B) [33]. Unfortunately, these methods 
assume membrane parameters are not a function of salinity, thus 
introducing theoretical inconsistency into the parameter estimates and 
introducing uncertainty into whether these methods can be applied to 
characterize how A and B vary with salinity. 

Reporting of membrane parameters is further complicated by the 
breadth of available empirical methods, the accuracy of which is 
dependent on their underlying assumptions. For example, one of the 
most common methods for estimating FO membrane parameters 
developed by Tiraferri et al. assumes a linear relationship between os
motic pressure and salinity, a constant diffusion coefficient, and negli
gible mass transfer in the feed-membrane boundary layer because DI 
water was used. These assumptions produce inaccurate estimates of 
membrane parameters when this method is applied in concentrated 
solutions [33]. Nagy et al. and Bui et al. proposed a revised method that 
includes both ECPs in the feed- and draw-boundary layers. While this 
modification enhances the validity of the model in non-dilute draw so
lutions [34,35], the method omits any dependence of solution properties 
on salinity and temperature. Chowdhury et al. and Martin et al. address 
this shortcoming by introducing a model that explicitly captures ther
mophysical solution properties as a function of temperature and con
centration [36,37]. 

In addition to the errors introduced by simplifying assumptions, 
uncertainty in experimental measurements can introduce large errors in 
empirical methods. Tiraferri et al. reported the average errors of esti
mated A, B, and S increased to 14% when the errors in flux measure
ments increased to 15% in FO experiments [33]. Our prior work 
demonstrated that errors in measured solution properties and process 
conditions in membrane distillation induced a high degree of uncer
tainty in estimates of membrane permeability and heat transfer rate 
[38]. Explicitly understanding the relationship between measurement 
uncertainty and error of estimated membrane parameters is critical for 
designing experiments that maximize empirical method accuracy. 

In this work, we evaluate the accuracy of the methods for estimating 
membrane parameters in RO/HPRO, FO, PRO, and OARO. We simulate 
membrane processes using standard mass balance models for RO, FO, 
PRO, and OARO. We then compare the effects of methodological and 
experimental error under assumptions of constant A and B to those for 
concentration-dependent A and B parameters generated using Flory- 
Rehner theory, free-volume theory, and Donnan theory. In both cases, 
we assume S is independent of concentration. The sampling ranges of A, 
B, and S parameters are representative of typical and state-of-the-art 
cellulose acetate (CTA) and thin-film-composite polyamide (TFC-PA) 

membranes reported in the literature. In each analysis, we generated 
10,000 datasets of water and salt flux for RO/HPRO, 40,000 datasets of 
water and salt flux for FO, PRO, and OARO. The accuracy and robustness 
of the empirical methods are assessed by analyzing each simulation with 
no error and with varying levels of random errors in measured param
eters. Finally, we evaluate the accuracy of empirical methods in esti
mating A, B, and S in the four osmotic processes with constant and 
concentration-dependent A and B as a function of method complete
ness, feed salinity, and measurement error. 

2. Methods 

2.1. Generation of membrane parameter data 

We generated a set of constant membrane parameters and 
concentration-dependent membrane parameters. The range of constant 
A and B parameters is defined by values reported in the literature 
(Table 1) [2,33] and a Monte-Carlo (MC) approach is used to randomly 
sample this range. The concentration-dependent A and B values are 
generated using Flory-Rehner, free-volume, and Donnan theory [25, 
39–42] (Supplementary Section A). In brief, we use an MC approach to 
sample material properties that include pre-polymerization polymer 
volume, φ1, polymer volume fractions in the swollen state, φ2,w, cross
linking degree, νe, fixed charge concentration, CA

m, active layer thickness, 
h, volume fractions of hydrophilic polymers, φ, the fraction of material 
that behaves as an ideal Donnan ion exchange material, fD, and process 

Table 1 
Parameter ranges used for data set generation.  

Input parameter (unit) Minimum value Maximum 
value 

Membrane properties 
Pre-polymerization polymer volume, φ1 0.9 1 
Polymer volume fractions in the swollen 

state, φ2w 

0.75 0.9 

Crosslinking degree, ve (mmol.cm−3) 1 5 
Fraction of the material that behaves as 

an ideal Donnan ion exchange 
material, fD 

0 1 

Fixed charge concentration, CA
m (eq.L−1) 0 0.5 

Active layer thickness, h (um) 0.1 2 
Volume fractions of hydrophilic 

polymer, ∅hydrophilic 
0.8 1 

Membrane parameter 
Water permeability coefficient, A (L. 

m−2.h−1.bar−1) 
0.1 10 

Salt permeability coefficient, B (L.m−2. 
h−1) 

0.05 1 

Structural parameter, S (μm) 200 5000 
Module design 
Channel height (cm) 1 10 
Length (m) 0.05 0.2 
Operation condition 
Feed inflow rate (L.h−1) 30 80 
Draw inflow rate (L.h−1) 30 80 
Temperature (oC) 10 50 
OARO Feed concentration (g.L−1) 5 300 

Sweep concentration (g. 
L−1) 

1 250 

Feed pressure (bar) 1 65 
PRO Feed concentration (g.L−1) 5 250 

Draw concentration (g. 
L−1) 

10 300 

Feed pressure (bar) 1 65 
FO Feed concentration (g.L−1) 5 250 

Draw concentration (g. 
L−1) 

10 300 

RO/ 
HPRO 

Feed concentration (g.L−1) 1 200 
Feed pressure (bar) Feed Osmotic 

pressure 
300 

1.3 * Osmotic pressure of feed 
concentration  
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conditions including feed concentration and temperature. We then use 
Flory-Rehner theory to estimate water uptake by the polymer for a 
specific operating condition [25,39–42] (Supplementary Section A). 
Water uptake is then used to estimate the water and salt sorption co
efficients and diffusion coefficients based on the free volume theory and 
Donnan theory [25,42–45] (Supplementary Section A). Finally, we use 
these coefficients and the solution-diffusion model to calculate hy
draulic water permeability (A) and salt permeability (B) for the specific 
experimental condition [46,47] (Supplementary Section A). For all 
cases, we sample the S parameter from values normally reported in the 
literature using the MC approach. 

2.2. Generation of process data 

The experimental data for RO/HPRO, FO, PRO, and OARO was 
simulated using the physical mass transport model of each process that is 
described in detail in prior literature and in brief in Supplementary 
Section B. We simulated the full range of operating conditions via 
random selection of input values from a uniform distribution using the 
MC approach (Table 1) [48]. The model input parameters consisted of 
membrane parameters, module design parameters, and operating con
ditions, while the output data included water flux and salt flux (Fig. 2). 
We generated two sets of RO data with different methods for sampling 
applied hydraulic pressure/over pressure (i.e., the pressure over the 
osmotic pressure of feed solution). In the first RO dataset, we randomly 
select over pressure in a range from the estimated osmotic pressure of 
feed solution to 300 bar using a MC approach. In the second RO dataset, 
we use a fixed over pressure that is equal to 1.3 times of osmotic pressure 
of feed solution. We choose a ratio of 1.3 to ensure the maximum applied 
pressure at 200 g/L is close to 300 bar. In both RO/HPRO simulations, 
we only solve the processes where the rejection rate is equal to or larger 
than 99%. We generated a total of 10,000 data sets for RO/HPRO and 
40,000 data sets for FO, PRO, and OARO. Our selected solver was able to 
solve ~90% of randomly generated combinations of input data, termi
nating once the change in water and salt flux was <0.1%. The CDFs of 
the distribution of values are reported in Supplementary Section C 
(Supplementary Figs. S1–S4). 

2.3. Error addition to data sets 

We first evaluate the accuracy of each empirical method without 
error addition. Next, we evaluate the effect of measurement errors on 
the accuracy of empirical estimation methods for RO/HPRO, FO, PRO, 
and OARO processes by adding small or large random errors to a 
selected set of process parameters and simulated flux data (Fig. 2). We 
use ±1% for small errors and ±5% for large errors in concentration, 
flux, flowrate, pressure, Sherwood number, and ±0.5 ◦C for small errors 
and ±2.5 ◦C for large errors in temperature. All errors are randomly 
generated from a uniform distribution and are added to the inputs prior 
to analysis by the methods described above. Each data set is analyzed ten 
times with different errors, expanding the testing data set size from 
10,000 to 100,000 for RO/HPRO and from 40,000 to 400,000 for the 
other processes. 

2.4. Parameter estimation method for RO/HPRO 

We use a standard method to estimate the membrane water and salt 
permeability in RO [49] (Fig. 1A). The concentration at the feed side of 
the membrane is first calculated using Eqn. (1) to account for the effect 
of external concentration polarization (ECP) in the feed-membrane 
boundary layer. Then the membrane water permeability (A) and salt 
permeability (B) are directly calculated using Eqns. (2) and (3): 

Cm,f = Cb,f exp
(

Jw

kf

)

−
Js

Jw

[

exp
(

Jw

kf

)

− 1
]

(1)  

A =
Jw[(

Pf
)

−
(
πm,f

(
Cm,f

)
− πp

(
Cp

))] (2)  

B =
Js(

Cm,f − Cp
) (3)  

Here, Jw is the experimentally measured water flux, Js is the experi
mentally measured salt flux, Cb,f is the bulk feed salt concentration, kf is 
the mass transfer coefficient, Pf is the hydraulic feed pressure, πm,f is the 
osmotic pressure at the feed-membrane interface, πm,p is osmotic pres
sure in the permeate, and Cp is the salt concentration in permeate. 

Another widely used method for experimentally characterizing RO 

Fig. 2. Proposed framework for data simulation and error analysis. The process data for RO, HPRO, FO, PRO, and OARO is simulated using the physical mass 
transport model (i.e., solution-diffusion model) of each process that balances the mass transfer across the membrane. Two sets of process data are generated, one with 
constant membrane parameters and the other with concentration-dependent membrane parameters. In the first dataset, the inputs into the model are sampled using a 
Monte Carlo approach, where membrane parameters and process parameters are varied across a bounded range shown in Table 1. In the second dataset, the 
concentration-dependent membrane parameters are first generated using Flory-Rehner, free-volume, and Donnan theory from membrane properties and operating 
conditions that are sampled using a Monte Carlo approach. The calculated membrane parameters and process parameters are then used as inputs into the physical 
model to simulate the process data. The simulated results and the original process parameters with no error and with varying levels of random errors added in one or 
more inputs are used to estimate membrane parameters using empirical methods. The accuracy of each empirical method is assessed by comparing the difference 
between the predicted membrane parameters and the original membrane parameter inputs. 
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membrane parameters assumes A is pure water permeability, which is 
constant across the salinity range. The membrane is first tested using DI 
water as feed, and water permeability is determined by dividing the 
water flux (Jw) by the applied pressure (ΔP) (Eqn. (4)). The membrane is 
then tested using a saline feed, and salt permeability is calculated from 
the rejection rate (R = 1- Cp/Cf), water flux, and mass transfer coefficient 
(kf), as shown in Eqn. (5): 

A =
Jw

ΔP
(4)  

B = Jw
1 − R

R
exp

(

−
Jw

kf

)

(5) 

Despite its broad usage to determine A and B of RO membranes in 
lab-scale RO experiment, this method does not enable the character
ization of A parameters as a function of salinity. Therefore, we will not 
include this method in this analysis. 

2.5. Parameter estimation method for FO, PRO, and OARO 

We perform error analysis on three previously reported empirical 
methods for estimating membrane parameters in FO or PRO (Fig. 1B). 
These methods also apply to the OARO process. Details of these methods 
are described in Supplementary Section D (Supplementary Fig. S5). We 
use a standard differential evolution solver in Scipy to fit a group of four 
experimental conditions to each empirical method, using A, B, and S as 
regression parameters [50]. The solver minimizes the normalized dif
ference between estimated and measured fluxes as shown in Eqn. (6) and 
originally proposed by Tiraferri et al. [33]: 

E = Ew + Es =
∑n

i=1

(
Jest

w,i − Jinput
w,i

Jinput
w,i

)2

+
∑n

i=1

(
Jest

s,i − Jinput
s,i

Jinput
s,i

)2

(6)  

Where n is the number of stages and equal to 4 in this study, Jinput
w,i is the 

mean water flux of the four input water fluxes and Jinput
s,i is the mean salt 

flux of the four input salt fluxes. The error at each stage was scaled by the 
mean input so that each term in Eqn. (6) is weighted equally. 

The goodness of the fit was checked using the coefficient of deter
mination as shown in Eqn. (7) and absolute error between the estimated 
water/salt flux and corresponding input water/salt flux as shown in Eqn. 
(8) [33]. Our selected solver was able to solve ~85% of randomly 
generated combinations of input data where the coefficient of deter
mination is larger than 0.95 and the absolute error in water/salt flux is 
less than 0.1%. The rejection of false solutions leads to a non-uniform 
distribution of some of the input parameters and output values. The 
CDFs of the distributions of values are shown in Supplementary 
Figs. S1–S4. 

R2
w = 1 −

Serr,w

STOT,w
= 1 −

∑n
i=1

(
Jest

w,i − Jinput
w,i

)2

∑n
i=1

(
Jinput

w,i − Jinput
w,i

)2 (7)  

Errabs,w,i =

⃒
⃒
⃒
⃒
⃒

Jest
w,i − Jinput

w,i

Jinput
w,i

⃒
⃒
⃒
⃒
⃒

× 100% (8)  

2.6. Analysis of empirical method accuracy 

We analyze the accuracy of the empirical estimation methods used in 
RO/HPRO, FO, PRO, and OARO by comparing the estimated membrane 
parameters solved by each method with those used in the physical 
models to generate operational data (Fig. 2). In the case of constant 
membrane parameters, the error is calculated as the difference between 
the estimated values and original input as shown in Eqn. (9). 

Errabs,X =

⃒
⃒Xest − Xinput

⃒
⃒

Xinput × 100% (9) 

Here, Xest is the estimated membrane parameter (i.e., A, B and S). 
In the case of concentration-dependent membrane parameters, the 

error calculation for the RO/HPRO method is also using Eqn. (9). For the 
method of FO, PRO, and OARO, the error is calculated as the difference 
between the estimates and the mean of the four input membrane water 
permeabilities and salt permeabilities (each is corresponding to one of 
four stages of experimental measurements) as shown in Eqn. (10). 

Errabs,X =
|Xest − Xinput

⃒
⃒

Xinput
× 100% (10) 

Here, Xinput is the input membrane parameter (i.e., A and B), and Xinput 

is the mean of the four values of the input membrane parameters across 
the simulated experimental conditions. 

We group the data in the concentration range from 0 to 50 g/L as the 
low concentration range for all processes, 150–200 g/L as the high 
concentration range for HPRO, and 250–300 g/L as the high concen
tration range for FO, PRO, and OARO. We report the median error and 
95th percentile error of estimated membrane parameters as a function of 
the osmotic process, method sophistication, concentration range, and 
the error level in input parameters. The median error represents the 
middle value of the errors in all estimated membrane parameters, and 
the 95th percentile error represents the value that marks the statistical 
point where 95% of the errors in estimates are below it. (Supplementary 
Fig. S6). 

3. Results and discussion 

Most work assumes that the water and salt permeability of mem
brane materials remains constant across the operational salinity range of 
a membrane process. While this simplifying assumption introduces 
minimal error in steady state RO systems treating brackish or seawater 
feed streams, theory suggests the potential for large deviations in A and 
B values when membranes are deployed to concentrate brines to high 
salinities. Accurately estimating the water permeability and salt 
permeability of membranes across a broad range of concentrations is 
thus critical for optimizing the design and operation of emerging high 
salinity and non-steady state desalination processes. 

We begin by reviewing theoretical predictions of the effect of salinity 
and temperature on A and B parameters. Next, we evaluate the accuracy 
of existing empirical methods for calculating A and B parameters in RO/ 
HPRO and A, B, and S parameters in FO, PRO, and OARO processes. The 
accuracy is evaluated without error in experimental measurements and 
with the addition of low and high levels of error in the experimental 
measurements of selected process parameters. This analysis allows us to 
differentiate between methodological error, namely the effects of 
simplifying assumptions and empirical approach, and measurement 
error, on the accuracy of each empirical method for estimating A and B, 
or A, B, and S. 

3.1. Effect of salinity and temperature on membrane water and salt 
permeability 

Transport of water and salt in polymer membranes is primarily 
dictated by the free volume of water and electrostatic interactions be
tween the dissolved ion and the polymer [10,51,52]. The free volume of 
water typically decreases as the external salt concentration increases 
due to osmotic deswelling [10,21,53]. This change in water uptake is 
also mediated by temperature, where an increase in temperature in
creases the activity coefficient of water and water uptake by the poly
meric material (Fig. 3A). 

A decrease in water uptake decreases the water and salt permeability 
of polymeric membranes. Experimental observations suggest that CTA 
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and TFC-PA polymeric membranes absorb as much as 10%–22% by 
weight of water in a deionized condition [42,45,54]. The Flory-Rehner 
theory predicts a decrease in water uptake of as much as 10% as 
salinity approaches the crystallization point of NaCl (Fig. 3A). In CTA 
membranes, this 10% decrease in water uptake could reduce water and 
salt permeability by as much as 25% and 50%, respectively (Fig. 3 B, C). 

For charged TFC-PA membranes, the salt permeability is both a 
function of water uptake and polymer charge. This results in a non- 
monotonic change of B with increasing salt concentration (Fig. 3D). At 
low salinities, the fixed charge groups of the membrane limit mobile ion 
transport through electrostatic repulsion, commonly known as Donnan 
exclusion [44,45,55]. As salinity increases, ions screen the effective 
polymer charge and weaken the effect of Donnan exclusion, resulting in 
an increase in salt permeability. When the effective polymer charge is 
completely screened, charged polymer membranes behave like un
charged membranes where ion transport becomes governed by ion 
diffusion through the free water volume of the polymer. High salinity 
decreases free volume of the polymer, decreasing salt permeability [44]. 

3.2. Accuracy of empirical methods of membrane parameter estimation in 
RO 

We evaluate the accuracy of the empirical method for estimating A 
and B parameters in steady-state RO/HPRO processes with fixed over 
pressure (Fig. 4) and random over pressure (Supplementary Fig. S7). The 
accuracy of the empirical method depends both on the error introduced 
by the methodological approach and the error introduced by inaccura
cies in experimental measurements. We evaluate the effect of method 
error and the effect of imprecise measurement by analyzing the errors in 
estimated membrane parameters solved by the RO method with no 

random error and with varying levels of random errors in measured 
parameters, respectively. 

We find that the methodological error in the RO/HPRO empirical 
method for A and B estimation is low. When no random errors are added 
to measurement, the method accurately estimated constant and 
concentration-dependent A and B values across the full salinity range 
with median and 95th percentile errors of less than 0.1% (Fig. 4 and 
Supplementary Fig. S7). 

While the methodological error is low, the direct estimation method 
for water permeability and salt permeability in RO/HPRO process is 
prone to random error in experimental measurements, especially under 
high salinity conditions (Fig. 4 and Supplementary Fig. S7). When 
random large errors are introduced to the measured parameters in low 
salinity case, the median errors in estimated constant A and B parame
ters increased to 22% and 3%, respectively, and the 95th percentile 
errors increased to 147% and 7.9%, respectively. In high salinity cases, 
the median errors in A further increased to 57% and the 95th percentile 
errors increased to 352%. The errors in B remain nearly constant in both 
salinity cases. 

The effect of large random measurement errors further increased for 
concentration-dependent A, where median errors for high salinity cases 
are 63% and 95th percentile errors are 374%. Increasing applied over 
pressure decreases the impact of measurement errors on the uncertainty 
of the estimated A parameter (Supplementary Fig. S7). While a more 
mechanistic explanation will be provided later in Section 3.5, the high 
uncertainty of the RO method in high salinity conditions far exceeds the 
theoretically predicted change of A and B across the relevant salinity 
range (Fig. 3B–D). Thus, the RO method is insufficient for capturing the 
dependence of A and B on salinity, with the method performing espe
cially poorly in the high salinity range. 

Fig. 3. (A) Normalized water uptake, (B) normalized water permeability coefficient, normalized salt permeability coefficient for (C) uncharged and (D) 
charged membrane. Membranes with increasing equilibrium water uptake, 0.15, 0.2, and 0.25 in DI water, are simulated across the full salinity range (0–300 g/L) 
at different temperatures (10 ◦C, 20 ◦C, 40 ◦C). 
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3.3. Accuracy of empirical methods of membrane parameter estimation in 
FO 

The typical operating pressure of RO membranes (<80 bar) pre
cludes the application of direct methods for determining A and B at 
concentrations exceeding ~ 85 g/L. To circumvent this constraint, 
several empirical methods have been developed for estimating A and B 

parameters from water and salt flux data collected in FO processes. In 
addition, these methods consider the transport resistance of the support 
layer, which is described using a structural parameter, S. As discussed in 
the introduction and summarized in Fig. 1, these methods make 
different sets of simplifying assumptions that influence their methodo
logical accuracy (Fig. 4). 

The accuracy of the three methods in estimating the physical model 

Fig. 4. Heatmap of the median and 95th percentile error predictions on simulated datasets for (A) constant or (B) concentration-dependent membrane 
transport parameters in RO/HPRO, FO, PRO, and OARO. The X-axis shows the level of error added to all input parameters and concentration range. The low 
concentration range is 0–50 g/L for all processes, and the high concentration range is 150–200 g/L for HPRO, and 250–300 g/L for the rest. The Y-axis denotes the 
osmotic membrane process, and the corresponding method for each process, the minor labels show the membrane parameters estimated by the method. The median 
error represents the middle value of all errors in the estimated membrane parameter in the concentration range, and the 95th percentile error represents the statistical 
point at which 95% of all errors in estimates are below the reference value in the concentration range. Blue colors indicate a low error in estimated values and red 
colors indicate a high error in estimated values. The method with high accuracy in predicting membrane parameters will have blue colors (low errors) in its results, 
whereas a method with poor accuracy will have high errors in its predictions (red colors). (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article). 
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parameters varies substantially across the three methods. Our results 
suggest that fully accounting for the thermophysical properties of the 
solution is critical to accurately estimating membrane parameters 
(Fig. 4). The method with the highest accuracy (M3), derived by 
Chowdhury et al. and Martin et al., estimated membrane parameters 
with errors <5% in the absence of random measurement error. This 
method (M3) included all thermophysical solution properties and ECP 
layers that form in osmotically assisted processes. In contrast, simpler 
methods (M1) developed by Tiraferri et al., and (M2) derived by Nagy 
et al. and Bui et al. assumed constant solution properties and had errors 
averaging 10–20 times higher than M3. 

Critically, these results suggest that current methods are insuffi
ciently precise for resolving changes in A, B, and S with increasing 
salinity. Free volume theory predicts a maximum expected change in A 
and B of 25% and 50%, respectively. The most accurate FO method, M3, 
however, has a median error of 10% and 95th percentile errors as high as 
50% when large measurement errors are introduced to the inputs. This 
magnitude of error makes it impossible to differentiate measurement 
error from actual changes in membrane parameters. Only for charged 
membranes at concentrations of less than 50 g/L, where the change in B 
is 200–300%, is the effect of salinity potentially resolvable using M3. 

3.4. Effect of salinity on the accuracy of empirical methods 

The error in estimated water permeability increases with increasing 
concentration in RO/HPRO due to the decrease in effective driving 
force, whereas the error in estimated salt permeability is minimally 
affected by the change of effective driving force. In low salinity condi
tions, the osmotic pressure at the membrane surface is similar to that of 
the bulk (Fig. 5A), and error in most measured parameters negligibly 
impacts the estimates of osmotic pressure at the membrane surface. At 
high feedwater salinities, however, the osmotic pressure at the mem
brane surface can approach or exceed the applied hydraulic pressure. 
Even if external concentration polarization is minimal, minor errors in 
bulk concentration or pressure directly and significantly impact the 
calculation of effective driving force and water permeability (Supple
mentary Fig. S8A). In contrast, the error in estimated salt permeability is 
determined by the estimated salt concentration at the membrane surface 
(Cf,m) and the permeate concentration (Cp). The impact of random errors 
in measurement on estimated Cf,m is less significant across the salinity 
range (Supplementary Fig. S8B). Meanwhile, an increased concentration 
gradient across the membrane (or high salt flux) with salinity mitigates 
the effect of random errors in salt concentration on the accuracy of 
estimating B parameter at high salinity conditions (Fig. 5A). 

Errors in estimated water and salt permeability increase with salt 
concentration in the FO process, whereas errors in estimated structural 
parameters slightly decrease with the increase in salt concentration 
(Fig. 4). In FO, increasing draw solution concentration increases the 
osmotic pressure difference (or effective driving force) across the 
membrane, leading to increased water permeation and more severe 

external and internal concentration polarization. Under these condi
tions, estimates of salt concentration at the membrane surface are 
particularly susceptible to bulk concentration measurement errors 
(Fig. 5B), propagating to poor estimates of the driving force, A, and B 
parameters. The S parameter, in contrast, is estimated from the con
centration gradient across the support layer. The magnitude of this 
concentration gradient increases with salinity, thus decreasing the 
impact of random error on its estimate (Fig. 5B). The same conclusion 
applies to PRO and OARO (Supplementary Fig. S9). 

3.5. Effect of individual input error on the accuracy of empirical methods 

This analysis is also valuable for identifying experimental errors that 
adversely impact the estimation accuracy of empirical methods and 
prioritizing improvements to experimental measurement approaches. 

Errors in bulk concentration measurements have the largest impact 
on estimation accuracy because it directly impacts estimates of the os
motic pressure and the effective driving force. For example, a ±5% error 
in measured bulk concentration can induce up to 58% and 2.1% errors in 
A and B parameters, respectively, using the RO method (Fig. 6A and B), 
and 2.5% and 2.4% errors in A and B parameters, respectively, using the 
FO method (Fig. 6C and D). Errors in measured bulk concentration come 
from multiple sources. When the bulk concentration is solely determined 
from solution preparation, the accuracy of weighing scales of ±0.1% for 
lab-scale measurements, and the accuracy of volume measurement of 
±1% to ±5% for graduated cylinders or beakers can propagate to ±1% 
to ±5% error in measured concentration [56,57]. Evaporation from the 
system can also lead to errors over long experimental time periods. In 
contrast, if the bulk concentration is determined by a conductivity 
meter, errors in bulk concentration can be reduced to ±1% when the 
conductivity meter is properly calibrated over the full salinity range. 
Note that use of an improperly calibrated conductivity probe, the failure 
to simultaneously monitor temperature, and other instances of improper 
experimental protocol are not accounted for in our analysis. The 
imperative of high precision concentration measurements leads to the 
recommendation that research groups use properly calibrated conduc
tivity meters coupled with temperature monitoring or a temperature 
control system. 

The accuracy of estimated A parameters is also highly dependent on 
accurate pressure measurements. The standard method estimates the 
salt concentration on the membrane surface using the film model from 
measured water flux, salt flux, and bulk concentration (Eqn. (1)). Next, 
A and B are separately determined by estimating the driving force and 
concentration difference across the membrane (Eqns. (2) and (3)). As a 
result, the measured pressure is only used in the calculation of the A 
parameter. As shown in our analysis, a 5% error in pressure can lead to 
19% and 46% errors in A in low and high salinity conditions, respec
tively (Fig. 6A). The error of pressure measurement directly comes from 
the resolution of the pressure gauge. Therefore, the use of high precision 
digital pressure gauges with an accuracy of±0.05% of span is essential 

Fig. 5. Range of simulated concentration differ
ences across the membrane and support layer as a 
function of bulk feed concentration (without 
added input errors). (A) Concentration difference 
between membrane surface (Cm,f) and bulk (Cf), and 
concentration gradient across the membrane (Cm,f – 
Cp) in RO with a fixed over pressure. (B) Concentra
tion difference between membrane surface (Cm,f) and 
bulk (Cf) in FO (blue), and concentration gradient 
across the support membrane (Cm,s – Cm,d) in FO 
(orange). The top and bottom of the box represent 
25th percentile and 75th percentile values, and the 
high and low whiskers represent the 5th and 95th 

percentile differences in concentration. The line and 
numerical value inside the box represent the median 

concentration difference. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article).   
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for minimizing the errors from pressure readings. 
The third highest impact was observed for measurement errors in 

permeate and salt flux, as they are used to directly estimate the A, B, and 
S parameters. The potential sources of error in water flux measurement 
primarily stem from the weight measurement of permeate, which is 
affected by the accuracy of the weighing scale and actual mass flux from 
the module. Error in the salt flux is more complicated, as it is estimated 
from changes in concentration over time (determined using a conduc
tivity meter, the accuracy of which is typically ±1% [58], but needs to 
be properly calibrated over the full salinity and temperature range of the 
experiments as described above), water flux, volume measurement of 
the initial feed solution, and membrane area. For example, a 1% error in 
each of the parameters results in an average salt flux error of approxi
mately 9%. As shown in our analysis, a 5% error in water or salt flux can 
result in 18% and 2% errors in estimated water permeability in RO and 
FO system, respectively, and 2.5% and 2.9% error in estimated salt 
permeability in RO and FO system, respectively (Fig. 6). Regular cali
bration of the weighing scale, timer, and conductivity meter, combined 
with automated data logging system will minimize the effect of random 
errors in these measurements. 

Finally, each of the methods assessed in this work requires ex-situ 
measurement of Sherwood number in the flow cell. Sherwood number 
correlations derived for a specific cell often have errors as high as 5%, 
however application of Sherwood number correlations outside that 
specific cell can lead to much larger errors in the estimate of mass 
transport (often on the order of 20–50%) even when using same hy
draulic diameter and module length [59–61]. Fortunately, the effect on 
estimates of A and B are relatively insensitive to error of up-to 5% at low 
concentrations, though the impact grows as the salinity of the feed in
creases. Similarly, errors in temperature measurement and flowrate 
measurement have only moderate effects on the accuracy of most 
membrane parameter estimates. An exception is the impact of large 
errors in temperature in RO/HPRO at high salinities on estimated A 
parameter. This is caused by the uncertainty of effective driving force at 
high salinities due to the variation in estimated osmotic pressure influ
enced by temperature errors. Despite the small influence of Sherwood 
number and temperature on estimated membrane parameters at low 
salinity, the larger effect at high salinity necessitates high resolution 
measurement of temperature and crossflow rates using high precision 
thermometers and flowmeters. 

4. Conclusion 

We have presented a systematic accuracy analysis of empirical 
methods in estimating membrane parameters in four osmotic processes 
including RO/HPRO, FO, PRO, and OARO, with constant and 
concentration-dependent water and salt permeability across the full 
salinity range. The results of our analysis suggest that the direct calcu
lation method in RO is the least accurate method for estimating mem
brane parameters due to this method’s high sensitivity to experimental 
measurement errors. The adoption of a multistage measurement strategy 
and the inclusion of solution thermophysical properties in empirical 
models built on FO, PRO and OARO process significantly improve the 
accuracy of A and B parameter estimates. 

We also find that the errors in the estimates of membrane parameters 
increase with increasing feed salinity. This error stems from the diffi
culty of accurately estimating the salt concentration at the membrane 
surface and, thus, the effective driving force. Here, uncertainty from 
concentration and pressure measurements has the greatest impact on the 
accuracy of estimated parameters because they directly influence the 
calculation of driving force. Therefore, we recommend researchers use 
regularly calibrated high-precision measurement tools and an auto
mated data logging system in order to minimize the effect of random 
errors in these measurements. 

Even the most complete method for estimating A, B, and S parame
ters at high salinities exhibits impractically large errors. Median errors 
exceed 10%, while the 5th to 95th percentile error range exceeds 40%. 
Theoretically predicted A and B change up to 25% and 50% from 
seawater level to near crystallization point of NaCl for state-of-the-art 
desalination membranes. If membrane parameters are a function of 
salinity, these error estimates increase to 20% and 60% for the median 
and 5th to 95th percentile ranges, respectively. This uncertainty in the 
true values of A and B makes it exceedingly difficult to resolve the actual 
effects of feedwater salinity on membrane parameters and assure the 
performance of membranes in high salinity process applications. Direct 
or higher accuracy empirical methods must be developed to fully 
quantify the effect of operating conditions on membrane transport 
properties. 
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[11] O. Coronell, B.J. Mariñas, X. Zhang, D.G. Cahill, Quantification of functional 
groups and modeling of their ionization behavior in the active layer of FT30 
reverse osmosis membrane, Environ. Sci. Technol. 42 (2008) 5260–5266, https:// 
doi.org/10.1021/es8002712. 

[12] W. Xie, H. Ju, G.M. Geise, B.D. Freeman, J.I. Mardel, A.J. Hill, J.E. McGrath, Effect 
of free volume on water and salt transport properties in directly copolymerized 
disulfonated poly(arylene ether sulfone) random copolymers, Macromolecules 44 
(2011) 4428–4438, https://doi.org/10.1021/ma102745s. 

[13] T. Fujioka, N. Oshima, R. Suzuki, W.E. Price, L.D. Nghiem, Probing the internal 
structure of reverse osmosis membranes by positron annihilation spectroscopy: 
gaining more insight into the transport of water and small solutes, J. Membr. Sci. 
486 (2015) 106–118, https://doi.org/10.1016/j.memsci.2015.02.007. 
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