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Cost optimal design of osmotic membrane processes requires an accurate estimate of membrane transport pa-
rameters across their full operational range. However, standard approaches for estimating these parameters rely
on empirical methods, the accuracy of which remains unquantified as a function of temperature, salinity, and
measurement error. Herein, we present a systematic accuracy analysis of previously developed methods for
estimation of membrane transport properties in reverse osmosis, high-pressure reverse osmosis, forward osmosis,
pressure retarded reverse osmosis, and osmotically assisted reverse osmosis. We use a Monte Carlo approach to
sample the full range of feasible membrane water permeabilities, salt permeabilities, structural parameters, and
operating conditions for these processes. These material and process parameters are then incorporated into a
physical transport model for each process. Our analysis shows that the statistical uncertainty of current empirical
methods for estimating membrane parameters increases by 5 times from low-salinity to high-salinity conditions.
The result of this work demonstrates that empirical methods are inadequate for precisely estimating membrane
transport properties at high salinity and highlight a critical need for the development of statistically validated

higher accuracy methods.

1. Introduction

The design of optimal membrane-based desalination systems re-
quires accurate estimates of membrane performance across the full
range of operational salinities and temperatures [1-3]. Extending this
operational range for enhanced recovery and separation efficiency is a
design feature of several emerging processes, including osmotically
assisted reverse osmosis (OARO) [1], cascading osmotically mediated
reverse osmosis (COMRO) [4], low-salt-rejection reverse osmosis
(LSSRO) [5], high pressure reverse osmosis (HPRO) [6], closed circuit
reverse osmosis (CCRO) [7], batch reverse osmosis [8], and forward
osmosis (FO) [9]. These processes are often designed as multi-stage
systems, further widening the range of temperature and salinity that
membranes experience [9]. Accurately estimating the water perme-
ability (A), salt permeability (B), and structural parameter (S) of these
membranes across the range of operating conditions is critical to cost
optimal process design.

While membrane parameters are commonly treated as constants in
process design, transport theory suggests that water and salt perme-
ability are a function of solution salinity and temperature. Free volume
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theory states that the transport of water and salt in membrane materials
increases with an increase in fractional water volume or water uptake by
the polymer [10,11]. This theory is supported by experimental work
using positron annihilation lifetime spectroscopy (PALS) which quanti-
tatively correlated increase in free volume with increase in polymeric
membrane water and salt permeability [12-14].

Theory also suggests that increased external salt concentration or
decreased temperature decreases the thermodynamic activity of water
in the solution and induces osmotic de-swelling of the polymeric
membrane. The reduced water uptake leads to a decrease in water and
salt permeability of the membrane [12,15-19]. For charged membrane
materials, such as polyamide (PA), Donnan theory states that salt
transport increases with decreases in polymer charge and increases in
salinity, which screens the polymer charge [19-24].

Experimental observations also suggest the transport of water and
salt in polymers is dependent on salinity and temperature. The effect of
salinity on transport of water and salt in polymers varies between un-
charged and charged polymers [10]. For instance, Jang et al. reported
that the water uptake in uncharged poly (ethylene glycol diacrylate)
polymers decreased by 20% when the external NaCl concentration
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increased from 0 mol/L to 1 mol/L, resulting in a 15% decrease in salt
permeability [25]. In contrast, Geise et al. reported that the salt
permeability of charged sulfonated polymers increased by 10 times
when the polymer water content decreased by 50% when NaCl con-
centration increased from 0 mol/L to 1 mol/L [26]. Past work has also
extensively documented the increase in permeation of water and salt
permeability with the increase in temperature in reverse osmosis (RO)
and FO experiments. For instance, Ng et al. observed a ~30% increase in
water permeance in FO experiment when the ambient temperature rose
from 30 °C to 50 °C [27]. Similarly, Goosen et al. reported a ~50% in-
crease in water permeance in RO experiment when the feed temperature
increased from 20 °C to 40 °C [28].

Despite theoretical and experimental evidence that water and salt
transport parameters are a function of feed water salinity and temper-
ature, efforts to rigorously quantify these effects over the operational
range of emerging processes are incomplete. While relating membrane
performance to ex-situ structure is standard practice [12,29], we are
unaware of direct methods for in-situ/operando measurement of mem-
brane transport properties. Instead, researchers use indirect
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measurements coupled with empirical methods for approximating
membrane parameters. The accuracy of these estimates is dependent on
the completeness of the empirical model, the validity of the model across
a wide range of salinities and temperatures, and the robustness of the
empirical method to measurement error. As a result, we have limited
ability to resolve changes in membrane transport parameters introduced
by changes in salinity, pressure, or temperature. This resolution is
particularly limited at high salinities, as evidenced by the inconclusive
determination of trends in B values with increase in salinity in several
recent studies [4,30].

Current empirical approaches for estimating membrane parameters
across a wide range of salinities and temperatures suffer several short-
comings. When pressure is the sole driving force of the process (i.e., RO,
CCRO, and batch RO), water permeability (A) and salt permeability (B)
are calculated by fitting spatially and temporally averaged experimental
operating conditions (e.g., pressure, flow rate) and measured water flux
and salt flux to a classic RO mass transport model (Fig. 1A) [31]. This RO
model assumes that external concentration polarization is either well
defined by the mass transport model or is negligible due to the inclusion

: membrane water permeability

: membrane salt permeability

: salt concentration

: salt concentration of feed solution

D)

00000 W™

: diffusion coefficient
: flow cell height

SN

: salt concentration of permeate solution
: salt concentration of sweep solution

: flow cell length

: crossflow rate

: water flux

: salt flux

: pressure on the feed solution

: membrane structural parameter
: temperature

: osmotic pressure

SIENEON RS,

Osmotic membrane

Measured Membrane

process Empirical analysis method quantities parameters Assumptions
(A) Reverse osmosis ! I I I EcCP
| Direct calculation | cc I | I 1. ECP
J, I of Aand B using I pE 1 Je 2. Solution
J, | RO transport model | d’ L’ | AB | Y. e properties are
P, | with measured LSy I | _/ mf a function
& | experimental conditions I wos I | C,— \ c of Cand T
= r I I | I =
(B) Forward osmosis ! . : . ECP_ Method 1:
. : : Vg3 1.1CP
J ' . : by < 2.ECP
d | I | | : — 3. D = constant
J :
: | X o | | I C 4 —/ Cy 4. 1 linearly
> | = A | | t proportional to C
g=C I8 > | | IcP
(1] c
P %
ressol;r:“l;zt'arded | s | 6 =p | | ECP_ECP Method 2:
IS | | d,1 d,n | |
: I CM-- C,’n | : J, = ; 1. ICP
J, P.F J, 4 : 2. ECP
J | I 4L | ABS | : C  3.D =constant
s h . _/ H Cd
P, | g, =d,, ! I C+ E 4. m linearly
| 1 J_-J_ | | B roportional to C
C,>C | Multiple water and salt fluxes | > " | | ICP s
. : measured using different -
?:‘2?2: ::::(s)t;g I feed/draw concentrations are I | I ECP_ECP I:/Ie;tggd 3:
: simultaneously fitted to . : . J, = » 2 ECP
J, I the transport model by I ! I J + : 3' Soluti
J, | performing a non-linear | I | LA i at}on
P, I regression, using A, B and I [ I C,—4 g::pae fulﬁztion
| S as regression parameters | | 1 ey el
¢,>C, ; J : | ; { ICP of Cand T

Fig. 1. Empirical methods used for estimation of membrane water, salt permeability, and structural parameters in (A) reverse osmosis (RO), (B) forward osmosis
(FO), pressure retarded reverse osmosis (PRO), and osmotic assisted reverse osmosis (OARO). In RO and HPRO, water and salt permeability coefficients are directly
calculated using the RO transport model with measured experimental conditions. In FO, PRO, and OARO, a single experiment is divided into multiple stages, each
using a different concentration of draw/feed solution. The measured water and salt flux in each stage are simultaneously fitted to the respective transport model by
performing a non-linear regression, using A, B, and S as regression parameters. Method 1 is developed by Tiraferri et al. for FO [33], method 2 is developed by Nagy
et al. and Bui et al. for FO [34,35], method 3 is developed by Chowdhury et al. and Martin et al. for FO and PRO [36,37].
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of a spacer. Rigorous implementations of this approach also account for
the effect of solute concentration and temperature on solution proper-
ties. Despite the well established approach for calculating A and B pa-
rameters using the classical RO model, the accuracy of this direct
calculation method is contingent upon the precise measurement of
process parameters. Its application is further limited to feed salinities of
less than ~100 g/L as standard RO systems and membranes are designed
to operate below ~85 bar. Only recently has work explored significantly
higher pressures [6,32]. In addition, the spatial and temporal averaged
values obtained from this approach are only valid if the inlet and outlet
feed salinities and temperatures are approximately equal.

Existing methods for measuring A and B parameters in osmotically
driven membrane processes rely on assumptions that further hinder
accurate estimates of membrane parameters across a wide range of sa-
linities and temperatures. In contrast to RO process, osmotic processes
need to account for mass transfer resistance in the asymmetric mem-
brane support layer, which is captured by the structural parameter (S).
Reported approaches for FO, pressure retarded reverse osmosis (PRO),
and OARO require simultaneous estimation of three membrane param-
eters. This is achieved by collecting water and salt flux data over several
different draw/feed solution concentrations [33] and using non-linear
regression, with A, B, and S as regression parameters, to simulta-
neously fit the measured water and salt fluxes for each condition to the
respective transport model (Fig. 1B) [33]. Unfortunately, these methods
assume membrane parameters are not a function of salinity, thus
introducing theoretical inconsistency into the parameter estimates and
introducing uncertainty into whether these methods can be applied to
characterize how A and B vary with salinity.

Reporting of membrane parameters is further complicated by the
breadth of available empirical methods, the accuracy of which is
dependent on their underlying assumptions. For example, one of the
most common methods for estimating FO membrane parameters
developed by Tiraferri et al. assumes a linear relationship between os-
motic pressure and salinity, a constant diffusion coefficient, and negli-
gible mass transfer in the feed-membrane boundary layer because DI
water was used. These assumptions produce inaccurate estimates of
membrane parameters when this method is applied in concentrated
solutions [33]. Nagy et al. and Bui et al. proposed a revised method that
includes both ECPs in the feed- and draw-boundary layers. While this
modification enhances the validity of the model in non-dilute draw so-
lutions [34,35], the method omits any dependence of solution properties
on salinity and temperature. Chowdhury et al. and Martin et al. address
this shortcoming by introducing a model that explicitly captures ther-
mophysical solution properties as a function of temperature and con-
centration [36,37].

In addition to the errors introduced by simplifying assumptions,
uncertainty in experimental measurements can introduce large errors in
empirical methods. Tiraferri et al. reported the average errors of esti-
mated A, B, and S increased to 14% when the errors in flux measure-
ments increased to 15% in FO experiments [33]. Our prior work
demonstrated that errors in measured solution properties and process
conditions in membrane distillation induced a high degree of uncer-
tainty in estimates of membrane permeability and heat transfer rate
[38]. Explicitly understanding the relationship between measurement
uncertainty and error of estimated membrane parameters is critical for
designing experiments that maximize empirical method accuracy.

In this work, we evaluate the accuracy of the methods for estimating
membrane parameters in RO/HPRO, FO, PRO, and OARO. We simulate
membrane processes using standard mass balance models for RO, FO,
PRO, and OARO. We then compare the effects of methodological and
experimental error under assumptions of constant A and B to those for
concentration-dependent A and B parameters generated using Flory-
Rehner theory, free-volume theory, and Donnan theory. In both cases,
we assume S is independent of concentration. The sampling ranges of A,
B, and S parameters are representative of typical and state-of-the-art
cellulose acetate (CTA) and thin-film-composite polyamide (TFC-PA)
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membranes reported in the literature. In each analysis, we generated
10,000 datasets of water and salt flux for RO/HPRO, 40,000 datasets of
water and salt flux for FO, PRO, and OARO. The accuracy and robustness
of the empirical methods are assessed by analyzing each simulation with
no error and with varying levels of random errors in measured param-
eters. Finally, we evaluate the accuracy of empirical methods in esti-
mating A, B, and S in the four osmotic processes with constant and
concentration-dependent A and B as a function of method complete-
ness, feed salinity, and measurement error.

2. Methods
2.1. Generation of membrane parameter data

We generated a set of constant membrane parameters and
concentration-dependent membrane parameters. The range of constant
A and B parameters is defined by values reported in the literature
(Table 1) [2,33] and a Monte-Carlo (MC) approach is used to randomly
sample this range. The concentration-dependent A and B values are
generated using Flory-Rehner, free-volume, and Donnan theory [25,
39-42] (Supplementary Section A). In brief, we use an MC approach to
sample material properties that include pre-polymerization polymer
volume, ¢;, polymer volume fractions in the swollen state, @3, cross-
linking degree, v,, fixed charge concentration, C%, active layer thickness,
h, volume fractions of hydrophilic polymers, ¢, the fraction of material
that behaves as an ideal Donnan ion exchange material, fp, and process

Table 1
Parameter ranges used for data set generation.

Input parameter (unit) Minimum value Maximum
value
Membrane properties
Pre-polymerization polymer volume, ¢; 0.9 1
Polymer volume fractions in the swollen  0.75 0.9
state, ¢,,,
Crosslinking degree, v, (mmol.cm™%) 1 5
Fraction of the material that behaves as 0 1
an ideal Donnan ion exchange
material, fp
Fixed charge concentration, Cj (eq.L ™Y 0 0.5
Active layer thickness, h (um) 0.1 2
Volume fractions of hydrophilic 0.8 1
polymer, gfvdrophilic
Membrane parameter
Water permeability coefficient, A (L. 0.1 10
m 2h Lbar H
Salt permeability coefficient, B (L.m 2, 0.05 1
h™)
Structural parameter, S (pm) 200 5000
Module design
Channel height (cm) 1 10
Length (m) 0.05 0.2
Operation condition
Feed inflow rate (L.h™1) 30 80
Draw inflow rate (L.h™1) 30 80
Temperature (°C) 10 50
OARO Feed concentration (gL7}) 5 300
Sweep concentration (g. 1 250
LY
Feed pressure (bar) 1 65
PRO Feed concentration (gL™!) 5 250
Draw concentration (g. 10 300
LY
Feed pressure (bar) 1 65
FO Feed concentration (gL7') 5 250
Draw concentration (g. 10 300
LY
RO/ Feed concentration (g.L ") 1 200
HPRO Feed pressure (bar) Feed Osmotic 300
pressure
1.3 * Osmotic pressure of feed
concentration
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conditions including feed concentration and temperature. We then use
Flory-Rehner theory to estimate water uptake by the polymer for a
specific operating condition [25,39-42] (Supplementary Section A).
Water uptake is then used to estimate the water and salt sorption co-
efficients and diffusion coefficients based on the free volume theory and
Donnan theory [25,42-45] (Supplementary Section A). Finally, we use
these coefficients and the solution-diffusion model to calculate hy-
draulic water permeability (A) and salt permeability (B) for the specific
experimental condition [46,47] (Supplementary Section A). For all
cases, we sample the S parameter from values normally reported in the
literature using the MC approach.

2.2. Generation of process data

The experimental data for RO/HPRO, FO, PRO, and OARO was
simulated using the physical mass transport model of each process that is
described in detail in prior literature and in brief in Supplementary
Section B. We simulated the full range of operating conditions via
random selection of input values from a uniform distribution using the
MC approach (Table 1) [48]. The model input parameters consisted of
membrane parameters, module design parameters, and operating con-
ditions, while the output data included water flux and salt flux (Fig. 2).
We generated two sets of RO data with different methods for sampling
applied hydraulic pressure/over pressure (i.e., the pressure over the
osmotic pressure of feed solution). In the first RO dataset, we randomly
select over pressure in a range from the estimated osmotic pressure of
feed solution to 300 bar using a MC approach. In the second RO dataset,
we use a fixed over pressure that is equal to 1.3 times of osmotic pressure
of feed solution. We choose a ratio of 1.3 to ensure the maximum applied
pressure at 200 g/L is close to 300 bar. In both RO/HPRO simulations,
we only solve the processes where the rejection rate is equal to or larger
than 99%. We generated a total of 10,000 data sets for RO/HPRO and
40,000 data sets for FO, PRO, and OARO. Our selected solver was able to
solve ~90% of randomly generated combinations of input data, termi-
nating once the change in water and salt flux was <0.1%. The CDFs of
the distribution of values are reported in Supplementary Section C
(Supplementary Figs. S1-S4).

Data generation
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2.3. Error addition to data sets

We first evaluate the accuracy of each empirical method without
error addition. Next, we evaluate the effect of measurement errors on
the accuracy of empirical estimation methods for RO/HPRO, FO, PRO,
and OARO processes by adding small or large random errors to a
selected set of process parameters and simulated flux data (Fig. 2). We
use +£1% for small errors and +5% for large errors in concentration,
flux, flowrate, pressure, Sherwood number, and +0.5 °C for small errors
and +2.5 °C for large errors in temperature. All errors are randomly
generated from a uniform distribution and are added to the inputs prior
to analysis by the methods described above. Each data set is analyzed ten
times with different errors, expanding the testing data set size from
10,000 to 100,000 for RO/HPRO and from 40,000 to 400,000 for the
other processes.

2.4. Parameter estimation method for RO/HPRO

We use a standard method to estimate the membrane water and salt
permeability in RO [49] (Fig. 1A). The concentration at the feed side of
the membrane is first calculated using Eqn. (1) to account for the effect
of external concentration polarization (ECP) in the feed-membrane
boundary layer. Then the membrane water permeability (A) and salt
permeability (B) are directly calculated using Eqns. (2) and (3):

AN g,
cu=cuen() - oo (z) 1] ®
g
A= @
[(Pr) = (s (Cug) = 7,(C))]
J,
B=ro—"r ©)
(mef - Cp)

Here, J,, is the experimentally measured water flux, Js is the experi-
mentally measured salt flux, Cis the bulk feed salt concentration, ky is
the mass transfer coefficient, Pyis the hydraulic feed pressure, 7y, s is the
osmotic pressure at the feed-membrane interface, 7;,, is osmotic pres-
sure in the permeate, and Cj, is the salt concentration in permeate.
Another widely used method for experimentally characterizing RO

Error analysis
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Fig. 2. Proposed framework for data simulation and error analysis. The process data for RO, HPRO, FO, PRO, and OARO is simulated using the physical mass
transport model (i.e., solution-diffusion model) of each process that balances the mass transfer across the membrane. Two sets of process data are generated, one with
constant membrane parameters and the other with concentration-dependent membrane parameters. In the first dataset, the inputs into the model are sampled using a
Monte Carlo approach, where membrane parameters and process parameters are varied across a bounded range shown in Table 1. In the second dataset, the
concentration-dependent membrane parameters are first generated using Flory-Rehner, free-volume, and Donnan theory from membrane properties and operating
conditions that are sampled using a Monte Carlo approach. The calculated membrane parameters and process parameters are then used as inputs into the physical
model to simulate the process data. The simulated results and the original process parameters with no error and with varying levels of random errors added in one or
more inputs are used to estimate membrane parameters using empirical methods. The accuracy of each empirical method is assessed by comparing the difference
between the predicted membrane parameters and the original membrane parameter inputs.
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membrane parameters assumes A is pure water permeability, which is
constant across the salinity range. The membrane is first tested using DI
water as feed, and water permeability is determined by dividing the
water flux (J,,) by the applied pressure (AP) (Eqn. (4)). The membrane is
then tested using a saline feed, and salt permeability is calculated from
the rejection rate (R = 1- C,/Cy), water flux, and mass transfer coefficient
(kp), as shown in Eqgn. (5):

Jy
AP

1-R J
B=J,—— = 5
R CXP( kf) (5)

Despite its broad usage to determine A and B of RO membranes in
lab-scale RO experiment, this method does not enable the character-
ization of A parameters as a function of salinity. Therefore, we will not
include this method in this analysis.

A=

4

2.5. Parameter estimation method for FO, PRO, and OARO

We perform error analysis on three previously reported empirical
methods for estimating membrane parameters in FO or PRO (Fig. 1B).
These methods also apply to the OARO process. Details of these methods
are described in Supplementary Section D (Supplementary Fig. S5). We
use a standard differential evolution solver in Scipy to fit a group of four
experimental conditions to each empirical method, using A, B, and S as
regression parameters [50]. The solver minimizes the normalized dif-
ference between estimated and measured fluxes as shown in Eqn. (6) and
originally proposed by Tiraferri et al. [33]:

. 2 ; 2
Y AN

E=E,+E =) 2] 43 (2L ®)
pr Jinpu Jinpu

w,i =1 8

Where n is the number of stages and equal to 4 in this study, Ji:'ﬁ”t is the

mean water flux of the four input water fluxes and J™ is the mean salt

flux of the four input salt fluxes. The error at each stage was scaled by the
mean input so that each term in Eqn. (6) is weighted equally.

The goodness of the fit was checked using the coefficient of deter-
mination as shown in Eqn. (7) and absolute error between the estimated
water/salt flux and corresponding input water/salt flux as shown in Eqn.
(8) [33]. Our selected solver was able to solve ~85% of randomly
generated combinations of input data where the coefficient of deter-
mination is larger than 0.95 and the absolute error in water/salt flux is
less than 0.1%. The rejection of false solutions leads to a non-uniform
distribution of some of the input parameters and output values. The
CDFs of the distributions of values are shown in Supplementary
Figs. S1-S4.

. 2
n est input
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2.6. Analysis of empirical method accuracy

We analyze the accuracy of the empirical estimation methods used in
RO/HPRO, FO, PRO, and OARO by comparing the estimated membrane
parameters solved by each method with those used in the physical
models to generate operational data (Fig. 2). In the case of constant
membrane parameters, the error is calculated as the difference between
the estimated values and original input as shown in Eqn. (9).

Journal of Membrane Science 668 (2023) 121246

|Xesl _ Xinput |
Xinput

x 100% (C)]

Errapsx =

Here, X* is the estimated membrane parameter (i.e., A, B and S).

In the case of concentration-dependent membrane parameters, the
error calculation for the RO/HPRO method is also using Eqn. (9). For the
method of FO, PRO, and OARO, the error is calculated as the difference
between the estimates and the mean of the four input membrane water
permeabilities and salt permeabilities (each is corresponding to one of
four stages of experimental measurements) as shown in Eqn. (10).

|Xes1 _ Xinpur

Xinput

Errapsx = x 100% (10)

Here, X is the input membrane parameter (i.e., A and B), and Xmput
is the mean of the four values of the input membrane parameters across
the simulated experimental conditions.

We group the data in the concentration range from O to 50 g/L as the
low concentration range for all processes, 150-200 g/L as the high
concentration range for HPRO, and 250-300 g/L as the high concen-
tration range for FO, PRO, and OARO. We report the median error and
95" percentile error of estimated membrane parameters as a function of
the osmotic process, method sophistication, concentration range, and
the error level in input parameters. The median error represents the
middle value of the errors in all estimated membrane parameters, and
the 95™ percentile error represents the value that marks the statistical
point where 95% of the errors in estimates are below it. (Supplementary
Fig. S6).

3. Results and discussion

Most work assumes that the water and salt permeability of mem-
brane materials remains constant across the operational salinity range of
a membrane process. While this simplifying assumption introduces
minimal error in steady state RO systems treating brackish or seawater
feed streams, theory suggests the potential for large deviations in A and
B values when membranes are deployed to concentrate brines to high
salinities. Accurately estimating the water permeability and salt
permeability of membranes across a broad range of concentrations is
thus critical for optimizing the design and operation of emerging high
salinity and non-steady state desalination processes.

We begin by reviewing theoretical predictions of the effect of salinity
and temperature on A and B parameters. Next, we evaluate the accuracy
of existing empirical methods for calculating A and B parameters in RO/
HPRO and A, B, and S parameters in FO, PRO, and OARO processes. The
accuracy is evaluated without error in experimental measurements and
with the addition of low and high levels of error in the experimental
measurements of selected process parameters. This analysis allows us to
differentiate between methodological error, namely the effects of
simplifying assumptions and empirical approach, and measurement
error, on the accuracy of each empirical method for estimating A and B,
or A, B, and S.

3.1. Effect of salinity and temperature on membrane water and salt
permeability

Transport of water and salt in polymer membranes is primarily
dictated by the free volume of water and electrostatic interactions be-
tween the dissolved ion and the polymer [10,51,52]. The free volume of
water typically decreases as the external salt concentration increases
due to osmotic deswelling [10,21,53]. This change in water uptake is
also mediated by temperature, where an increase in temperature in-
creases the activity coefficient of water and water uptake by the poly-
meric material (Fig. 3A).

A decrease in water uptake decreases the water and salt permeability
of polymeric membranes. Experimental observations suggest that CTA
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Fig. 3. (A) Normalized water uptake, (B) normalized water permeability coefficient, normalized salt permeability coefficient for (C) uncharged and (D)
charged membrane. Membranes with increasing equilibrium water uptake, 0.15, 0.2, and 0.25 in DI water, are simulated across the full salinity range (0-300 g/L)

at different temperatures (10 °C, 20 °C, 40 °C).

and TFC-PA polymeric membranes absorb as much as 10%-22% by
weight of water in a deionized condition [42,45,54]. The Flory-Rehner
theory predicts a decrease in water uptake of as much as 10% as
salinity approaches the crystallization point of NaCl (Fig. 3A). In CTA
membranes, this 10% decrease in water uptake could reduce water and
salt permeability by as much as 25% and 50%, respectively (Fig. 3 B, C).

For charged TFC-PA membranes, the salt permeability is both a
function of water uptake and polymer charge. This results in a non-
monotonic change of B with increasing salt concentration (Fig. 3D). At
low salinities, the fixed charge groups of the membrane limit mobile ion
transport through electrostatic repulsion, commonly known as Donnan
exclusion [44,45,55]. As salinity increases, ions screen the effective
polymer charge and weaken the effect of Donnan exclusion, resulting in
an increase in salt permeability. When the effective polymer charge is
completely screened, charged polymer membranes behave like un-
charged membranes where ion transport becomes governed by ion
diffusion through the free water volume of the polymer. High salinity
decreases free volume of the polymer, decreasing salt permeability [44].

3.2. Accuracy of empirical methods of membrane parameter estimation in
RO

We evaluate the accuracy of the empirical method for estimating A
and B parameters in steady-state RO/HPRO processes with fixed over
pressure (Fig. 4) and random over pressure (Supplementary Fig. S7). The
accuracy of the empirical method depends both on the error introduced
by the methodological approach and the error introduced by inaccura-
cies in experimental measurements. We evaluate the effect of method
error and the effect of imprecise measurement by analyzing the errors in
estimated membrane parameters solved by the RO method with no

random error and with varying levels of random errors in measured
parameters, respectively.

We find that the methodological error in the RO/HPRO empirical
method for A and B estimation is low. When no random errors are added
to measurement, the method accurately estimated constant and
concentration-dependent A and B values across the full salinity range
with median and 95th percentile errors of less than 0.1% (Fig. 4 and
Supplementary Fig. S7).

While the methodological error is low, the direct estimation method
for water permeability and salt permeability in RO/HPRO process is
prone to random error in experimental measurements, especially under
high salinity conditions (Fig. 4 and Supplementary Fig. S7). When
random large errors are introduced to the measured parameters in low
salinity case, the median errors in estimated constant A and B parame-
ters increased to 22% and 3%, respectively, and the 95th percentile
errors increased to 147% and 7.9%, respectively. In high salinity cases,
the median errors in A further increased to 57% and the 95th percentile
errors increased to 352%. The errors in B remain nearly constant in both
salinity cases.

The effect of large random measurement errors further increased for
concentration-dependent A, where median errors for high salinity cases
are 63% and 95™ percentile errors are 374%. Increasing applied over
pressure decreases the impact of measurement errors on the uncertainty
of the estimated A parameter (Supplementary Fig. S7). While a more
mechanistic explanation will be provided later in Section 3.5, the high
uncertainty of the RO method in high salinity conditions far exceeds the
theoretically predicted change of A and B across the relevant salinity
range (Fig. 3B-D). Thus, the RO method is insufficient for capturing the
dependence of A and B on salinity, with the method performing espe-
cially poorly in the high salinity range.
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Fig. 4. Heatmap of the median and 95th percentile error predictions on simulated datasets for (A) constant or (B) concentration-dependent membrane
transport parameters in RO/HPRO, FO, PRO, and OARO. The X-axis shows the level of error added to all input parameters and concentration range. The low
concentration range is 0-50 g/L for all processes, and the high concentration range is 150-200 g/L for HPRO, and 250-300 g/L for the rest. The Y-axis denotes the
osmotic membrane process, and the corresponding method for each process, the minor labels show the membrane parameters estimated by the method. The median
error represents the middle value of all errors in the estimated membrane parameter in the concentration range, and the 95™ percentile error represents the statistical
point at which 95% of all errors in estimates are below the reference value in the concentration range. Blue colors indicate a low error in estimated values and red
colors indicate a high error in estimated values. The method with high accuracy in predicting membrane parameters will have blue colors (low errors) in its results,
whereas a method with poor accuracy will have high errors in its predictions (red colors). (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article).

3.3. Accuracy of empirical methods of membrane parameter estimation in
FO

The typical operating pressure of RO membranes (<80 bar) pre-
cludes the application of direct methods for determining A and B at
concentrations exceeding ~ 85 g/L. To circumvent this constraint,
several empirical methods have been developed for estimating A and B

parameters from water and salt flux data collected in FO processes. In
addition, these methods consider the transport resistance of the support
layer, which is described using a structural parameter, S. As discussed in
the introduction and summarized in Fig. 1, these methods make
different sets of simplifying assumptions that influence their methodo-
logical accuracy (Fig. 4).

The accuracy of the three methods in estimating the physical model
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parameters varies substantially across the three methods. Our results
suggest that fully accounting for the thermophysical properties of the
solution is critical to accurately estimating membrane parameters
(Fig. 4). The method with the highest accuracy (M3), derived by
Chowdhury et al. and Martin et al., estimated membrane parameters
with errors <5% in the absence of random measurement error. This
method (M3) included all thermophysical solution properties and ECP
layers that form in osmotically assisted processes. In contrast, simpler
methods (M1) developed by Tiraferri et al., and (M2) derived by Nagy
et al. and Bui et al. assumed constant solution properties and had errors
averaging 10-20 times higher than M3.

Critically, these results suggest that current methods are insuffi-
ciently precise for resolving changes in A, B, and S with increasing
salinity. Free volume theory predicts a maximum expected change in A
and B of 25% and 50%, respectively. The most accurate FO method, M3,
however, has a median error of 10% and 95 percentile errors as high as
50% when large measurement errors are introduced to the inputs. This
magnitude of error makes it impossible to differentiate measurement
error from actual changes in membrane parameters. Only for charged
membranes at concentrations of less than 50 g/L, where the change in B
is 200-300%, is the effect of salinity potentially resolvable using M3.

3.4. Effect of salinity on the accuracy of empirical methods

The error in estimated water permeability increases with increasing
concentration in RO/HPRO due to the decrease in effective driving
force, whereas the error in estimated salt permeability is minimally
affected by the change of effective driving force. In low salinity condi-
tions, the osmotic pressure at the membrane surface is similar to that of
the bulk (Fig. 5A), and error in most measured parameters negligibly
impacts the estimates of osmotic pressure at the membrane surface. At
high feedwater salinities, however, the osmotic pressure at the mem-
brane surface can approach or exceed the applied hydraulic pressure.
Even if external concentration polarization is minimal, minor errors in
bulk concentration or pressure directly and significantly impact the
calculation of effective driving force and water permeability (Supple-
mentary Fig. S8A). In contrast, the error in estimated salt permeability is
determined by the estimated salt concentration at the membrane surface
(Ct,m) and the permeate concentration (Cp). The impact of random errors
in measurement on estimated Cgpy, is less significant across the salinity
range (Supplementary Fig. S8B). Meanwhile, an increased concentration
gradient across the membrane (or high salt flux) with salinity mitigates
the effect of random errors in salt concentration on the accuracy of
estimating B parameter at high salinity conditions (Fig. 5A).

Errors in estimated water and salt permeability increase with salt
concentration in the FO process, whereas errors in estimated structural
parameters slightly decrease with the increase in salt concentration
(Fig. 4). In FO, increasing draw solution concentration increases the
osmotic pressure difference (or effective driving force) across the
membrane, leading to increased water permeation and more severe
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external and internal concentration polarization. Under these condi-
tions, estimates of salt concentration at the membrane surface are
particularly susceptible to bulk concentration measurement errors
(Fig. 5B), propagating to poor estimates of the driving force, A, and B
parameters. The S parameter, in contrast, is estimated from the con-
centration gradient across the support layer. The magnitude of this
concentration gradient increases with salinity, thus decreasing the
impact of random error on its estimate (Fig. 5B). The same conclusion
applies to PRO and OARO (Supplementary Fig. S9).

3.5. Effect of individual input error on the accuracy of empirical methods

This analysis is also valuable for identifying experimental errors that
adversely impact the estimation accuracy of empirical methods and
prioritizing improvements to experimental measurement approaches.

Errors in bulk concentration measurements have the largest impact
on estimation accuracy because it directly impacts estimates of the os-
motic pressure and the effective driving force. For example, a +5% error
in measured bulk concentration can induce up to 58% and 2.1% errors in
A and B parameters, respectively, using the RO method (Fig. 6A and B),
and 2.5% and 2.4% errors in A and B parameters, respectively, using the
FO method (Fig. 6C and D). Errors in measured bulk concentration come
from multiple sources. When the bulk concentration is solely determined
from solution preparation, the accuracy of weighing scales of +0.1% for
lab-scale measurements, and the accuracy of volume measurement of
+1% to +5% for graduated cylinders or beakers can propagate to +1%
to +£5% error in measured concentration [56,57]. Evaporation from the
system can also lead to errors over long experimental time periods. In
contrast, if the bulk concentration is determined by a conductivity
meter, errors in bulk concentration can be reduced to +1% when the
conductivity meter is properly calibrated over the full salinity range.
Note that use of an improperly calibrated conductivity probe, the failure
to simultaneously monitor temperature, and other instances of improper
experimental protocol are not accounted for in our analysis. The
imperative of high precision concentration measurements leads to the
recommendation that research groups use properly calibrated conduc-
tivity meters coupled with temperature monitoring or a temperature
control system.

The accuracy of estimated A parameters is also highly dependent on
accurate pressure measurements. The standard method estimates the
salt concentration on the membrane surface using the film model from
measured water flux, salt flux, and bulk concentration (Eqn. (1)). Next,
A and B are separately determined by estimating the driving force and
concentration difference across the membrane (Eqns. (2) and (3)). As a
result, the measured pressure is only used in the calculation of the A
parameter. As shown in our analysis, a 5% error in pressure can lead to
19% and 46% errors in A in low and high salinity conditions, respec-
tively (Fig. 6A). The error of pressure measurement directly comes from
the resolution of the pressure gauge. Therefore, the use of high precision
digital pressure gauges with an accuracy of+0.05% of span is essential

(A) RO (B) FO Fig. 5. Range of simulated concentration differ-
40 20 ences across the membrane and support layer as a
function of bulk feed concentration (without
- 301 i < 154 M added input errors). (A) Concentration difference
> o) between membrane surface (Cp, ¢) and bulk (Cg), and
61 204 I (\_} 104 E I concentration gradient across the membrane (Cp, ¢ —
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FO Fig. 6. Effect of 5% random measurement error

on empirical method prediction errors of mem-
brane water and salt permeability parameters in
RO (with a fixed over pressure) and FO. Analysis
assumes constant membrane transport parame-
ters over full salinity range. The line and numerical
value inside the box represent the median value of
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for minimizing the errors from pressure readings.

The third highest impact was observed for measurement errors in
permeate and salt flux, as they are used to directly estimate the A, B, and
S parameters. The potential sources of error in water flux measurement
primarily stem from the weight measurement of permeate, which is
affected by the accuracy of the weighing scale and actual mass flux from
the module. Error in the salt flux is more complicated, as it is estimated
from changes in concentration over time (determined using a conduc-
tivity meter, the accuracy of which is typically +1% [58], but needs to
be properly calibrated over the full salinity and temperature range of the
experiments as described above), water flux, volume measurement of
the initial feed solution, and membrane area. For example, a 1% error in
each of the parameters results in an average salt flux error of approxi-
mately 9%. As shown in our analysis, a 5% error in water or salt flux can
result in 18% and 2% errors in estimated water permeability in RO and
FO system, respectively, and 2.5% and 2.9% error in estimated salt
permeability in RO and FO system, respectively (Fig. 6). Regular cali-
bration of the weighing scale, timer, and conductivity meter, combined
with automated data logging system will minimize the effect of random
errors in these measurements.

Finally, each of the methods assessed in this work requires ex-situ
measurement of Sherwood number in the flow cell. Sherwood number
correlations derived for a specific cell often have errors as high as 5%,
however application of Sherwood number correlations outside that
specific cell can lead to much larger errors in the estimate of mass
transport (often on the order of 20-50%) even when using same hy-
draulic diameter and module length [59-61]. Fortunately, the effect on
estimates of A and B are relatively insensitive to error of up-to 5% at low
concentrations, though the impact grows as the salinity of the feed in-
creases. Similarly, errors in temperature measurement and flowrate
measurement have only moderate effects on the accuracy of most
membrane parameter estimates. An exception is the impact of large
errors in temperature in RO/HPRO at high salinities on estimated A
parameter. This is caused by the uncertainty of effective driving force at
high salinities due to the variation in estimated osmotic pressure influ-
enced by temperature errors. Despite the small influence of Sherwood
number and temperature on estimated membrane parameters at low
salinity, the larger effect at high salinity necessitates high resolution
measurement of temperature and crossflow rates using high precision
thermometers and flowmeters.

a\\)( e

0% e

4. Conclusion

We have presented a systematic accuracy analysis of empirical
methods in estimating membrane parameters in four osmotic processes
including RO/HPRO, FO, PRO, and OARO, with constant and
concentration-dependent water and salt permeability across the full
salinity range. The results of our analysis suggest that the direct calcu-
lation method in RO is the least accurate method for estimating mem-
brane parameters due to this method’s high sensitivity to experimental
measurement errors. The adoption of a multistage measurement strategy
and the inclusion of solution thermophysical properties in empirical
models built on FO, PRO and OARO process significantly improve the
accuracy of A and B parameter estimates.

We also find that the errors in the estimates of membrane parameters
increase with increasing feed salinity. This error stems from the diffi-
culty of accurately estimating the salt concentration at the membrane
surface and, thus, the effective driving force. Here, uncertainty from
concentration and pressure measurements has the greatest impact on the
accuracy of estimated parameters because they directly influence the
calculation of driving force. Therefore, we recommend researchers use
regularly calibrated high-precision measurement tools and an auto-
mated data logging system in order to minimize the effect of random
errors in these measurements.

Even the most complete method for estimating A, B, and S parame-
ters at high salinities exhibits impractically large errors. Median errors
exceed 10%, while the 5% to 95% percentile error range exceeds 40%.
Theoretically predicted A and B change up to 25% and 50% from
seawater level to near crystallization point of NaCl for state-of-the-art
desalination membranes. If membrane parameters are a function of
salinity, these error estimates increase to 20% and 60% for the median
and 5% to 95% percentile ranges, respectively. This uncertainty in the
true values of A and B makes it exceedingly difficult to resolve the actual
effects of feedwater salinity on membrane parameters and assure the
performance of membranes in high salinity process applications. Direct
or higher accuracy empirical methods must be developed to fully
quantify the effect of operating conditions on membrane transport
properties.
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