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We study the dynamical formation of scalar monopole and dipole hair in scalar Gauss-Bonnet theory and

dynamical Chern-Simons theory. We prove that the spherically symmetric mode of the dipole hair is

completely determined by the product of the mass of the spacetime and the value of the monopole hair. We

then show that the dynamics of the l ¼ 1mode of the dipole hair is intimately tied to the appearance of the

event horizon during axisymmetric collapse, which results in the radiation of certain modes that could have

been divergent in the future of the collapse. We confirm these analytical predictions by simulating the

gravitational collapse of a rapidly rotating neutron star in the decoupling limit, both in scalar Gauss-Bonnet

and dynamical Chern-Simons theory. Our results, combined with those in Hegade K. R. et al. [Phys. Rev. D

105, 064041 (2022)], provide a clear physical picture of the dynamics of scalar monopole and dipole

radiation in axisymmetric and spherical gravitational collapse in these theories.
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I. INTRODUCTION

General relativity (GR) predicts that black holes (BHs)

represent one of the simplest macroscopic objects in nature,

characterized solely by their mass, spin, and charge [1–4].

The detection of gravitational waves by the advanced

Laser Interferometer Gravitational Wave Observatory and

Virgo [5–8] now allows for tests of the hypothesis that the

astrophysical BHs of nature are truly as GR predicts [9–15].

Motivated by these tests, several non-GR modified gravity

theories have been proposed in the literature [16,17]. Some

of these theories allow for qualitatively different BHs,

endowed with additional “hair” that is needed to fully

characterize them (see Refs. [16–18] for a review). One

class of theories that admits such hairy solutions are models

in which a scalar or pseudoscalar field couples nonmini-

mally to a curvature invariant. Modified theories that fall in

this class include scalar Gauss-Bonnet (SGB) theory [19,20],

dynamical Chern-Simons (DCS) gravity [21,22], and modi-

fied quadratic theories of gravity in general [16,23,24].

The nonminimal coupling to the Gauss-Bonnet invariant in

SGB theory and to the Pontryagin density in DCS gravity

appear naturally in the low-energy limits of heterotic string

theory [22–27] and, more generally, in effective field

theories that include a real scalar field [28]. We here focus

on theories that smoothly reduce to GR in the small coupling

limit. For nonperturbative, nonminimal coupling functions

between the scalar field and curvature invariants, we refer the

interested reader to the recent review in Ref. [29].

The presence of a scalar or pseudoscalar field leads to

scalar radiation in BH and neutron star (NS) binary systems

which can have observable effects, such as dephasing of

gravitational waves [30–37]. The presence of this observ-

able effect and the possibility of constraining these theories

have led to an enormous amount of work concerning the

properties of these theories. Several studies have explored

the space of BH solutions in static and slowly rotating BH

solutions in the small coupling approximation [19,38–43]

for SGB theory and in [38,42,44,45] for DCS gravity, while

numerical solutions for static and stationary BHs were

calculated in [39,40,46] for SGB theory and in [47] for

DCS gravity. Much effort has also been devoted toward

understanding the dynamics of BH binary inspirals and

BH-NS binary systems using analytical techniques, such as

post-Newtonian theory [30,35,36,48], using the tools of

numerical relativity [31–34,37,49–58] and using the tools

of black hole perturbation theory [59–66]. More recently,

well-posedness [67,68] and the loss of predictivity have

also been explored in SGB theory [34,53–55,69].

Although impressive, these studies were geared toward

providing a phenomenological understanding of scalar

and gravitational radiation and in exploring the break-

down of predictivity in these theories. In Ref. [70] (paper

I, henceforth) we took the first steps toward providing a

theoretical understanding of the scalar field dynamics

during gravitational collapse. While paper I focused on

spherical symmetry, in the present paper we describe the
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physical mechanism behind the emission of scalar radi-

ation during gravitational collapse in axisymmetry.

The long range dynamics of the scalar field are quantified

by studying its far field behavior. In the exterior spacetime,

far away from a compact object, the scalar field can be

expanded in powers of 1=r, where r is a suitable distance

measure from the compact object. The coefficient of the

leading 1=r term in the far field expansion of the scalar field

is called the “monopole hair” and the subleading 1=r2 term
is called the “dipole hair.” The monopole hair and the dipole

hair can be further classified by their angular modes. The

monopole hair contains only an l ¼ 0 mode, while the

dipole hair contains both an l ¼ 0 and an l ¼ 1 mode.

The monopole and dipole hair in modified theories, such

as SGB gravity and DCS gravity, display interesting

phenomena during dynamical gravitational interactions,

such as during the collapse of a NS into a BH. In SGB

gravity, the monopole hair of a NS spacetime is zero [30,71],

while the monopole hair for a BH spacetime is nonzero and

is related to the surface gravity and the topology of the

bifurcation 2-sphere [72]. Therefore, the monopole hair in

SGB theory must grow during gravitational collapse from a

NS spacetime to a BH spacetime. On the other hand, in DCS

theory, the monopole hair vanishes for NS and BH space-

times [30,71,73]. Therefore, the dynamics of scalar radiation

in DCS theory is controlled by dipole radiation. In paper I,

we showed that the growth of hair during spherically

symmetric gravitational collapse is related to the appearance

of the EH, which results in the radiation of certain

homogeneous modes that can be present in a NS spacetime

but cannot be present in a BH spacetime. In this work, we

show that this analysis also carries over to axisymmetric

gravitational collapse and to the dynamics of scalar dipole

radiation for both SGB theory and DCS theory.

First, we show that there is a remarkably simple relation-

ship between monopole hair and dipole hair. In particular,

we show that the l ¼ 0 mode of the dipole hair is equal to

the product of the mass of spacetime and the monopole hair.

Moreover, in a spherically symmetric spacetime, the dipole

hair contains only the l ¼ 0 mode and we can readily

extend our results in paper I from monopole to dipole hair.

In fact, our results predict that the dipole hair must also grow

during gravitational collapse in SGB theory, and that the

growth of dipole hair is related to the radiation of certain

divergent homogeneous modes, just as in the monopole

case. With this observation, we are now able to provide a

clear description of the formation of monopole and dipole

hair in spherically symmetric gravitational collapse in SGB

theory.

Next, we explore the dynamics of monopole and dipole

scalar radiation in axisymmetric spacetimes in SGB theory

and DCS theory. We first provide a general Green’s

formula to calculate the l ¼ 1 mode of the dipole hair.

Using this formula, we show that the l ¼ 1 mode of the

dipole hair vanishes in SGB theory due to parity. This

means that understanding the dynamics of monopole hair

in SGB theory allows one to fully understand the dynam-

ics of dipole hair in axisymmetric gravitational collapse at

early and late times. We then explore the dynamics of DCS

theory in axisymmetric gravitational collapse. Our ana-

lytical formula shows that the vanishing of monopole hair

in DCS theory implies that the l ¼ 0 mode of the dipole

hair also vanishes. This means that scalar radiation in DCS

theory must be driven by the l ¼ 1 mode of the dipole

hair. Using analytical calculations in the slow-rotation

approximation, we show that the l ¼ 1 mode of dipole

hair in a NS spacetime in DCS theory contains homo-

geneous modes that can be divergent if present in a BH

spacetime. Therefore, these modes must be radiated

during dynamical gravitational collapse, using the same

physical mechanism we described in paper I. In particular,

the appearance of the event horizon (EH) leads to the

radiation of these modes.

Finally, we confirm all our analytical predictions by

simulating the axisymmetric gravitational collapse of a

rapidly rotating NS in the decoupling limit in both SGB

theory and DCS theory. We find good agreement with our

analytical predictions at early and late times. We also show

that the appearance of the EH leads to strong scalar

radiation that can be correlated with the dynamics of scalar

monopole and dipole radiation.

The remainder of the paper is organized as follows. In

Sec. II we present the field equations and classify the

monopole and dipole hair in spherically symmetric and

axisymmetric spacetimes. The main analytical results are

presented in this section. In Sec. III we study the dynamics

of the scalar field in SGB gravity and DCS gravity in the

decoupling limit. We first present analytical solutions in

the slow-rotation approximation and then present numeri-

cal results for the collapse of a rapidly rotating NS to a

BH spacetime. Our conclusions and directions for future

work are presented in Sec. IV. Our metric signature is

ð−;þ;þ;þÞ and we set G ¼ 1 ¼ c throughout the paper.

II. MONOPOLE AND DIPOLE HAIR

IN STATIONARY SPACETIMES

In this section, we describe our analytical results in

detail. First, we introduce the field equations in Sec. II A.

We then provide the formula for the scalar dipole hair in

terms of the monopole hair in Sec. II B for spherically

symmetric spacetimes and in Sec. II C for axisymmetric

spacetimes. Finally, we discuss how these results can be

applied to specific theories of gravity, such as SGB theory

and DCS theory in Sec. II D.

A. Action and field equations

We study a general class of theories with a scalar field Φ

coupled nonminimally to gravity through a curvature scalar

F . The strength of this coupling is quantified by the
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coupling constant ϵ. The action for this class of theories is

given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
Rþ ϵΦF ðg; ∂g; ∂2g;…Þ

−
1

2
ð∇μΦ∇

μ
ΦÞ

�

þ Smatter; ð1Þ

where g denotes the determinant of the spacetime metric, R
is the Ricci scalar,∇ is the covariant derivative, and Smatter is

the action for the matter fields, which is assumed to be

minimally coupled to gravity and independent of the scalar

field Φ.

Let us map the action above into the specific modified

theories of gravity considered in this work. For example,

we can recover the action for shift-symmetric SGB theory

by replacing

ϵ → αSGB;

F → RGB ¼ R2
− 4RμνR

μν þ Rα³´µR
α³´µ;

in Eq. (1). The scalar field Φ ¼ ϕSGB now represents the

dilaton field. Similarly, we can recover DCS gravity by

replacing

ϵ → αDCS=4;

F → R³α´µ
�Rα³´µ;

in the action. The scalar field Φ ¼ θDCS now represents the

axion pseudoscalar.

The equations of motion for the action in Eq. (1) are

given by

Gμν þ 16πϵCμν ¼ 8πðTΦ
μν þ Tmatter

μν Þ;
□Φþ ϵF ¼ 0: ð2Þ

The stress energy tensor for Φ is

TΦ
μν ¼ ∇μΦ∇νΦ −

gμν

2
ð∇µ

Φ∇µΦÞ; ð3Þ

while the tensor Cμν is given by

Cμν ≔
1
ffiffiffiffiffiffi
−g

p µ

µgμν

Z

d4x
ffiffiffiffiffiffi
−g

p
ΦF ðg; ∂g; ∂2g;…Þ: ð4Þ

The explicit expressions for the Cμν tensor for modified

quadratic gravity theories, such as SGB theory and DCS

theory, can be found in Ref. [16]. Finally, the matter stress

energy tensor is defined by

Tmatter
μν ¼ −2

ffiffiffiffiffiffi
−g

p µ

µgμν
Smatter: ð5Þ

B. Monopole and dipole hair in spherically

symmetric spacetimes

In this subsection, we analyze the behavior of the scalar

field near spatial infinity in static, spherically symmetric,

and asymptotically flat spacetimes. We begin by introduc-

ing the ingoing null coordinate system xμ ¼ ðv; r; θ;ϕÞ on
a spherically symmetric spacetime. The line element in this

coordinate system is given by

ds2 ¼ −DðrÞdv2 þ 2dvdrþ KðrÞdΩ2; ð6Þ

where KðrÞ−1 denotes the Gaussian curvature of the

2-sphere parametrized by ðθ;ϕÞ, while dΩ2 denotes the

line element on the 2-sphere. The metric introduced in

Eq. (6) is valid for both NS and BH spacetimes. For BH

spacetimes, the location of the EH, rH, is defined by the

condition

DðrHÞ ¼ 0: ð7Þ

The analysis we present below will apply to both BH

and NS spacetimes, since we will be analyzing the scalar

field equation (2). However, to simplify the presentation

of our results, we will assume that we are in a BH

spacetime and that the EH is located at r ¼ rH. One can

easily transform the results given below to NS spacetimes

by replacing rH → 0.

We are interested in understanding the asymptotic

properties of the scalar field Φ. Near spatial infinity, we

assume that the scalar field and the metric variables admit a

smooth expansion in powers of r−1. Expanding the scalar

field in powers of r−1 gives

ΦðrÞ ¼ μ1

r
þ μ2

r2
þOðr−3Þ; ð8Þ

where μ1 is the monopole scalar hair, μ2 is the dipole scalar

hair, and the O symbol stands for uncontrolled remainders

hereafter. The properties of monopole hair have been

investigated for specific theories, such as SGB theory and

DCS theory, in Refs. [71,72,74]. In paper I we generalized

these results and provided a formula for the monopole hair

by solving the scalar field equation (2),

μ1 ¼ ϵ

Z
∞

rH

F ðxÞKðxÞdx: ð9Þ

For the sake of completeness, we shall rederive this result

below. In the present situation, we are interested in under-

standing the behavior of the dipole hair μ2 in theories where

the curvature scalarF has the following asymptotic behavior

near spatial infinity:

F ∼ r−5: ð10Þ
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This asymptotic expansion is valid for curvature scalars,

such as the Gauss-Bonnet invariant, the Kretschmann

scalar, and Pontryagin density. In fact, since these curva-

ture scalars scale as curvature squared, they have an even

stronger asymptotic falloff, decaying as r−6.
To study the behavior of the dipole hair μ2, we introduce

an asymptotically mass centered (AMC) coordinate system.

The latter is defined as the coordinate system in which the

metric functions DðrÞ and KðrÞ have the following asymp-

totic expansions:

DðrÞ ¼ 1 −
2M

r
þOðr−2Þ; ð11Þ

KðrÞ ¼ r2½1þOðr−2Þ�: ð12Þ

The quantity M in the equation above denotes the Komar

mass of the BH spacetime [75]. We note that one can always

introduce a coordinate system in which Eqs. (11) and (12)

are valid by performing suitable translations. We provide a

proof of this statement in Appendix A 1. We also note that

our notion of an AMC coordinate system is not as strong as

the asymptotically Cartesian and mass centered coordinate

system (ACMC) introduced by Thorne in Ref. [76]. ACMC

coordinates require that the Oðr−2Þ coefficient of the gvv
component of the metric be zero. The AMC coordinate

system we introduce does not require this condition.

We now look at the scalar field equations. Using Eq. (6)

the scalar field equation can be written as

1

KðrÞ ∂r½KðrÞDðrÞ∂rΦðrÞ� þ ϵF ¼ 0: ð13Þ

This equation can be integrated as described in Sec. II B of

paper I,

∂rΦ ¼ −
ϵ

DðrÞKðrÞ

Z
r

rH

F ðxÞKðxÞdx

¼ −
ϵ

DðrÞKðrÞ

Z
∞

rH

F ðxÞKðxÞdx

þ ϵ

DðrÞKðrÞ

Z
∞

r

F ðxÞKðxÞdx: ð14Þ

Using Eq. (8), we see that the derivative of the scalar field

has the following asymptotic expansion:

∂rΦ ¼ −
μ1

r2
−
2μ2

r3
þOðr−4Þ: ð15Þ

Let us now discuss the asymptotic properties of the

scalar field by using Eq. (14). Equations (10)–(12) tell us

that the second term on the right-hand side of Eq. (14) has

the following asymptotic behavior:

ϵ

DðrÞKðrÞ

Z
∞

r

F ðxÞKðxÞdx ∼ r−4: ð16Þ

With this observation, we see that to determine the value of

the monopole and dipole hair of the scalar field we can just

look at the asymptotic properties of the first term on the

right-hand side of Eq. (14). Using Eqs. (11) and (12),

Eq. (14) can be written as

∂rΦ ¼ −
ϵ

DðrÞKðrÞ

Z
∞

rH

F ðxÞKðxÞdxþOðr−4Þ

¼ −

ϵ
R
∞

rH
F ðxÞKðxÞdx

½1 − 2Mr−1 þOðr−2Þ�r2½1þOðr−2Þ� þOðr−4Þ

¼ −

�

ϵ

Z
∞

rH

F ðxÞKðxÞdx
��

1

r2
þ 2M

r3

�

þOðr−4Þ:

ð17Þ

Comparing this with Eq. (15), we see that the value of the

monopole hair and the dipole hair are given by

μ1 ¼ ϵ

Z
∞

rH

F ðxÞKðxÞdx; ð18Þ

μ2 ¼ Mμ1: ð19Þ

Equation (18) gives us a formula for the monopole hair μ1
in terms of the integral of the curvature invariant F . This

formula for the monopole hair was also given in Corollary

1.2 of paper I. From Eq. (19) we see that in AMC

coordinates the value of the dipole hair is completely

determined by the value of the monopole hair and the mass

of the compact object. Therefore, studying the behavior of

the monopole hair during spherically symmetric collapse

provides us with all the required information to understand

the behavior of the dipole hair of the scalar field. For

example, in paper I we studied the gravitational collapse and

growth of monopole hair in SGB gravity. With the analysis

presented above, we see that the dipole hair must also grow

during gravitational collapse and its growth must be corre-

lated with the complete disappearance of the surface of the

star inside the EH and the release of scalar radiation [70].

C. Monopole and dipole hair in axisymmetric

and circular spacetimes

We now extend the result of the previous section from

spherically symmetric spacetimes to axisymmetric, circular,

and asymptotically flat spacetimes. These are spacetimes

in which

(1) The vector fields, ∂t and ∂ϕ, are killing vectors of the

spacetime.

(2) The spacetime is circular, i.e., the 2-surfaces

orthogonal to ∂t and ∂ϕ are integrable.
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(3) In addition to the assumptions above, we also

assume that the curvature scalar F falls off asymp-

totically at least as r−5.
Using the assumptions in (1) and (2), we can introduce

Hartle-Thorne type coordinates, xμ ¼ ðt; r; θ;ϕÞ, on our

spacetime [77]. In these coordinates, the line element takes

the following form:

ds2 ¼ −N2ðr;θÞdt2 þA2ðr;θÞdr2

þ r2B2ðr;θÞfdθ2 þ sinðθÞ2½dϕ−ωðr;θÞdt�2g: ð20Þ

We also impose one further assumption,

(4) The metric is reflection symmetric, gμνðr; θÞ ¼
gμνðr; π − θÞ.

We now comment on the motivation behind our assump-

tions (2)–(4). The assumption of circularity is independent

from the assumption of stationarity and axisymmetry. From

a physical point of view, circular spacetimes are spacetimes

for which there is no “meridional” motion or currents [78].

Therefore, the assumption of circularity is justified from a

physical point of view for equilibrium configurations. For

vacuum GR the assumption of circularity follows from the

assumption of stationarity and axisymmetry as shown by

Papapetrou [79] and Carter [80]. We refer the reader to

Chap. 2 of Ref. [78] for a more detailed discussion of

circular spacetimes in nonvacuum GR. Furthermore, Xie

et al. [81] showed that if the GR solution is circular then

solutions to Eq. (2) that admit a smooth perturbative

expansion in the coupling constant ϵ are also circular to

all orders in perturbation theory.
1
Assumption (3) does not

restrict the class of theories we wish to study since the

Gauss-Bonnet, Kretschmann, and Pontryagin curvature

scalars all fall off faster than r−5 near spatial infinity.

The assumption of reflection symmetry is also physically

motivated since we are studying equilibrium configurations.

The assumption of reflection symmetry also helps us when

setting up AMC coordinates (see Appendix A 2).

Although the arguments we present below do not depend

on whether the spacetime is a BH or a NS spacetime, as in

the previous section, we will here assume the spacetime is a

BH one to simplify our presentation. Generalizing our

definition of AMC coordinates, we say that our coordinates

are AMC if the metric function Bðr; θÞ has the following

asymptotic expansion:

B ¼ 1þOðr−2Þ: ð21Þ

In AMC coordinates, the functions Nðr; θÞ, Aðr; θÞ, and
ωðr; θÞ have the following asymptotic expansions:

N ¼ 1 −
M

r
þOðr−2Þ; ð22Þ

A ¼ 1þM

r
þOðr−2Þ; ð23Þ

ω ¼ 2J

r3
þOðr−4Þ; ð24Þ

where J denotes the angular momentum. Assumptions

(1)–(4) imply the existence of AMC coordinates, as we

show in Appendix A 2. The proof exploits the assumption

that the curvature scalar F scales as r−5 near spatial infinity,
which implies that Eq. (2) reduces to the Einstein massless

scalar field equation to Oðr−4Þ. Solving Eq. (2) asymptoti-

cally to Oðr−4Þ shows that one can always employ AMC

coordinates.

We now study the behavior of the scalar monopole and

dipole hair. The scalar field has the following asymptotic

expansion:

Φ ¼ μ1ðθÞ
r

þ μ2ðθÞ
r2

þOðr−3Þ; ð25Þ

where μ1ðθÞ and μ2ðθÞ are the monopole and dipole hair,

respectively. The equation of motion for the scalar field is

given by

EΦ ≔ □Φðr; θÞ þ ϵF ðr; θÞ ¼ 0: ð26Þ

1. Relation between μ1ðθÞ and μ2ðθÞ
We now establish a relation between the dipole hair and

the monopole hair analogous to the one given in Eq. (19).

To do this, we plug in the asymptotic expansion of the

metric variables and the scalar field in Eqs. (21)–(25) into

EΦ and expand asymptotically to obtain

EΦ ¼ f3ðθÞ
r3

þ f4ðθÞ
r4

þOðr−5Þ ¼ 0; ð27Þ

where

f3ðθÞ ¼ cotðθÞ dμ1ðθÞ
dθ

þ d2μ1ðθÞ
dθ2

; ð28Þ

f4ðθÞ ¼ cotðθÞ dμ2ðθÞ
dθ

þ d2μ2ðθÞ
dθ2

þ 2μ2ðθÞ − 2Mμ1ðθÞ:

ð29Þ

Since we are at spatial infinity, f3ðθÞ and f4ðθÞ must be

equal to zero. This gives us two differential equations for

the variables μ1ðθÞ and μ2ðθÞ. We demand that the solutions

to these differential equations are regular functions of θ.

Solving f3ðθÞ ¼ 0 ¼ f4ðθÞ, we find

1
See Sec. III of Ref. [70] for a detailed discussion of

perturbation theory.
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μ1ðθÞ ¼ μ1; ð30Þ

μ2ðθÞ ¼ μð2;0Þ þ μð2;1ÞP1ðcosðθÞÞ; ð31Þ

μð2;0Þ ¼ Mμ1; ð32Þ

where μ1; μð2;0Þ, and μð2;1Þ are constants of integration which
denote the l ¼ 0 mode of the monopole hair, the l ¼ 0

mode of the dipole hair, and the l ¼ 1 mode of the dipole

hair, respectively. The function P1ð·Þ denotes the first

Legendre polynomial. Therefore, we see that

(i) The monopole hair μ1 is independent of θ.

(ii) The l ¼ 0 mode of the dipole hair μð2;0Þ is com-

pletely determined by the monopole hair and is

equal to Mμ1.

Thus, the results above generalize the relation obtained in

Eq. (19) for spherically symmetric spacetimes to the case of

axisymmetric and circular spacetimes.

2. Formula for the monopole hair μ1

We now provide a formula for the monopole hair μ1. The

idea is to integrate the scalar field equation EΦ and use

Stokes theorem. We will also use the same technique to

obtain a formula for the l ¼ 1 mode of the dipole hair. We

summarize the technique in the following Lemma, which is

a formal statement for applying integration by parts:

Lemma 1.—Suppose we have an equation of the form

∇μJ
μ þ ϵS ¼ 0: ð33Þ

The EH horizon of our spacetime is a null surface generated

by Xμ ¼ tμ þ ΩHϕ
μ, where tμ and ϕμ denote the Killing

vectors of our spacetime, and ΩH is the angular velocity of

the EH. Assume that

(1) LtJ
μ ¼ LϕJ

μ ¼ 0⇒ LXJ
μ ¼ 0, and

(2) tμJμ ¼ ϕμJμ ¼ 0⇒ XμJμ ¼ 0.

The operator L in the above equations denotes the Lie

derivative operator. Let Σ be a partial Cauchy surface, as

shown in Fig. 1, and let dΣμ be the surface element on this

hypersurface. Then,

− lim
r→∞

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ ¼ ϵ

Z

Σ

SXμdΣμ: ð34Þ

A proof of this Lemma is provided in Appendix B.

We now apply Lemma 1 to EΦ,

EΦ ¼ □Φðr; θÞ þ ϵF ðr; θÞ
⇒ Jμ ¼ ∇μ

Φ; S ¼ F : ð35Þ

Since Φ respects the symmetries of the spacetime, it is

easy to check that the Jμ defined above satisfies all the

assumptions we specified in Lemma 1. To use Eq. (34),

we need the asymptotic expansions of Jr ¼ A−2
∂rΦ and

ffiffiffiffiffiffi
−g

p ¼ r2AB2N sinðθÞ. Plugging in the asymptotic expan-

sions of the metric and the scalar field, we obtain

Jr
ffiffiffiffiffiffi
−g

p ¼ −μ1 sinðθÞ þOðr−1Þ;

⇒ lim
r→∞

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ ¼ −4πμ1: ð36Þ

Thus, Eq. (34) now gives us a formula for μ1, namely,

μ1 ¼
ϵ

4π

Z

Σ

F ðr; θÞXμdΣμ; ð37Þ

which is consistent with the results of [71,72].

3. Green’s identity and formula for μð2;1Þ

Here we provide a formula for the l ¼ 1 mode of the

dipole hair μð2;1Þ. To do this, we will establish a Green’s

identity. Let ϕ0 be a stationary and axisymmetric solution

of the homogeneous scalar field equation

□ϕ0 ¼ 0: ð38Þ

We multiply EΦ by ϕ0 and simplify it as follows:

FIG. 1. Penrose diagram for axisymmetric BH spacetimes. In

the figure, H� denote the future and the past EHs, I� denote the

future and the past null infinity, i� denote the future and past

timelike infinities, and i0 denotes the point at spatial infinity. Σ is

a partial Cauchy surface.
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ϕ0□Φþ ϵϕ0F ¼ 0;

ϕ0∇μ∇
μ
Φ ¼ −ϵϕ0F ;

∇μðϕ0∇
μ
ΦÞ −∇μϕ0∇μΦ ¼ −ϵϕ0F ;

∇μðϕ0∇
μ
ΦÞ −∇μðΦ∇μϕ0Þ þΦ□ϕ0

|fflffl{zfflffl}

0

¼ −ϵϕ0F ;

⇒ ∇μ½ϕ0∇
μ
Φ −Φ∇μϕ0� ¼ −ϵϕ0F : ð39Þ

The equation above also satisfies all the requirements of

Lemma 1 since bothΦ and ϕ0 respect the symmetries of the

spacetime.

To apply Lemma 1 to Eq. (39), we need to know the

asymptotic properties of

Jr ¼ ðϕ0∂rΦ −Φ∂rϕ0ÞA−2: ð40Þ

We know the asymptotic expansion of Φ from Eq. (25). To

determine the asymptotic properties of ϕ0, we start by

noticing that the homogeneous scalar field equation (38)

has no asymptotically flat solutions that are regular at the

EH by a no-hair theorem for massless scalar fields. We refer

the reader to Sec. III of Ref. [18] for a proof. Therefore, any

solution of Eq. (38) that is regular at the horizon must

diverge at spatial infinity. Since we are in an asymptotically

flat spacetime, these solutions must approach the flat space

solutions. To determine μð2;1Þ, we pick ϕ0 which has the

following boundary condition at spatial infinity:

lim
r→∞

ϕ0ðr; θÞ
rP1ðcosðθÞÞ

¼ 1: ð41Þ

The subleading behavior of ϕ0 can be obtained as

follows. The boundary condition in the equation above

means that the asymptotic expansion of ϕ0 has the following

form:

ϕ0 ¼ rP1ðcosðθÞÞ
h

1þ ϕ1ðθÞ
r

þOðr−2Þ
i

: ð42Þ

We plug this equation into Eq. (38) and use the asymptotic

expansion of the metric variables in Eqs. (21)–(24) to find

□ϕ0 ¼
f02ðθÞ
r2

þOðr−3Þ; ð43Þ

where

f02ðθÞ ¼ ð1 − ξ2Þξϕ00
1ðξÞ þ ð2 − 4ξ2Þϕ0

1ðξÞ
− 2ξϕ1ðξÞ − 2Mξ; ð44Þ

and ξ ¼ cosðθÞ. Solving f02ðθÞ ¼ 0, one obtains

ϕ1ðθÞ ¼ −M: ð45Þ

This gives us the following asymptotic behavior for ϕ0:

ϕ0ðr; θÞ ¼ r cosðθÞ
h

1 −
M

r
þOðr−2Þ

i

: ð46Þ

With this, we are now ready to understand the asymptotic

expansion of Jr in Eq. (40). The determinant of the metric is
ffiffiffiffiffiffi
−g

p ¼ r2AB2N sinðθÞ. Using the asymptotic expansion of

the metric variables in Eqs. (21)–(25) and (46), we see that

Jr
ffiffiffiffiffiffi
−g

p ¼ r sinðθÞ½−2μ1 cosðθÞ� ð47Þ

þ½−3μð2;1Þ cos2ðθÞ þ 2μ1M cosðθÞ� sinðθÞ ð48Þ

þOðr−1Þ: ð49Þ

Integrating over θ and ϕ gives

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ¼ −4πμð2;1Þ þOðr−1Þ;

⇒ − lim
r→∞

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ¼ 4πμð2;1Þ: ð50Þ

Hence, applying Eq. (34) to the Green’s identity of Eq. (39),

we obtain the following formula for μð2;1Þ:

μð2;1Þ ¼
ϵ

4π

Z

Σ

F ðr; θÞϕ0ðr; θÞXμdΣμ: ð51Þ

With this, we have obtained a complete classification of the

asymptotic properties of the scalar field in a large class of

theories in AMC coordinates. The asymptotic expansion of

the scalar field is given by

Φðr; θÞ ¼ μ1

r
þ
Mμ1 þ μð2;1ÞP1ðcosðθÞÞ

r2
þOðr−3Þ; ð52Þ

where μ1 and μð2;1Þ are constants independent of θ. The

formulas for μ1 and μð2;1Þ are given in Eqs. (37) and (51),

respectively.

We close this section by commenting on the use of

AMC coordinates. We start by noting that we used an

AMC coordinate system crucially in only two places in

our derivation. We used it first to infer the asymptotic

properties of EΦ to derive differential equations for μ1ðθÞ
and μ2ðθÞ [see Eqs. (27)–(29)]. We then used it to derive

the subleading behavior of the homogeneous solution

ϕ0ðr; θÞ in Eqs. (43)–(46). Therefore, the only require-

ment for the formula we derived to be valid is that the

metric asymptotically approaches the AMC expansions

given in Eqs. (21)–(24).

To repeat our calculations in any other coordinate

system, the reader can essentially follow the same steps

we followed, provided they know the asymptotic expansion

of the metric coefficients in this new coordinate system.
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However, we note that gauge effects can enter into the

definitions of the monopole and dipole hair in these

coordinate systems. For example, suppose that the coor-

dinate system is not mass centered. Then, gauge effects can

enter into the definition of the dipole hair. To see this, shift

r ¼ r1 þ a. The asymptotic expansion of the scalar field

now changes to

Φðr1; θÞ ¼
μ1

r1
þ
ðMμ1 þ aÞ þ μð2;1ÞP1ðcosðθÞÞ

r21
þOðr−31 Þ:

ð53Þ

Therefore, μ1 and μð2;1Þ are unaffected but μð2;0Þ is shifted.

D. Applications to scalar Gauss-Bonnet theory

and dynamical Chern-Simons theory

In this section, we apply the results obtained in the

previous section to SGB theory and DCS gravity theories

in the AMC Hartle-Thorne type coordinate system. We

will begin by proving that the l ¼ 1 mode of the dipole

hair vanishes in SGB theory. We then combine our results

with that of Ref. [72] to provide an exact formula for the

asymptotic expansion of the scalar field to Oðr−2Þ and

relate the monopole and dipole hair to the topology of

the EH. We proceed by investigating the asymptotic

expansion of scalar field in DCS theory and prove

that μDCS1 ¼ 0 ¼ μDCSð2;0Þ. Finally, we show how to use our

formula in the decoupling limit and derive expressions for

μDCSð2;1Þ for spinning BHs.

These results imply that, during dynamical gravitational

collapse in SGB theory, any angular dependence in scalar

radiation has to be rapidly radiated away as we settle to a

BH to all orders in perturbation theory. For DCS theory,

spherically symmetric scalar radiation has to be rapidly

radiated away in dynamical collapse to all orders in

perturbation theory. Therefore, SGB theory and DCS

theory have opposite parity with respect to scalar radiation

during axisymmetric dynamical collapse.

1. Scalar Gauss-Bonnet theory

We now establish that the SGB theory scalar field has no

l ¼ 1 dipole degree of freedom. The scalar field equation

for SGB theory is given by

EΦ ≔ □Φðr; θÞ þ ϵRGB ¼ 0: ð54Þ

By a direct calculation, one can verify that, if the metric is

reflection symmetric, then the Gauss-Bonnet scalar is

reflection symmetric, i.e.,

RGBðr; θÞ ¼ RGBðr; π − θÞ: ð55Þ

We also see that the homogeneous solution ϕ0ðr; θÞ is

antisymmetric under reflection,

ϕ0ðr; θÞ ¼ −ϕ0ðr; π − θÞ: ð56Þ

We now use these observations in the formula for μð2;1Þ
given in Eq. (51),

μSGBð2;1Þ ¼
ϵSGB

4π

Z

Σ

RGBðr; θÞϕ0ðr; θÞXμdΣμ: ð57Þ

Let us choose Σ to be the t ¼ constant hypersurface. This

means that

XμdΣμ ¼ Xμ
∂μt

ffiffiffiffiffiffi
−g

p
sinðθÞdrdθdϕ;

¼ ffiffiffiffiffiffi
−g

p
sinðθÞdrdθdϕ ð58Þ

and

μSGBð2;1Þ ¼
ϵSGB

4π

Z

Σ

RGBðr; θÞϕ0ðr; θÞ
ffiffiffiffiffiffi
−g

p
sinðθÞdrdθdϕ:

ð59Þ

The determinant of the metric and RGB are even under

reflection and ϕ0ðr; θÞ is odd under reflection. Therefore,

the integrand in the equation above is odd under reflection.

The integral of any function which is odd under reflections

vanishes when integrated over a sphere. Thus, the integral

in the equation above vanishes. This means that

μSGBð2;1Þ ¼ 0: ð60Þ

Hence, the SGB scalar field has the following asymptotic

behavior to all orders in perturbation theory:

Φ
SGBðr; θÞ ¼ μSGB1

r
þMμSGB1

r2
þOðr−3Þ: ð61Þ

This result applies to both NS and BH spacetimes.

In Ref. [72] a formula was derived for the integral of the

monopole hair in SGB theory at spatial infinity. To convert

their coupling constant to our notation we replace α ¼ 8ϵSGB
in their expression. The formula they derived can now be

written as

1

4π

Z

μSGB1 ðθÞ sinðθÞdθdϕ ¼ 4ϵSGBκEulerðBÞ; ð62Þ

where EulerðBÞ denotes the Euler number of the bifurcation

2-sphere and κ denotes the surface gravity. In Sec. II C 3, we

have shown that μ1ðθÞ is independent of θ for any theory that
satisfies Eq. (26). We can thus pull μSGB1 ðθÞ ¼ μSGB1 out of

the integral to find

μSGB1 ¼ 4κϵSGBEulerðBÞ: ð63Þ

Using this result in Eq. (61) gives
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Φ
SGBðr; θÞ ¼ 4κϵSGBEulerðBÞ

r
þ 4MκϵSGBEulerðBÞ

r2

þOðr−3Þ: ð64Þ

The above expression is valid to all orders in perturbation

theory. We have now obtained the monopole and dipole hair

of SGB scalar field. We emphasize that without proving that

μ1 is independent of θ we could not have inferred the result

above. We also note that our result did not depend on

perturbative arguments. For a NS spacetime, there is no

bifurcation 2-sphere. Therefore,

Φ
SGB
NS ðr; θÞ ¼ Oðr−3Þ: ð65Þ

We then see that both monopole and dipole hair vanish in

SGB theory for a reflection symmetric NS spacetime.

To first order in perturbation theory one can substitute

the GR values in Eq. (64) to determine the monopole hair

and dipole hair on a BH spacetime. The bifurcation sphere

of Kerr spacetime is a 2-sphere, therefore, EulerðBÞ ¼ 2.

The surface gravity of Kerr spacetime is given by

κKerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

2MBHχ
2
BH

: ð66Þ

This expression can be found in Chap. 5.3.10 of Ref. [82].

Substituting these into Eq. (64) we get

μSGB;BH1 ¼ 4κKerrϵSGBEulerðBÞ þOðϵ2SGBÞ;

¼
4ϵSGB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

MBHχ
2
BH

þOðϵ2SGBÞ:

ð67Þ

μSGB;BH2 ¼ MBHμ
SGB;BH
1 ;

¼
4ϵSGB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2BH

p
�

χ2BH
þOðϵ2SGBÞ:

ð68Þ

These results are valid for BHs of arbitrary rotation.

2. Dynamical Chern-Simons theory

The scalar field equation for DCS theory in our notation

is given by

EΦ ≔ □Φðr; θÞ þ ϵDCSR
�R ¼ 0: ð69Þ

We now apply the results we derived in the previous section

to show that μDCS1 ¼ 0. In Ref. [73], it was shown that

1

4π

Z

μDCS1 ðθÞ sinðθÞdθdϕ ¼ 0: ð70Þ

From Sec. II C 3 we know that μDCS1 ðθÞ is independent of
θ. Therefore,

μDCS1 ¼ 0: ð71Þ

This means that the DCS pseudoscalar has the following

asymptotic expansion:

Φ
DCSðr; θÞ ¼

μDCSð2;1ÞP1ðcosðθÞÞ
r2

þOðr−3Þ; ð72Þ

where

μDCSð2;1Þ ¼
ϵDCS

4π

Z

Σ

½R³α´µ
�Rα³´µ�ϕ0ðr; θÞXμdΣμ: ð73Þ

The formula above does not depend on perturbative argu-

ments and, thus, it is valid to all orders in perturbation

theory.

To illustrate how to use the formula obtained above, we

derive μDCSð2;1Þ to first order in perturbation for arbitrarily

spinning BHs. To first order in perturbation theory, the BH

background solution is just the Kerr solution. It is easy to

check that the Kerr metric in Boyer-Lindquist coordinates

approaches the AMC Hartle-Thorne coordinate system. We

will thus work in Boyer-Lindquist coordinates. The homo-

geneous solution in the Kerr spacetime is given by

ϕKerr
0 ðr; θÞ ¼ ðr −MÞP1ðcosðθÞÞ: ð74Þ

The Pontryagin scalar is given by

R�R ¼ 96M3rχ cosðθÞð3M4χ4cos4ðθÞ − 10M2r2χ2cos2ðθÞ þ 3r4Þ
ðM2χ2cos2ðθÞ þ r2Þ6 ; ð75Þ

where χ ¼ a=M denotes the dimensionless spin. To use Eq. (73) choose a t ¼ constant hypersurface so that

dΣμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gKerr

p
µ0μ. This then gives us

μDCSð2;1Þ ¼
ϵDCS

4π

Z

½R³α´µ
�Rα³´µ�ϕKerr

0 ðr; θÞ ffiffiffiffiffiffiffiffiffiffiffiffi
−gKerr

p
drdθdϕþOðϵ2DCSÞ: ð76Þ

HOW DO AXISYMMETRIC BLACK HOLES GROW MONOPOLE … PHYS. REV. D 107, 104047 (2023)

104047-9



Using the expressions for the Pontryagin scalar and the

homogeneous solutions in the Kerr spacetime, one can

integrate the equation above to find

μDCSð2;1Þ ¼
2ϵDCS

h

2χ4 þ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

− 3Þχ2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

þ 2

i

χ3

þOðϵ2DCSÞ; ð77Þ

which is valid for BHs of arbitrary rotation. The formula

derived above matches that derived in Ref. [83] when one

replaces α ¼ 4ϵDCS and ³ ¼ 2 in their expressions.

III. GRAVITATIONAL COLLAPSE AND SCALAR

RADIATION IN SGB AND DCS

Here we present slowly rotating solutions in SGB theory

and DCS theory in NS and BH spacetimes in Sec. III A and

provide a simple description of the scalar dynamics using

these analytical solutions. Finally, in Sec. III B we show

that the analytical results presented in the previous sections

match well with a dynamical numerical simulation of a

rapidly rotating NS solution collapsing to a BH in the

decoupling limit.

A. Slowly rotating solutions

In our previous work [70], we showed that the appearance

of the EH and the decay of the homogeneous solution result

in the growth of hair during spherically symmetric gravi-

tational collapse in SGB gravity. We note that unlike the

spherically symmetric case considered in Ref. [70], there are

no theorems like the Kay-Wald theorem [84] for axisym-

metric gravitational collapse. Thus, we cannot rigorously

show that the appearance of the EH and the regularity of the

scalar is tied to the growth of monopole and dipole hair.

Nevertheless, we now present arguments in favor of the

same mechanism for axisymmetric gravitational collapse in

SGB theory and DCS theory by analyzing stationary NS

and BH solutions in the slow-rotation approximation. We

provide numerical evidence confirming these results in

Sec. III B for a rapidly rotating NS collapsing to a BH.

1. Scalar Gauss-Bonnet theory

On a slowly rotating NS spacetime, the Gauss-Bonnet

scalar field is given by

Φ
SGB
NS ¼ ϵSGBΦ0ðrÞ þOðχ2Þ; ð78Þ

where

Φ0ðrÞ¼
2

MNSr
þ 2

r2
þ8MNS

3r3
þ 1

M2
NS

log

�

1−
2MNS

r

�

: ð79Þ

The above expression falls off as r−4 asymptotically. As

we noted in Ref. [70], the appearance of the EH and

the radiation of the homogeneous solution results in the

growth of hair during dynamical gravitational collapse from

a NS spacetime to a BH spacetime. The scalar monopole

and dipole hair around the newly formed, rotating BH is

determined by Eqs. (67) and (68). Assuming reflection

symmetry, we showed in Eq. (61) that the dipole hair of the

SGB scalar field is given by

μ2 ¼ Mμ1: ð80Þ

Therefore, the structure of dipole radiation must be very

similar to the structure of monopole scalar radiation.

Moreover, this implies that the appearance of the EH and

the decay of the homogeneous part of the solution must

result in the growth of both dipole hair and monopole hair at

late times.

2. Dynamical Chern-Simons theory

On a slowly rotating NS spacetime, the profile of the

DCS scalar field is given by [85]

Φ
DCS
NS ðr; θÞ

¼ ϵDCSP1ðcosðθÞÞ

8

<

:

JNSð18M2
NS þ 10MNSrþ 5r2Þ
2M2

NSr
4

−

5C1JNSððMNS − rÞ log
�

1 −
2MNS

r

�

− 2MNSÞ
4M5

NS

9

=

;

þOðχ3Þ: ð81Þ

Above, the constant C1 multiplying the homogeneous

solution is obtained by matching the exterior to the interior

solution at the surface of the star [85]. On a BH back-

ground, the homogeneous part of the solution is not present

and the profile is given by

Φ
DCS
BH ðr; θÞ

¼ ϵDCSP1ðcosðθÞÞ
�
JBHð18M2

BH þ 10MBHrþ 5r2Þ
2M2

BHr
4

	

þOðχ3Þ: ð82Þ

Thus, if the solution has to be regular during dynamical

collapse, the homogeneous solution has to be radiated

away. We note that monopole hair is absent for both NS and

BH solutions in DCS. This means that the l ¼ 0 part of the

dipole radiation must also be absent during dynamical

collapse apart from transients. Hence, scalar radiation for

the DCS scalar field is strongest along the z-axis and must

fall off as r−2.
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B. Dynamical collapse of rapidly rotating solutions

In this section, we present numerical relativity simula-

tions of the dynamical collapse of rapidly rotating neutron

stars. These simulations not only go beyond the limitations

of the slow-rotation approximation presented in Sec. III A,

but they also provide numerical confirmation of the results

presented in this work.

To this end, we extend our previous simulations of

spherical collapse in perturbative SGB gravity [70] to rapidly

rotating stars. More specifically, we numerically solve a

dynamical GR background on top of which we evolve the

decoupled Klein-Gordon equations for the DCS theory (69)

and SGB theory (54) cases. This is done within the 3þ 1

split of the four-dimensional spacetime [86], identifying a set

of spacelike hypersurfaces ðΣt; ´ijÞ with a time coordinate t

and induced spatial three-metric ´ij. Within this decom-

position, we evolve the conservation of matter and energy-

momentum equations for a perfect fluid [87].

The initial data for a rapidly rotating neutron star

spacetime are constructed using the RNS code [88],

implementing the method outlined in [89]. We then use

this code to construct the rotating neutron star model

similar to D4 of [90]. We will briefly describe its properties

in the following. With a rotation frequency of f ≃ 1300 Hz

and a polar to equatorial axis ratio of 0.65, this is one of the

fastest rotating configurations we can construct. Since we

are not interested in the nuclear physics aspects of the star,

we choose a simple � ¼ 2 ideal fluid, a relation where the

specific internal energy ε, the pressure p, and rest-mass

density ρ of the fluid are related by p ¼ ρεð� − 1Þ. The
initial values for the internal energy density are constructed

using a polytrope εðt ¼ 0Þ ¼ Kρð�−1Þ=ð� − 1Þ with

K ¼ 100. This results in a neutron star mass of 1.86M⊙

and a dimensionless spin χ ¼ J=M2 ¼ 0.54, where J is the
angular momentum of the initial star.

Initially, we set the scalar field to zero, but evolve the

star for a short time for the hair to grow a steady-state

solution. We remark that, although the star is dynamically

unstable under any form of perturbation, these instabilities

grow slowly enough that hair can still form before the star

begins to collapse in earnest. We then accelerate collapse

by adding a small inward pointed velocity perturbation to

the star.

We perform the numerical evolution using the Einstein

Toolkit infrastructure [91,92]. In detail, we solve the

Einstein equations in the Z4c formulation with moving

puncture gauges [93,94], together with the equations of

general-relativistic ideal magnetohydrodynamics [95].

Numerically, these are implemented in the FIL code [96],

which is derived from the publicly available IllinoisGRMHD

code [97]. FIL employs a formally fourth-order accurate

numerical method for both the matter [98] and spacetime

sectors [99], which has been demonstrated to be third-order

accurate for matter spacetimes [96]. Following [31,32], we

have extended FIL to evolve the decoupled scalar field

equations for SGB theory (54) and DCS theory (69)

spacetimes. The code has been tested against the publicly

available Canuda code [100]. More details will be presented

in a forthcoming work.

The numerical grid is constructed using a set of nested

rectangular boxes [101] at doubling resolution. Our finest

resolution is �x ¼ 0.086M with a total number of five

nested boxes. Starting from the onset of collapse we

compute the location of the apparent and event horizons

using the AHFinderDirect [102] code and our own imple-

mentation of the algorithm presented in [103], respec-

tively. While the problem is intrinsically two dimensional,

we compute the problem in all three dimensions, with

reflection symmetry applied across the equatorial plane of

the initial star.

FIG. 2. Dynamics of the scalar field Φ in SGB (left) and DCS (right) theories of gravity during the collapse of a rapidly rotating star.

The cyan line denotes the surface of the star. The contours denote the Gauss-Bonnet invariant RGB and Pontryagin density R�R,
respectively. Specifically, the isocurvature contours are ½10−3; 10−4; 10−5; 10−6; 10−9�M−4 for each theory, respectively. All units are

stated relative to the initial mass of the star, and all times are stated relative to the time of the apparent horizon (AH) formation at t ¼ 0.
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We begin by describing the overall dynamics of the

collapse. The dynamics of the matter fields in this case has

been discussed extensively (e.g., [90,104]) and will not be

repeated here. In short, matter on the rotational axis falls in

first (due to lack of rotational support), whereas matter on

the equator remains outside of the BH the longest. Massive

disks are not formed in this process [105,106] so that the

mass of the BH and of the initial star will approximately

coincide, with the difference being given by gravitational

wave emission [107,108].

Since the dynamics of matter has been discussed exten-

sively elsewhere, let us instead focus on the description of

the scalar field dynamics. Figure 2 shows the scalar fields

ΦSGB=DCS in SGB and DCS gravity, respectively. Starting

from the left, we see that the scalar field attains values of

ΦM2 < 10−4ð10−2Þ before collapse in the SGB (DCS)

gravity case. During collapse, the scalar field in the SGB

theory case begins to grow monopole and dipole hair,

leading to a strong growth of the field by a factor of 100,

compared to the initial field strength. We will discuss this in

more detail in the following paragraphs. For the DCS case,

the growth is less pronounced, which is consistent with the

absence of monopole hair in this theory [see Eq. (82)].

In paper I [70], we performed an in-depth analysis of

when the hair begins to develop in the case of a spherically

symmetric (nonrotating) star. Here, we extend this analy-

sis to the case of rapid rotation. Since this aspect of the

discussion is nearly identical for both SGB gravity and

DCS theory spacetimes, we only focus on the latter. We

refer the reader to paper I [70] for further details on the

setup of this analysis. Figure 3 shows the radial scalar field

energy flux, Sr
Φ
, along the rotation axis of the star. This

axis is most convenient, as the pseudoscalar DCS field

vanishes on the equator. We then track the collapse of the

star (indicated by a white line) into the BH (black area).

Due to the symmetry properties along the rotation axis, the

EH finding problem [103] reduces to a one-dimensional

problem, which we solve in postprocessing. We also show

the AH, computed in full three dimensions [102], for

reference, with both agreeing at late times, as expected.

We can now see that, different from the nonrotating case, a

scalar field flux is present already when the star begins to

contract. The EH is only formed when the star has already

collapsed substantially, i.e., at t ≈ 140M. However, the

strongest energy flux of the scalar field occurs only after

horizon formation.

Finally, let us perform a quantitative analysis to assess

the validity of the analytic results obtained in Sec. III A for

slowly rotating NS. In short, these concern the growth of an

l ¼ 1 mode in the DCS pseudoscalar field [see (82)], as

well as the presence of dipole hair in SGB, which is related

to monopole hair (32) only by the mass of the system. We

can address both of these questions by studying properties

of the scalar field at intermediate distances ðr ¼ 10–40MÞ
from the BH. We begin by considering the DCS case.

Before collapse, the field Φ
DCS sourced by the rotating

neutron star will have an l ¼ 1 mode only [see Eq. (82)].

After collapse the BH retains this mode exclusively, with

only the magnitude of the l ¼ 1 component changing to

Eq. (82). We find that this behavior holds for rapidly

rotating NS, as well. Figure 4 shows the l ¼ 1 mode of the

DCS pseudoscalar field, ΦDCS. As expected, the amplitude

of the pseudoscalar field grows during collapse, with the

l ¼ 0 mode being absent also during the transient phase

FIG. 3. Evolution of the scalar field radial energy flux, Sr
Φ
, for

the SGB theory (top) and DCS theory (bottom) spacetimes.

Shown is the time evolution along the rotation axis of the star,

which coincides with the z-axis of the domain. We further

highlight the surface of the star (white), the EH (cyan), and

the AH (red). The interior of the black hole has been masked out.

For the case of SGB gravity, we also mark the time at which the

monopolar (μ1) and dipolar (μ2) charges match the analytic

prescription (pink). All times t are stated relative to the time of

AH formation.
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around t − r ∼ 90M. We therefore conclude that the hair

before, during, and after collapse will only have an l ¼ 1

mode in the small coupling limit of DCS gravity for slowly

and rapidly spinning NSs.

In the case of SGB gravity, our main finding concerns the

growth of dipole hair and the simple relation between

monopole and dipole charges [see Eq. (32)]. Although only

established in the static case, we confirm these findings

numerically for the dynamical case. To this end we compute

the scalar field profile over a range of radii r ¼ ½5.5; 27�M

and perform a quadratic fit in order to compute the μ1 and μ2
charges during the entire time of the collapse. The resulting

evolution is shown in Fig. 5. We find that dipole hair grows

during collapse, and, after an initial transient around

t ¼ 100–150M, it attains its expected value at late times.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have investigated the dynamics of scalar

monopole and dipole radiation in a wide range of theories

FIG. 4. Evolution of the l ¼ 0 (red) and l ¼ 1 (black) modes of the scalar hair, shifted in time by the extraction radius r ¼ 27 M. For

SGB gravity, only the l ¼ 0 mode grows. For DCS, after an initial transient during collapse, a stable l ¼ 1 mode has developed as

predicted by Eq. (82). For reference we also show the mode that vanishes due the parity of the respective field. The formation time of the

black hole is indicated by the time an EH is first found.

FIG. 5. Evolution of monopolar (μ1) and dipolar (μ2) hair, normalized by the final values of μBH2 for the resulting black holes in each

theory, see Eqs. (68) and (77). Shown is the evolution of the monopolar and dipolar hair charges in the equatorial plane (SGB) and along

the pole (DCS), normalized by the Komar mass, M, of the initial star in order to match Eq. (32). For SGB initially no dipolar hair is

present, it grows to the analytically determined value after the collapse. For DCS the monopolar hair grows during the formation but is

radiated away as soon as the final black hole rings down. The initial formation time of the black hole is indicated by the time an EH is first

found (blue lines). We state all times relative to r ¼ 27M.
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in axisymmetric spacetimes. In particular, we have shown

in Eq. (32) that a simple relation exists between the l ¼ 0

mode of the scalar dipole hair and the scalar monopole hair

for a wide class of theories in axisymmetric and reflection

symmetric spacetimes. We then used this result to study

two specific modified theories, i.e., SGB gravity and DCS

theory in spherical and axisymmetric spacetimes.

In paper I we studied the dynamics of scalar monopole

radiation in SGB theory in spherically symmetric space-

times. Our dipole hair formula allowed us to directly

translate the result from paper I to dipole hair in SGB

theory. In that paper, we found that monopole hair in SGB

theory grows during gravitational collapse, as a NS collap-

ses to form a BH. Our result [Eq. (32)] shows that the dipole

hair should also grow in spherically symmetric collapse. We

then extended these results to axisymmetric gravitational

collapse in both SGB and DCS theories. By working in the

slow-rotation approximation, we showed that the DCS

scalar field solution has divergent modes that have to be

radiated away if the scalar field is to remain regular during

gravitational collapse on and exterior to the EH. This result

shows that mechanism responsible for growth of hair during

gravitational collapse in SGB theories and DCS theories are

exactly the same, albeit the parity of scalar radiation is

opposite in these two theories.

Finally, we confirmed our analytical predictions using

numerical simulations of gravitational collapse of a rapidly

rotating NS star in the decoupling limit. Our results show

that the appearance of the EH results in strong scalar

radiation, which results in the growth of scalar monopole

and dipole hair in SGB and the growth dipole hair in DCS.

Therefore, the results of this paper and Ref. [70] provide

a complete picture of the far field dynamics of scalar

radiation in a wide class of theories, including SGB theory

and DCS gravity.

Our results present some natural directions for future

investigations. One possible direction is to see how our

results change when we go beyond the decoupling analysis.

So far, for the theories considered in this paper, a locally

well-posed initial value formulation only exists for SGB

theory when deviations from GR are “small” (see [109]).

The analytical results of Sec. II did not make any assump-

tions about the decoupling limit. The numerical results,

more particularly, the emission of strong scalar radiation and

its correlation with the appearance of the EH, did use the

decoupling assumption. When the coupling constant is

small, we expect our analysis to carry over if one includes

the backreaction of the scalar field onto the metric. It would

be interesting to confirm this prediction in the future.

Binary BH collisions have been simulated in SGB theory

[32–34,37] and in DCS gravity [31]. Binary NS collisions

have also been simulated in SGB theory recently [56],

using the modified harmonic formulation [109]. One direc-

tion for future work involves using the analytical results

established in this paper to understand the dynamics of scalar

radiation better in SGB theory and DCS theory. Another

natural direction would be to establish general results for

gravitational radiation and leading-order metric corrections

to GR. Understanding the dynamical behavior of the

leading-order metric corrections will help build a theoretical

understanding complementing the post-Newtonian approxi-

mation [30,35,36] and numerical studies.

Finally, one could also consider more general theories

than the ones we considered [Eq. (1)] and see which of these

results carry over. The interesting aspects of theories such as

SGB gravity is that the monopole hair vanishes for neutron

star spacetimes, but the monopole hair is not zero for a BH

spacetime [72]. It would be interesting to see if the same

results hold in other theories; some examples of which could

be theories with a more general coupling function fðϕÞ to
the curvature scalar F [72] or actions that contain higher

powers of the Riemann curvature, which naturally arise in a

gradient expansion around GR. If this happens, then one

could study the growth of scalar hair in these theories and

see if the growth is related to the emission of scalar radiation

from the appearance of the EH. It would also be interesting

to see if formulas such as the one we derived in Eq. (32)

hold in these theories.
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APPENDIX A: CONSTRUCTING

ASYMPTOTICALLY MASS CENTERED

COORDINATES

In this appendix we prove that one can always construct

an AMC coordinate system suitable for our purposes in

this paper.

1. Static and spherically symmetric spacetimes

The proof for spherically symmetric and static space-

times follows by performing simple translations. In an

ingoing null coordinate system xμ ¼ ðv; r; θ;ϕÞ, the metric

is given by

ds2 ¼ −DðrÞdv2 þ 2dvdrþ KðrÞdΩ2: ðA1Þ
The asymptotic expansions of DðrÞ and KðrÞ are given by

DðrÞ ¼ 1 −
2M

r
þOðr−2Þ; ðA2Þ

KðrÞ ¼ r2
�

1 −
K1

r
þOðr−2Þ

�

; ðA3Þ

where, as before, M denotes the Komar mass of the

spacetime. If K1 is equal to zero then we are in AMC

coordinates. If K1 is not equal to zero then shift,

r ¼ Rþ K1. It is easy to see that in the coordinate system

xμ ¼ ðv; R; θ;ϕÞ the asymptotic expansion of the metric

functions is given by

DðRÞ ¼ 1 −
2M

R
þOðR−2Þ; ðA4Þ

KðRÞ ¼ R2ð1þOðR−2ÞÞ: ðA5Þ

Thus, the coordinate system xμ ¼ ðv; R; θ;ϕÞ is AMC.

2. Stationary, axisymmetric, circular, and reflection

symmetric spacetimes

In case of stationary, axisymmetric, and circular space-

times one can always introduce Hartle-Thorne type coor-

dinates [110]. The line element is given by

ds2 ¼−N2ðr;θÞdt2þA2ðr;θÞdr2

þ r2B2ðr;θÞfdθ2þ sinðθÞ2½dϕ−ωðr;θÞdt�2g: ðA6Þ

To prove that we can express these coordinates in AMC

form we need to show that the asymptotic expansions of

the metric functions, Nðr; θÞ; Aðr; θÞ; Bðr; θÞ, and ωðr; θÞ
are given by Eqs. (21)–(24). To obtain the asymptotic

expansions of the metric functions we will look at the

gravitational equations of motion,

Eμν ¼ Gμν þ 16πϵCμν − 8πðTΦ
μν − Tmatter

μν Þ ¼ 0; ðA7Þ

where the components of the tensor Eμν are defined with

respect to the tetrad

�

∂t; ∂r;
∂θ

r
;

∂ϕ

r sinðθÞ

	

: ðA8Þ

We will assume that the matter stress energy tensor has

compact support. Then, in the asymptotic region Tmatter
μν ¼ 0.

We further assume that the curvature scalar F falls off faster

than Oðr−5Þ. The tensor Cμν (4) is constructed from the

curvature scalar F and the scalar field Φ. Therefore, it must

fall off at least as fast as F , asymptotically. With this

observation, the components of the gravitational field

equations in the tetrad set up above have the form

Eμν ¼ Gμν − 8πTΦ
μν þOðr−5Þ: ðA9Þ

We also note that from the definition of TΦ
μν (3) we see that

TΦ
μν falls off as Oðr−4Þ. Thus, the field equations reduce to

Eμν ¼ Gμν þOðr−4Þ: ðA10Þ

We now substitute the following expansions into the field

equations:

Nðr; θÞ ¼ 1þ
X∞

j¼1

NjðθÞ
rj

; ðA11Þ

Aðr; θÞ ¼ 1þ
X∞

j¼1

AjðθÞ
rj

; ðA12Þ

ωðr; θÞ ¼
X∞

j¼1

ωjðθÞ
rj

; ðA13Þ

Φðr; θÞ ¼
X∞

j¼1

μjðθÞ
rj

; ðA14Þ

Bðr; θÞ ¼
X∞

j¼1

BjðθÞ
rj

: ðA15Þ

To prove that the coordinates are AMCwe have to show that

ω1ðθÞ ¼ 0; ðA16Þ

ω2ðθÞ ¼ 0; ðA17Þ

N1ðθÞ ¼ −M; ðA18Þ
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A1ðθÞ ¼ M; ðA19Þ

ω3ðθÞ ¼ 2J; ðA20Þ

B1ðθÞ ¼ 0: ðA21Þ

We start by showing that ω1ðθÞ ¼ 0. To Oðr−2Þ one finds

E33 ¼ −
3sin2ðθÞðω0

1ðθÞ2 þ ω1ðθÞ2Þ
4r2

þOðr−3Þ;

⇒ ω1ðθÞ ¼ 0: ðA22Þ

Next, we show that ω2ðθÞ ¼ 0. Using, ω1ðθÞ ¼ 0 we can

simplify E03 as

E03 ¼
3 cosðθÞω0

2ðθÞ þ sinðθÞω00
2ðθÞ − 2ω2ðθÞ sinðθÞ

2r3

þOðr−4Þ: ðA23Þ

The only solution to the above differential equation which is

regular in θ is ω2ðθÞ ¼ 0.

We now show that ω3ðθÞ is a constant. We first notice

that

TΦ

03 ¼
ω1ðθÞ sinðθÞðμ01ðθÞ2 þ μ1ðθÞ2Þ

4r4
þOðr−5Þ ∼Oðr−5Þ;

ðA24Þ

since ω1ðθÞ ¼ 0. So,

E03 ¼ G03 þOðr−5Þ;

¼ 3 cosðθÞω0
3ðθÞ þ sinðθÞω00

3ðθÞ
2r4

þOðr−5Þ: ðA25Þ

The solution to the above equation which is regular in θ

is a constant solution. Let us denote this constant by

ω3ðθÞ ¼ 2J. We now derive a constraint between A1,

B1, and N1. To Oðr−3Þ,

E12 ¼
A0
1ðθÞ þ B0

1ðθÞ þ 2N0
1ðθÞ

r3
þOðr−4Þ

⇒ B1ðθÞ ¼ c0 − 2N1ðθÞ − A1ðθÞ: ðA26Þ

Using the above constraint relation we find that

E00 ¼ −
2ðcotðθÞN0

1ðθÞ þ N00
1ðθÞÞ

r3
þOðr−4Þ: ðA27Þ

Regularity in θ implies that N1ðθÞ ¼ −M. We will identify

M with the Komar mass of the spacetime later. Using this

relation in E22 we obtain

E22 ¼
cotðθÞA0

1ðθÞ þ A1ðθÞ −M

r3
þOðr−4Þ: ðA28Þ

The solution of the above differential equation is given by

A1ðθÞ ¼ M þ c1 cosðθÞ: ðA29Þ

We set the constant c1 to zero because of the assumption of

reflection symmetry. Thus,

A1ðθÞ ¼ M: ðA30Þ

Combining the equation above with Eq. (A26) we see that

B1ðθÞ ¼ c0 þ 2M −M ¼ c0 þM: ðA31Þ

We summarize the results we have so far below,

ω1ðθÞ ¼ 0; ðA32Þ

ω2ðθÞ ¼ 0; ðA33Þ

N1ðθÞ ¼ −M; ðA34Þ

A1ðθÞ ¼ M; ðA35Þ

ω3ðθÞ ¼ 2J; ðA36Þ

B1ðθÞ ¼ c0 þM: ðA37Þ

The last step now is to get rid of the constant c0. To do this,
let us shift r ¼ r0 − c2, where the aim is to use the constant

c2 to set c0 to zero. The line element (A6) in the shifted

coordinate is given by

ds2 ¼ −N2ðr0 − c2; θÞdt2 þ A2ðr0 − c2; θÞdr02

þ r02
�

1 −
c2

r0

�
2

B2ðr0 − c2; θÞ

× fdθ2 þ sinðθÞ2½dϕ − ωðr; θÞdt�2g: ðA38Þ

Therefore, the metric function Bðr; θÞ transforms as

B0ðr0;θÞ ¼
�

1−
c2

r0

�
2

Bðr0 − c2;θÞ

¼
�

1−
2c2

r0

��

1þ c0 þM

r0

�

þOðr0ð−2ÞÞ: ðA39Þ

We can set c0 to zero by choosing 2c2 ¼ c0 þM. This

means that in the new shifted coordinate system

B0ðr0; θÞ ¼ 1þOðr0−2Þ: ðA40Þ

The leading behavior of the other metric functions is not

affected. We now drop the superscript on r0. Hence, we have
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shown that we can install a coordinate system where the

metric functions have the following asymptotic behavior:

ω1ðθÞ ¼ 0; ðA41Þ

ω2ðθÞ ¼ 0; ðA42Þ

N1ðθÞ ¼ −M; ðA43Þ

A1ðθÞ ¼ M; ðA44Þ

ω3ðθÞ ¼ 2J; ðA45Þ

B1ðθÞ ¼ 0: ðA46Þ

One can now compute the Komar mass and angular

momentum and verify that they are indeed equal to M
and J, respectively. Therefore, we have established that one

can always install AMC coordinates for spacetimes respect-

ing the assumptions (1)–(4) made in Sec. II C.

APPENDIX B: PROOF OF LEMMA 1

In this appendix we provide a proof of Lemma 1. The

statement and proof of Lemma 1 is as follows.

Lemma 1.—Suppose we have an equation of the form

∇μJ
μ þ ϵS ¼ 0: ðB1Þ

The EH horizon of our spacetime is a null surface generated

by Xμ ¼ tμ þΩHϕ
μ where ΩH is the angular velocity of

the EH. Assume that

(1) LtJ ¼ LϕJ ¼ 0⇒ LXJ ¼ 0, and

(2) tμJμ ¼ ϕμJμ ¼ 0⇒ XμJμ ¼ 0.

The operator L in the equations above denotes the Lie

derivative operator. Let Σ be a partial Cauchy surface as

shown in Fig. 1 and let dΣμ be the surface element on this

hypersurface. Then

− lim
r→∞

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ ¼ ϵ

Z

Σ

SXμdΣμ: ðB2Þ

Proof.—We start by defining an antisymmetric tensor,

Qμν
≔ JμXν

− XμJν: ðB3Þ

Taking the divergence of Qμν, we obtain

∇νQ
μν ¼ Jμ∇νX

ν þ Xν∇νJ
μ
− Jν∇νX

μ
− Xμ∇νJ

ν: ðB4Þ

The first term in the equation above is zero because Xν is a

Killing vector. The second and the third term can be

combined to give

Xν∇νJ
μ
− Jν∇νX

μ ¼ LXJ
ν ¼ 0: ðB5Þ

Therefore, the last term is the only nonzero term, which can

be simplified using Eq. (33),

∇νQ
μν ¼ −Xμ∇νJ

ν ¼ ϵXμS: ðB6Þ

We now integrate the equation above on a partial Cauchy

hypersurface Σ as shown in Fig. 1. Let dΣμ represent the

volume element on the hypersurface Σ,

Z

Σ

∇νQ
μνdΣμ ¼ ϵ

Z

Σ

SXμdΣμ: ðB7Þ

The left-hand side of the above equation can be simplified

by using Stokes theorem

Z

Σ

∇νQ
μνdΣμ ¼

1

2

Z

∂Σ

QμνdSμν: ðB8Þ

The boundary ∂Σ consists of a cross section of the EH and

spatial infinity as shown in Fig. 1,

Z

Σ

∇νQ
μνdΣμ ¼

1

2

Z

∞

QμνdS∞μν þ
1

2

Z

H

QμνdSHμν: ðB9Þ

The surface element of the EH is given by

dSHμν ¼ 2X½μlν�
ffiffiffiffiffiffi
σH

p
dθdϕ; ðB10Þ

where lμ is the second null normal to the EH and σH is the

determinant of the induced metric on the EH. From the

definition of Qμν [Eq. (B3)] we see that

QμνX½μlν�jH ¼ QμνXμlνjH
¼ ðXμJ

μXν
− XμX

μJνÞj
H
¼ 0: ðB11Þ

The first term is zero by assumption and the second term is

zero because Xμ is null on the horizon. Thus, the integral

over the EH is zero

1

2

Z

H

QμνdSHμν ¼
Z

H

QμνX½μlν�jH
ffiffiffiffiffiffi
σH

p
dθdϕ

¼
Z

H

QμνXμlνj
H

ffiffiffiffiffiffi
σH

p
dθdϕ ¼ 0: ðB12Þ

Therefore, Eq. (B9) simplifies to

Z

Σ

∇νQ
μνdΣμ ¼

1

2

Z

∞

QμνdS∞μν: ðB13Þ

The surface element at spatial infinity is given by

dS∞μν ¼ 2∂½μt∂ν�r
ffiffiffiffiffiffi
−g

p
dθdϕ: ðB14Þ

We note that, at spatial infinity, Xμ
∂μt ¼ 1 and Xμ

∂μr

evaluates to zero everywhere. Hence,
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Z

Σ

∇νQ
μνdΣμ ¼

1

2

Z

∞

QμνdS∞μν

¼
Z

∞

Qμν
∂½μt∂ν�r

ffiffiffiffiffiffi
−g

p
dθdϕ

¼
Z

∞

Qμν
∂μt∂νr

ffiffiffiffiffiffi
−g

p
dθdϕ

¼
Z

∞

�

Jμ∂μt
|ffl{zffl}

0

Xν
∂νr

|fflffl{zfflffl}

0

−Jν∂νrX
μ
∂μt

|fflffl{zfflffl}

1

�
ffiffiffiffiffiffi
−g

p
dθdϕ

¼ −

Z

∞

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ ≔ − lim

r→∞

Z

Jr
ffiffiffiffiffiffi
−g

p
dθdϕ: ðB15Þ

Comparing the equation above with Eq. (B7) we obtain the result we intended. ▪
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