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Abstract— This study focuses on aggregative games, a type
of Nash games that is played over a network. In these games,
the cost function of an agent is affected by its own choice
and the sum of all decision variables of the players involved.
We consider a distributed algorithm over a network, whereby
to reach a Nash equilibrium point, each agent maintains a
prediction of the aggregate decision variable and share it with
its local neighbors over a strongly connected directed network.
The existing literature provides such algorithms for undi-
rected graphs which typically require the use doubly stochastic
weight matrices. We consider a fixed directed communication
network and investigate a synchronous distributed gradient-
based method for computing a Nash equilibrium. We provide
convergence analysis of the method showing that the algorithm
converges to the Nash equilibrium of the game, under some
standard conditions.

Index Terms— aggregative games; Nash equilibrium seeking;
directed communication networks

I. INTRODUCTION

In an aggregative game, each agent’s utility (or cost)
function is affected by the aggregate of all the other agents’
decision variables in addition to the agent’s own decision
variable. References [1] and [2] are examples of studies
focused on such games. These kind of games arise in a
variety of applications, including demand side management
for electric vehicles [3] and [4], demand response in market-
places with congestion [5], and reducing network congestion
[6]. From the standpoint of control theory, the purpose is to
develop and demonstrate a distributed algorithm that assures
convergence of agents’ strategies to a non-cooperative game
Nash equilibrium.

The aggregate decision variable is typically visible to all
agents in a wide range of aggregative game theory studies on
equilibrium computation. This assumption allows agents to
adjust their decision based on their utility (or cost function)
without having to communicate with each other [7]. A
semi-decentralized communication system is often used to
achieve this ideal condition, where a central unit collects and
disseminates the aggregate decision variable to all agents in
this system. Example of studies considering such a structure
are [8], [9], [10]. In the absence of such a central entity,
the aggregate of the decision variables is not immediately
accessible to agents. We are interested in the case where
the agents are connected over a communication network and
may only receive a limited amount of information from their
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immediate neighbors. The search for a Nash equilibrium in
network constrained games has received a lot of interest
recently. The goal of this form of games is for players to
minimize their own cost function in a selfish manner by
making decisions based on an estimate of the other agents’
decision variables. In this context, the agents are able to
retain an estimate of decision variables of all the other agents
and share them with their local neighbors to make up for the
lack of immediate access to the aggregate decision [11].

Assuming that agents’ immediate ability to obtain the
aggregate decision variable is constrained, the paper [12]
suggests a completely dispersed approach for figuring out
a generalized Nash equilibrium in aggregative games with
time-varying graphs of information exchange and coupling
constraints. The work in [13] presents a unified convergence
analysis for projected gradient algorithms used for comput-
ing a general Nash equilibrium in aggregative games. In
particular, this study uses a comprehensive method based
on the notion of monotone operators to demonstrate that
sequential updates to projected gradient algorithms belong to
the category of forward-backward splitting techniques with
preconditioning [14], which was first proposed in [15] for
multi agent games over a network. The work in [8] addresses
the problem of guiding a population of non-cooperative
heterogeneous agents in the direction of an aggregative equi-
librium, where each agent has a cost function with a convex
form based on the average population decision variable.
In this study, it was assumed that a central coordinator
exists who has access to the average population decision
variable and can give control command to direct the agents’
decentralized best responses. This study develops a dynamic
control command based on notions from operator theory that
guarantees global equilibrium convergence. Locating the zero
point of the sum of monotone operators has been posed as
global Nash equilibrium searching in network aggregative
games in [16] using primal-dual analysis for the case when
players have access only to their neighbors’ information
which is shared over an undirected communication graph.

Many studies in the context of finding Nash equilibrium
in a networked game, including those listed above, assume
that agents communicate over an undirected communication
graph. This typically results in the use of a doubly stochastic
weight matrix that agents use for ”tracking” the other agents
decisions. However, symmetric communications are often
not possible in some practical applications, such as sensor
networks. The work in [11] has proposed an asynchronous
random gossip-based approach for computing a Nash equi-
librium of a network-constrained game in a directed commu-
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nication graph, which distinguishes it from other studies in
the literature. However, the game setup in [11] is not fit for
aggregative network games. The work in [17] is concerned
with the problem of Nash equilibrium pursuit in aggregative
games in directed communication graphs, and provides a
distributed continuous-time algorithm that converges to the
Nash equilibrium of the game.

Considering lack of studies focusing on Nash equilibrium
seeking discrete algorithms in the network aggregative games
over a directed communication network, this current paper
proposes an extension to the algorithm introduced in [7]
to bridge the gap in the literature in this regard. In this
paper, for a fixed communication digraph, we propose and
analyze an algorithm utilizing the tracking dynamic used
in [7] combined with the weight matrices inspired by the
work in [18]. Even-though the analysis is building on some
related results in [7], our method and its analysis is different
from that of the method in [7]. The main difference is that [7]
deals with undirected networks and the weight matrices are
doubly stochastic, whereas in this paper the graph is directed
and the weight matrices are no longer balanced. Compared
with [17], our proposed algorithm is a discrete-time one.

Organization of the paper: Section II provides problem
formulation, notations, and some assumptions. In Section III,
the algorithm is proposed and its convergence is analyzed.
Section IV concludes the paper with some directions for
further studies.

II. FORMULATIONS AND NOTATIONS

We consider a game with 𝑁 players, and we use
1, 2, . . . , 𝑁, to index the players, and the set N =

{1, 2, . . . , 𝑁} to denote the collection of all players. The 𝑖th
player’s decisions are restricted to its strategy set 𝐾𝑖 ⊂ R𝑛
and selected to minimize its cost function 𝑓𝑖 (𝑥𝑖 , 𝑥). In this
cost function, the variables 𝑥𝑖 and 𝑥 =

∑𝑁
𝑖=1 𝑥𝑖 denote

player 𝑖 decision and the aggregate of all players decisions,
respectively. We use 𝑥−𝑖 to denote the aggregate of all
players’ decisions except for player 𝑖, i.e.,

𝑥−𝑖 =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑥 𝑗 .

Let us define the Minkowski sum of the sets 𝐾𝑖 with 𝐾̄ as
follows:

𝐾̄ ≜
𝑁∑︁
𝑖=1

𝐾𝑖 . (1)

and let 𝑥 be the aggregate of players decisions 𝑥𝑖 , i.e.,

𝑥 ≜
𝑁∑︁
𝑗=1
𝑥 𝑗 = 𝑥𝑖 + 𝑥−𝑖 , 𝑥 ∈ 𝐾̄ . (2)

Having 𝑥−𝑖 , player 𝑖 is confronted with the following opti-
mization problem:

min 𝑓𝑖 (𝑥𝑖 , 𝑥) ≜ 𝑓𝑖 (𝑥𝑖 , 𝑥𝑖 + 𝑥−𝑖)
𝑠.𝑡. 𝑥𝑖 ∈ 𝐾𝑖 , (3)

where 𝐾𝑖 ⊆ R𝑛 and 𝑓𝑖 : 𝐾𝑖 × 𝐾̄ → R with the set 𝐾̄ ⊆ R𝑛 as
defined in (1). As quite natural in the game theoretic setup,
the action set 𝐾𝑖 and the cost function 𝑓𝑖 are assumed to
be known only by agent 𝑖. The following assumption on the
constraint sets 𝐾𝑖 and the cost functions 𝑓𝑖 gives a sufficient
condition to ensure the existence of a Nash equilibrium.

Assumption 1 (Assumption 1, [7]). For each 𝑖 = 1, 2, . . . , 𝑁,
the set 𝐾𝑖 ⊂ R𝑛 is compact and convex. Each function
𝑓𝑖 (𝑥𝑖 , 𝑦) is continuously differentiable in (𝑥𝑖 , 𝑦) over some
open set containing the set 𝐾𝑖 × 𝐾̄ , while each function
𝑥𝑖 ↦→ 𝑓𝑖 (𝑥𝑖 , 𝑥) is convex over the set 𝐾𝑖 .

Under Assumption 1, sufficient condition for existence
of a Nash equilibrium of (3) can be investigated through a
variational inequality problem 𝑉𝐼 (𝐾, 𝜙) [19] by determining
if there is a point 𝑥∗ ∈ 𝐾 such that

(𝑥 − 𝑥∗)𝑇𝜙(𝑥∗) ≥ 0, ∀𝑥 ∈ 𝐾,
where

𝜙(𝑥) ≜
©­­«
∇𝑥1 𝑓1 (𝑥1, 𝑥)

...

∇𝑥𝑁 𝑓𝑁 (𝑥𝑁 , 𝑥)

ª®®¬ , 𝐾 =

𝑁∏
𝑖=1

𝐾𝑖 (4)

with 𝑥 ≜ (𝑥𝑇1 , . . . , 𝑥
𝑇
𝑁
)𝑇 , 𝑥𝑖 ∈ 𝐾𝑖 for all 𝑖, and 𝑥 defined

by (2). Note that Assumption 1 guarantees that the set 𝐾 is
compact and convex in R𝑛𝑁 and that the mapping 𝜙 : 𝐾 →
R𝑛𝑁 is continuous. Let us define 𝐹𝑖 (𝑥𝑖 , 𝑥) to emphasize the
special form of the mapping 𝜙 as follows:

𝐹𝑖 (𝑥𝑖 , 𝑥) = ∇𝑥𝑖 𝑓𝑖 (𝑥𝑖 , 𝑥), ∀𝑖 = 1, 2, . . . , 𝑁. (5)

The mapping 𝐹 (𝑥, 𝑢) is given by

𝐹 (𝑥, 𝑢) ≜
©­­«
𝐹1 (𝑥1, 𝑢)

...

𝐹𝑁 (𝑥𝑁 , 𝑢)

ª®®¬ , (6)

where maps 𝐹𝑖 : 𝐾𝑖 × 𝐾̄ → R𝑛 are given by (5). Considering
this notation we have

𝜙(𝑥) = 𝐹 (𝑥, 𝑥), ∀𝑥 ∈ 𝐾. (7)

To ensure the Nash equilibrium’s uniqueness, the following
assumption is made on the mapping 𝜙(𝑥).

Assumption 2 (Assumption 2, [7]). The mapping 𝜙(𝑥) is
strictly monotone over 𝐾 , i.e.,(

𝜙(𝑥) − 𝜙(𝑥 ′)
)𝑇 (𝑥 − 𝑥 ′) > 0, ∀𝑥, 𝑥 ′ ∈ 𝐾, 𝑥 ≠ 𝑥 ′.

Proposition 1 (Proposition 1, [7]). Suppose that Assump-
tions 1 and 2 for the game defined in (3) hold. Then, the
game has a unique Nash equilibrium.

To accommodate the analysis of the current paper, we
make an additional assumption on the mappings 𝐹𝑖 (the
coordinate mappings of 𝜙, see (4)–(7)), as follows.

Assumption 3 (Assumption 3, [7]). Each mapping 𝐹𝑖 (𝑥𝑖 , 𝑢)
is uniformly Lipschitz continuous in 𝑢 over the set 𝐾̄ for every
fixed 𝑥𝑖 ∈ 𝐾𝑖 i.e., for some 𝐿̄𝑖 > 0 and for all 𝑧1, 𝑧2 ∈ 𝐾̄ ,

∥𝐹𝑖 (𝑥𝑖 , 𝑧1) − 𝐹𝑖 (𝑥𝑖 , 𝑧2)∥ ≤ 𝐿̄𝑖 ∥𝑧1 − 𝑧2∥,
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where 𝐾̄ is as defined in (1).

III. PROPOSED METHOD AND ITS CONVERGENCE

We propose a distributed approach for determining the
game’s equilibrium in (3) in this section. This algorithm is
based on each agent’s estimation of the aggregate decision
variable from the other agents perspective. After that update,
the agents proceed with a projection-based gradient update.

Let 𝐸 be the set of underlying directed edges among the
agents and let 𝐺 = (N , 𝐸) denote the fixed connectivity
graph. Let N 𝑖𝑛

𝑖
and N𝑜𝑢𝑡

𝑖
indicate set of immediate neighbors

of agent 𝑖 that this agent can pull data from and collection
of agents who receive information from agent 𝑖, respectively.
Mathematically, N 𝑖𝑛

𝑖
can be expressed as: N 𝑖𝑛

𝑖
= { 𝑗 : ( 𝑗 , 𝑖) ∈

𝐸} and N𝑜𝑢𝑡
𝑖

can be expressed as: N𝑜𝑢𝑡
𝑖

= { 𝑗 : (𝑖, 𝑗) ∈ 𝐸}.
The following assumption is made on the graph 𝐺 = (N , 𝐸).

Assumption 4. The directed graph 𝐺 = (N , 𝐸) is strongly
connected.

At each time 𝑘 , every agent maintains its own decision
variable 𝑥𝑘

𝑖
and its own estimate 𝑣𝑖,𝑘

𝑖
of the network wide

aggregate
∑𝑁
𝑖=1 𝑥

𝑘
𝑖

. Every agent 𝑖, also, maintains a variable
𝑣
𝑖,𝑘
𝑗

for every other agent 𝑗 ≠ 𝑖 in the network, where 𝑣𝑖,𝑘
𝑗

is estimates the opinion of agent 𝑗 ∈ N at time 𝑘 about
the aggregate

∑𝑛
𝑖=1 𝑥

𝑘
𝑖

. At time 𝑘 + 1, each agent 𝑙 decides
on the weights 𝑤𝑖

𝑗 ,𝑙
> 0, for all 𝑗 ∈ N , for all of its

out-neighbors 𝑖 ∈ N𝑜𝑢𝑡
𝑙

and sends them the scaled values
𝑤𝑖
𝑗 ,𝑙
𝑣
𝑙,𝑘
𝑗

for all 𝑗 ∈ N . Every agent 𝑖 receives, from its in-
neighbors 𝑙 ∈ N 𝑖𝑛

𝑖
, the weighted estimates 𝑤𝑖

𝑗 ,𝑙
𝑣
𝑙,𝑘
𝑗

of the
aggregate decision variables for all 𝑗 ∈ N . Using its own
decision 𝑥𝑘

𝑖
and estimate 𝑣𝑖,𝑘

𝑖
, agent 𝑖 updates its decision

𝑥𝑘+1
𝑖

based on its own cost function. This updated decision
is used to compute 𝑣𝑖,𝑘+1

𝑗
for all 𝑗 ≠ 𝑖 in order to update

the opinion estimate of the aggregate vector as seen by the
other agents 𝑗 ≠ 𝑖. These updates of the aggregate estimates
for the other agents are performed by taking an intermittent
step, as follows: for all agents 𝑖,

𝑣̂
𝑖,𝑘
𝑗

=
∑︁

𝑙∈N𝑖𝑛
𝑖
∪{𝑖 }

𝑤𝑖𝑗 ,𝑙𝑣
𝑙,𝑘
𝑗
, ∀ 𝑗 = 1, . . . , 𝑁, 𝑗 ≠ 𝑖, (8)

that is, for every 𝑗 ≠ 𝑖, agent 𝑖 simply sums the scaled vectors
𝑤𝑖
𝑗 ,𝑙
𝑣
𝑙,𝑘
𝑗

received from its in-neighbors and also includes its
own scaled estimate 𝑤𝑖

𝑗 ,𝑖
𝑣
𝑖,𝑘
𝑗

. By defining 𝑤𝑖
𝑗 ,𝑙

= 0 for 𝑙 ∉
N 𝑖𝑛
𝑖

∪ {𝑖}, we can write

𝑣̂
𝑖,𝑘
𝑗

=

𝑁∑︁
𝑙=1

𝑤𝑖𝑗 ,𝑙𝑣
𝑙,𝑘
𝑗
,

At each time step 𝑘 + 1, every agent 𝑖 updates its iterate and
estimates of the aggregate decision variables for all other
agents 𝑗 , as follows:

𝑥𝑘+1
𝑖 = Π𝐾𝑖

[𝑥𝑘𝑖 − 𝛼𝑘𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂
𝑖,𝑘
𝑖
)], (9)

𝑣̂
𝑖,𝑘
𝑗

=

𝑁∑︁
𝑙=1

𝑤𝑖𝑗 ,𝑙𝑣
𝑙,𝑘
𝑗
, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}, (10)

𝑣
𝑖,𝑘+1
𝑗

= 𝑣̂
𝑖,𝑘
𝑗

+ 𝑥𝑘+1
𝑖 − 𝑥𝑘𝑖 , ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}, (11)

where 𝛼𝑘 > 0 is the stepsize, Π𝐾𝑖
[𝑢] denotes the Euclidean

projection of a vector 𝑢 onto the set 𝐾𝑖 , and 𝐹𝑖 is as defined
in (5). The term 𝑣̂

𝑖,𝑘
𝑖

in (9) is the estimate of agent 𝑖 on
aggregate decision variable

∑𝑁
𝑗=1 𝑥

𝑘
𝑗

from its own point of
view at time 𝑘 . The algorithm is initialized arbitrarily with
𝑥0
𝑖
∈ 𝐾𝑖 for all agents 𝑖, and with 𝑣

𝑙,0
𝑗

= 𝑥0
𝑙
, for all 𝑗 , 𝑙 =

1, 2, . . . , 𝑁 .
In the following, we discuss under what conditions on

the agents’ weights 𝑤𝑖
𝑗 ,𝑙

and the stepsize 𝛼𝑘 , the iterate
vector (𝑥𝑘1 , . . . , 𝑥

𝑘
𝑁
) and the estimate 𝑣̂𝑖,𝑘

𝑖
converge to a Nash

equilibrium (𝑥∗1, . . . , 𝑥
∗
𝑁
) and

∑𝑁
𝑗=1 𝑥

∗
𝑗
, respectively.

To specify the conditions on the weights 𝑤𝑖
𝑗 ,𝑙

used in the
updates in (10) and (11). For this, we define the matrix 𝑊 𝑗

for every 𝑗 ∈ N , as follows:

[𝑊 𝑗 ]𝑖,𝑙 = 𝑤𝑖𝑗 ,𝑙 ∀𝑖, 𝑙 = 1, . . . , 𝑁. (12)

We assume that the structure of each 𝑊 𝑗 is compliant with
the graph connectivity structure (N , 𝐸) in the sense that
positive entries in each𝑊 𝑗 are associated with the links in the
graph. We also require that each 𝑊 𝑗 is a column stochastic
matrix. These conditions are given below.

Assumption 5. For every 𝑗 ∈ N , we have
(i) For all 𝑙 ∈ N with 𝑙 ≠ 𝑗 , and for all 𝑖 ∈ N𝑜𝑢𝑡

𝑙
, we have

𝑤𝑖
𝑗 ,𝑙
> 0, and otherwise 𝑤𝑖

𝑗 ,𝑙
= 0.

(ii) For ℓ = 𝑗 , we have 𝑤 𝑗
𝑗 , 𝑗

= 1 and 𝑤𝑖
𝑗 , 𝑗

= 0 for all 𝑖 ≠ 𝑗 .
(iii)

∑𝑁
𝑖=1 𝑤

𝑖
𝑗 ,𝑙

= 1, ∀𝑙 ∈ N .

Given an index 𝑗 ∈ N , Assumption 5(i) specifies the
entries in each column ℓ = 1, . . . , 𝑁 of the matrix 𝑊 𝑗 except
for the 𝑗-th column. Assumption 5(ii) states that the 𝑗 th
column of the matrix 𝑊 𝑗 consists of the vector 𝑒 𝑗 , where
𝑒 𝑗 is the 𝑗-th unit vector of the standard Euclidean basis.
The condition in Assumption 5(iii) states that the entries of
every column of each matrix 𝑊 𝑗 sum to 1. We note that
since the weights 𝑤𝑖

𝑗 ,𝑙
do not vary with time, there exists a

scalar 𝜂 ∈ (0, 1) such that 𝑤𝑖
𝑗 ,𝑙

≥ 𝜂 for all 𝑙 ∈ N 𝑖𝑛
𝑖

⋃{𝑖}
(𝜂 corresponds to the smallest positive entry in the matrices
𝑊 𝑗 , 𝑗 = 1, . . . , 𝑁).

The following assumption specifies the stepsize require-
ments that will be significant in the convergence analysis.

Assumption 6 (Assumption 6, [7]). The stepsize sequence
{𝛼𝑘} is positive, monotonically nonincreasing i.e., 𝛼𝑘+1 ≤ 𝛼𝑘
for all 𝑘 , and such that

∑∞
𝑘=0 𝛼𝑘 = ∞,

∑∞
𝑘=0 𝛼

2
𝑘
< ∞.

We now consider the weight matrices 𝑊 𝑗 (see (12)). We
define Φ 𝑗 (𝑘, 𝑠) := 𝑊 𝑘−𝑠+1

𝑗
and denote the 𝑖𝑙-th element of

this matrix by [Φ 𝑗 (𝑘, 𝑠)]𝑖,𝑙 . In the sequel, we state some
convergence properties of the matrices Φ 𝑗 (𝑘, 𝑠), 𝑗 ∈ N .

Lemma 1. Let Assumptions 4 and 5 hold. Then, for every
𝑗 ∈ N we have
(a) lim𝑘→∞ Φ 𝑗 (𝑘, 𝑠) = 𝑒 𝑗1𝑇 for any 𝑠 ∈ N, where 𝑒 𝑗 is the

𝑗-th unit vector of the standard Euclidean basis in R𝑛.
(b) | [Φ 𝑗 (𝑘, 𝑠)] 𝑗 ,𝑙 − 1| ≤ 𝜃𝛽𝑡−𝑠 for 𝜃 =

(𝑁−1)
(1−𝜂 (𝑁−1) ) > 0 and

for some 0 < 𝛽 = (1−𝜂 (𝑁−1) ) 1
𝑁−1 < 1, where 𝜂 ∈ (0, 1)

is the smallest positive entry in any of the matrices 𝑊 𝑗 .
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Proof. The result can be obtained from Lemma 1 of [18].
Specifically, by considering a fixed connected communi-
cation network satisfying Assumptions 4 and 5 instead of
time-varying setup in Lemma 1 of [18], and by transposing
matrices in the proof of the latter lemma, the stated result
follows. □

We define 𝑦𝑘
𝑗

for all 𝑗 ∈ N , as follows:

𝑦𝑘𝑗 =

𝑁∑︁
𝑖=1

𝑣
𝑖,𝑘
𝑗
, ∀𝑘 ≥ 0, ∀ 𝑗 ∈ N . (13)

These vectors track the aggregate decision variable
∑𝑁
𝑖=1 𝑥

𝑘
𝑖

over time, as shown in the following lemma.

Lemma 2. Let Assumptions 4 and 5 hold. Then, for each
𝑗 ∈ N , the vectors 𝑦𝑘

𝑗
, 𝑘 ≥ 0, defined by (13) are such that

𝑦𝑘
𝑗
=

∑𝑁
𝑖=1 𝑥

𝑘
𝑖

for all 𝑘 ≥ 0.

Proof. Let 𝑗 ∈ N be arbitrary. The proof of the relation

𝑁∑︁
𝑖=1

𝑣
𝑖,𝑘
𝑗

=

𝑁∑︁
𝑖=1

𝑥𝑘𝑖 . (14)

is by the induction on 𝑘 . For 𝑘 = 0 relation (14) holds since
the method is initiated with 𝑣𝑙,0

𝑗
= 𝑥0

𝑙
for all 𝑗 , 𝑙 = 1, 2, . . . , 𝑁 .

Assume that relation (14) holds for 𝑘 − 1. For 𝑘 , we have
for all 𝑗 = 1, 2, . . . , 𝑁 ,

𝑁∑︁
𝑖=1

𝑣
𝑖,𝑘
𝑗

=

𝑁∑︁
𝑖=1

(
𝑣̂
𝑖,𝑘−1
𝑗

+ 𝑥𝑘𝑖 − 𝑥𝑘−1
𝑖

)
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑙=1

𝑤𝑖𝑗 ,𝑙𝑣
𝑙,𝑘−1
𝑗

+
𝑁∑︁
𝑖=1

𝑥𝑘𝑖 −
𝑁∑︁
𝑖=1

𝑥𝑘−1
𝑖

=

𝑁∑︁
𝑙=1

𝑣
𝑙,𝑘−1
𝑗

+
𝑁∑︁
𝑖=1

𝑥𝑘𝑖 −
𝑁∑︁
𝑖=1

𝑥𝑘−1
𝑖 ,

where the first, second, and last equality follows from (11),
(10), and Assumption 5(iii), respectively. The result follows
by the induction hypothesis. □

The following result is a consequence of Lemma 2, and
Assumptions 1 and 3.

Lemma 3. Let Assumptions 1, 3, and 5 hold. Then, there is
a constant 𝐶 such that for all 𝑖 and 𝑘 ≥ 0,

∥𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 )∥ ≤ 𝐶, ∥𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂
𝑖,𝑘
𝑖
)∥ ≤ 𝐶.

Proof. The proof is similar to that of Lemma 3 in [7]. □

The next lemma gives an upper bound on ∥𝑦𝑘
𝑖
− 𝑣̂𝑖,𝑘

𝑖
∥.

Lemma 4. Let Assumptions 1-5 hold, and let 𝑦𝑘
𝑖

be defined
by (13). Then, we have for all 𝑖 ∈ N and all 𝑘 ≥ 1,

∥𝑦𝑘𝑖 − 𝑣̂
𝑖,𝑘
𝑖

∥ ≤ 𝜃𝛽𝑘𝑀 + 𝜃𝑁𝐶
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1,

where 𝑣̂𝑖,𝑘
𝑖

is defined in (10), 𝜃 and 𝛽 are defined in Lemma 1,
𝑀 =

∑𝑁
𝑗=1 𝑚𝑎𝑥𝑥 𝑗 ∈𝐾 𝑗

∥𝑥 𝑗 ∥, and 𝐶 is the bound from Lemma 3.

Proof. Using the definitions of the terms 𝑣 𝑗 ,𝑘+1
𝑖

and 𝑣̂ 𝑗 ,𝑘
𝑖

in
(11) and (10), respectively, we have 𝑣 𝑗 ,𝑘+1

𝑖
=

∑𝑁
𝑙=1 𝑤

𝑗

𝑖,𝑙
𝑣
𝑙,𝑘
𝑖

+
𝑥𝑘+1
𝑗

−𝑥𝑘
𝑗
. Using the preceding relation recursively, we obtain

𝑣
𝑗 ,𝑘+1
𝑖

=

𝑁∑︁
𝑙=1

𝑤
𝑗

𝑖,𝑙

( 𝑁∑︁
𝑝=1

𝑤𝑙𝑖, 𝑝𝑣
𝑝,𝑘

𝑖
+ 𝑥𝑘𝑙 − 𝑥

𝑘−1
𝑙

)
+ 𝑥𝑘+1

𝑗 − 𝑥𝑘𝑗

=

𝑁∑︁
𝑝=1

[Φ𝑖 (𝑘, 𝑘 − 1)] 𝑗 , 𝑝𝑣𝑝,𝑘−1
𝑖

+
𝑁∑︁
𝑙=1

[Φ𝑖 (𝑘, 𝑘)] 𝑗 ,𝑙 (𝑥𝑘𝑙 − 𝑥
𝑘−1
𝑙 ) + 𝑥𝑘+1

𝑗 − 𝑥𝑘𝑗

= . . .

=

𝑁∑︁
𝑝=1

[Φ𝑖 (𝑘, 0)] 𝑗 , 𝑝𝑣𝑝,0𝑖

+
𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

[Φ𝑖 (𝑘, 𝑠)] 𝑗 ,𝑙 (𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 ) + 𝑥𝑘+1

𝑗 − 𝑥𝑘𝑗 .

Using relation (11) and the preceding equality, we have

𝑣̂
𝑗 ,𝑘

𝑖
= 𝑣

𝑗 ,𝑘+1
𝑖

− 𝑥𝑘+1
𝑗 + 𝑥𝑘𝑗 (15)

=

𝑁∑︁
𝑝=1

[Φ𝑖 (𝑘, 0)] 𝑗 , 𝑝𝑣𝑝,0𝑖
+

𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

[Φ𝑖 (𝑘, 𝑠)] 𝑗 ,𝑙 (𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 )

By writing 𝑦𝑘
𝑖
= 𝑦0

𝑖
+∑𝑘

𝑠=1 (𝑦𝑠𝑖 −𝑦𝑠−1
𝑖

) and by using Lemma 2,
we have 𝑦𝑠

𝑖
=

∑𝑁
𝑙=1 𝑥

𝑠
𝑙

for all 𝑠 ≥ 0, implying that

𝑦𝑘𝑖 = 𝑦
0
𝑖 +

𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

(𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 )

=

𝑁∑︁
𝑝=1

𝑣
𝑝,0
𝑖

+
𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

(𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 ) (16)

From (15) and (16) it follows that

∥𝑦𝑘𝑖 − 𝑣̂
𝑖,𝑘
𝑖

∥ = ∥
𝑁∑︁
𝑝=1

(
1 − [Φ𝑖 (𝑘, 0)]𝑖, 𝑝

)
𝑣
𝑝,0
𝑖

+
𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

(
1 − [Φ𝑖 (𝑘, 𝑠)]𝑖,𝑙

)
(𝑥𝑠𝑙 − 𝑥

𝑠−1
𝑙 )∥

≤
𝑁∑︁
𝑝=1

��1 − [Φ𝑖 (𝑘, 0)]𝑖, 𝑝
��∥𝑣𝑝,0

𝑖
∥

+
𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

��1 − [Φ𝑖 (𝑘, 𝑠)]𝑖,𝑙
��∥𝑥𝑠𝑙 − 𝑥𝑠−1

𝑙 ∥

Using Lemma 1(b), we obtain for all 𝑖 and 𝑘 ≥ 1,

∥𝑦𝑘𝑖 − 𝑣̂
𝑖,𝑘
𝑖

∥ ≤ 𝜃
𝑁∑︁
𝑝=1

𝛽𝑘 ∥𝑣𝑝,0
𝑖

∥ + 𝜃
𝑘∑︁
𝑠=1

𝑁∑︁
𝑙=1

𝛽𝑘−𝑠 ∥𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 ∥.

(17)
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An estimate for ∥𝑥𝑠
𝑙
− 𝑥𝑠−1

𝑙
∥ can be obtained from (9), as

follows: for all 𝑠 ≥ 1,

∥𝑥𝑠𝑙 − 𝑥
𝑠−1
𝑙 ∥ = ∥Π𝐾𝑙

[𝑥𝑠−1
𝑙 − 𝛼𝑠−1𝐹𝑙 (𝑥𝑠−1

𝑙 , 𝑣̂
𝑙,𝑠−1
𝑙

)] − 𝑥𝑠−1
𝑙 ∥

≤ ∥𝑥𝑠−1
𝑙 − 𝛼𝑠−1𝐹𝑙 (𝑥𝑠−1

𝑙 , 𝑣̂
𝑙,𝑠−1
𝑙

) − 𝑥𝑠−1
𝑙 ∥

= 𝛼𝑠−1∥𝐹𝑙 (𝑥𝑠−1
𝑙 , 𝑣̂

𝑙,𝑠−1
𝑙

)∥
≤ 𝐶𝛼𝑠−1, (18)

where the first inequality is a result of the fact 𝑥𝑠−1
𝑙

=

Π𝐾𝑙
[𝑥𝑠−1
𝑙

] and the non-expansive property of projection
maps, while the second one follows by Lemma 3. From (17)
and (18) we have

∥𝑦𝑘𝑖 − 𝑣̂
𝑖,𝑘
𝑖

∥ ≤ 𝜃𝛽𝑘
𝑁∑︁
𝑝=1

∥𝑣𝑝,0
𝑖

∥ + 𝜃𝑁
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1𝐶

≤ 𝜃𝛽𝑘𝑀 + 𝜃𝑁𝐶
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1

where in the last inequality we utilized the fact that 𝑣𝑝,0
𝑖

=

𝑥0
𝑝 ∈ 𝐾𝑝 for all 𝑝, and 𝑀 =

∑𝑁
𝑝=1 max𝑥∈𝐾𝑝

∥𝑥∥ which is
finite since each set 𝐾𝑝 is compact (see Assumption 1). □

The following theorem gives a convergence result for
the iterate sequence {𝑥𝑘} of the method to the sole Nash
equilibrium 𝑥∗ of the underlying game, captured by the
variational inequality problem 𝑉𝐼 (𝐾, 𝜙).

Theorem 1. Let Assumptions 1-6 hold. Then, the sequence
{𝑥𝑘} generated by the method (9-11) converges to the only
solution 𝑥∗ of the 𝑉𝐼 (𝐾, 𝜙), where the set 𝐾 and the mapping
𝜙 are defined in (4).

Proof. The proof of this theorem mainly relies on the
deterministic version of Lemma 5 in [7]. Proposition 1
guarantees that there is a unique Nash point 𝑥∗ solving
the variational inequality 𝑉𝐼 (𝐾, 𝜙), which satisfies 𝑥∗

𝑖
=

Π𝐾𝑖
[𝑥∗
𝑖
− 𝛼𝑘𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)] for all 𝑖 ∈ N (see [19]). Using the

preceding relation and the non-expansiveness property of
projection operator, we obtain for all 𝑖 and 𝑘 ≥ 0,

∥𝑥𝑘+1
𝑖 − 𝑥∗𝑖 ∥2 = ∥Π𝐾𝑖

[𝑥𝑘𝑖 − 𝛼𝑘𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂
𝑖,𝑘
𝑖
)] − 𝑥∗𝑖 ∥2

≤ ∥𝑥𝑘𝑖 − 𝑥∗𝑖 − 𝛼𝑘
(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂

𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)
∥2

By expanding the last item of the preceding inequality, we
find that

∥𝑥𝑘+1
𝑖 − 𝑥∗𝑖 ∥2 ≤ ∥𝑥𝑘𝑖 − 𝑥∗𝑖 ∥2 + 𝛼2

𝑘𝑉1 − 2𝛼𝑘𝑉2. (19)

where
𝑉1 = ∥𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂

𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)∥2,

𝑉2 =
(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂

𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 ).
Taking inequality (𝑎+𝑏)2 ≤ 2(𝑎2+𝑏2) in addition to triangle
inequality into account we can write

𝑉1 ≤ 2∥𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂
𝑖,𝑘
𝑖
)∥2 + 2∥𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)∥2 ≤ 𝐵, (20)

where
𝐵 = 2𝐶2 + 2 max

(𝑥𝑖 , 𝑥̄) ∈𝐾𝑖×𝐾̄
∥𝐹𝑖 (𝑥𝑖 , 𝑥)∥2,

and 𝐶 comes from Lemma 3. To estimate 𝑉2 term, we add
and subtract 𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 ) and, thus, obtain

𝑉2 =
(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂

𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 )

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 )
+

(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 ) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 ).
Applying the inequality 𝑎𝑇𝑏 ≥ −∥𝑎∥∥𝑏∥ to the first term of
the right hand side of the preceding equality, and using the
Lipschitz continuity of 𝐹𝑖 (𝑥𝑖 , 𝑢) with respect to 𝑢, we have(

𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂
𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 )

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 )
≥ −∥𝐹𝑖 (𝑥𝑘𝑖 , 𝑣̂

𝑖,𝑘
𝑖
) − 𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 )∥ · ∥𝑥𝑘𝑖 − 𝑥∗𝑖 ∥

≥ −𝐿̄𝑖 ∥𝑣̂𝑖,𝑘𝑖 − 𝑦𝑘𝑖 ∥ · ∥𝑥𝑘𝑖 − 𝑥∗𝑖 ∥
≥ −2𝐿̄𝑖𝑀 ∥𝑣̂𝑖,𝑘

𝑖
− 𝑦𝑘𝑖 ∥,

where 𝑀 is such that max𝑥𝑖 ∈𝐾𝑖
∥𝑥𝑖 ∥ ≤ 𝑀 , which is finite

due to the compactness of 𝐾𝑖 . Thus, it follows that

𝑉2 ≥ −2𝐿̄𝑖𝑀 ∥𝑣̂𝑖,𝑘
𝑖

− 𝑦𝑘𝑖 ∥
+

(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 ) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 ). (21)

By substituting the estimates (20) and (21) for 𝑉1 and 𝑉2
back in relation (19), we obtain

∥𝑥𝑘+1
𝑖 − 𝑥∗𝑖 ∥2 ≤ ∥𝑥𝑘𝑖 − 𝑥∗𝑖 ∥2 + 𝐵𝛼2

𝑘 + 4𝛼𝑘 𝐿̄𝑖𝑀 ∥𝑣̂𝑖,𝑘
𝑖

− 𝑦𝑘𝑖 ∥
− 2𝛼𝑘

(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 ) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 ).
Summing the preceding relations over 𝑖 = 1, . . . , 𝑁 and using∑𝑁
𝑖=1 ∥𝑥𝑘𝑖 − 𝑥∗𝑖 ∥2 = ∥𝑥𝑘 − 𝑥∗∥2, we have

∥𝑥𝑘+1 − 𝑥∗∥2 ≤ ∥𝑥𝑘 − 𝑥∗∥2 + 𝑁𝐵𝛼2
𝑘 + 4𝛼𝑘𝑀

𝑁∑︁
𝑖=1

𝐿̄𝑖 ∥𝑣̂𝑖,𝑘𝑖 − 𝑦𝑘𝑖 ∥

− 2𝛼𝑘
𝑁∑︁
𝑖=1

(
𝐹𝑖 (𝑥𝑘𝑖 , 𝑦𝑘𝑖 ) − 𝐹𝑖 (𝑥∗𝑖 , 𝑥∗)

)𝑇 (𝑥𝑘𝑖 − 𝑥∗𝑖 ).
Since 𝑦𝑘

𝑖
=

∑𝑁
𝑖=1 𝑥

𝑘
𝑖
= 𝑥𝑘 and 𝐹𝑖 (𝑥𝑖 , 𝑥) is the 𝑖th coordinate

map of the mapping 𝜙(𝑥) = 𝐹 (𝑥, 𝑥) (see (6) and (7)), it
follows that

∥𝑥𝑘+1 − 𝑥∗∥2 ≤ ∥𝑥𝑘 − 𝑥∗∥2 + 𝑁𝐵𝛼2
𝑘 + 4𝛼𝑘𝑀

𝑁∑︁
𝑖=1

𝐿̄𝑖 ∥𝑣̂𝑖,𝑘𝑖 − 𝑦𝑘𝑖 ∥

− 2𝛼𝑘
(
𝜙(𝑥𝑘) − 𝜙(𝑥∗)

)𝑇 (𝑥𝑘 − 𝑥∗).
We now apply the deterministic version of Lemma 5 in [7]
to guarantee the convergence of {𝑥𝑘} to 𝑥∗. To apply this
lemma we only need to prove the following inequality:

∞∑︁
𝑘=0

𝛼𝑘 ∥𝑣̂𝑖,𝑘𝑖 − 𝑦𝑘𝑖 ∥ < ∞, ∀𝑖 ∈ N . (22)

According to Lemma 4, we have

∥𝑦𝑘𝑖 − 𝑣̂
𝑖,𝑘
𝑖

∥ ≤ 𝜃𝛽𝑘𝑀 + 𝜃𝑁𝐶
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1,

for all 𝑖 ∈ N , and all 𝑘 ≥ 1, thus we only need to show that
∞∑︁
𝑘=1

𝛼𝑘
( 𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1
)
< ∞,

∞∑︁
𝑘=1

𝛼𝑘𝛽
𝑘 < ∞.
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Since {𝛼𝑘} is monotonically non-increasing by Assump-
tion 6, we can write

∞∑︁
𝑘=1
𝛼𝑘

( 𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑠−1
)

=

∞∑︁
𝑘=1

(
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼𝑘𝛼𝑠−1

)
≤

∞∑︁
𝑘=1

(
𝑘∑︁
𝑠=1

𝛽𝑘−𝑠𝛼2
𝑠−1

)
.

By applying Lemma 6 of [7], it follows that∑∞
𝑘=1 𝛼𝑘

( ∑𝑘
𝑠=1 𝛽

𝑘−𝑠𝛼𝑠−1
)
< ∞. Convergence of

∑∞
𝑘=1 𝛼𝑘𝛽

𝑘

follows from
∑∞
𝑘=1 𝛼𝑘𝛽

𝑘 ≤ 𝛼0
∑∞
𝑘=1 𝛽

𝑘 < ∞, where we use
𝛽 ∈ (0, 1). Hence, inequality (22) is valid. As a result, the
deterministic version of Lemma 5 in [7] yields the following
statements:

(a) The sequence {∥𝑥𝑘 − 𝑥∗∥} is convergent,
(b)

∑∞
𝑘=0 𝛼𝑘

(
𝜙(𝑥𝑘) − 𝜙(𝑥∗)

)𝑇 (𝑥𝑘 − 𝑥∗) < ∞
Since {𝑥𝑘} ⊂ 𝐾 and 𝐾 is compact, the sequence {𝑥𝑘} has
accumulation points. Due to

∑∞
𝑘=0 𝛼𝑘 = ∞ and the strict

monotonicity of 𝜙, from the above statement (b) we have
that

(
𝜙(𝑥𝑘) − 𝜙(𝑥∗)

)𝑇 (𝑥𝑘 − 𝑥∗) → 0 along a sub-sequence,
say {𝑥𝑘𝑞 }. Due to the strict monotonicity of 𝜙, it follows
that {𝑥𝑘𝑞 } → 𝑥∗ as 𝑞 → ∞. This and the above statement
(a) imply that the entire sequence {𝑥𝑘} must converge to
𝑥∗. □

Remark. Compared to the algorithm in [7] where the graphs
are undirected and the agent estimates for 𝑥𝑘 utilize doubly
stochastic weights, our method (9)–(11) bypasses the use of
such matrices by constructing different weights. This comes
with the cost of every agent keeping track of ”estimates of
aggregates” for every other agent 𝑗 ≠ 𝑖 in the network.

IV. CONCLUSIONS AND FUTURE WORK

The current work examines a class of Nash games in which
agents’ cost functions are coupled through the aggregate of
their decisions. Unlike the classic setup where the agents
observe the other agents’ decisions and, thus, possess instant
access to the aggregate decision, we have considered the
case where agents’ interactions are limited by a digraph.
We have developed a method which can be viewed as an
extension to the synchronous algorithm introduced in [7].
Some directions for future work include relaxing the static
communication network to a time-varying one, considering
a constant stepsize for the case of the game with a strongly
monotone mapping 𝜙, and exploring more efficient options
for estimating the aggregate decision (i.e., removing the need
for every agent to track estimates of every other agent).
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