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ABSTRACT
Model-X knockoffs is a general procedure that can leverage any feature importance measure to produce a
variable selection algorithm, which discovers true effects while rigorously controlling the number or fraction
of false positives. Model-X knockoffs is a randomized procedure which relies on the one-time construction of
synthetic (random) variables. This article introduces a derandomization method by aggregating the
selection results across multiple runs of the knockoffs algorithm. The derandomization step is designed to
be flexible and can be adapted to any variable selection base procedure to yield stable decisions without
compromising statistical power. When applied to the base procedure of Janson and Su, we prove that
derandomized knockoffs controls both the per family error rate (PFER) and the k family-wise error rate (k-
FWER). Furthermore, we carry out extensive numerical studies demonstrating tight Type I error control and
markedly enhanced power when compared with alternative variable selection algorithms. Finally, we apply
our approach to multistage genome-wide association studies of prostate cancer and report locations on
the genome that are significantly associated with the disease. When cross-referenced with other studies, we
find that the reported associations have been replicated. Supplementary materials for this article, including a
standardized description of the materials available for reproducing the work, are available as an online
supplement.
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1. Introduction

There has been a surge of interest in the design of trustwor-
thy inferential procedures for massive data applications with a
focus on the development of variable selection algorithms that
are flexible, and at the same time, possess clear performance
guarantees. Among them, the method of knockof fs, or knockof fs
for short (Barber and Candès 2015; Candès et al. 2018), has
proved particularly effective in a variety of applications (Gao
et al. 2018; Srinivasan, Zhan, and Xue 2019; Sesia et al. 2020).
Imagine a scientist wishes to infer which of the many covariates
she has measured are truly associated with a response of interest;
for instance, which of the many genetic variants influence the
susceptibility of a disease. At a high level, the knockoffs selection
algorithm begins by synthesizing “fake” copies of the covariates
(fake genetic variants in our example), which can be thought of
as serving as a control group for the features. By contrasting the
values a feature importance statistic takes on when applied to
a true variable and a fake variable, it becomes possible to tease
apart those features which have a true effect on the response.
This can be achieved via a clever filter while controlling either
the expected fraction of false positives (Barber and Candès
2015) or simply the number of false positives (Janson and Su
2016).

A frequently discussed issue is that knockoffs is a random-
ized procedure; that is, the fake covariates (the knockoffs) are
stochastic. Therefore, different runs of the algorithm produce
different knockoffs (unless we use the same random seed),
and in big data applications, researchers have observed that

the selection algorithm may each time return overlapping, yet,
different selected sets. This has led researchers to report those
features whose selection frequency exceeds a threshold along
with the corresponding frequencies (Candès et al. 2018; Sesia,
Sabatti, and Candès 2019). While statisticians are accustomed to
randomized procedures—after all, any procedure based on data
splitting is randomized in the sense that different splits typically
yield different outcomes—it is still desirable to derandomize the
knockoffs selection algorithm as to produce consistent results.
This article proposes a new procedure derandomized knockoffs
that achieves this goal by running the knockoffs algorithm
several times and aggregating results across all runs.

1.1. An Overview of Our Contributions

Our derandomization scheme is inspired by the stability selec-
tion framework of Meinshausen and Bühlmann (2010) and
Shah and Samworth (2013), which finds its roots in bootstrap
aggregating (Efron and Gong 1983; Breiman 1996, 1999), sub-
bagging (Bühlmann et al. 2002), and random forest (Breiman
2001). In a nutshell, our scheme consists in applying a knockoffs
selection algorithm multiple times, each time with a new matrix
of knockoffs, and proceeds by aggregating the results using the
same rationale behind the stability selection criterion, which as
its name suggests, puts a premium on stability and consistency.
We will demonstrate that this indeed reduces the variability
of the outcome. In Section 2, we will however explain why
the similarities between stability selection and derandomized
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knockoffs stop here, and why the interpretation and properties
of the two procedures are very different. Moving on, we empir-
ically demonstrate that derandomized knockoffs achieves tight
Type I error control and markedly enhanced power when com-
pared with alternative variable selection algorithms, including
“vanilla” knockoffs. We establish theoretical support for deran-
domized knockoffs by proving per family error rate (PFER)
control and k family-wise error rate (k-FWER) control.

Besides methodological developments, a fair fraction of this
article is concerned with applying our ideas to genome-wide
association studies (GWAS) in Section 5. We make two contri-
butions.

• In the previous applications of knockoffs to GWAS, the base
procedure is typically applied multiple times with different
random seeds. While each run comes with a Type I error
guarantee, the authors often report genetic variants together
with their selection frequency to identify variants which are
consistently discovered, see Ren and Candès (2020) for some
examples. One issue is that we would not know how to
interpret a “meta-set” of variants whose selection frequency
is above a given threshold. By this, we mean that we would
not be able to give this meta-set Type I error guarantees. The
methods from this article of fer a remedy.

• We design a general and scientifically sound workflow for
multistage GWAS. Suppose we have a family of SNPs
X1, . . . , Xp and are interested in determining whether the
distribution of a phenotype Y conditional on X1, . . . , Xp

depends on Xj or not; that is, we want to know whether Y
depends on Xj controlling for all the other variables X−j . We
will show how to achieve this in a multistage approach, where
one can use the first study to determine a set of candidate
SNPs and the second study for confirmatory analysis.

2. A Framework for Derandomizing Knockoffs

2.1. Knockoffs

To set the stage for derandomized knockoffs, imagine we are
given a response variable Y and potential explanatory variables
X =  (X1, . . . , Xp). We would like to identify those variables that
truly inf luence the response; that is, we would like to discover
those Xj’s on which the distribution Y | X1, . . . , Xp depends.
Formally, a variable Xj is said to be null if the response Y is
independent of Xj given all other variables; that is,

Y �� Xj | X− j (1)

(throughout, X − j  is a shorthand for all p features except the
jth). Our goal is of course to test each of the p nonparametric
hypotheses (1).

In this setting, the key idea underlying knockoffs is to
generate “fake” covariates X =  (X1, . . . , Xp) whose distribution
roughly matches that of the true covariates, except that
knockoffs are designed to be conditionally independent of
the response, and hence should never be selected by a feature
selection procedure. Assemble the covariates in an n × p matrix
X  and the responses in an n ×  1 vector Y . Then we say that the
new set of variables X  � Rn × p  is a knockoff copy of X  if the

following two properties hold: first,

X j , X j  | X − j , X − j  =  X j , X j  | X− j , X− j . (2)

This says that by looking at X  and X  we cannot tell whether
the jth column is a true variable or a knockof f. (The point is
that if X j  is non null, then we can tell by looking at Y .) The
second property is that Y �� X  | X .  This says that knockof fs
provide no further information about the response (knockoffs
are constructed without looking at Y).

To perform variable selection, the researcher applies her
favorite feature importance statistic to the augmented dataset
(X, X, Y) and scores each of the original and knockoff variables.
For example, she can score each variable by recording the mag-
nitudes of the Lasso coeficients for a value of the regulariza-
tion parameter chosen by cross-validation. The scores are then
combined to produce a test statistic for each feature. This can
be as simple as the difference between the feature importance
statistics, for example, the difference between the magnitude
of the Lasso coeficient of the original feature and that of its
knockoff. In the sequel, we refer to this test statistic as the Lasso
coeficient difference (LCD, Candès et al. 2018). Finally, the test
statistics are passed through the knockoff filter (e.g., SeqStep,
Barber and Candès 2015) and a selection set S  is generated.

2.2. Derandomized Knockoffs

With these preliminaries, our derandomized procedure to sta-
bilize the selection set over dif ferent runs is as follows:

• Construct M conditionally independent knockoff copies
X1 , . . . , XM � Rn×p .

• For each m � [M] : =  {1, . . . , M}, apply a base procedure to
produce a rejection set S m .

• For each feature j, compute its selection frequency via

5 j : =  
1 X  

1{j � S m}. (3)
m=1

• Finally, given a threshold η > 0, return the final selection set

S  := {j � [p] : 5 j  ≥  η}. (4)

The above-derandomized knockoffs procedure is summa-
rized in Algorithm 1. (Strictly speaking, for a f initeM, the
procedure is only approximately derandomized. In the sequel,
we call this procedure “derandomized knockoffs” for short to
emphasize the difference with the original procedure.) Readers
will recognize that Equations (3) and (4) are borrowed from
stability selection (please see below for a detailed comparison).

The parameter η controls how many times a variable needs
to be selected to be present in the final selection set. The larger
η, the fewer variables will ultimately be selected. The choice of
η may affect the power of the procedure. In all our simulations
and application examples, the value η =  0.5 works well. One
reason is that there are other parameters that jointly determine
the Type I error upper bounds, and that consequently, there
is not much loss in fixing the value of η and selecting other
parameters accordingly. For simplicity, we thus recommend
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Algorithm 1: Derandomized knockoffs procedure

Input: Covariate matrix X  � Rn×p ;  response variables
Y � Rn ; number of realizations M; a base procedure;
selection threshold η.
1. for m =  1, . . . , M do

i. Generate a knockoff copy Xm .

ii. Run the base procedure with Xm  as knockoffs and
obtain the selection set S m .

end
2. Calculate the selection probability

5 j  =  
1 X  

1{j � S m}.
m=1

Output: selection set S :={ j  � [p] : 5 j  ≥  η}.

using η =  0.5. Some practitioners may however wish to employ
a data-driven approach that maximizes the power/number of
rejections. However, caution needs to be exercised if one aims to
maintain Type I error control. For example, if we scan through a
list of η values and select that with which derandomized
knockoffs yields the largest number of selected features, we face
the problem of double dipping and the risk is to loose Type I
error control. A possible remedy is to use sample splitting (i) use
a fraction of the data to determine the optimal η—that giving the
largest number of rejections; (ii) apply derandomized knockoffs
on the remaining samples with the selected η. Naturally, sample
splitting often leads to a power loss, which can be alleviated by
techniques such as data recycling (see, e.g., Barber and Candès
(2019)).
At each iteration, the statistician is allowed to use a differ-ent

knockoffs generating distribution as well as a different test
statistic. That said, consider the scenario in which each copy

 ̃m is ide ntic ally distribute d and that the  same  te st statistic s
are  used (e.g., LCD). Then the law of large numbers implies

that each 5j converges to P(j � S 1 | X, Y) as M
increases to infinity.

We thus see that in the limit of an inf inite number of knockof f
copies, the procedure is fully derandomized since the outcome
is determined by X  and Y .

2.3. Reduced Variability

When working on a specific dataset or application, researchers
are typically interested in the fraction of false positives (FDP)
and/or the number V of false positives. Even in the case where
one employs a procedure controlling the false discovery rate
(this is the expected value of the FDP) or the PFER (this is
the expected value of V), one would always prefer a method
which has lower variability in FDP and/or V so that FDP and V
are close to their expectations. The reason is that on any given
dataset, we would like to be sure that the fraction and/or number
of false positives are not too high. The variability of these ran-
dom variables and others, such as whether a specific variable is
selected or not, originates from different sources. First, it comes
from the draw we got to see, for example, the sample X, Y . In

the case of knockoffs, it also comes from the random nature of
the algorithm itself producing X .  Clearly, the derandomization
scheme removes the second source of variability, which is a
desirable trait.

2.4. Connections to Prior Literature

Certainly, aggregating results from multiple runs of a random
procedure is not a new idea. A line of work develops methods to
represent the consensus over multiple runs of one algorithm,
with the aim of reducing its sensitivity to the initialization
or the randomness inherent in the algorithm; see, for exam-
ple, Bhattacharjee et al. (2001) and Monti et al. (2003). Another
line of prior work seeks to combine multiple different learning
algorithms to improve performance, which is often referred to
as ensemble learning. A few examples would include Strehl and
Ghosh (2002), Rokach (2010), and Polikar (2012). Yet, most of
these methods are neither directly applicable to the knockoffs
framework nor come with a finite sample Type I error control.

2.5. Comparisons With Stability Selection

It is time to expand on the similarities and differences with
stability selection. To facilitate this discussion, it is helpful to
briefly motivate and describe the stability selection algorithm.
We are given data (X, Y ) and would like to f ind important
variables by reporting those variables which have a nonzero
Lasso coeficient. How confident are we that our selections will
replicate in the sense that we would get a similar result on an
independent dataset? How do we make sure that the nonzero
coeficients are not merely due to chance? Stability selection
addresses this issue by sampling repeatedly bn/2c observations
without replacement from the original dataset as if they were
independent draws from the population.1 Important variables
are then determined based on their selection frequencies just as
in Equations (3) and (4). Despite evident similarities, there are
major differences with derandomized knockoffs.

• First, stability selection introduces randomness via data splits
and it is precisely this extra source of randomness which
permits inference. In contrast, vanilla knockoffs natively pro-
vides valid inference and the aim of the derandomized pro-
cedure is simply to remove the randomness of the knockoffs.

• Second, while stability selection benef its from the bootstrap
aggregating procedure preventing overfitting, it only oper-
ates on a random subset of the data at each step. This differ-
ence explains why our algorithm is particularly useful in the
case where the samples size is comparable to the number of
features we are assaying, since subsampling inevitably leads
to a loss of power. We refer the reader to the numerical
comparisons from Supplementary Section S5.5 that illustrate
this point.

• Third, the theoretical guarantees for stability selection come
with very strong assumptions—such as the exchangeability
assumption of null statistics—which are nearly impossible to

1bxc denotes the largest integer that is not greater than x, and dxe denotes
the smallest integer that is not less that x.
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justify in practice. In contrast, our theoretical results hold
under fairly mild assumptions.

Proposition 1. Consider derandomized knockoffs (Algorithm 1)
with a base procedure obeying PFER ≤  v (e.g., v-knockoffs). We
always have

2.6. A Representative Base Procedure E[V ] ≤  v/η. (9)

While our aggregating framework can be easily applied to a wide
range of base procedures, the current article focuses on that
proposed by Janson and Su (2016)—referred to as v-knockoffs
throughout—which has been shown to control the PFER. Infor-
mally, suppose we wish to make at most v false discoveries over
the long run. Then this base procedure (i) sorts the features
based on the absolute value of their test statistic |Wj|;2 (ii) it then
examines the ordered features starting from the largest |Wj| and
selects those examined features with Wj > 0; (3) the procedure
stops the first time it sees v features with negative values of
Wj. For more details about v-knockoffs, we refer the readers to
Section S1 (supplementary material).

3. Theoretical Guarantees: Controlling the PFER

We now tune derandomized knockoffs parameters to control
the per family error rate. Formally, let H 0  � [p] : =  {1, . . . , p}
denote the set of null variables for which (1) is true, and consider
a selection procedure producing a set of discoveries S  � [p].
Letting V be the number of false discoveries defined as

V :=#{j : j � H 0  ∩ S }, (5)

the PFER is simply the expected number of false discoveries,
PFER =  E[V ] (see, e.g., Dudoit and Van Der Laan (2007)).

Theorem 1. Consider derandomized knockoffs (Algorithm 1)
with a base procedure obeying PFER ≤  v (e.g., v-knockoffs). If
there exists a constant γ  > 0, such that

P(5j  ≥  η) ≤  γ E[5j ] , (6)

holds for every j � H0 , then the PFER can be controlled as

E[V ] ≤  γ v. (7)

To prove Theorem 1, observe that
� �

E[V ] =  E �
X  

1{5j ≥  η}�
j�H0

= P 5 j  ≥  η ≤ γ E[5 j ]
j�H0                                        j�H0

=  γ E[V1] ≤  γ v, (8)

where V1 denotes the number of false discoveries in S1; the f irst
inequality follows from Equation (6) and the second from the
property of the base procedure.

In particular, with Markov’s inequality, we immediately
obtain the following proposition that provides an assumption-
free bound for the PFER.

2In the case of the LCD, Wj =  |βj| −  |βj|, where βj (resp. βj) is the lasso
coeficient estimate for the variable Xj (resp. Xj) when regressing Y on X
and X  jointly.

Returning to the comparison with stability selection, we
note that PFER control holds regardless of the choice of M and
without any assumption on the exchangeability of the selected
variables. In Section S4 (supplementary material), we discuss
improving the PFER bound (without imposing additional
assumptions).

3.1. Guarantees Under Mild Assumptions

Set η =  1/2. In this case, we have seen that Equation (6)
holds with γ  =  2. This is however too conservative in all the
cases we have ever encountered. In fact, we will be surprised to
ever see an example where the ratio P(5j  ≥  1 /2)/E[5j ]
exceeds one. Consider for instance the setting from Figure 2.
In this case, Supplementary Figure S19 plots the realized ratios
P(5j  ≥  1 /2)/E[5j ]  for each null variable, and we can observe
that all the ratios are below one.

Turning to formal statements, Proposition 2 examines
assumptions under which pairs (η, γ ) obey condition (6). The
idea is very similar to that of Shah and Samworth (2013), where
a general bound is f irst established and then followed by a
sharpened version holding under constraints on the shape of
the distribution 5 j .

Definition 1. Let M be a positive integer and X a random
variable supported on {0, 1/M, . . . , 1}. The probability mass
function (pmf) of X is said to be monotonically nonincreasing if
for any m1 ≤  m2 � {0, 1, . . . , M},

P(X =  m1 /M) ≥  P(X =  m2/M).

Proposition 2. 1. Assume the pmf of 5j is monotonically non-
increasing for each j � H0 , then condition (6) holds with
γ  being the optimal value of the following linear program
(LP):

maximize m≥Mη ym

subject to         ym ≥  0,
ym−1 ≥  ym, m � [M],

m=0 ym m/M =  1.

2. Assume that for any j � H0 ,
η

P(5j  � [η −  u, η))du
0

η−1 /M

≥ P(5j  � [η, η +  u))du, (11)
0

then condition (6) holds with γ  being the optimal value
of the following linear program:

maximize m≥Mη ym

subject to ym ≥  0, m � {0, 1, 2, . . . , M},

m=0 ym m/M =  1,
y ≥  2,

dηMe−1 b2ηM−1c−dηMe

(2ηM −  1 −  dηM
m
− m) ydηMe+m .

(12)
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3. As a special case of (b), assume that for any j � H0 , the pmf
of 5 j  is unimodal where the mode is less than or equal to
η and P(5j  =  0) ≥  P(5j  =  dηMe /M). Then Equation
(11) holds and, therefore, Equation (6) holds with γ  being
the optimal value of Equation (12).

4. Suppose there exists a constant β � [0, 1] such that for any
j � H0 , the pmf of 5 j  satisfies

P(5j  =  m/M) ≤  β · P(5j  =  (m −  1)/M),     for m � [M].
(13)

Then condition (6) holds with γ  being the optimal value of
the LP,

maximize m≥Mη ym

subject to         ym ≥  0,
βym−1 ≥  ym, m � [M],

m=0 ym m/M =  1.

the knockoff copies Xm  are sampled from the same distribution
and the same feature importance statistic is applied in each
realization. As M →  ∞, 5 j  converges to P(j � S 1 | X, Y ) by
the strong law of large numbers. Consequently,

· ¸
PFER =  E             1{5j ≥  η}

j�H0

−→  E  
X  

1
©

P(j � S 1 | X, Y ) ≥  η
ª 

,
j�H0

Power =  
|H1|

E 
j�H1  

1
©

5j ≥  η}

¸
−→  

|H1|
E 

j�H1  

1{P(j � S 1 | X, Y ) ≥  η .

For illustration, Figure S20 (supplementary material) plots
the optimal value of Equation (10) versus M with η =  0.501,
0.751 and 1, respectively. Taking M =  31 and η =  0.501 for
example, we see that Equation (6) holds with γ  =  1. Also, and
this is important for later, (6) holds with γ  =  1 for M =  31,
η =  1/2.

The proof of Proposition 2 is deferred to Supplementary
Section S2.1 and we pause here to parse the claims. The mono-
tonicity assumption in part (a) states that the chance that a null
variable gets selected 50 times is at most that it gets selected
49 times, which is at most that it gets selected 48 times and so
on. (When we say chance, recall that the probability is taken
over X, Y ,X1 , . . . , XM .) In part (b), Equation (11) is a relaxed
version of the monotonicity condition. To be sure, if the pmf of
5 j  is monotonically non-increasing, then Equation (11) holds.
Setting F−(x) : =  P(X < x), condition (11) says this: the area
between the two curves y =  F−(x) and y =  F−(η) (the latter
does not vary with x) over the interval [0, η]—the blue area in
Figure 1—is larger than the area between the same two curved
curves over [η, 2η −  1/M]—the red area in Figure 1. In other
words, the pmf of 5 j  is skewed toward the left as illustrated in
Figure 1(b). Part (d) shows that we can sharpen the bound (as
illustrated in the supplementary material, Figure S21) if the pmf
of 5 j  decays at a faster rate—P(5j =  m/M) ≤  βP(5j =  (m −
1)/M)—where the smaller β,the faster the decay. In this article,
we mostly consider β =  1 (the weakest possible condition),
which just says that the pmf is monotonically nonincreasing.

Proposition 1 is stated in terms of a fixed (finite) M. To
understand the role of M, consider again the scenario where

In other words, as M increases to infinity, both the PFER and the
power of derandomized knockoffs converge to fixed quantities
that do not depend on M. For every f ixedM, the optimization
problem in Proposition 1 aims at f inding the tightest PFER (with
this M). A tighter PFER bound yields a more liberal choice
of η and hence a higher power. To summarize, when M is
suficiently large, further increasing M does not affect the power
much. Thus, in practice, we recommend using a moderately
large value of M such as 30–100—with the proviso that this is
computationally reasonable.

3.2. Numerical Evaluation of the “Derandomization”
Effect

To illustrate the effect of “derandomization,” we compare
derandomized knockoffs with vanilla knockoffs in a small-
scale, a large-scale and a high-dimensional simulation study.
The results of the small-scale experiment are presented here
and those of the large-scale and high-dimensional experiments
can be found in Sections S5.5.1 and S5.2 (supplementary
material); additional simulations comparing derandomized
knockoffs with alternative methods are provided in Section S5.5
(supplementary material). Our method is implemented in the
R derandomKnock package, available at https://github.com/
zhimeir/derandomKnock; code to reproduce all the numerical
results from this article can be found at https://github.com/
zhimeir/derandomized_knockoffs_paper. We evaluate the dif-
ference in the Type I error, the power and the stability of the
selection set. Throughout this section, we set η =  0.5 and

Figure 1. An example of a distribution obeying (11).

https://github.com/zhimeir/derandomKnock
https://github.com/zhimeir/derandomKnock
https://github.com/zhimeir/derandomized_knockoffs_paper
https://github.com/zhimeir/derandomized_knockoffs_paper
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Figure 2. Performance of derandomized and vanilla knockoffs in the small-scale study. Here, n =  200, p =  100, X � N (0, S) with Sij =  0.6|i−j|, and Y | X is generated from
a linear model with 30 nonzero coeficients. Each nonzero coeficient β takes value ± A /  n where the signal amplitude A ranges in {3, 4, . . . , 8} and the sign is
determined by i.i.d. coin flips. The locations of the nonzero signal are randomly chosen from [p]. We show the averaged results over 200 trials. The parameter β is fixed
across trials so that the distribution of (X, Y) does not vary. The dashed black line indicates the target PFER level v =  1. In the boxplot, the box is drawn from the 10th
quantile to the 90th quantile; the whiskers represent the maximum and the minimum of the data; each jittered dot represents a raw data points outside of the [10, 90]th
percentile range.

M =  31, which according to Proposition 2 yields E[V ] ≤  v
(recall that v is the nominal level of the base procedure) under
the monotonicity assumption. Here, Y is generated from a linear
model conditional on the feature vector X, namely,

Y | X1, . . . , Xp � N (β1X1 +  · · · +  βpXp, 1). (15)

As for the covariates, X is drawn from a multivariate Gaussian
distribution with parameters to be specified below. We remark
that under this model, testing conditional independence is the
same as testing whether βj =  0.

Figure 2 compares the performance of derandomized and
vanilla knockoffs in the small-scale study. The construction of
knockoffs in this study is based on a version suggested by
Spector and Janson (2020), and we use the LCD statistic to tease
the signal and noise apart. We can see that both procedures
control the PFER, while the power of derandomized knockoffs is
slightly better than that of vanilla knockoffs. The boxplot shows
that derandomization significantly decreases the marginal selec-
tion variability as claimed earlier (we additionally provide the
frequencies of the number of false discoveries resulting from
both methods in Table S1, supplementary material).

PFER control is theoretically guaranteed with our parameter
choices since the ratio between P(5j ≥  1/2) and E[5j ] is below
one for all null variables j, as mentioned earlier (see supplemen-
tary material, Figure S19). A different way to establish validity is
to check the monotonicity condition from Proposition 2 (which
in turn implies that none of the ratios exceed one). We show in
Figure S22 (supplementary material) the pooled histograms of
all (nonzero) null 5j’s; the nonincreasing property of the pooled
distributions is clear.

4. Theoretical Guarantees: Controlling the k-FWER

Another widely used Type I error measure is the k family-wise
error rate (k-FWER): defined as the probability of making at
least k false discoveries, k-FWER =  P(V ≥  k). Dating back
to Bonferroni (Dunn 1961) and Holm (1979), many procedures
guaranteeing k-FWER control have been proposed. Most oper-
ate on p-values and many require various assumptions on the

dependence structure between these p-values (see, e.g., Kar-
lin and Rinott 1980; Hochberg 1988; Benjamini and Yekutieli
2001; Romano et al. 2010). We refer the readers to Guo et al.
(2014), Duan, Ramdas, and Wasserman (2020), and the refer-
ences therein for a survey of these methods.

We now demonstrate how to tune the parameters for deran-
domized knockoffs to control the k-FWER. Our exposition
parallels that from the previous section.

Theorem 2. Let V be the number of false discoveries after
applying derandomized knockoffs (Algorithm 1) with a base
procedure obeying PFER ≤  v. Suppose condition (6) holds and
that for each k ≥  1,

P(V ≥  k) ≤  
ρE[V ]

. (16)

Then the k-FWER is controlled via

P(V ≥  k) ≤  
ργ v

. (17)

With Markov’s inequality, an immediate consequence of The-
orem 2 is the following proposition.

Proposition 3. Let V be the number of false discoveries after
applying derandomized knockoffs (Algorithm 1) with a base
procedure obeying PFER ≤  v. We always have

P(V ≥  k) ≤  v/(kη).

Remark 1. To control the k-FWER at level α via Equation (17),
one has the freedom of selecting the parameter v. In particular, it
sufices to select v with v =  kα/(ργ ).

The proof of this result is straightforward since we have

P(V ≥  k) ≤  
ρE[V ] 

≤  
ργ v

,

where the last inequality follows from Theorem 1.
Set h(x) : =  x and let Z � NB(v, 1/2), where NB(m, q)

denotes a negative binomial random variable, which counts the
number of successes before the mth failure in a sequence of
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independent Bernoulli trials with success probability q. With
this, the right-hand side of Equation (17) can be expressed as
ργ E[h(Z)]/k (by simply observing that E[Z] =  v). This leads
to the following extension:

Corollary 1. Let h : R  →  R  be a convex, nonnegative and
nondecreasing function. In the setting of Theorem 2, suppose
that

P(V ≥  k) ≤  
ρE[h(V)]

. (18)

Then the k-FWER obeys

P(V ≥  k) ≤  
ρE[h(Z/η)]

, Z � NB(v, 1/2). (19)

In particular, Markov’s inequality shows that Equation (19)
always holds with ρ =  1.

The proof of Corollary 1 is deferred to Section S2.2 (supple-
mentary material).

4.1. Guarantees Under Mild Assumptions

While Equation (16) holds with ρ =  1, we observe in simula-
tions that this value is often quite conservative and we give an
example where Equation (16) holds with ρ =  1/2. The proof
and an extension of the proposition below are given in Section
S2.3 (supplementary material).

Proposition 4. In the setting of Theorem 2, suppose the pmf of
V is skewed to the left of k in the sense that

k−1 k

P(V � [k −  u, k)) ≥ P(V � [k, k +  u)) (20)
u=1                                                  u=1

(observe the similarity with Equation (11)). Then condition (16)
holds with ρ =  1/2.

In applications, k and α are supplied and we provide in
Section S7.1 (supplementary material) some guidance on the
selection of v and η to control the k-FWER at level α.

4.2. Numerical Evaluation of the Derandomization Effect

We perform three numerical experiments to gauge the per-
formance of derandomized knockoffs. Additional simulations
comparing derandomized knockoffs with alternative methods
can be found in Section S5.5.2 (supplementary material). In this
study, the response Y is sampled from a logistic model

µ ¶
Y | X1, . . . , Xp � Bern     

1 +  exp(β1X1 +  · · · +  βpXp)
(21)

and X is drawn from a multivariate Gaussian distribution with
parameters to be specified later on. As in Section 3.2, the vector
of regression coeficients is sparse so that most of the hypotheses
are actually null; under this model, testing conditional indepen-
dence is the same as testing whether βj =  0.

We evaluate derandomized knockoffs on a small-scale, a
large-scale and a high-dimensional dataset. The results on the
small-scale data are shown here and those on the large-scale and
the high-dimensional data are deferred to Section S5.3 and S5.4
(supplementary material). In the small-scale study, the knockoff
construction is the same as that from Section 3.2, and the LCD
statistic is used as our importance statistic. M =  30 knockoff
copies are generated in each run and the selection threshold is
η =  0.81. Under the monotonicity constraint, the value of (10)
is γ  =  0.39. With v =  1, the PFER is thus controlled at level
0.39. Applying Theorem 2 with ρ =  1/2, we see that 2-FWER
is controlled at the level 0.1. Figure 3 displays the results of the
small-scale experiment, where derandomized and vanilla
knockoffs obey 2-FWER ≤  0.1. As before, the boxplot shows
that derandomized knockoffs exhibits less marginal random-
ness than vanilla knockoffs. At the same time, we can clearly see a
substantial power gain.

We empirically verify the monotonicity assumption and the
skewness property (20) by plotting the histograms of null 5j ’s
and false discoveries V , respectively, in Figures S27 and S28
(supplementary material). Under the monotonicity assumption,
we expect to see the ratios obeying P(5j ≥  0.81)/E[5j ] ≤  0.39,
which is indeed the case as shown in Supplementary Figure S26.

Figure 3. Performance of derandomized knockoffs (η =  0.81 and v =  1) and vanilla knockoffs. The target 2-FWER level is 0.1. In this setting, n =  300 and p =  50, X �
N (0, S) with S =  0.5|i−j|. Y | X is sampled from a logistic model (21) with 30 nonzero entries in β . These nonzero entries take values ± A /  n, where the signal amplitude
A ranges in {10, 15, . . . , 35} and the sign is determined by iid coin flips. The setting is otherwise the same as in Figure 2. We indicate the target 2-FWER level α =  0.1 and
PFER =  2 with a dashed line. Each point in the first two panels represents an average over 200 replications. The construction of boxplots is as in Figure 2. Exact frequencies
of the number of false discoveries are provided in Supplementary Table S4.
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Figure 4. A typical workflow of multistage GWAS.

5. Application to Multistage GWAS

5.1. Background

The main goal of GWAS is to detect single-nucleotide polymor-
phisms (SNPs) associated with certain phenotypes. The task is
commonly carried out in multiple stages; see, for example, Kote-
Jarai et al. (2011),Thomas et al. (2009), and Lambert et al. (2013).
The purpose of the early stages is often exploratory so that
researchers tend to consider more liberal Type I error criteria
(such as FDR) to allow for the inclusion of more candidates.
The end-stage study is, in contrast, confirmatory, thus asking
for a more stringent Type I error criterion (such as FWER).
Informally, we can say that the early stage study narrows down
the choices to a subset of “candidate SNPs,” whereas the end-
stage study pins down the final discoveries. Figure 4 provides
a pictorial description of a typical multistage GWAS workflow.
Here, we would like to apply derandomized knockoffs to the end
stage, paving the way to reliable and stable decision making.

5.2. Answering the Same Question in Stages

We pause to discuss challenges associated with multistage stud-
ies. Although our methods apply regardless of the relationship
between a phenotype Y and genetic variants X1, . . . , Xp, and
always yield Type I error control, it may simplify the discussion
to consider a standard linear model relating the quantitative Y
to X to bring the reader onto familiar grounds (recall this is
purely hypothetical). Consider a geneticist who has genotyped
a number of sites. She wants to know whether the coef icient
βj associated with the variant Xj vanishes or not. Suppose now
that in a first stage—for example, after analyzing the results
of the first study—she thins out the list of possibly interesting
variants, those for which she suspects βj may not be zero. In
a later confirmatory study, we want her to determine whether
the coef icients of the screened variables in a model that still
includes all the variants X1, . . . , Xp she was originally interested
vanish or not. It might be tempting to test in the second stage
whether coeficients vanish in the reduced model only including
those variables that passed screening. However, note that this
would lead to test hypotheses that are dif ferent from those we
started with, not merely a subset of them. To bring this point
home, imagine that only one variable passed screening. Then
in the second stage, this strategy would lead to test a marginal
test of hypothesis, which is not what our geneticist wants (she
wants a conditional test). This change of hypotheses so strongly
influenced by the random results of the selection of the first
stage seems hardly coherent with the goal of the scientific study.
(For more discussion about full versus reduced model inference,
we refer the reader to Wu et al. (2010), Wasserman and Roeder
(2009), Barber and Candès (2019), Fan and Lv (2008), Voorman,

Shojaie, and Witten (2014), Belloni, Chernozhukov, and Hansen
(2014), and Ma (2017).

In light of this, this article proposes a pipeline for multistage
GWAS that answers the same question throughout the stages.
More specifically, from the very first stage, we are committed to
testing the conditional independence hypothesis:

H j  : Y �� Xj | X−j ,

where X− j  corresponds to all the SNPs except Xj. This means
that if C is the candidate set selected by previous stages, we test
H j  for each j � C in the end stage. We do this by applying deran-
domized knockoffs, which controls Type I errors regardless of
the procedures used in the previous stages. This is very different
from existing approaches which switch the inferential target and
would test whether a variable j � C is significant in a model
that only includes variables in C (Lee et al. 2013; Fithian, Sun,
and Taylor 2014; Tibshirani et al. 2016; Tian, Lof tus, and Taylor
2018; Barber and Candès 2019).

5.3. End-stage GWAS of Prostate Cancer

We rehearse the pipeline for multistage GWAS and showcase the
performance of derandomized knockoffs in Section S6 (supple-
mentary material) on a synthetic dataset with real genetic covari-
ates. Here, we present the results of applying our procedure to an
end-stage GWAS of prostate cancer.

We take the meta-analysis conducted by Schumacher et al.
(2018) as the early-stage study, and apply derandomized knock-
offs on a dataset from the U.K. Biobank for a confirmatory
analysis. The U.K. biobank dataset contains genetic information
on 161K unrelated British male individuals and their disease
status, that is, whether or not a participant has reported being
diagnosed with prostate cancer.

After selecting p-values from Schumacher et al. (2018) below
10−3 , we end up with 4072 preselected SNPs. (The set of SNPs
recorded in Schumacher et al. (2018) can be different from
that in the U.K. Biobank dataset. Here, we only consider the
intersection of the two sets.)

The next step is to partition a priori all the SNPs into clusters
at a level of resolution 2%. The resulting average length of the
clusters is 0.226 Mb. A cluster is called a candidate cluster if
at least one of its SNPs is a candidate SNP. Ten runs of con-
ditional group HMM knockoffs are constructed for the candi-
date clusters. We compute the group LCD statistics as in the
synthetic example from Section S6 (supplementary material).
Six additional covariates, namely age and the top five principal
components of the genotypes are included in the knockoffs
predictive model as follows: instead of using the phenotypes
as the response, we use the residuals of the phenotypes after
regressing out these six additional covariates. The inclusion
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of these covariates allows us to account for the (remaining)
population structure in the data, which increases the detection
power. Finally, we apply derandomized knockoffs with target
FWER level 0.1. The Supplementary material (Table S7) pro-
vides detailed information on the final list of clusters when the
resolution is 2%.

We compare our findings with those from the existing litera-
ture. Since our discoveries are SNP clusters and different studies
may contain different sets of SNPs, we cannot directly compare
the results across different studies. Here we consider findings to
be confirmed by another study if the latter reports a SNP whose
position is within the genomic locus spanned by a cluster we
discovered. With this, it turns out that all of our 8 findings are
confirmed by other studies. Furthermore, 7 matches are exact in
the sense that the leading SNP of a discovered cluster is reported
significant in the literature. Specifically, clusters represented
by rs12621278, rs1512268, rs6983267, rs7121039, rs10896449
and rs1859962 are replicated by Wang et al. (2015), which is a
large GWAS conducted in the Asian population; rs1016343 is
conf irmed by Hui et al. (2014)—a study specifically investigating
the associations of six SNPs including rs1016343 in a Chinese
population; the association between rs7501939 and prostate
cancer is in Elliott et al. (2010), which is a study focusing on
the association of two SNPs including rs7501939 with several
diseases.

What would happen if we were a little more liberal? To find
out, we also run the derandomized knockoffs set to control the
3-FWER at the level 0.1: all the SNPs discovered earlier appear in
the new discovery set. The more liberal procedure makes seven
additional discoveries and the corresponding SNPs are listed in
Table S8 (supplementary material).

6. Discussion

We proposed a framework for derandomized knockoffs inspired
by stability selection. By exploiting multiple runs of the
knockoffs algorithm, our method offers a more stable solution
for selecting nonnull variables. Leveraging a base procedure
with controlled PFER, we show how to achieve PFER and k-
FWER control, these being error metrics perhaps more
suitable than FDR for confirmatory stage studies (Tukey 1980;
Heller 2011) as well as more resource-consuming applications
such as end-stage GWAS (Sham and Purcell 2014; Meijer and
Goeman 2016), clinical trials (Crouch, Dodd, and Proschan
2017) and neuro-imaging (Eklund, Nichols, and Knutsson
2016). Furthermore, we execute our methodology on a GWAS
example and find that all our findings are confirmed by related
studies.

7. Future Work

While the current article empirically demonstrates enhanced
statistical power, it would be of interest to theoretically validate
power gains, at least in some simple settings. We note that
there has been a recent line of work devoted to the power
analysis of the original knockoffs procedure using Lasso
coeficient difference statistics (see, e.g., Weinstein, Barber,
and Candès 2017; Liu and Rigollet 2019; Spector and Janson

2020; Weinstein et al. 2020); one limitation is that these works
rely on strong assumptions such as Gaussian covariates, and a
linear model holding exactly. Power calculations for the
original knockoffs under general assumptions still remain
largely limited and the challenge is further compounded by
the complicated statistical dependence when different copies of
knockoffs are considered. Therefore, characterizing the power
of derandomized knockoffs requires developing a new set of
tools.

Also, the machinery described here is general and can be
applied to a variety of base procedures—even procedures that
do not come with controlled PFER. One would, therefore, ask
whether our theoretical framework can be adapted to accom-
modate such base procedures. Finally, perhaps the most natural
question is whether our ideas can be adapted to the more liberal
FDR criterion or related error rates such as the false discovery
exceedence.

Supplementary materials

This supplementary file is organized as follows. First, we provide a recap of
v-knockoffs in Section S1. The proofs of the main results are presented in
Section S2, followed by the proofs of auxiliary lemmas in Section S3 that
are crucially used to prove our main results. We discuss in Section S4
improving the assumption-free PFER bounds, and collect the additional
simulations in Section S5 which contains the large-scale experiment from
Section 3.2 in Section S5.1; the large-scale experiment from Section 4.2 in
Section S5.3; and detailed comparisons with alternative methods in
Section S5.5. The synthetic GWAS example with real genetic covariates is
presented in Section S6. Finally, the technical details including parameter
selections, knockoffs constructions, additional plots and tables are collected
in Section S7.
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