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Abstract: Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over
the world due to their extensive biological activity. They are less toxic and biodegradable with
the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used
metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and
chemical properties which can be readily modified by altering the morphology and the wide bandgap.
The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc.,
improves their stability and biocompatibility in many biological settings, and its biofabrication alters
its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as
an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being
biodegradable and biocompatible. This article covers a comprehensive review of different synthesis
approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques,
and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory,
antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis
from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction
techniques, precursors used for the synthesis and reaction conditions, characterization techniques,
and surface morphology of the particles.

Keywords: zinc oxide nanoparticles; green synthesis; biological activities

1. Introduction

A diverse application of nanomaterial-based technology has opened a new horizon
in material science over the past decades because nanomaterials offer a high surface area
and other very distinctive physical, chemical, and biological properties compared to their
bulk counterparts [1]. Nanoparticle (NP) research has gained distinct interest due to the
enhanced electrochemical reactivity, thermal conductivity, and nonlinear optical properties
of nanoparticles which offer unique applications [2]. Zinc oxide nanoparticles (ZnO-NPs)
are the most commonly used metal oxide nanoparticles because their distinctive optical
and chemical properties can be easily modified by altering the morphology and the wide
bandgap (3.37 eV) and high excitation binding energy (60 meV) to simulate the ZnO-NPs
to be a potent photocatalytic and photo-oxidizing moiety against chemical and biological
species [3,4]. They are less toxic to the human body and offer biocompatibility as the Zn
ion (Zn?*), a soluble form of ZnO, is a trace element found in the human physiological
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system. ZnO-based structures have been proven to exhibit biodegradability both in the
bulk phase and in the form of nanoparticles [5]. Zn ions also act as the principal mediators
of intracellular bacterial toxicity, disrupting their cell membranes [6].

Some potential applications where ZnO-NPs have been researched are: therapeutic
carriers, biological sensing, gene transfer, nanomedicine discovery, biological labeling, med-
ical implant coatings, electronic sensors, wastewater treatment, and communication [4,7,8].
The medical implant coating with zinc oxide and hydroxyapatite exhibited antibacterial
and osteoconductive properties, emphasizing the potential of ZnO-NPs in therapeutic di-
agnostics. ZnO-NPs exhibited cytotoxicity in human cancer cells, resulting in cell death via
the apoptotic pathway [9]. They also promoted antiproliferative activity in triple-negative
breast cancer cells [10], nonautophagic cell death in human lung adenocarcinoma cells
with an epidermal growth factor receptor (EGFR) mutation [11], and anticancer activity via
apoptosis in chronic myeloid leukemia cells using a transcriptomic approach [12]. It has
also been shown to induce cytotoxicity in the A549 epithelium and cancer cells [13]. Recent
investigations on the ZnO-Au nanocomposite have developed an electrochemical DNA
biosensor [14], ZnO-NPs for tracing studies in plants [15], and material in the development
of electrochemical sensors in the detection of food additive aspartame [16]. ZnO-NPs
have been shown to influence horizontal gene transfer where it impacts the transforma-
tion efficiency of Bacillus subtilis [17], and the ZnO-Ag NPs have decreased the rate of
biofilm formation and gene expression in Staphylococcus aureus at a subminimum inhibitory
concentration [18]. ZnO-NPs have been shown to reduce the parameters responsible for
hepatic fibrosis (hydroxyproline) and nephrotoxicity (creatinine, urea, and uric acid) [19],
also attenuating the gonadal toxicity which is induced by cyclophosphamide (an anticancer
and immunosuppressant drug) through their antioxidant and antiapoptotic function [20],
and cancer cell death through autophagy induction which supports the release of zinc ions
and the generation of reactive oxygen species (ROS) [21].

In a critical study, zinc ions and ZnO-NPs both showed cytotoxic effects in the earth-
worm GI tract where it affected the gut epithelium and chlorogenic tissues [22]. However,
ZnO-NPs dissolve slowly in human physiological conditions (pH 6-8), and the United
States Food and Drug Administration (USFDA) safety datasheet indicates ZnO as a “Gen-
erally Recognized as Safe” (GRAS) substance and nonhemolytic against human red blood
cells [23]. ZnO could be discovered to be a useful nanocarrier to facilitate the drug-
delivering and release processes [24,25]. Much research endorses ZnO-NPs as the most
beneficial metal nanoparticles, with minimal toxicity and excellent biocompatibility. The
structural atom allocation mimics the most bioactive agent, emphasizing its pharmaco-
logical effectiveness against various ailments. With all this potential, the objective of this
review article is to explore the various synthesis approaches and characterization tech-
niques of ZnO-NPs with a comprehensive mechanistic approach to its biological activity.
Although there is an increased number of studies revealing the mutually exclusive and
exhaustive area of ZnO-NPs, this review is a comprehensive compilation of recent ad-
vances with clear illustrations for a better understanding of the importance of ZnO-NPs in
biomedical research.

2. Biological Activities of ZnO-NPs
2.1. Antibacterial Action of ZnO-NPs

Bacteria portray a severe threat to human life as the world grapples with escalating
antibiotic resistance and bacterial infection. ZnO-NPs have remarkable photo-oxidation
and photocatalytic characteristics, and their exceptional antimicrobial properties have
led to their recognition as potent agents against MDR [26]. Although the mechanism of
antimicrobial action of ZnO-NPs is not well established, its properties, such as zinc ions
and ROS generation, are widely assumed to result in oxidative stress and DNA damage, as
well as photocatalytic activity, contributing to antibacterial efficacy (Figure 1). According
to Sirelkhatim et al., the oxygen annealing of ZnO increases the number of oxygen atoms
on the surface, resulting in increased oxygen atom adsorption and the generation of more
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ROS, resulting in enhanced oxidation, and hence, a facilitated antimicrobial property [27].
Moreover, ZnO-NPs cause cytoplasmic shrinkage and the disruption of cell walls leading to
cytoplasmic spillage (Figure 2). ZnO-NPs act as an effective bactericidal agent against both
Gram-positive as well as Gram-negative bacteria and are found to have direct interaction
with the cell wall of bacteria leading to the disruption of its integrity [28].
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Figure 1. Illustration of the antimicrobial property of ZnO-NPs against the bacterial cell wall. They
act as potent antibacterial agents through these possible steps: (1) production of reactive oxygen
species (ROS) causing oxidative stress, and membrane and DNA damage leading to bacterial death;
(2) dissolution of ZnO-NPs into 7Zn?* and interference with bacterial enzymes, proteins, and amino
acids; and (3) electrostatic interaction between ZnO-NPs and cell membrane, resulting in membrane
plasma damage and intracellular content leakage. (Reprinted from [29]; open access under CC BY).

Figure 2. Image illustrating antibacterial efficacy against 3-lactam-resistant K. pneumoniae obtained
using transmission electron microscopy: (a) ZnO-NPs in the untreated state and ZnO-NPs in the
treated state (b—e). Cytoplasmic shrinkage (b) disrupted cell wall and membrane (c), denatured
protein shows as a dark electron-dense patch (d), and cytoplasmic spillage (e,f). The blue arrow
represents an intact cell wall, the yellow arrow represents a disintegrating cell wall and cell membrane,
and the violet arrow represents a denatured protein. (Reprinted from [30]; open access under CC BY).
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2.2. Antifungal Action of ZnO-NPs

The antifungal properties of ZnO-NPs have been discovered in various studies in
the literature. Their fungicidal activity varies depending on their structure, size, and
concentration. The antifungal potency of biofabricated ZnO-NPs against Candida albicans
isolates was investigated, and it was revealed that they were more effective against drug-
resistant C. albicans isolates, demonstrating ZnO-NPs’ antifungal potency. Furthermore,
it was shown that prophylactic treatment with lower concentrations of ZnO-NPs protects
G. mellonella from the infection of C. albicans [31,32]. Similarly, the antifungal resistance of a
2% ZnO-NP-based cold cream exceeded the activity compared to a commercial antifungal
cream at 2% on clinical isolates of Candida sp. [33]. ZnO-NPs have antifungal activity against
both Aspergillus and Penicillium and have been investigated for their antidermatophytic
activity on Trichophyton mentagrophytes and Trichophyton verrucosum [34,35]. Likewise,
the bionanocomposite film of the soy protein isolate (SPI), cinnamaldehyde (CIN), and
ZnO-NPs exhibited the highest antifungal activity among SPI, SPI-CIN, and SPI-ZnO-NPs
films, where it was 1.56-fold stronger compared to the SPI-ZnO film and 1.24-fold stronger
compared to the SPI-CIN film [36]. The antifungal activity studied against two pathogenic
fungi—Botrytis cinerea and Penicillium expansum—revealed that activity is also dependent
on nanoparticle concentrations, with the efficacy of the ZnO-NP treatment increasing as
the concentration of ZnO-NPs rose from 3 to 12 mM. By affecting cellular functions, ZnO-
NPs cause deformation in fungal hyphae, inhibiting the growth of B. cinerea. Similarly,
P. expansum prevents the formation of conidiophores and conidia, resulting in the death
of fungal hyphae, explaining the fact that P. expansum is found to be more sensitive than
B. cinerea, i.e., microbe dependent. The activity detected in B. cinerea revealed the stronger
the photo-activation, the greater the activity [37-39].

2.3. Cytotoxic Effect of ZnO-NPs

ZnO-NPs, compared to other metal oxide NPs, have a significant effect on cancer
cells. The anticancer potential of ZnO-NPs is strongly influenced by their shape, size, and
concentration. It has been discovered that the smaller the size and higher the concentration
of NPs, the greater the anticancer activity [40,41]. They showed concentration-dependent
anticancer activity against MCF7 human breast cancer cells, where 93% inhibition of pro-
liferation of cells was noted at 100 pg/mL [40]. Similarly, fabricated ZnO-NPs exhibited
concentration-dependent growth inhibition in human pancreatic cancer cell lines, PNAC-1,
and AsPC-1, although they were shown to have a relatively smaller effect on the human
normal fibroblast cell line (Hu02), which was found by an MTT assay [42]. The mechanistic
approach (Figure 3) underlying its anticancerous activity includes the production of suffi-
cient ROS to cause substantial oxidative stress and DNA damage, disturbances on lipids
and proteins in cells, and other cellular components due to their large semiconductor band
gap [43]. Moreover, the establishment of a redox reaction system and the pro-inflammatory
response of cells against ZnO-NPs induce cellular apoptosis. Discrimination between
cancerous and normal cells has been a major challenge for a drug to be categorized as
anticancerous. Failure to achieve selectivity results in systemic toxic effects. Several studies
have revealed the selectivity of ZnO-NPs toward cancerous cells. ZnO-NPs have been
demonstrated to be selective to Jurkat cancer cells with minimal toxicity toward normal
CD4" T cells [44]. Similarly, Hanley and the group proposed that ZnO-NPs had 28-35 times
the specific cytotoxicity against cancer carcinoma cells compared to normal cells [45]. Se-
lective localization by enhanced permeability and retention (EPR) time via extravasation
toward tumor cells assists in selective activities affecting tumor cells rather than the normal
cells. The electrostatic property of ZnO-NPs facilitates the targeting of tumor sites [46].
Thus, there is ample evidence that ZnO-NPs can exhibit anticancer effects in specific types
of tumor cells in the body, which is depicted in Figure 3.
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Figure 3. A schematic representation of cytotoxicity potency of ZnO-NPs leading to the death of
cancer cells. ZnO-NPs induce ROS production sequentially, leading to oxidative stress, DNA damage,
P53 activation, and apoptosis of cancerous cells.

Despite various biomedical applications such as anticancer therapy, drug delivery,
gene therapy, and tumor imaging, ZnO-NPs might have deleterious effects on several key
organs including the lungs, kidneys, liver, CNS, reproductive system, and fetal develop-
ment in animal models. However, the ZnO-NP-induced toxicity is multifactorial, and it is
yet unknown just how toxic ZnO-NPs are for these organs [47].

2.4. Wound Healing Activity of ZnO-NPs

Wound healing is the phenomenon of cell injury responses, involving the activation of
fibroblasts, endothelial cells, and macrophages where fibroblasts proliferate; an important
step in wound healing for tissue regeneration [48]. It has been predicted that the delivery
of ZnO via poly (lactide-co-glycolic acid) (PLGA)/silk fibroin (SF) nanofibers retains the
bioavailability of NPs on the wound area and integrates with the unique structural features
of electrospun nanofibers, which stimulate wound closure, re-epithelialization, collagen
deposition, cellular migration, and angiogenesis [49]. Besides this, the ZnO-NPs loaded on
bromelain-immobilized silk fibroin (SF-Br) reduced inflammation and promoted wound
healing on a second-degree burn dressing [50]. During the healing process, the low doses
of ZnO-NPs favored attachment and proliferation of fibroblasts, but the trend reversed
at high doses. Metallic particles in nanocrystalline forms reduce wound infection along
with promoting wound healing, as observed in adult male albino Wistar rats [51] and
albino rats [52]. It was found that the functionalization of ZnO-NPs into triethoxysilane
poly(amidoamine) dendrimer to generate a cross-linked collagen scaffold enhances re-
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epithelization and speedier collagen deposition than other scaffolds, which resulted in
instantaneous wound healing [53]. In addition, the biodegradable thiolated bandage with
implanted ZnO-NPs demonstrated an enhanced therapeutic agent for treating surgical site
infections, satisfying the criteria for the optimal surgical dressing [54].

Similarly, the functionalization of bacterial nanocellulose (BNC) grafted with aminoalkyl
silane and doped with Pullan-ZnO-NPs electrospun nanofibers (A-g-BNC/Pul-ZnO) ex-
hibited superior performance in blood clotting and antibacterial activity that had a 5 log
value higher than BNC, and was found to be safe in terms of cytotoxicity as tested in L929
fibroblast cells. It offers growth and proliferation, which was corroborated by the rat model
where the scaffolds revealed rapid wound healing due to re-epithelization, and blood vessel
and collagen formation [55]. An in vitro study reported that the bionanocomposite-based
3D chitosan/pectin/ZnO-NP porous films demonstrated no cytotoxicity (biocompatibility)
and cell growth and migration (proliferation) for primary human dermal fibroblast cells
(HFCs), suggesting a benign biomaterial for promoting wound healing [56].

Moreover, 3D-printed alginate-ZnO-NP hydrogels exhibited enhanced pore sizes,
stiffness, and no detrimental effect on STO-fibroblasts or cell viability, making them a
suitable scaffold for wound healing [57]. Generally, hydrogels are preferred with ZnO-NPs
because they have a slow release of nanoparticles from the preparation, which reduces the
cytotoxicity from ROS formation and improves wound healing. The above analyses sup-
port the findings of Saddik et al., where it was demonstrated that azithromycin-ZnO-NPs
impregnated into an HPMC gel enhanced bacterial clearance and epidermal regeneration,
which eventually stimulated tissue formation, leading to the rapid healing of the infected
wound [58,59]. Another bioscaffold made from sodium alginate gum acacia ZnO-NP hy-
drogels showed a similar potential in expediting healing in terms of reducing inflammation
and produced no scar at the excision wound on rabbit skin [60]. Thus, topical zinc applica-
tion has been shown to improve the process of re-epithelialization, reduce inflammation,
and inhibit the growth of bacteria in the case of foot ulcers and other topical wounds [61].

2.5. Anti-Inflammatory Activity of ZnO-NPs

The inflammatory response in the human body is a complicated process that involves
immune system activation and the release of pro-inflammatory cytokines such as inter-
leukin (IL)-1, -6, -12, -18, TNF-«, INFy, and granulocyte-macrophage colony-stimulating
factor (GMS-CF) [62] (Figure 4). Nuclear factor-kappa b (NF-«(3) is a key transcription factor
that regulates the expression of many genes that encode pro-inflammatory mediators, such
as COX-2 and iNOS, which increase the synthesis of pro-inflammatory mediators such as
PGE2 and nitric oxide [63]. The ZnO-NPs act as anti-inflammatory agents as they have been
shown to inhibit the release of pro-inflammatory cytokines, inducible nitric oxide synthase
(iNOS) expression, myeloperoxidase, the NF-k3 pathway, and mast cell degranulation [64].
The mRNA expression of pro-inflammatory cytokines was suppressed by the ZnO-NPs syn-
thesized using Polygala tenuifolia in a dose-dependent manner [65]. In addition, ZnO-NPs,
when doped with aluminum, have been shown to reduce the production of thymic stromal
lymphopoietin (TSLP) and caspase-1 activation in mast cells, leading to lowering the ex-
pression of pro-inflammatory cytokines, IL-1, IL-6, and TNF-« [66]. In a comparative study
of ZnO-NPs and the ZnO standard form, it was revealed that ZnO-NPs relatively lowered
the carrageenan-induced paw edema and amplified the anti-inflammatory activity of the
nonsteroidal anti-inflammatory drug, ketoprofen, when administered intraperitoneally [67].
However, both forms were ineffective when administered per os (po) and guarded the
gastric mucosa against the gastric ulcer induced by the administration of ketoprofen. ZnO-
NPs have been discovered to have an excellent capping of flavones such as isoorientin,
orientin, isovitexin, and vitexin, which have a potent anti-inflammatory response in a
variety of ways, including the inhibition of cyclooxygenase, phospholipase A2, and lipoxy-
genases (enzymes that produce eicosanoids), resulting in a decline in leukotrienes and
prostanoids [68].
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Figure 4. Mechanism of anti-inflammatory potency of ZnO-NPs.

2.6. Orthopedic Implants and Bone Healing Activity of ZnO-NPs

Diseases such as osteoporosis, arthritis, and fibrous dysplasia can cause bone abnor-
malities and lasting disability. The implantation of orthopedic implants and scaffolds has
significantly aided in the treatment of these bone diseases and abnormalities since they
consist of materials with positive effects on the bone regeneration process [69]. Orthopedic
implants are usually made of metals and alloys such as titanium, nitinol, stainless steel, and
Co-Cr alloys [70]. Over the last several decades, these metals have been excessively utilized
for deformity correction, joint replacements, fracture fixation, soft tissue anchorage, and
most importantly, for accelerating bone growth [71]. Unfortunately, orthopedic implants
are not free from side effects once placed in the body, leading to infections, limited corrosion
resistance, low cell proliferation, excessive inflammation, and poor osseointegration [72,73].
If infection occurs, the implant loosens, bones take longer to heal, and sometimes prolonged
suffering leads to death [74]. If corrosion occurs, toxicity incites, weakening the implant [70].
Metal oxide nanoparticles such as ZnO, magnesium oxide (MgO), iron oxide, zirconium
oxide, titanium oxide, and silver oxide, when used with orthopedic implants, provide a
wide range of solutions for the issues mentioned earlier. Figure 5 highlights how the ZnO
coating on the implant helps in osteointegration, the prevention of biofilm formation, and
the prevention of premature corrosion of the implant.
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Figure 5. A diagram showing the effects of metal oxide (e.g., ZnO) coating on the orthopedic implant
and bone.

Biodegradable metals (BMs) such as Zn, Mg, Ca, and Fe have additional desirable
properties for their applications in orthopedics [75,76]. During biodegradation, these met-
als release metal ions, metal oxides, and hydroxides. The close interaction between the
degraded by-product and the stem-progenitor cells at the interface is what gives bone tissue
implants their bioactivity [77]. Therefore, altering the implant’s chemical composition can
have a significant impact on the treatment’s effectiveness [77]. The integration of growth
factors into bone tissue scaffolds and implants is a prominent area of interest in the re-
search. Protein growth factors such as insulin-like growth factors and bone morphogenetic
proteins can activate cellular signaling cascades to stimulate active healing [78], including
angiogenesis, a crucial step in bone tissue regeneration [79].

Zn and ZnO have emerged as a recent alternative among these BMs and are commonly
employed in combination with other biomaterials to gain diverse qualities in antibacterial
ability, cytocompatibility, and corrosion resistance [80,81] due to their customizable size
manipulation from micro to nano [82]. Bone is the principal repository for Zn since it
stores about 30% [83], and Zn helps in the maintenance of bone mass [84]. It maintains
the shape of cell membranes [83] and is crucial for bone quality. In osteoblastic cells, Zn
can directly activate aminoacyl-tRNA synthetase, a rate-limiting enzyme during protein
translation [85], accelerate cellular protein synthesis [86] and increase the gene expression
of the transcription factor Runx2, which is connected to osteoblast differentiation. Zn
also prevents the production of osteoclast-like cells from marrow cells, which minimizes
osteoclastic bone resorption [87]. Bone mineralization is aided by the enzyme alkaline



Nanomaterials 2022, 12, 3066

9 of 31

phosphatase, which employs zinc as a co-factor [88-90]. In an in vitro experiment, Zn
doses between 7 and 20 nM enhanced alkaline phosphatase activity, but Zn concentrations
over 5 uM decreased alkaline phosphatase activity [88,91,92]. These findings imply that
a Zn shortage may affect bone growth by impairing osteoid mineralization or calcified
cartilage production linked to endochondral ossification. Many distinct types of skeletal
defects in prenatal and postnatal development are linked to Zn deficiency, and a study
demonstrated that osteoporotic patients had lower skeletal Zn levels than the control [93].
By promoting collagen production, alkaline phosphatase (ALP) activity, and mineralization
of bone nodules, Zn can improve osteogenesis (Figure 6).

Functions of Zinc in Osteoblast growth.
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Figure 6. The diagram shows the functions of Zn in stimulating osteoblastic bone formation and
mineralization. Zinc stimulates gene expression of various proteins including type I collagen, alkaline
phosphatase, and osteocalcin in the cells. Zn is also known to increase the production of growth
factors such as IGF-I and TGF-f31 in osteoblastic cells.
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Yusa et al. showed that eluted Zn ions from Ti surfaces promoted osteoblast activities
in human bone marrow-derived mesenchymal stem cells (hBMSCs) and dental pulp stem
cells (hDPSCs) [94]. In both cell types, the eluted Zn ions stimulated the expression of
osteoblast marker genes (collagen type I, ALP, and osteocalcin) and calcium deposition. In
hDPSCs, Zn ions further stimulated the expression of Runx2, vascular endothelial growth
factor A, and transforming growth factor-beta. Additionally, apoptosis rates in MC3T3-E1
cells increased from 7% in normal media to 75% and 90% when the cells were grown
in Zn-deficient or Zn-free media, respectively [95]. Numerous studies have shown that
increasing ZnO content improved antibacterial capacity [96-98], and nanocoating with
ZnO may minimize S. epidermidis adherence, thus enhancing the efficacy of orthopedic
implants [99]. Lin, M.-H. et al. detected that the chitosan/ZnO-NP coating showed 1.2-fold
stronger antibacterial activity against E. coli than the chitosan coating alone and actively
prevented the formation of biofilm [100].

Similar to Zn and ZnO, another degradable metal such as Mg provides similar benefits
for tissue healing [101]. Adhikari, U. et al. mimicked the nanostructured architecture and
chemical makeup of natural bone tissue matrices with a 3D scaffold made from chitosan,
carboxymethyl chitosan, calcium phosphate monobasic, and magnesium oxide. This
scaffold also served as a source for soluble metal ions that are beneficial to osteoblast cells
and offers a favorable background to promote biomineralization [102]. Pure Mg corrodes
too quickly in physiological pH and produces excessive hydrogen gas, which is its biggest
drawback; thus, efforts to use the metal oxide coating in orthopedic applications have been
limited [101]. In addition, the inclusion of biodegradable ZnO-NPs in polycaprolactone
enables the gradual release of zinc, which has the potential to improve mesenchymal stem
cell (MSC) differentiation as an added advantage. Although osteogenic differentiation
was improved on scaffolds with an increased concentration of ZnO, MSC chondrogenic
differentiation was boosted on scaffolds with a reduced proportion of ZnO [103].

2.7. Antidiabetic Action of ZnO-NPs

Diabetes is a metabolic disorder characterized by persistent hyperglycemia. Zinc
has been discovered to have an important role in the production, storage, and secretion
of insulin [104]. Furthermore, it improves insulin signaling through pathways, such
as elevated PI3K activity, insulin receptor tyrosine phosphorylation, and the inhibition
of glycogen synthase kinase [105]. It has been reported that zinc’s insulin-mimicking
activity leads to enhanced lipogenesis and decreased nonesterified fatty acid release from
adipocytes [106]. ZnO-NPs are more frequently chosen for antidiabetic effects over other
metal nanoparticles because they increase the expression of GLUT-4 and INS genes due
to the confluence of factors such as the enhanced cellular permeation of biosynthesized
ZnO-NPs, the promotion of glycolysis via hepatic glycogenesis, and the elevation of insulin
levels. Moreover, it imposes synergistic effects on the expression and activity of increased
glucokinase and the expression levels of IRA and GLUT-2 [107].

A study revealed that zinc combined with insulin acts as an autocrine molecule,
increasing GSIS from rat-isolated pancreatic islets [108], and interacts with several com-
ponents of the insulin transduction system, facilitating glucose metabolism and insulin
mRNA expression in hepatic tissue of diabetic rats [109]. In an alloxan-induced dia-
betic model, rats administered with 96 mg/dL of ZnO-NPs synthesized from the seed
extract of Silybum marianum L. had considerably lower fasting blood sugar (FBS) levels
than rats fed with 117 mg/dL of insulin, 110 mg/dL of zinc oxide, and 120 mg/dL
of crude extract, implying the potent antidiabetic activity of ZnO-NPs. Antidiabetic
medicinal plants have also been used to synthesize ZnO-NPs and studied for antidi-
abetic effects, such as Rheum ribes [110] and Cosus igneus [111]. Similarly, the antidia-
betic effect of ZnO-NPs synthesized from the flower extract of Senna auriculata [112]
and leaf extract of Andrographis paniculata was studied in terms of a-amylase inhibitory
activity, where it showed a lower 1Csy value (121.42 ug/mL) than the leaf extract of
A. paniculata (149.65 pg/mL) and ZnNO; (178.84 ug/mL) [113]. Moreover, the antidia-
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betic activity of ZnO-NPs synthesized from Withania somnifera was monitored in terms
of inhibition of x-amylase and a-glucosidase, showing 90% and 95% inhibition, respec-
tively, at 100 pg/mL [114]. According to the findings of these studies, ZnO-NPs have a
substantial antidiabetic effect in terms of glucose and insulin levels, glucose tolerance, and
diabetic dyslipidemia.

2.8. Antioxidant Activity of ZnO-NPs

In the modern world, the ingestion of some oxidized meals is associated with numer-
ous serious ailments, such as hepatomegaly or necrosis of epithelial tissues, because they
are capable of producing lipid peroxides and other toxic-free radicals [115-117]. Various
natural and synthetic antioxidants are utilized to neutralize these damaging free radi-
cals, but they have drawbacks such as high reactivity and toxicity when compared to the
nanoparticles synthesized these days [118,119]. Das et al. investigated the antioxidant
potential of ZnO-NPs and revealed that the antioxidant activity of ZnO-NPs is due to the
transfer of electron density from oxygen to the odd electron located at the nitrogen atom
in DPPH (2,2-diphenyl-1-picrylhydrazyl), resulting in a reduction in the intensity of the
n—7r* transition at the 517 nm wavelength [120].

The previous finding showed that the percentage of inhibition of free radicals by
ZnO-NPs on DPPH increases along with that of the concentration, explaining the ZnO-
NPs’ promising antioxidant potential [121]. Similarly, the antioxidant activity of ZnO-NPs
synthesized using the Aquilegia pubiflora leaf extract was monitored through four different
assays (total antioxidant capacity—TAC, total reducing power—TRP, free radical scaveng-
ing assay—FRSA (DPPH), and Trolox antioxidant assay—ABTS) for a better evaluation,
and the obtained results in terms of ascorbic acid equivalent per milligram (ug AAE/mg)
were directly proportional to the concentration of ZnO-NPs in each assay [68]. In addition
to that, similar studies were carried out using ABTS, DPPH, hydrogen peroxide, and super
peroxide scavenging assays, where the DPPH assay exhibited direct dose-dependent behav-
ior and the order of antioxidant activity was as follows: ABTS > DPPH > SOR > H,0; [122].
Furthermore, several plant sources such as Salvia hispanica [123], Borassus flabellifer [124],
and Punica granatum [125] have been utilized for evaluation of the antioxidant activity of
ZnO-NPs. Generally, the antioxidant behavior of ZnO-NPs is due to the reducing ability
of NPs and the phytochemicals adsorbed /capped on the surface of ZnO-NPs [126]. This
reveals the unparalleled antioxidant capacity of ZnO-NPs.

2.9. Antiviral Action of ZnO-NPs

ZnO-NPs have been reported to exhibit significant antiviral activities against a plethora
of viruses, such as herpes simplex virus (HSV), human papillomavirus (HPV), human
immunodeficiency virus (HIV), hepatitis C and E virus (HCV, HEV), and severe acute
respiratory syndrome coronavirus (SARS-CoV) [127]. The mechanism of action underlying
the antiviral potency of ZnO-NPs is the stimulation of the innate and adaptive immune
response via toll-like receptor signaling pathways and proteins down streaming, which
results in the production of pro-inflammatory cytokines that inhibit the virus. Zn?* ions
exhibit antiviral properties by preventing infection, inactivating virus adsorption/entry,
blocking coating, impeding replication, assembly, and release during the virus'’s life cycle,
and producing reactive oxygen species [128-132]. Zinc inhibits the entry of viruses and
viral polyprotein translation, as well as inhibiting viral RNA-dependent RNA polymerase
activity, and has been shown to modulate the host immune response to limit viral repli-
cation. It is a mediator in the LPS (bacterial lipopolysaccharide)-induced TLR4 (toll-like
receptor 4)-dependent MyD88 (myeloid differentiation primary response protein 88) signal-
ing cascade, which results in early NF-«3 activation (nuclear factor-kappa b). This triggers
the production of pro-inflammatory cytokines such as TNF-« (tumor necrosis factor-«), IL-1
(interleukin-1), and IL-6 to increase (interleukin-6), which plays a crucial role in the control
of viral pathogens [133,134]. Moreover, ZnO-NPs can absorb UV-Vis light, dissociate water
molecules, and release Zn?* ions, generating ROS such as hydrogen peroxide, hydroxyl
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radicals, and superoxide that disrupt the lipids, proteins, carbohydrates, and DNA of the
virus, leading to its death [135]. According to Jana et al., polysaccharide-encapsulated
ZnO-NPs showed exceptional antiviral action against human cytomegalovirus (HCMV),
with cell survival rates of 93.6% and 92.4% at 400 ug/mL [136]. A survey reported that
ZnO-NPs and PEGylated ZnO-NPs have inhibitory effects on the HIN1 influenza virus,
with PEGylated ZnO-NPs showing higher anti-influenza activity with less cytotoxicity on
MDCK-SIAT1 cells than ZnO-NPs, indicating that PEGylation on the surface of ZnO-NPs
enhanced antiviral activity while reducing cytotoxicity [137]. A recent study on ZnO-NPs
demonstrated compelling antiviral activity against SARS-CoV-2 at a very low concentra-
tion (ICsp 526 ng/mL), and it was found that ZnO-NPs can produce a large number of
free radicals which ultimately induce significant damage to the membrane proteins of
SARS-CoV-2. However, ZnO-NPs displayed cytotoxic levels (CCsy 292.2 ng/mL) against
VERO-E6 cells [138]. Similarly, they exhibit excellent antiviral activity against the Chikun-
gunya virus [139], and these findings suggest that ZnO-NPs might be good antiviral agents.

2.10. Cardioprotective Action of ZnO-NPs

As ZnO-NPs possess potent antioxidant activity, this gives us an idea about their use in
the scavenging O,°*— free radicals, which on the other side, possibly have cardioprotective
effects. The O,°*— free radicals are produced from lipid peroxides obtained from today’s
fast foods and are made up of several flavoring/bleaching agents such as monosodium
glutamate (MSG), which have several adverse effects on the heart, liver, kidney, testis,
pancreas, brain, and other various tissues and organs with signs of inflammation [140-142].
These free radicals must be scavenged using ZnO-NPs to reduce the adverse effects of
oxidative stress produced from the heart failure marker, lipid peroxidation (LPO), and
lactoperoxidase-like reactive oxygen species free radicals. A study on the alleviation effect
of the ZnO-NP/GTE complex on rats, through feeding two dosages of MSG and a dose
of ZnO-NP/GTE (10 mg/kg) by oral gavages daily for 30 days, revealed that there was a
reduction in LPO markers such as O,°*— free radicals with a significant improvement in
the level of endogenous antioxidants such as SOD, CAT, GSH, and GPx in cardiac tissue,
indicating the protection against oxidative stress [143]. Thus, ZnO-NPs are believed to
restore abnormal cardiac myofiber, implying their cardioprotective potential.

2.11. Anthelminthic Action of ZnO-NPs

ZnO-NPs have a strong anthelminthic effect, which is achieved by inducing oxidative
stress by producing hydroxyl ions and ROS, which induces helminth membrane damage by
electrostatic binding [144,145]. Anin vitro study of ZnO-NPs on Gigantocotyle explanatum [146]
revealed that they possess effective anthelminthic properties in higher concentrations.
Flukes survive at lower quantities by increasing the activity of their intracellular antioxi-
dant enzymes, SOD and GST, which scavenge reactive oxygen species [147], whereas with
higher concentrations, SOD and GST possibly become saturated due to overproduction of
ROS and hydroxyl ions, which leads to detoxification in flukes. These findings demonstrate
sufficient evidence for the anthelminthic potential of ZnO-NPs.

3. Approaches for Synthesizing ZnO-NPs

ZnO-NPs are typically synthesized by utilizing physical, chemical, and biological
processes that utilize either top-down or bottom-up approaches (Figure 7). The cutting,
grinding, or attrition of larger particles, followed by the formation of smaller particles at
the nanoscale level, is referred to as a top-down technique. This method is commonly used
for nanoparticle synthesis on a small scale [148]. The bottom-up approach is the process of
synthesis of nanoparticles by gathering already miniaturized atoms/molecules through
the application of chemical and physical methods. It is a cheaper method and faster than
the top-down approach [149].
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Figure 7. Synthesis approaches for ZnO-NPs.

3.1. Physical Methods

Physical methods are used to synthesize ZnO-NPs by attracting smaller molecules
and atoms to produce nanoscale-sized particles that employ physical forces. Physical
methods comprise ball milling, sputtering, physical vapor deposition, laser ablation, ion
implantation, and electric arc deposition. Ball milling is a nonequilibrium phenomenon
in which materials of a larger size are crushed with a ball mill due to collision with high-
energy balls. The ball milling process has efficient production rates and is easier and
more cost-effective. Salah et al. suggested that 15 spherical balls with a circumference
of 20 mm concealed in a 500 mL bowl] be used to form nanostructures of ZnO in a study
on the antibacterial effectiveness of ZnO-NPs [149]. Laser ablation methods refer to the
process of the removal of particles from the solid and liquid interface using a laser beam
as an energy source. A study conducted by Mintcheva et al. provides a piece of evidence
that the millisecond-pulsed laser ablation technique produced rod-shaped ZnO-NPs with
lengths ranging from 40 to 110 nm and an average diameter of 30 nm [150]. Physical vapor
depositions are a frequently used method in which the deposition of metals coating the
surface involves two phenomena, such as evaporation and sputtering. Sputtering is the
process of expelling particles from the surface by impacting high-energy particles with
plasma ions [151]. Thermal evaporation is another physical approach in which powdered
or condensed products are heated to a higher temperature, evaporation occurs, and the
resulting vapors condense to form desirable nanoparticles under controlled conditions
such as pressure, temperature, humidity, substrate, and so on [152].

3.2. Chemical Methods

The chemical methods for synthesizing ZnO-NPs are categorized based on their
physical state, which includes solid-phase, liquid-phase, and gas-phase synthesis. Liquid-
phase synthesis is a widespread method and a viable alternative to gaseous-phase synthesis.
For liquid-phase synthesis, the sol-gel process, colloidal methods, precipitation and co-
precipitation methods, microemulsion method, hydrothermal synthesis, and solvothermal
and sonothermal methods can be utilized, whereas inert gas condensation methods and
pyrolysis can be used for vapor-phase synthesis [153].
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3.2.1. Liquid-Phase Synthesis

The sol-gel process is the process of conversion of prepared colloidal solution (sol)
into gel through hydrolyzation, condensation, and polymerization reactions. Zinc acetate
hydrate in alcohol is the most used precursor for the synthesis of ZnO-NPs [154]. Khan
and companions synthesized pure and uniform thorn-like ZnO-NPs of a size < 50 nm
for the first time by the sol-gel method [155]. Similarly, precipitation and co-precipitation
methods involve the formation of a precipitate when inorganic alkalis act as a reducing
agent combined with zinc salt. Sodium hydroxide and zinc sulfate heptahydrate are used
as precursors, and by adjusting reaction conditions, these precipitates were washed and
calcined at the requisite temperature to produce nanoparticles with the desired shape, size,
and characteristics [156].

Solvothermal synthesis is a technique for facilitating a precursor interaction during
synthesis by utilizing a solvent at moderate to high pressure (1-10,000 atm) and tempera-
ture (100-1000 °C) [157]. Hydrothermal synthesis, on the other hand, employs water and
is normally performed below the supercritical temperature of the water, i.e., 374 °C. The
microemulsion is another technique of synthesizing the thermodynamically stable disper-
sion of two immiscible liquids, namely, water and hydrocarbons. In general, two forms
of microemulsions are utilized, such as oil-in-water (O/W) and water-in-oil (W/QO), with
the latter being predominantly used for the preparation of NPs by dispersing the metal
salt (Zinc salt) precursor in the aqueous phase. Surfactant- and co-surfactant-charged
hydrophilic groups aid to minimize interfacial tension between two phases and enhancing
colloidal stability [158].

3.2.2. Gas-Phase Synthesis

The aerosol pyrolysis method is the most commonly used gas-phase synthesis method,
in which aerosol droplets dispersed in the gas phase generate aerosol droplets of the precur-
sor zinc salts when heated in a flame. The flame heating causes dehydration, which helps to
reduce the size of particles in the nanoscale. The required material decomposes and sinters
as a result of the heating over the flame [159]. Inert gas condensation is another major
gas-phase synthesis technique. It involves evaporating zinc inside a heat-resistant compart-
ment using a variety of heat sources, such as electron and laser beams or radio frequencies,
and then condensing the vapors by migrating them to cooler chambers containing inert
gas. Based on the catalyst, this approach is divided into two categories: physical vapor
deposition intrigued without catalytic contact and chemical vapor deposition fascinated
with catalytic interaction. It may cause agglomeration and coalescence of nanoparticles,
which is a typical demerit of this process. Uhm and coworkers synthesized ZnO-NPs
of a better shape and size with a 30 nm diameter by the levitational gas condensation
method [160].

3.3. Green Synthesis

The terms “biological synthesis” and “green synthesis” are often used interchangeably.
However, for a biological synthesis to be green, it should comply with the basic principles
of green chemistry such as being environmentally friendly, no use of toxic chemicals, re-
duced derivatization, energy consumption, waste, and so on [161]. Here, green synthesis is
the process of synthesizing nanoparticles by incorporating mainly cell extracts (microbial,
plant, fungus, algae, etc.) into the substrate involving biofabrication, i.e., the capping of
nanoparticles from natural products such as phytochemicals from plants and proteinous
extracts from microorganisms and fungus without using any toxic chemicals. Green synthe-
sis is to be nonhazardous, aligning with the principles of green chemistry. These methods
provide merits of biocompatibility, cost-effectiveness, large-scale productivity, ecofriend-
liness, and being devoid of hazardous chemicals and adverse reaction conditions and
are, therefore, an attractive alternative to traditional physical and chemical methods [162].
As such, microbial and plant extracts release phytochemicals that act as reducing agents
as well as fabricating or stabilizing agents; this eliminates the dependence on industrial
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chemicals. On the contrary, if synthetic chemicals/solvents are employed to assist the
reduction-stabilization process or to maintain pH in a green synthesis, such synthesis is
better described as biochemical synthesis.

3.3.1. Plant-Mediated Synthesis of ZnO-NPs

A multitude of research supports the synthesis of crystalline ZnO-NPs by chelating a
zinc complex with plant extracts. The aerial parts of plants, such as leaves and flowers, are
commonly used in green synthesis. To optimize ZnO-NP synthesis, usually, reaction param-
eters such as temperature, pH, concentration, and time are adjusted. The appearance of a
yellow coloration generally indicates the formation of ZnO-NPs, which is further confirmed
by qualitative investigations such as UV-visible spectroscopy, SEM, and TEM [163].

The synthesis of ZnO-NPs with regulated shapes and sizes was accomplished by
varying the concentration of plant extracts. Madan et al. synthesized NPs of varied sizes
ranging from 9—40 nm and different shapes such as bud, cone, closed pine cone, bullet,
and hexagonal disk by altering the concentrations of a plant extract from the leaves of
Azadirachta indica [164]. The possible mechanism of the green synthesis has been explained
by several researchers and the result is that the secondary metabolites and proteins present
in the plant extracts act as capping and reducing agents which promote nanoparticle
synthesis, whereas some studies have proposed that the nanoparticles of metal ions are
formed due to the electrostatic interaction of plant proteins and metal ions. Proteins
would reduce the metal ions, resulting in a change in the protein secondary structure, as
well as in the formation of metal oxide nanoparticle seeds [163,165]. Plant components,
from leaf to root, are extensively utilized in metal oxide nanoparticle synthesis because
phytochemicals such as polyphenolic compounds, vitamins, polysaccharides, amino acids,
alkaloids, terpenoids, etc. extracted from plants aid in the efficient bioreduction of metal
ions for the synthesis of NPs that are stable and variable in structure and dimension.
Bioreduction is the process of reducing metal ions or metal oxides to zero-valence metal
NPs, fascinating in maintaining their stability. These techniques yield a large quantity of
very pure nanoparticles that are free of contaminants [166,167]. Table 1 summarizes the
key findings of extensive research on several plants employed in the synthesis of ZnO NPs.
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Table 1. Summary of the plant-mediated synthesis of zinc oxide nanoparticles.
. . . . Zinc Precursors; Size of Nanoparticles Morphology of

Biological Source Used Plant Parts Extraction Technique Condition Synthesized (nm) Nanoparticles References

DLS: 82.31 at 0.05 molar and
Zinc nitrate hexahydrate 110 at 0.01 molar
Albizia lebbeck Stem bark Decoction at 60 °C and sodium hydroxide, SEM: 66.25, 82.52,112.87 at 0.1, Rod and hexagonal [168]
calcined at 350 °C 0.05, and 0.01

molar concentration

Abutilon indicum Leaf iﬁé\gﬁg’;eoxéractlon Zinc nitrate hexahydrate =~ XRD: 16.72 Spheroid or rodlike [169]

. . Soxhlet extraction . . .
Azadirachta indica Leaf at 350 °C Zinc nitrate XRD: 11-40 Hexagonal disk [164]
. . Zinc acetate dehydrate, XRD: 5-25
Berberis aristata Leaf Boil sodium hydroxide DLS: 90110 Needle [170]
Camellia sinensis Solid waste Decoction Zinc acetate, pH 12 XRD: 19.5 Rod [171]
. . o Zinc acetate dihydrate; XRD: 2.72 .

Cassia fistula Leaf Decoction at 70 °C 70 °C DLS: 68.1 Spherical [172]

Citrus limon Leaf Decoction at 60 °C Zinc nitrate TEM: 37.05 + 18.27 Spherical [173]
DLS: 50.8
TEM: 27

Crotalaria verrucosa Leaf Boil Zinc nitrate hexahydrate ~ XRD: 17.47 Hexagonal wurtzite [174]
DLS: 27

Limonia acidissima Leaf Decoction at 60 °C Zinc nitrate: pH 10 HRTEM: 12-53 Spherical [175]

. . o Zinc acetate dihydrate; XRD: 2.72 .

Melia azadarach Leaf Decoction at 70 °C 70 °C DLS: 3.62 Spherical [172]
TEM: 40

Mentha pulegium Leaf Boil Zinc nitrate hexahydrate ~ FE-SEM: 3849 Hexagonal, quasispherical [176]
XRD: 44.94
XRD L-ZnO-NP:

o Zinc nitrate hexahydrate, L-ZnO-NP: 8 and 15 hexagonal wurtzite
Mussaenda frondosa leaf, callus, and stem Reflux at 100 °C calcined at 400 °C C-7nO-NP- 5 and 7 C-7ZnO-NP and [177]

S-ZnO-NP: 9 and 12

S-ZnO-NP: spherical
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Table 1. Cont.

. . . . Zinc Precursors; Size of Nanoparticles Morphology of

Biological Source Used Plant Parts Extraction Technique Condition Synthesized (nm) Nanoparticles References
Zinc acetate dihydrate; TEM: 355

Myristica fragrans Fruit Decoction at 150 °C . Oy ! SEM: 43.3-83.1 Spherical and hexagonal [178]
calcined at 500 °C

XRD: 41.23
. . Zinc nitrate hexahydrate, DLS, SEM, TEM: 100 .

Oats Oat biomass Boil calcined at 400 °C XRD: 17.52 Waurtzite and hexagonal [179]

Tabernaemontana . o Zinc nitrate hexahydrate =~ TEM: 20-50 .

divaricata Leaf Decoction at 80 °C At 450 °C XRD: 36.82 Hexagonal wurtzite [180]
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3.3.2. Green Synthesis Using Bacterial Extracts

The nanoparticle synthesis using bacterial extracts is a complex and time-consuming
technique of green synthesis. It is vital to ensure vigilant monitoring of the culture media
throughout the process to avoid contamination. Otherwise, synthesized NPs could be
less optimized and ineffective [2]. A study reported that the synthesis of ZnO-NPs can
be carried out using Rhodococcus pyridinivorans and zinc sulfate as the substrate. The
synthesized NPs were spherically shaped with a 100-130 nm size range confirmed through
FE-SEM and XRD analysis [181]. The synthesis of nanoflowers (40 nm width and 400 nm
height) with potent photocatalytic potency was also performed with B. licheniformis using
the green synthesis technique [182]. The excellent antioxidant activity of NPs synthesized
using Pseudomonas aeruginosa was also revealed, indicating that enhanced NP stability was
attained due to the rhamnolipid of bacteria used. Thus, it is significant to consider that
bacteria can be used as a better capping agent with outstanding stability and potency [183].
Green synthesis using a bacterial strain is well illustrated in Table 2.

Table 2. Summary of the bacteria-mediated synthesis of zinc oxide nanoparticles.

Size of Nanoparticles =~ Morphology of

Strain of Bacteria Family Synthesized (nm) Nanoparticles References

Rhodococcus . FE-SEM: 100-120 Hexagonal phase and

pyridinivorans Nocardiaceae XRD: 120-130 roughly spherical [181]

Pseudomonas TEM: 35-80 .

aerisginosa Pseudomonadaceae XRD: 27, DLS: 81 Spherical [183]

Pseudomonas TEM: 6-21 .

aeruginosa NMJ15 Pseudomonadaceae XRD: 21 Spherical [184]

Aeromonas AFM: 57.72 .

hydrophila Pseudomonadaceae XRD: 4264 Oval and spherical [185]

. . TEM: 5-15

Lactobacillus sporogens Bacillaceae XRD: 11 Hexagonal [186]
TEM: 200 (nanopetal

B. licheniformis Bacillaceae 40 nm width and Nanoflower [182]
400 nm length)
SEM: 170-250 (at

Serratia ureilytica . 30 min), 300-600 (at Spherical and

(HM475278) Enterobacteriaceae 60 min), 185-365 (at nanoflower [187]
90 min)

. . . TEM: 30-55 .
Arthrospira platensis Microcoleaceae XRD: ~A45 Spherical [188]
e . TEM: 88
Desertifilum sp. EAZ03 Desertifilaceae XRD: 60-80 Rod [189]
%Z:;ZObac\t/eEZp' 2C8and Alteromonadaceae 2C8-TEM: 10.23 4+ 2.48 Hexagonal wurtzit [190]
SP- Vibrionaceae VLA-TEM: 20.26 £ 444 os0nal Wurizite

(cell-free extract)

3.3.3. Green Synthesis Using Fungal Extracts

Due to the efficient and large-scale productivity, lower cost, and convenient processing,
numerous fungal strains are being used for the green synthesis of ZnO-NPs over bacteria [2].
Fungi are more tolerable and have better metal bioaccumulative properties than bacterial
strains, making them a stronger candidate for nanoparticle synthesis [191]. A study found
that fungal strains such as Candida albicans could be employed to synthesize quasispherical-
shaped ZnO-NPs [192]. Similarly, the mycelia of Aspergillus fumigatus were used to make
spherical aggregate-shaped NPs, which agglomerate into a larger size after a few days,
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indicating the stability and potent capping activity of fungus as a substrate [193]. Some
examples of fungal-mediated synthesis are included in Table 3.

Table 3. Summary of the fungal-mediated synthesis of zinc oxide nanoparticles.

Size of Nanoparticles

Fungal Strain Family Synthesized (nm) Morphology References
. . . SEM: 61 + 0.65 Spherical
Aspergillus niger Trichocomaceae XRD: 41 Crystalline wurtzite [194]
. . XRD: 25, SEM: 15-25, Hexagonal wurtzite,
Candida albicans Saccharomycetaceae TEM: ~20 quasispherical [192]
. . . . Oblate spherical
Aspergillus fumigatus TFR-8 Trichocomaceae DLS: 1.2-6.8 and hexagonal [195]
Aspergillus strain Trichocomaceae SEM: 50-120 Spherical [196]
TEM: 30-50,
average: 34
Xylaria acuta Xylariaceae SEM: 40-55 Rod and hexagonal [197]
DLS: 30-50
XRD: 35-45

3.3.4. Green Synthesis Using Microalgae and Macroalgae

Algae are photosynthetic organisms that are made up of single or multiple cells
and lack essential components such as roots, stems, and leaves. Algae are classified into
two types, macroalgae, and microalgae, as well as three groups, Rhodophyta (red pig-
mented), Phaeophyta (brown pigmented), and Chlorophyta (green pigmented). Algae have
a limited significance in the synthesis of ZnO-NPs and are better suited for the production of
other metal nanoparticles such as silver and gold nanoparticles. Microalgae are commonly
employed for the green synthesis of NPs because they have a greater potential to minimize
metal toxicity through the biodegradation process [198]. ZnO-NPs are typically synthesized
using algae from the Sargassaceae family. Sargassum muticum was employed to make hexag-
onal wurtzite-shaped ZnO-NPs [199]. Similarly, nanoparticles of spherical, radial, triangu-
lar, hexagonal, and rod shapes were synthesized from S. myriocystum [200]. Furthermore,
Chlamydomonas reinhardtii, a species of the Chlamydomonaceae family, was used to syn-
thesize various-shaped NPs, such as nanorods, nanoflowers, and porous nanosheets [201].
Table 4 summarizes the ZnO-NPs synthesized by some of the algae.

Table 4. Summary of the algal-mediated synthesis of zinc oxide nanoparticles.

Size of .
Algae Strain Family As-Synthesized Morphology (.)f Surface Functional References
. the Nanoparticles Groups
Nanoparticles (nm)
Sulfate group
asymmetric with
) stretching band,
Sarg-a ssum Sargassaceae FE-SEM: 30-57 Hexagonal wurtzite ~ asymmetric C-O band [199]
muticum XRD: 42 .
coupled with
C-O-503 and -OH group,
sulfated polysaccharides
3432 and 1609 cm ™!
Sareassim SEM: 50 presence of O-H
muficum Sargassaceae DLS: 25-50 Spherical stretching, 500 cm ! [202]
XRD: 15-50 below suggests a Zn-O

stretching vibration
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Table 4. Cont.

Size of .
Algae Strain Family As-Synthesized Morphology (.)f Surface Functional References
. the Nanoparticles Groups
Nanoparticles (nm)
N-H bending band of
amide I and amide II,
i?iiﬁ%‘;?oms Chlamydomonaceae )I;III;]_DS]?;/[ 55-80 Rod C=0 stretching of zinc [201]
’ acetate C=0, and C-O-C
stretch of polysaccharide
DLS: 46.6 iegfaaf‘}%:izr'sggf‘gle’ Carboxylic acid, with
S. myriocystum Sargassaceae AFM: 20-36 rod. and sonal O-Hand C=0 [200]
TEM: 76-186 o al stretching bands
spherical shape
420 cm ! suggests ZnO,
TEM: 10-50,av.: 15 Triangle, peaks at 1634.00, and
Ulva lactuca Ulvaceae 620.93 cm ™" suggests [203]
XRD: 5-15 hexagon, rod .
ZnO stretching and

deformation vibration

4. Characterization of ZnO-NPs

A plethora of studies suggests that the morphology and surface chemistry of nanoparti-
cles influence their biodistribution, safety, and effectiveness in biological systems (Figure 8).
Characterization is the core tool for successful applications and the understanding of
nanoparticles. Nanoparticle size characterization is complicated by the polydispersity of
materials, yet it is important to determine the morphology since the nanoparticle size’s re-
semblance to biological moieties is assumed to impart many of their distinct nanomedicine
capabilities. Optical microscopy cannot resolve nanostructures; therefore, electron mi-
croscopy is used to characterize the nanoparticles. SEM and TEM are used to characterize
the shapes and sizes, but TEM is used more often because it uses more powerful electrons
and presents high resolution and informative image details regarding the atomic scale-like
morphology, aggregation state, and distribution, and observes the functionality of capping
agents/phytochemicals in enclosing NPs. Some biological molecules such as liposomes and
proteins do not deflect the electron beam sufficiently and are invisible to electromagnetic
radiation; therefore, dynamic light scattering (DLS), a nondestructive approach that uses
a monochromatic laser and is also known as photon correlation spectroscopy, is used to
characterize these compounds in suspensions and solutions. Here, small changes in the
intensity of scattered laser light in the nanoparticle solution are regulated with a photon
detector to analyze the hydrodynamic diameter and morphology of NPs [204].

The characterization of nanoparticles in animal tissue is accomplished by energy dis-
persion X-ray analysis (EDX), which assists in identifying the elemental composition and
linkage of metabolites and also facilitates the interpretation of biodistribution of synthe-
sized nanoparticles. Furthermore, atomic force microscopy (AFM) helps in determining
the 3D geography (height and volume) of NPs; Fourier transform infrared spectroscopy
(FTIR)-attenuated total reflectance (ATR) is an easy and nondestructive technique that
contributes metabolites, chemicals, etc. through the synthesis and capping of NPs; UV-
visible-diffuse reflectance spectroscopy (UV-DRS) is used to study the optical property
of colored samples where the reflectance measurements are utilized to investigate the
surface plasmon resonance of metals and hypersensitive biological analysis [205]; thermal
gravimetric-differential thermal analysis (TG-DTA) provides information about the thermal
stability, phase transition, and effect of the oxidative as well as reductive environment; pho-
toluminescence (PL) analysis is utilized to determine the band gap, and crystalline purity
and impurities; and x-ray photoelectron spectroscopy (XPS) can be used to characterize the
morphology, and bioactive surface and material surface chemistry of NPs [206-208].
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Figure 8. Morphology of ZnO nanostructures: (A) needles, rods, and wires; (B) helixes and
springs; (C) nanopellets/nanocapsules; (D) flower, snowflake, and dandelion; (E) peanut-like;
(F) interwoven particle hierarchy; (G) raspberry, nanosheet/nanoplate; (H) circular/round or sphere-
shaped. (Reprinted from [209]; open access under CC BY).

ZnO is one of the most significant II-VI compound semiconductor materials in sci-
entific research and technological applications with noncentrosymmetric structures and
multiple shape-induced functions. By adjusting the hydrothermal reaction parameters
(such as precursor concentration, reaction duration, and pH), several morphologies of ZnQO,
including microrods, hexagonal pyramid-like rods, and flower-like rod aggregates, have
been synthesized, respectively, on glass substrates. The production of ZnO microrods is
significantly influenced by the precursor concentration. With longer reaction times, ZnO
crystals can change from hexagonal pyramids to rod-like laths. ZnO rod aggregates that
resemble flowers are produced at higher pH levels. The findings could provide a strategy
for producing ZnO crystals in a certain desirable form [210]. Similarly, in a recent study,
Doustkhah et al. hydrothermally transformed zinc-based metal-organic frameworks into
ZnO nanostructures with temperature-dependent tunable structures and catalytic activity,
which at an elevated temperature displayed high crystallinity and better dye degradation
efficiency than at a lower temperature [211].

Most of the group II-VI binary compound semiconductors crystallize as hexagonal
wurtzite or cubic zinc-blende, with each anion surrounded by four cations at the corners of
a tetrahedron. The iconicity of the II-VI compound semiconductor ZnO lies at the interface
between covalent and ionic semiconductors. Wurtzite, blende, and rocksalt are potential
ZnO crystal formations. Wurtzite is the most thermodynamically stable of these crystal
forms at room temperature, but blende is stable when developed on a cubic substrate and
rocksalt is stable when synthesized at very high temperatures [212]. In contrast to the
zinc-blende structure, which has two interpenetrating face-centered-cubic (fcc) sublattices
that are displaced along the body diagonal by one-quarter of a body diagonal, the wurtzite
structure is made up of two interpenetrating hexagonal-closed-packed (hcp) sublattices.
Due to the decrease in lattice dimensions, which favors iconicity over a covalent nature,
and the structure’s six-fold coordination, wurtzite can undergo the same transformation as
other II-VI semiconductors to become rocksalt [212].

5. Conclusions

This review aimed to explore the synthesis, characterization, and biological activities
of ZnO-NPs, illustrating their mechanism of action. Extensive discussion was centered on
the green synthesis approach and its biomedical applications. The pathways of different
bioactivity were explained, with special emphasis on ZnO-NPs’ biopotency with regard to
antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral,
wound healing, orthopedic implants, bone healing, and cardioprotective activity, along with
the concise interpretation of the green synthesis of nanoparticles using biological sources.
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The importance and significance of ZnO-NPs in pharmaceutical and biological sectors have
attracted scientists to perform an extensive study of their applications in multiple ailments.
Green synthesis is an eco-friendly approach that reduces costs, increases production, and
improves biocompatibility in humans. Biofabrication with natural compounds helps to
stabilize the nanoparticles with reduced toxicity and higher reduction potential. ZnO-NPs
possess several compelling pharmacological activities. Special focus should be given to
ZnO-NP generation through plant-mediated synthesis, bearing tremendous applications in
the fields of pharmaceuticals, food, and cosmetics. The advancement of nanotechnology in
the formulation of metal oxide nanoparticles can contribute to the reduction in the dosage
used with optimum desired effects and low toxicity.
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