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Abstract—This paper proposes novel architectures for spatio-
temporal graph convolutional and recurrent neural networks
whose structure is inspired by the physics of power systems. The
key insight behind our design consists in deriving the so-called
graph shift operator (GSO), which is the cornerstone of Graph
Convolutional Neural Network (GCN) and Graph Recursive
Neural Network (GRN) designs, from the power flow equations.
We demonstrate the effectiveness of the proposed architectures
in two applications: in forecasting the power grid state and in
finding a stochastic policy for foresighted voltage control using
deep reinforcement learning. Since our design can be adopted
in single-phase as well as three-phase unbalanced systems, we
test our architecture in both environments. For state forecasting
experiments we consider the single phase IEEE 118-bus case
systems; for voltage regulation, we illustrate the performance
of deep reinforcement learning policy on the unbalanced three-
phase IEEE 123-bus feeder system. In both cases the physics
based GCN and GRN learning algorithms we propose outperform
the state of the art.

Index Terms—GCN, Deep Reinforcement Learning, Cyber-
Physical Attacks.

NOMENCLATURE
Abbreviation

GCN Graph convolutional neural network.
GRN Graph recurrent neural network.
GSO Graph shift operator.

GS Graph signal.

GSP Graph signal processing.
FNN Fully connected neural network.
CNN Convolutional neural network.
RNN Recurrent neural network.
DRL Deep reinforcement learning.
PSSE Power system state estimation.
PSSF Power system state forecasting.
Sets
N,E Sets of grid buses N' = {1,---, N} and lines.
N, subset of single-phase buses with smart inverters.
Pmn Phases of line (m,n) € &.
‘P..  Phases of node n € N.
Variables
v, Uy = [Un,|¢ € Pn] € ClP=Ix1 with phase ZLup,
and magnitude [v,,|.
v,1 Vectors of all voltage current injections.
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s Vector of all apparent power injections, s = p+jq.
Operators

AT A" The transpose and Hermitian of matrix A.

D(A) The vector of the diagonal elements of A.

diag(a) A diagonal matrix with diagonal entries from a.

Ao B Hadamard product (entry by entry product).

(A)* Conjugate of a complex vector or matrix.

I. INTRODUCTION
A. Background and Motivation

The access to high-quality grid sensors data, and phasor
measurement units (PMUs) in particular, has prompted a lot
of interest in applying advanced learning algorithms to address
grid inference and control problems [2]. The main advantage
of learning techniques, when compared to regression or opti-
mization problems that purely rely on the physics, lies in their
ability to internalize statistical patterns in the training data
that are not captured by the physical constraints only. On the
other hand, while many black-box learning approaches respond
well to the challenge, accounting for the physical equations
explicitly, rather than learning them as a pattern, reduces the
number of parameters in the model, mitigating overfitting
problems. This is why not all Neural Networks (NN) have
the same architecture and, in particular, both time-series and
images are best processed by Convolutional or Recursive NN,
leveraging the shift or state invariance of the data to reduce
the parameter space and increase generalization ability.

The framework of Graph Signal Processing (GSP) has
emerged as the the most promising approach to generalize
these architectures to data that have the irregular support
of a network. GSP provides a natural representation for
both the data (node attributes) and the underlying structure
(edge attributes) [3]. Its application to grid measurements has
recently spurred significant interest [4]. However, the linear
models of Graph filters have limited capability to learn the
possibly complex mappings that are needed for classification,
forecasting and for the approximation of optimum control
policies when compared to neural network models. In fact,
on several applications that include high-dimensional data
from a network structure, GCNs have shown to have the best
generalization capabilities [5]. Motivated by the promise of
Al applications to power system data, the overarching goal
of this paper is to develop state of the art GCN architectures
for inference and decision making that best capture the spatial
and temporal features of grid data that derive from the AC
power-flow constraints.

B. Related Works

We first highlight the related prior research on grid GSP
and GCN and then the literature on the two applications
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we consider to showcase the performance benefits of the
proposed schemes, namely: power system state estimation and
forecasting, and reinforcement learning for voltage control.

1) Graph Convolutional Neural Network: A handful of
papers have so far successfully applied GCN to distribution
systems’ management, considering applications that include
fault localization [6], distribution system state estimation [7],
and synthetic data generation [8]. GCNs are a generalization
of CNN, aimed at capturing the impact that the network
connectivity has on the patterns of the data associated to
the network nodes. The foundation of GCN lies in the GSP
definition of graph filters and of what is referred to as the
Graph Shift Operator (GSO). In [6], the GSO is defined as the
weighted adjacent matrix, constructed based on the physical
distance between nodes. In [7] the authors prune the weights of
a conventional Fully connected Neural Network (FNN) based
on the power grid topology, without considering the grid lines
admittances. In the paper [8] the GSO is constructed as an
adjacent matrix that captures the correlation among historical
data. All these approaches are not directly considering the
electrical characteristics of the overhead power lines. In prior
work [4] we provided ample evidence that the right framework
to apply GSP for grid signals should be rooted in the basic
network analysis that has been used to model power systems
signals for decades [9]. In fact, Ohm’s law is the obvious driver
of the correlation in the state vector of the grid, and the GSO
can be derived from first principles from the grid physics,
which suggests that the right GSO is the admittance matrix
itself. While [4] has shown the benefits of using complex graph
filtering methods to address a number of inference problems,
physics-based Graph Neural Networks architectures are still
missing. We note that Pytorch and Tensorflow [10, 11] operate
on real valued nodal data, which are not compatible with the
GSO derivation in [4].

This paper addresses two gaps left by the prior art. First,
we derive a physics inspired GSO based on the power flow
equations in the real domain. Using that we defined two
efficient spatio-temporal graph neural network architectures:
Graph Convolutional Neural Networks (GCN) and Graph
Recurrent Neural networks (GRN). Second, we extend these
architectures to the unbalanced three-phase power systems,
unleashing the power of physics inspired AI methods to
distribution systems.

2) Power System State Estimation and Forecasting: There
is a vast literature on Power System State Estimation (PSSE)
[12]. The use of graph neural networks is very recent [13, 14].
Neither papers derived the GSO from the power flow equations
(e.g. adjacency matrix used in [13]). Also, [13, 14] ignored
the temporal dependencies of the voltage phasors and focused
on state reconstruction, not forecasting . Power Systems State
Forecasing (PSSF) has so far been pursued via a single-hidden-
layer NN in [15, 16]. Because the number of FNN parameters
grows linearly with the length of the input sequences, the
proposed methods are prone to overfitting. In Fig. 5 of

IPower system state estimation (reconstruction) estimates the current the
system state, i.e. the voltage phasors at all buses, based on the available
measurements. Power system state forecasting, instead predicts the future the
state based on current and past measurements.

Section V, we show that our method attains about an order of
magnitude improvement in accuracy over the FNN in [15, 16].

3) Reinforcement Learning for Voltage Control: Voltage
control problems can be modeled as mixed-integer nonlin-
ear programs that include an optimal power flow; they are
nonconvex and NP-hard [17] and, therefore, impractical for a
real-time implementation. In recent years several authors have
explored Deep Reinforcement Learning (DRL) methods as
alternatives to brute force optimization, to search via training
approximately optimal policy functions, parametrized as a
neural network. Existing DRL methods for Volt-VAR control
in distribution grids are broadly classified as value-based [18—
21] and policy-based RL algorithms [22-24]. Unfortunately,
DRL algorithms can become unstable when combining func-
tion approximation, off-policy learning, and bootstrapping (a
combination referred to as the deadly triad [25]). Many authors
resorted to FNN or CNN architectures which, as we discussed
previously, are over-parametrized in their feature extraction
layers and, therefore, likely to trigger the deadly triad of DRL,
i.e., ending up in a lot of instabilities, or no convergence [17].

Similar conclusions apply to the adversarial DRL approach
for Volt-VAR control proposed in [26] for distribution grids.
Very recently, [27, 28] considered the graph correlation of
voltage phasors in their DRL design, but ignored the temporal
correlation of their time series. Note that [27, 28] require
the full system state. In fact, all aforementioned algorithms
require access to measurements of the full state of the system
as an input [26, 29]. Even when the state is observable, it is
hard to scale these methods to work with large-scale networks
with high-dimensional features [17, 30]. This motivates the
derivation of a reduced GSO that contracts the network to the
buses that are controlled.

C. Contributions and Organization
Our main contributions are summarized next:

e We develop novel physics-aware Graph Convolutional
Neural networks and Graph Recursive Neural networks
architectures that are applicable to single and three-
phase unbalanced power systems. Architecturally, the
main novelty is in deriving a real-valued GSO from the
physics of power flow equations.

o For the GCN design, in each layer the parameters
of Chebyshev graph-temporal filters capture the spatio-
temporal features of the grid signals. In terms of the
GRN design, we combine the feedback structure of RNN
with the graph filters to consider the spatio-temporal
dependence of the grid signals.

o To deal with sparse deployments of PMUs, or simply for
scalability we show that one can use the kron-reduced
network GSO instead of the full GSO.

o« We demonstrate in two case studies how the proposed
architectures outperform the state of the art in PSSE
and PSSF, as well as in Volt-Var control. Specifically,
for the PSSE application, GCN and GRN has an order
of magnitude smaller MSE than other benchmarks, i.e.,
FNN, CNN, RNN and GNN. For the Volt-Var control,
GCN and GRN do enhance the stability of DRL, whereas
FNN and CNN trigger the deadly triad of DRL.
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The rest of the paper is organized as follows. In Section II,
we briefly review the key notions of GSP, setting the stage
in Section III where we derive the physics inspired GSO and
introduce our graph neural networks architectures. In Section
IV, we describe two applications of the proposed GCN and
GRN frameworks that are tested numerically in Section V.
Finally, we conclude the paper in Section VL.

II. A BRIEF REVIEW OF GRAPH SIGNAL PROCESSING

GSP is a vibrant branch of signal processing research whose
aim is to generalize digital signal process (DSP) notions [31].
The cornerstone of GSP is the definition of Graph Shift
Operator (GSO). The vast majority of GSP-based algorithms
uses real-valued GSOs and considers real-valued graph signals
(GS) (see e.g. the surveys [3, 32]). Having selected the GSO,
one can define graph-filters; the most popular graph filter
model is the Chebyshev filter [31, 33, 34].

To make the paper self-contained, we first review the basic
theory of GSP (more details can be found e.g. in [4]) for a
general graph G = (V, L), with vertex set )V and edge set
L. The concepts defined here will be applied to three-phase
distribution network whose graph topology is D = (N &),
where the node ny of bus n on phase ¢ in D corresponds
to the 7" € V node of G and the edges are the transmission
lines connecting the buses. A graph signal & € RIV! (which,
in the grid, is mainly the state vector) is a vector indexed by
the network nodes. The set N; denotes the subset of nodes
connected to node ¢, i.e. node i’s neighborhood. A GSO is
a matrix S € RIVI*IVI that linearly combines graph signal
neighbors’ values. Almost all operations including filtering,
transformation and prediction are directly related to the GSO
[4] which generalizes the s variable representing the derivative
in the Laplace domain for signals in time. Consistent with the
intuition that it should operate as a differential operator, the
GSO, denoted by S € RIVI*IVI is usually chosen as a graph
weighted Laplacian:

Z ; Sl ks 1= j7
S i = keEN; ’ ] s 1
[]J {Si,ja 27&] ()
In this work, we focus on real symmetric GSOs, i.e., S = ST
that are appropriate for power grid applications. A graph filter
is a linear matrix operator H(S), function of the GSO, that
operates on graph signals as follows

w = H(S)x. ()

What defines the dependency of #(S) on the GSO is that
H(S) must be shift-invariant (like a linear time invariant filter
in the time domain), i.e. H(S)S = SH(S). This is possible if
and only if (S) is a matrix polynomial %:

K
H(S) =) St 3)
k=0

Let the eigenvalue decomposition be S = UAUT, where
A is a diagonal matrix with eigenvalues Ay < --- < )‘\V\'
Since the GSO S is symmetric, U is unitary and the basis for

2Note that the graph filter order K can be infinite.

Graph Fourier Transform (GFT). The GFT of a graph signal
is, therefore, & = U ' z and the eigenvalues A, £ = 1,...,|V|
are the graph frequencies. From (3) it follows that:

K
H(S) = U(thAk)U‘l. (4)
k=0

The matrix ZZ{:O hk/}’“ is a diagonal, yvith ith entry B(Al) £
Zfzo hiAF. Hence, h = [h(A1),..., h(Xy))] is the transfer
function for graph filters. In the GFT domain this yields:

w=H(S)x — w=hot. (5)

For time series of graph signals {x;};>o one can use graph
temporal filters models:

t K
wi =Y Hir(S)z,  Hi(S) =D hiS* ()
=0 k=0

and harness DSP tools, defining a combined GFT and
z—transform for their analysis:

T-1
X(z) =Y xz!, X(z) =U'X(2), (7)
t=0

where T' is the length of the graph signal time series. In
particular, for filter of order 7', S ® z is the graph temporal
GSO and a graph Spatio-Temporal filter is defined as follows:

K T-1
H(S®2) =Y Hp(2)S*, Hi(z)=> hpsz™" (8
k=0 t=0

i.e. Hi(z) is the z—transform of the filter coefficients hy, ;. In
the z-domain the input output relationship is:

W(z) =H(S ® 2)X(2), 9
The graph-temporal joint transfer function is:
K T—1
HA 2) =) hyeAr2 (10)
k=0 t=0

which is a diagonal matrix. Denoting by X(z) = UTX(2),

the input-output relationship in the combined GFT-z-domain

is:

W(z) = H(A, 2)X(2). (11)

ITII. GRAPH CONVOLUTIONAL NEURAL NETWORKS
ARCHITECTURES FOR POWER GRID SIGNALS

In Fig. 1, we illustrate differences of GCN, CNN and
FNN applied to the same graph signal with specific neuron
structures for each time instant. Observe that GCNs are
generalizations of CNNs where time-series filters are replaced
by application-dependent graph temporal graph filters. In fact,
in a GCN, the weights hy ; are the parameters learnt during
training in the feature extraction layers [33]. In FNNs, instead,
one may train matrices with arbitrary weights, and therefore
the parameters grow in the order of the number of nodes and
filter memory squared. Next, we will introduce the physics-
based derivation of the GSO for the grid GCN.
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Fig. 1: Information flow of the power systems.

A. Real-Valued Grid Graph System Operator

A physics-inspired framework for Grid-GSP was proposed
in [4] to provide an interpretation for the spatio-temporal
properties of voltage phasor measurements by utilizing the
admittance matrix as graph filters. GCNs tools currently takes
only real-valued inputs [35]. Next we show how to derive
a real-valued, physics inspired, GSO from the power flow
equations that can be used to capture the features of the
real graph signal components represented by the pairs of
voltage magnitude |v,,| and re-centered voltage phase ¢,
vectors. Let s = p + jq be the vector of net apparent
power at buses (s = [s],-- ,s‘j\/l]T), with the n'* entry

n =D, +i4,,8, € CIP»IX1 Further, let v and |v| be the
vectors of bus voltage phasors and magnitudes, respectively,
with v € CXnen!PnIXl and |v| € [RJZF"ENWMXI, and let
ic T and i € [RE"ENW"‘Xl be the vectors of
net bus current phasors and magmtudes, respectively:

, Vn e N, ¢ € Py,

Ung = |Un¢| ejévn(ﬁv in¢ = |Zn¢| ejéind)

t=Ywv,

where Y in (12) is a block matrix of dimensions ) \/|Pp|x
> nen|Pnl and B is the susceptance matrix. More specifi-
cally, the blocks in Y are:
1) the matrices Y., occupying the |Pun| X |Pmn| off-
diagonal block corresponding to line (m,n) € £; and,

2) the |Pn| X |Pmn| diagonal block corresponding to node
n € N with V,,, = {n|(m,n) € £}:

1
> (5Y0tYom) a3

meN,
Y, is the shunt element. As first noted in [36], Ohm’s law
allows us to view voltage as the output low-pass filter by v =
Y ~'4 (an integrator), implying that Y is an appropriate GSO.
The first step to obtain the GSO in the real domain, is to
express the three-phase power flow equations as follows:

e Y

meN,

Ylp, P, =

[(2an" + YS;”) + Y(m)vm]

Note that, in general, for distribution lines Y,(,%) = —Y,,%)L
with the exception of transformer or regulators. In the follow-
ing analysis, we omit the influence of transformer or regulators
and assume Ym) = —Y%Z)L. The power flowing from bus
n €N tobus m € N is:

sn:D(vnif), Vo € P,,neN.

Assuming that the susceptance B dominates over the conduc-
tance, denoting the imaginary parts of the matnces Ymn, Yn?,)l
and stn) respectively by B;, ., B EZ)L and B (Wthh are
symmetric), we have:

Sy R Z—]D('Dn (;

meN,

(14)

BS

mn

B’ET?I)L)_F Upv Bgnn))
15)

From (15) we obtain an approximation of the power flow
equations that describes the dependence between the active and
reactive power on |vn| and /v, by approximating quadratic
terms v, v and v, v as follows:

Lemma 1 With a first order expansion of the phase term the

quadratic term v, v can be approximated as:

vavfl ~ (117 +i(p, 1~ 1¢;,)) o (diag(|va|)Tdiag(jv,])

N—

where «p,, is re-centered by @) = [pn., Py, Pn.] =
[Lvn,, Zvp, + 2, Zvn, — 2], and T is expressed as:
Min = &5 = Delkn +3elkms ko € {0,1,2}
1) In the active power equation the dominant term is:
Vv R (el = 1g,,) (16)
2) In the reactive power equation the dominant term is:
Vv, & diag(|vn|)Tdiag(|vm|) (17)

Replacing m with n in (16) and (17), we have the approxima-
tion for v, vl for the active and reactive power injections.

Proof 1 See the proof in the appendix.

(12) Applying the approximations in Lemma 1 to the expression

in (15) we obtain the physics in inspired GSO introduced in
the the following Proposition:

Proposition 1 Let us define the following matrices:

Bs, 2T.0Bs,, B2 (11")y®I,)oB,(8)
1 .
pit 23D (UBL,), ¢ = —5D(BL,) (19

where (117)y is the all-ones matrix with dimension N and
® is Kronecker product. Let p, q, p°s', q°', |v| and ¢ be
the vectors stacking all the sub-vector corresponding to the
multi-phase grid buses. The following approximations holds:

S: GSO x: GS

1-12]-F o]+

where x and S are the graph signal and the Graph Shift
Operator (GSO) in our problem, and p°s* and p°s

(20)

represent
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the constant bias, which does not change with GSO and GS
changing.

Proof 2 See the proof in the appendix.

Note that the GSO in (20) is a valid Laplacian matrix. We
emphasize that this linearization is different from the existing
DC linearization [37] for the three-phase unbalanced power
flow equations and that the Laplacian matrix B is a modified
susceptance matrix B.

B. GCN and GRN
Power systems are dynamic systems with time-varying
voltase nhasors. In order to fuse features from hoth snatial

T (X,,TH, o X,)

|N
Temporal CONV1D
' STGCN layer
: =1 P 17
t|  Temporal  \WITE o daiGeNn Y
! CONV1D ' |
--------------------------------- ! =3
(CAPIEREI A W
Power System LY
Application , We=L We=L
Power System State [ _Regression yi
Forecasting Classification

Deep Reinforcement
Learning

Fig. 2: GCN structure achieved by the CNN and GCN blocks.

1) GCN: As shown in Fig. 2, the temporal convolutional
layer contains a 1-D CNN with a width-T" kernel with K,
output channels. The convolutional kernel I' € RT*X¢ ig
designed to map the input X € RIVI*7 into a output graph
signal with C; channels X € RIVI*K:,

Based on (10), the graph signal w{ from the feature
extraction layer is:

Ki—1 K

w¢ = ReLU { 3 (

7=0 k=
where hy, ; is a trainable parameter, which is a scalar. Here,
S in (21) refers to GSO in (20) and &;_, in (21) refers to
GS in (20). Followed by the feature extraction layer (21), the
remaining hidden layers ¢ € {1,--- , L — 1} are analogous to
those of a fully connected neural network:

hmskw”)} 1)
0

wiy =RelU (0 -wf,), L—1>(>1 (22)

For the output layer L, the regression samples are:
y, =tanh (O - wy ), (23)
where y, is the regression targets and ©,, V¢ = 1,--- L is

the trainable matrix. Finally, the multi-layer GCN learning
function is:

Yy = q)C(Xtvsae)? (24)

where 6 £ {(©y, Oy, hi )|V, Vk} represent the trainable
parameters and X; = [z¢_741, - ,x:]. Here, we have
omitted the bias term to unburden the notation, but they are
present in the trainable model we use.

GRN . Power System
T . Application
Y ®1 P, e I
- w,
L ™Y [
We=2
o = We=L
sl 1
. BN
Relu( - ) N, et
-1 y,’ Regression
e, PowerSyster_n State
N W, Sy, || I Foreca;tmgf )
t—1 \ lassification Y
./-*. -
Deep Reinforcement
Learning
S« +
0
21
X
K
w/ =ReLU | @, <z /,ks*.\,> +0,_ W,
k=0

Fig. 3: GRN structure achieved by the RNN and GCN blocks.

2) GRN: RNNs are systems that exploit recurrence to learn
dependencies in sequences of variable length. Next, we adapt
the operations performed by RNNs to take the graph structure
into account when dealing with graph processes as follows:

K
w} = ReLU {@t ( 3 hkSkmt) + @t_lw:_l] .25
k=0

where we also omit the biased term to unburden the notation.
Likewise, S in (25) refers to GSO in (20) and Z;_, in (25)
refers to GS in (20). The remaining hidden and output layers
layers of GRN are:

w;’g+l = ReLLU (@( . 'LU;Z),
y, = tanh (O - w} 1),

where y, = ®"(Xy,S,0) is defined as in the multi-layer
GRN, 0 £ {(©,0y,hy )|Vl Vk} represent the trainable
parameters. Similar to our description of GCN, we illustrate
the proposed GRN with K = 3 on the middle side of Fig.
3. It shows that the graph signals are processed through GCN
to capture spatial features of the signal, and then processed
by an RNN to capture the temporal correlation. Both GCN
and GRN architectures capture the spatiotemporal correlation
of voltage phasors, but they have unique advantages. In (23),
the proposed GCN model handles the time convolutions via a
CNN that allows to use GPUs to accelerate the computations
during training. In contrast, the GRN has long memory built
in due to the feedback connections with wj and wj_; in (25).
Hence, GRN is best suited for environments driven by state
equations.

L-1>¢>1

- — )

(26)

C. GSO for Partial Observation

It is very useful for GCN architectures to be able to
accept an input that does not include the complete information
about the state, because of lacking measurements or for better
scalability. In this subsection, we provide the correct GSO for
a down-sampled graph signal as an input of a reduced order
GCN. Let v (time index ¢ is ignored for simplicity) be the
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down-sampled voltage graph signal where M € A in the set
of node indices of the corresponding buses. We leverage the
result in [4], which is summarized in the following lemma:

Lemma 2 ([4, Lemma 1]) To define the GSO with respect to
the reduced-graph of M, denoted by S,cq am, let us partition
the grid GSO S as follows:

Smm Samme

S =gt
St Smeme

27

From Ohm’s law, it follows that the samples of the state v
are such that:

Vm = H(Sred,/\/l)""a (28)

where Sycq am is the Schur complement of the block S aqe pe
(which is the Kron-reduction of S), i.e.,
Sred. M = Smm — SmmeSpie pre S Mate-
Proof 3 The statement follows from the observation that (28)
holds since from Ohm’s law:
H(STGd,M) K
-1 -1 —1y,
Sred,./\/l [H‘M| - SMM(SMCM‘KS(S )Z)v

where | is an identity matrix. The equation establishes a
generative graph filter model, with GSO S, cqm for the
decimated voltage phasors, supporting such GSO choice.

(29)
VM=

IV. GCN AND GRN APPLICATIONS

Through two applications, in this section we illustrate how
our framework can be used to advance Al for grid data.

A. Power System State Estimation and Forecasting

An important contribution of our design is its capability to
take inputs that contain only a subset M of state variables. It is
natural to expect that the performance of the PSSE and PSSF
is affected by the subset M where PMUs are installed. This is
why we provide an optimized criterion to select M leveraging
GSP sampling theory. Let the GFT basis corresponding to the
first dominant k graph frequencies be Ux. As shown in [4]
the best M is one-to-one with the subset of rows of Ui with
minimum correlation. Let F, be what is called the verfex
limiting operator i.e. the matrix such that Fry = Oz QL,
where Q a( has columns that are the coordinate vectors point-
ing to each vertex/node in M. Mathematically, the optimal
placement can be sought by maximizing the smallest singular
value, maxr,, @Wmin(FMmUk), of the matrix FaqUg. Such
choice amounts to the selection of rows of Uy that are as
uncorrelated as possible, because the resulting matrix F Uy
has the highest conditional number [38].

After choosing the best location of PMUs M by the afore-
mentioned method, we have the sub-sampled measurement z;.
Let M denote the set of available measurement buses and
U denote the set of unavailable ones. Therefore, (12) can be
written as:
ks

_ | Yrmm Yoaw
VM

+e4, 30

)

zt H Tt

where €; is a vector of measurement noise. Our task is to
estimate the voltage phasors at the present time and forecast
the future voltage phasors by the GCN and GRN methods. The
time-series voltage phasor forecasting problem is modeled as
predicting the most likely voltage phasors in the next H time
steps given the previous 7' sub-sampled observation as

!
Ty g = argmaxlog P (Tern | Ze-741,- -, 2¢)

Lirm
where z; € R?MI is an observation vector of | M| measure-
ments for both voltage and current phasors at time step ¢, each
element of which records the historical observation for a bus.
1) Sparse PMU Measurements: First of all, we need to
recover the voltage ?hasors x; based on M measurements,

ie. zy = [i M, D M} by solving the regularized least square
problem:

n;}in”zt —Hwt||g+u1(wfs:rt) 31)
where 1 is positive. Note that the regulation term yi; (z7 Sx;)
can be used in such cases to not only improve the generaliz-
ability of the model, but also allows to uniquely determine
the solution even though the number of variables in the linear
system exceeds the number of observations. The closed-form
solution of (31) is:

t

& = (HHH n ms) HY 2, (32)
where @; is the estimated voltage phasor and where (-)f
denotes the pseudo-inverse. The complete algorithm is below:

Algorithm 1: Voltage Phasor Forecasting

1 We collect T historical sub-sampled measurements
Zt—T+1y---4 2t

2 We utilize (32) to obtain the estimated full observations
X = [@t—T+1, ey :Act};

3 The loss function of the GCN or GRN function for voltage
phasor prediction is written as

£(,0) = > { ly, - weenl* + (33)
t

%

2
Vit HM O Uy — [yt 0 (Syt)*]MH }7

i

where x4 is the ground truth voltage phasor in the next
H time step, (-)* denotes the conjugate operator and

y, = D(X4, S, 0) is the predicted target to approximate the
ground-truth regression target (x4 m) and S(xe+m),
where ® could be either ®¢ in (24) or ®" in (26). Note
that H = 0 is the voltage phasor estimation, and H > 1 is
the voltage phasor forecasting;

Note that the regularization term in (33) favors voltage pha-
sor forecasts that minimize the sum of the absolute value of the
apparent power injections. After training, we use <I>(Xt, S,0)
to forecast x4y given the observations z;_741,...,2;. We
also emphasize that Algorithm 1 requires the GCN or GRN
retraining for different time windows H.

After obtaining x;4 z7, we can also map voltage phasors to
power injections, and then estimate the total fuel costs. In
particular, power injections s;yp is estimated by s;.pyg =
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Tiyg © (Sarym)*. With the forecasting demand pf+H at
time ¢ + H, we can obtain the power generators p}, , =
R(st41) + pf " g7~ Therefore, the fuel costs are expressed by
(ao a)TprrH + prf+H + 17¢, where a, b and ¢ are the
fuel cost parameters (that are provided by Matpower [39].)

2) PMU Measurements with Bad Data Injection: In this
part, we investigated the robustness of the proposed GCN and
GRN against bad data injection. We consider bad data due to
a stealth false data injection attack, which is hard to detect
because it does not produce higher MSE residuals than com-
pared to good measurements. In a stealth attack, the attacker
manipulates both current and voltage phasor measurements on
a subset buses C by introducing a perturbation:

ox, = [ Szl OF;’\+|M\ } , such that Y pedxe =0,C C M
where P is the set of uncompromised sen:

This requires special conditions and place

tall and does not have full column-rank for

of attacker C. Therefore, the received da

injection have the structure:

0z¢

B /—/\
Zy = Z¢ + H(Smt —+&4.

where z; is the polluted PMU measuren
injection, z; is original measurements, ¢:
data, and €; is the measurement noise.
bad data measurements z;, we conduct t
Algorithm 1 to test the robustness of the
GRN against the bad measurements.
3) Sparse AMI Measurements: We
vanced Metering Infrastructure (AMI) m
are widely deployed in the power systems
measuring apparent power, voltage mag
magnitude are widely deployed in power
[40]. To refer to them, we use the following notation: v? as
the vector of voltage magnitudes squared, > as the vector of
current magnitude squared, and s as the vector of net apparent
power injection, which can be written as follows:

v

|v|? = diag(vv™), |i|* = diag(SvvSH), s = diag(vvSH).

(36)

There is a preprocessing step to prepare the input to GCN
or GRN, that extracts a coarse estimate of the voltage
phasors x; based on MTAMI measurements, ie. z; =
[[|vt|2]M, [3e]2)m, [st]M} by training a simple fully con-
nected neural network mapping from the AMI measurement
to voltage phasors, i.e. ; = fnxn(z:). This step is to estimate
the voltage phasors roughly, which is the pre-processing step
of GCN and GRN. This step is analogous to that done for the
PMU measurements, by training the GCN and GRN models
to forecast x;y given the observations ;_741,...,ZT¢.

B. Deep Reinforcement Learning Control of Smart Inverters

Following [17, 41] we consider reactive power support for
smart inverters operating on a per-phase basis, where each
smart inverter is installed at bus n,. The reactive power

support of the smart inverter depends on the nominal per-phase
capacity, denoted by s,,. Specifically, the range of possible
reactive power, qp,, for the smart inverter is:

L /.2 2
- sn¢ _pnd,

s%, — Pp, denotes the maximum reactive

tn,| < Gny (37
where G, =
power of this smart inverter installed at bus ng. Here, we
define the control variable as a,, € [~1,1], and the reactive
power injected into the distribution network is g,, = an, qn,-

1) Methodology: The DRL training is aimed at learning
the parameters of GCN (or GRN) encoding the optimum
stochastic policy function for mapping the voltage phasors
measurements onto the control variables a,, that regulate
the voltage magnitude. The interaction between the agent and

(¢) Rewards for Policy
/~GCN Feature N\
‘;\ Extraction Layer

rn{/,,t= - |Vn¢,z| -V

T b) Policy trained by PPG
MDynamic Distribution SysteN ®) y 4 L\
GCN
| States ENN
Actor Critic
) [ I
pctions
Action: a, Value: Vi
k j Policy Function: 7, : i Value Function: V*

Fig. 4: Overview of GCN-based DRL for Voltage Control.

The overview of the problem statement and methodology is
shown in Fig. 4. During the training stage, as illustrated in Fig.
4(a), we perform realistic simulation of the distribution system
with multiple smart inverters installed, to generate using this
digital twin of the system the vector of states for training our
DRL algorithm. The distribution system simulations provide
the input to compute the instantaneous rewards of the policy
(as shown in Fig. 4(b)) during the training of the policy,
computed with the neural network architecture in Fig. 4(b).
Moreover, both policy function and value function are trained
by the Proximal Policy Optimization (PPO) algorithm, and
share the same spatio-temporal GCN feature extraction layers.
As a feedback, the policy gives an action to provide the
reactive power support to the distribution system. After the
policy is well trained, the parameters of the neural network in
Fig. 4(b) are fixed and the policy can be deployed in the real
system.

a) State and Action: The tuple of actions for the Volt-
VAR control of the inverters in the bus set N is denoted by:

a=[ay, " ,an,, - an, ] an, € [-1,1], (38)

and thus the corresponding reactive power injections are:

Do, =007 1oy 5 ] Where g, = @y Gn, s (39)
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where |N;| represents the number of smart inverters, a;
denotes the control action on the ¢th smart inverter. The vector
a, output of the GCN (or GRN) approximating the optimum
policy, is a function of the three-phase voltages at all, or part,
of the buses of the distribution system, which constitute the
observation and are the input of the GCN-DRL or GRN-DRL.
The state vector/observation is & = [p; |v|] T, where ¢ is the
vector of re-centered voltage phases and |v| is the vector of
voltage magnitudes. The output of GCN-DRL or GRN-DRL
is the action vector a; corresponding to y, in (24) or (26).

b) Reward: The regret is defined as the magnitude of
voltage deviation from the reference at bus ng, at time ¢ as
follows [19, 24]:

(40)

rnd),t = - “Und),t| -0 PRLZ EN57

where ¥ denotes the desired voltage magnitude (i.e., 1 p.u.),
and |vp, ¢| is the measured voltage magnitude on phase n.

c) Objectives of DRL: In this application, a; =
®(Xy, S, 0) denotes a stochastic policy that models the proba-
bility distribution of a; € A given a sequence of observations
X;. The goal of each agent is to find a policy, which maxi-
mizes its expected discounted return:

T
®(X;,8,0) € argmax J(m) = Ecua [ > _yTre|, (4D
t=0

where ¢ is the trajectory generated by policy ®(X4,S,6),
i.e., the action a; is taken according to policy ®(Xy,S,6),
ry represents rewards at time ¢. The parameter v € (0,1) is
the discounting factor, discounting future rewards.

V. EXPERIMENTAL RESULTS

In this section, we perform numerical experiments adopting
the IEEE 118-bus transmission network and the 123-bus feeder
distribution system to validate the proposed GCN and GRN
frameworks for power system state estimation and forecast-
ing, and DRL-based voltage control. In both cases, for the
formulation and training of the GCN and GRN architectures
we relied on PyTorch 1.10.0. All algorithms are executed on
a 64-bit Windows with 2.6 GHz Six-Core Intel Core i7 and a
total of 16 GB RAM, and NVIDIA GeForce RTX 2060.

A. Power System State Estimation and Forecasting

1) Experimental setup: For the first application, we use re-
alistic load time-series from the Texas grid and use Matpower
to compute the optimal power flow solutions to obtain the
voltage phasors for the IEEE 118-bus system. All the tests
T = 10 hours as the historical time window, i.e. 10 observed
data points, to forecast voltage phasors in the next hours
H =1,2,3,4,5 where H = 0 is a PSSE problem that esti-
mates the complete voltage phasors x; given z;_711,..., 2.
We compare the proposed GCN and GRN with other NNs. In
particular, the benchmark algorithm FNN has 4 layers with 512
neurons each layer. Another benchmark algorithm CNN has
three hidden layers with the 32, 64 and 32 output channels and
one fully connected NNs, respectively. The third benchmark
GNN [14, 42] is a 1st-order approximation Chebyshev GCN
[33] with the adjacency matrix as GSO. The fourth benchmark
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Fig. 5: An example of PSSE and PSSF by GCN for the IEEE 118-bus system.

RNN utilizes the RNN as the feature extraction layer, and then
FNNSs as the hidden and output layers.

TABLE I: PMU Installed Buses in the Transmission Network

Systems ‘ Bus Name
118-bus 14, 117, 72, 86, 43, 67, 99, 87, 16, 33, 112, 28, 98, 111, 53, 97, 1
with PMUs | 42, 107, 48, 22, 46, 13, 24, 101, 44, 73, 109, 29, 20, 91, 26, 84, 10

52, 57, 76, 115, 39, 74, 104, 93, 79, 35, 6, 18, 88, 60, 116, 55, 58
68, 64, 7, 50, 103, 75, 78, 83, 69.

With the predicted voltage phasors, we further utilize the
power flow solver, i.e. Matpower, to obtain the feasible power
generations, and then calculate their corresponding fuel costs.
The evaluation metrics for comparison includes mean square
error (MSE) between the predicted and ground-truth voltage
phasors and Mean Absolute Percentage Error (MAPE) be-
tween the predicted and optimal fuel costs. As shown in Table
I, we choose the number of sensor placements |[M| = 60
and place them so as to maximize maxyr,, @Wmin(FrmUk).
Besides, through numerous simulations for the hyperparameter
tuning, we choose (4 = le-6 and pg = 1e-3 for all benchmarks.

TABLE II: MSE: PSSF for Voltage Phasors in Transmission Networks

Fulure(Hours)\H:O H=1 H=2 H=3 H=4 H=5

FNN 1.1217e-4 4.7697e-4 7.7697e-4 5.4458e-4 9.2263e-4 8.8066e-3
CNN 2.8069e-4 4.4070e-4 1.7169e-3 1.7238e-2 1.6815e-2 1.6758e-2
RNN 8.8034e-4 8.7639e-4 7.6329e-4 7.7802e-4 7.1659e-4 7.8581e-4
15*GNN[42] |7.8849¢c-4 7.2899¢-4 7.5874e-4 8.6065¢-4 7.5357¢-4 8.1019¢-4
GCN 6.1381e-5 1.0080¢-4 2.0157¢-4 2.6714e-4 3.2469e-4 2.2308e-4
GRN 7.2153e-5 1.8058e-4 2.4738e-4 2.1372e-4 2.9829¢-4 2.1137e-4

2) PSSE and PSSF Results: Tables II and III show the
results of GCN and GRN and various baselines on the IEEE
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magnitude regulations with full and partial observations, respectively.

TABLE III: MAPE: PSSF for Fuel Costs in Transmission Networks

Fure Hous)| H=0 H=1 H=2 H=3 H=4 H=5
FNN  |2.0602% 2.1338% 6.5671% 4.5503% 6.9320% 7.0781%
CNN  [2.0683% 9.1396% 9.8635% 16.4026% 28.7120% 58.2591%
RNN  [3.0049% 19634% 2.3701% 2.7542% 2.1048% 2.4831%

1°*GNN[42] |3.7144% 2.8667% 2.2925% 23752% 2.3347% 4.7779%
GCN  |0.3838% 1.0809% 0.9991% 12734% 2.0542% 2.5816%
GRN  [0.7065% 0.7533% 1.6357% 1.6365% 1.5054% 1.8188%

118-bus system experiments described above. The results illus-
trate that both GCN and GRN achieve the best performance.
In particular, H = 0 is the PSSE problem, and the MSE of
(32) for estimation is 2.3708e-4. While this is a respectable
outcome, the supervised GCN and GRN have much smaller
error, i.e. 6.1381e-5 and 7.2153e-5, respectively. Another
observation is that the voltage phasors predicted by GCN and
GRN could approximate the OPF results with much smaller
MAPE, e.g. 0.9991% and 1.6357% at H = 2, compared with
other methods, e.g. 6.5671% of FNN and 9.8635% of CNN.
We illustrate examples by the GCN method for the IEEE 118-
bus system in Fig. 5 to show the ground-truth fully-observed
voltage phases and fuel costs with the predicted ones with
H = 0,1, which shows both the predicted voltage phases
and fuel costs are very close to the ground-truth. We also
observe that the performance of GRN and GCN are similar
for short-time forecasting, while GRN outperforms GCN in
the long-time forecasting task (e.g. 1.5054% compared with
2.0542% of MAPE for H = 4). Here, we emphasize that the
reason why GCN and GRN have very small MSE and MAPE
for forecasting is that voltage phasors have a constrained
(low variance) distribution, i.e., power flow constraints, which
has the support of the graph. Therefore, the GCN is most
effective at internalizing the distribution and approximating
the Bayesian MSE estimator by capturing the spatiotemporal
correlations.

3) Computation Time: In Fig. 7, we compare the training
time for PSSE and PSSF with different neural network meth-
ods. The result shows that RNN-based methods, including
RNN and GRN, still suffer from time-consuming iterations,
gate mechanisms, and slow response to dynamic changes. The
CNN-based methods, including CNN and GCN, allow for
fast training, have a simpler structures, and no dependency
constraints from previous steps. Besides, the proposed GCN
model handles the time convolutions via a CNN that allows
to use GPUs to accelerate the computations during training.
On the other hand, although GRN requires a long time for

training, this method is best suited for environments driven by
state equations due to long memory built in.

Training Time
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Fig. 7: Training Time Comparison.

4) Robustness to Bad Data: In this simulation, we inject
the bad data §z; into the measurement z; = z; + 0z; + &;
in (32). Here, in order to test the proposed GCN and GRN
for PSSE and PSSF, we choose the different number of buses
attacked from 10 to 30, which is denoted by |C|. The results
are shown in Fig. 8, which shows that the proposed GCN
is robust enough against the bad data or false data. This is
because GCN and GRN has the low-pass GSO to filter the
time-series voltage phasors. However, bad data and false data
are the high-pass signals.

5) Long-Time Forecasting Results: In order to further in-
vestigate the long-time forecasting phenomenon, we consider
the H =6,7,8,9,10,11 for the top four algorithms in Table
IT and 111, i.e., RNN, 15*GNN, GCN and GRN. The results
are shown in Fig. 8, which indicates that GRN is the best
algorithm for the long-time forecasting algorithm for voltage
phasors.

6) AMI and Sparser PMU Measurements: We show the
results by AMI measurements in Fig. 10. The results show
that the proposed strategy enables the GCN and GRN to
work on both the sparse AMI measurements and fewer PMU
measurements (only 30 PMUs) than the above cases with 60
PMUs, which have the similar performance with GCN and
GRN on the sparse PMU measurements (60 PMUs).
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TABLE IV: PMU Installed Buses in the Distribution Network

bus system.

design the GSO (see Figure 6(b)). The measurement buses,

shown in TABLE 1V, are selected according to the algorithm

Systems | Bus Name

123-bus 1.1, 1.2, 1.3,22,33,7.1,72,73,43,53, 63, 8.1, 82, 83, 10.1, 12.2
DG with 13.1, 13.2, 13.3, 9r.1, 14.1, 34.3, 18.1, 18.2, 18.3, 11.1, 15.3, 16.3, 17.3
PMUs 9.1, 19.1, 150.1, 150.2, 150.3, 150r.1, 150r.2, 150r.3, 149.1, 149.2, 149.3

in Section IV-A. In particular, we select 40 phases from
278 phases (= 14% of the buses) in the three-phase 123-
bus feeder system. Considering that real distribution feeders

B. GCN-DRL and GRN-DRL for Voltage Control

In this section, we compare the performance of voltage
control DRL strategies using GCN and GRN that we propose
with benchmark algorithms and study its learning stability in
the training phase. In Fig. 6(b) we also validate the efficacy
of the reduced GSO Lemma 2 in Section III-C.

1) Policy Training: To validate the advantages of the pro-
posed GCN and GRN over the state of the art, the DRL scheme
we showcase is an instance of the popular PPO [43]. We
compare the proposed GCN-DRL and GRN-DRL architecture
with existing DRL methods for voltage regulation. As PPO
outputs are discrete actions, we discretize the actions space
[—1, 1] with spacing 0.2.

2) Experiment Setup: The DRL experiments are run on the
123-bus feeder distribution network test case. We use demand
data from Austin in the OpenEI3, and historical PV data for
training and testing, with three PV smart inverters installed
in the load buses (Buses 51, 53, 60) in Fig. 6(a) and six PV
smart inverters (Buses 69, 51, 52, 82, 68, 94) in Fig. 6(c),
respectively. We use OpenDSS to estimate the grid state. We
set the desired voltage magnitude v = 1 p.u. We test Lemma
2 in Section III-C and apply the proposed Kron-reduction to

3https://data.openei.org/data_lakes#Data-Lakes-Datasets

include thousands of buses, this would bring the cost for
PMU measurements systems to reasonable levels. The DRL
parameters are as follows. The learning rate is 0.0007. The
discounted factor ~y is 0.99. The PPO clip parameter € is 0.1,
the entropy loss weight is 0.01 and value loss weight is 1.
There are 10 spatial and temporal channels for both GCN and
GRN layers performing the feature extraction, followed by 512
neurons in an FNN layer followed by the output layer.

3) DRL regulation results: The learning curves of GRN-
DRL, GCN-DRL, FNN-DRL, and CNN-DRL with the full
and partial observations are shown in Fig. 6(a) and Fig.
6(b), respectively. The two figures show the average training
reward, where the bands represent the standard deviation over
5 runs. In particular, the results in Fig. 6(a) show that the
voltage deviations of GRN and GCN, i.e., Z% N, |70, |, are
0.0332 p.u. and 0.0398 p.u., which outperform FNN and CNN
that have 0.0504 p.u. and 0.0657 p.u., respectively. Another
observation is that GRN and GCN are competitive in conver-
gence time and performance. With the partial observations (40
out of 278), the results in Fig.6(b) show that >, - |rn,|
of GCN and GRN converge into 0.0492 p.u. and 0.0469
p-u., respectively. However, >, . [ry,| of FNN and CNN
converge into 0.0784 p.u. and 0.0697 p.u., respectively. With 6
smart inverters, the test in Fig. 6(c) shows the learning curves
of FNN and CNN decreases after 50 episodes, which indicates
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that they trigger the deadly triad of DRL. In contrast, GCN and
GRN continue to have excellent performance, demonstrating
that they do enhance the stability of DRL.

VI. CONCLUSIONS

In this paper we proposed novel physics-aware GCN and
GRN frameworks for single and three-phase power systems.
The proposed frameworks are effective in capturing both
temporal and spatial features of the voltage phasors data. One
of the key ingredients of our method is to derive the GSO
from the power flow equations. The proposed architectures
are shown to be more effective than conventional NNs in
extracting spatio-temporal features from the voltage phasors,
in power system state forecasting and reinforcement learning
for voltage control applications. We further utilize the kron-
reduced network GSO to deal with sparse deployments of
PMUs, or simply for scalability. Moreover, we show that
even having roughly 14% of the state values measurements
leads to excellent performance compared to other benchmarks,

e., FNN, CNN, RNN and GNN for the aforementioned
applications. Future work will extend the real-valued GCN
and GRN to the complex-valued graph signals and explore
the topic of scalability for large networks.

APPENDIX
A. Proof of Lemma 1

Here we obtain two decoupled real equations describing
the dependence between the active and reactive power and
the magnitude and phases of the state vector. To do so, we
will be using the expansion e/* = 1 + jx for phase terms
of the three-phase state sub-vectors in the products v, v and
v, v after re-centering them around the phases of a balanced
system Let U8 2 diag([1, e=127/3,127/3]T), ¢, = cos(2§r)
and ¢, = sin(ZF). 1 is the all-ones vector and 117 is the
all-ones matrix. In the following, we assume \II(S) \11(3) but
we could similarly account for other shifts modeling specific
electrical elements, such as transformers. We will make use of
the following propositions. With A, B, C and E real square
matrices, and a and b are real vectors, the following holds:

Proposition 2 (P2) If C and E are diagonal matrices, then
C(AoB)E = Ao (CBE).

Corollary 1 (C1) If C and E are diagonal matrices, then
CAE = Ao (C(117)E) = A o (diag(C)(diag(E)) ).
Proposition 3 (P4) D(AB) =" (AoBT),;.

Proposition 4 (P5) If B and C are symmetric, D((A o
B)C)=D(A(BoC))=D(A(BoC)").

proof:
D((AoB)C)

= Z(A o(BToCT)); = Z(A o (CToB"));
— D(A(CoB))

= Z(Ao (CoB)T)ij :D(A(BOC))

= Z((A o B) o CT)Z‘j = Z(A o (B o CT))ij

Proposition 5 (P5) D(ab”)=diag(b)a , D(A)=D(A™).

Now, we are ready to introduce how to design the GSO.
We will refer to the specific propositions or corollary in each
equation, such as P2 or C1, with blue color. By adding and
subtracting from the phase angle in v,,, we obtain:

ejsana
v, = U3 diag(|v,]) |9 | = Wdiag(|jv,|)e/Pr  (42)
ejtpnc

Therefore, the outer product vnqu are:

0,0 = U diag(|v, )¢/ Pnt 1P diag([v,, ) (WD)
Cin C1 A in C1

= diag(|v,|) P (117 +i(p, 17 —1¢,)) (43)
E in C1

(G A diag(jv,n]) ] € (117 +i(p, 1 1)) (44)

o (diag(|vn|)Fdiag(|vm|)) (45)

where ' £ \11513)(1111—'—)(\111(3))[{ and can be expressed as:

c2(k—n)w
3

[F]kn =eé = [Fc]kn +][Fs]kna kan S {Oa 172}

where it is easy to verify that T, = T'[.

B. Proof of Proposition 1

1) Active Power GSO: Next we use the approximation in
developing the component relative to the phase term we use
the approximation* that |v,,| ~ 1 and |v,,| ~ 1 in (45). With
this approximation, we substitute (45) in (15). Therefore, the
real part of the first term in (15) is

§R{ -D <vn (2Bfrm + ngg%)) } =-D <§R{ ([jMT
(pol” —1g,)] o )( B;,, +B3)) }) D <(MT
ol's + (San]]-T - ]MPI) o FC> (;Bfnn + B%’?L)) (46)

We separate the biased part that does not involve in (¢, 17 —
1)) from (46), and define it as:

i 2 (1 (5B5, + ) ).

where 11" oIy = I'y. The remaining part of (46) involving
(p, 1T —1¢,), denoted by pi", can be expressed as:

47)

A in P4 B in P4 B in P4
—_—— o~
P D(( (17 —1¢] )0 T, ) (QBim +B{) )
(48)
£rcoB;,,  2TcoB()

— —_
“D((pa-100)(5 B + B )T) @)

4This is effective but not truly necessary since the multiplication with
diag(|vn|) could be used as part of the definition of the graph signal.
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es diag((QBf,m + ngg)1> ©, — ( B, +BI))e
(50
As the Hadamard product commutes and I'., B = and an%
are symmetric, an and Bfﬁ,)l are symmetric. Replacing m

with n and (1B8 + ]352,),) with B, this result applies
also to v, v Thus the real part of the 2" term in (15) is

R {7D<vnvﬁ jB%"n)) } =

- D((FS + (1T — 1)) 0 FC)B%B) (51)

TTLI'L

Likewise, we separate the bias, that is not part of (¢, 17 —

1ep,l) from (51), and define it as:
pic 2 D (T.BU). (52)

The remaining part of (51) that involves in (¢, 17 — 1),
denoted by pi", can be expressed as:

D(((Lp"]lT 1p),) 0T )Bgm{>

— diag (Bg;;:} 1) — B

mn (pm

(53)

Finally, by excluding pi*¢ and p%“° from GSO, we have

P, =p,— P — P} =p, — "
3 ((diag(2]§fm +BU)1+B)e,

mGNn,

1

= (3B + B~ B, g

To write it in a compact way, we have
p=Bo, (55)

where P, B an ¢ are denoted by
p=[pl. Pl BE(1)y®T)oB  (56)
+ 17

7 [‘Pl ) #’Wd , (57)

and B has the same structure with B with replacing B:..
B and B with Bs, B and B, respectively.

2) Reactive Power GSO: The reactive power analysis is
similar to the active power analysis. In particular, we use the
approximation that ¢, 17 —1¢ ~ 0 in (45), where O is the
all-zeros matrix. Therefore, the first part of (15) is

— D(v (2B;m —|—jB§fj}l)> ~ —D(MTO

CinC1 AmCl E in C1

(Gaz(fo.) T Giagllo)) ) (1B mn+JB5£%))

C1 . J s
a1 —D(((vn||vn|T) o (Lo +ily)) (5B%, +;B<n>))
(58)
Then we take the imaginary part of (58) as:

=0 ((oulioal T oT) (GBrn + B ) 59

12
D((alloal Mo (3B +BE)) 0
%D((ﬂlvan) (5 BinSL‘%)) (61)

The process of transformation from (59) to (60) is similar to
the transformation from (48) to (49). From (60) to (61), we
relax |v,||v,|T ~ 1|v,|" by |v,| ~ 1.

Replacing m with n this form applies also to v,v!
Therefore, the second imaginary part of (15) is

S {—D (jvn ﬁBm)} ~-D ((11|vm\ ) o B(m ) (62)
By summing (61) and (62) together, we have

~ —D((]l|vnTj: oa1T) o (LB

2 mn

B ) - o((wlon o BE).
where we add and minus this item, i.e., , in order to

~ouc ~inc

split (63) into three parts, i.e., 2", " and ¢°**. Specifically:

gine & —D<(11|vn|T — |va|1T) 0 (53’3“” + B%)) (64)
= D((foa 2 = 2o (5B + BIE) ) " 69)

disg( (385, + B)L ) o] - (B0 + BD)lo, |
(66)

where the transformation from (65) to (66) is the same one
from (49) to (50). Likewise, we could replace m with n and
(1 B’ ]35,?%) with Bm , and have the second part:

mn
_B™M

~ouc A

o~ -
22 D((oaltT) 0 BT ) - D (07 foul) o B

— diag (BU)1) [oa = BU o, (67)
The remaining part of Eq. (63) is
qet & —D((|'un|]1T o 2Bf,m> (68)

With |v,| &~ 1, ¢5** could be relaxed as a biased part that
does not involve in |v, |17 — 1|v,,|":

;" ~q;" = =D <2Bfm) (69)
Finally, by excluding q¢*! from the GSO, we have
4, -4 = q + a2, =
1. . R
> (diag((Bfm +BM)1+ an) v,
2
meN,
(zBim + B val — B |va> (70)
In the same way with active power injects, we have
q=Blv|, 71
T 17 T
a=al, - ada| Jol=[ouT, ol T 72)
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