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Graph Convolutional Neural Networks
Tong Wu, Member, Anna Scaglione, Fellow, IEEE, Daniel Arnold, Member, IEEE

Abstract—In this work, we propose a physics inspired Graph
Convolutional Neural Network (GCN)-Reinforcement Learning
(RL) architecture to train online controllers policies for the
optimal selection of Distributed Energy Resources (DER) set-
points. While the use of GCN is compatible with any DRL
scheme, we test it in combination with the popular proximal
policy optimization (PPO) algorithm and, as application, we
consider the selection of set-points for Volt/Var and Volt/Watt
control logic of smart inverters as the case study for DER control.
We are able to show numerically that the GCN scheme is more
effective than various benchmarks in regulating voltage and miti-
gating undesirable voltage dynamics generated by cyber-attacks.
In addition to exploring the performance of GCN for a given
network, we investigate the case of grids that are dynamically
changing due to topology or line parameters variations. We test
the robustness of GCN-RL policies against small perturbations
and evaluate the scheme so called “transfer learning” capabilities.

I. INTRODUCTION

A. Background and Motivation

In distribution systems, voltage profiles are the most critical
indicator of the system operating condition, whilst reliable and
efficient energy management is the core task [1–4]. This is
why Volt-VAR control (VVC) schemes have been developed
and integrated into distribution systems to reduce network
losses [2], avoid voltage violations [5] and mitigate cyber-
attacks [6]. However, the rapid growth of distributed energy
resources (DERs) makes it increasingly difficult to manage
voltage profiles on active distribution networks.

Recently, many authors have studied reinforcement learning
for a variety of distribution system optimization and control
applications (see e.g. [7] for a review). Deep reinforcement
learning methods utilize deep neural networks to approximate
the optimal policy functions [8] and, thanks to their strong
generalization capability in high-dimensional state spaces, they
can address more complex tasks with lower prior knowledge,
by learning different levels of abstractions from the data
[9]. However, it is well known that reinforcement learning
algorithms can become unstable when combining function
approximation, off-policy learning, and bootstrapping — in
fact, such combination is referred to as the deadly triad
[10]. Recent advances in Graph Signal Processing (GSP)
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embedded in neural networks, called Graph Convolutional
Neural Network (GCN), have opened a new way to learn better
feature representations for signals whose supports are large-
scale networks. When appropriately applied it is shown that
they are empirically capable of alleviating the instability of
deep reinforcement learning [11]. The tenet of our work is
that GCN is a key building block in the application of deep
reinforcement learning (DRL) for electric power systems in
general, where the control policies are driven by the system
state. Our paper showcases its performance when seeking a
policy to select the set-points of inverters in a distribution grid.
Next, we survey the related literature and then summarize our
contributions.

B. Related Work

Existing DRL methods for Volt-VAR control in distribu-
tion grids are broadly classified as value-based [12–15] and
policy-based RL algorithms [16–18]. These methods have the
following limitations for distributed system control. First, by
ignoring the spatio-temporal correlations of the grid state,
the fully connected neural network (NN) or convolutional
neural networks (CNNs) architectures adopted in the literature
are over-parametrized in their feature extraction layers and,
therefore, likely to trigger the aforementioned deadly triad
of DRL [4]. Second, for the most part, the DRL algorithms
proposed take as an input the full state of the system [1, 2].
Even when the state is observable, it is hard to scale these
methods to work with large-scale network systems with high-
dimensional features [3, 4]. Some researchers have proposed
adversarial DRL for Volt-VAR control in distribution grids but
the approach requires the full state and presents convergence
issues [1]. Very recently, [19, 20] leveraged GNN in their DRL
design. However, the authors ignored the temporal correlation
of their time series. and require the full system state.

C. Contributions and Organization

To address the challenges mentioned above, in this paper we
propose a Spatio-Temporal Graph ConvNet-based Deep Re-
inforcement Learning (STGCN-DRL) framework. We embed
the STGCN framework in the policy-gradient DRL, specifi-
cally, the Proximal Policy Optimization (PPO), used to train
STGCN-DRL to learn policies that control smart inverters. Our
main contributions are summarized next.

• We develop a novel STGCN-based DRL to train distribu-
tion network voltage control policies for smart inverters.
We test the STGCN architecture for the extraction of
spatio-temporal features from the voltage phasors of the
system.
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• The proposed STGCN-DRL method targets the mitigation
of oscillations of the voltage profile while, at the same
time, maintaining nodal voltage profiles within a desirable
range. The policy we propose is more versatile than others
proposed in the literature, at it addresses effectively and
rapidly a relatively complex objective, responding rapidly
to undesired dynamics and voltage values.

D. Notation

The symbols and notations are summarized as follows. The
grid has an associated graph with N nodes, whose set is
denoted by N = {1, · · · , N} and a set of lines that are the
graph edges E ⊊ N ×N represent overhead or underground
lines. Ns denotes a set of the single phase of buses with
smart inverters installed and |Ns| denotes its cardinality. We
denote Pmn ∈ {amn, bmn, cmn} and Pm ∈ {am, bm, cm} the
phases of line (m,n) ∈ E and node n ∈ N , respectively.
Let vnϕ

∈ C be the complex line-to-ground voltage at node
n ∈ N of phase ϕ ∈ Pn. Let v represent the vector of voltage
phasors over all buses, i.e., v = [v⊤

1 , · · · ,v⊤
N ]⊤ with the nth

entry vn = [vnϕ
|ϕ ∈ Pn] ∈ C|Pn|×1 with voltage phase θnϕ

and voltage magnitude |vnϕ
|. The vector sizes of the current

injection phasors i, apparent power injections s, active and
reactive power injections, p and q, respectively, are consistent
with the size of v. s = p + jq be the vector of net apparent
power, where j =

√
−1 represents the imaginary unit.

II. SPATIO-TEMPORAL GRAPH CONVNET-BASED DEEP
REINFORCEMENT LEARNING

Neural networks are known for their function approximation
capabilities. In the context of DRL neural networks provide
a parametric form for approximating the policy and value
function that is general enough to come close to the theoretical
optimum. The parametric form of the STGCN-based policy
functions sacrifice generality by internalizing the inherent
local correlation structures of data that originate from network
interactions. The underlying abstraction is the notion of graph
filter, generalizing of the notion of time-filters in digital signal
processing (DSP) that inspired convolutional neural networks.
In this section, motivated by the power flow equations which
govern the structure of power systems state data, we first
introduce graph filters and unveil the key ingredient to apply
their abstraction to such data based on the grid physical
constraints. Then, we review the proximal policy optimization
(PPO) method, and introduce the STGCN-DRL framework.

A. Physics-Aware Grid Graph Filters in the real domain

The goal of this work is to present a DRL design based
on STGCN whose GCN layers are designed based on the
physics of the power flow equations, extending our results
in [21]. In a nutshell, by using graph filters one can enhance
the representation capabilities of the feature extraction layers
compared to conventional neural networks.

To define graph filters we need to introduce some notation
and the definition of Graph Shift Operator (GSO). Let G =
(V ,L) be a graph, with vertex set V and edge set L. A graph

signal x ∈ R|V| is a vector indexed by the network nodes (e.g.
for the grid the state vector of the voltage phasors at each bus).
The set Ni denotes the subset of nodes connected to node i, i.e.
node i’s neighborhood. A GSO is a matrix S ∈ R|V|×|V| that
is an neighborhood operator that is, its entries can only mix
neighbors’ values. Almost all operations including filtering,
transformation and prediction are directly related to the GSO
which generalizes the s variable representing the derivative in
the Laplace domain for signals in time. Consistent with the
intuition that it should operate as a differential operator, the
GSO, denoted by S ∈ R|V|×|V|, is usually chosen as a graph
weighted Laplacian:

[S]ij =

{∑
k∈Ni

Si,k, i = j,

−Si,j , i ̸= j.
(1)

This is the case in the proposed DRL architecture, where we
will use a real symmetric GSOs, i.e., S = S⊤. A graph filter
is a linear matrix operator H(S), function of the GSO, that
operates on graph signals as follows

w = H(S)x. (2)

What defines the dependency of H(S) on the GSO is that
H(S) must be shift-invariant (like a linear time invariant filter
in the time domain), i.e. H(S)S = SH(S). This is possible if
and only if H(S) is a matrix polynomial 1:

H(S) =
K∑

k=0

hkS
k. (3)

It is important to remark that there is a lot of freedom
in choosing the GSO and, in many applications, there are
different types of data that are indexed by the nodes that
one can choose from, and different way to interpret the
results of filtering. This is where the application for graph
signal processing requires a further layer of care compared
to conventional multi-dimensional filtering and the modeling
effort may require to integrate domain expertise. This is the
case of grid applications, where there are three nodal (bus)
signals to choose from, apparent power injections, currents,
voltages, and the AC power flow, as well as Ohm’s law which
are at the basis of the data structure spatially.

The first physics aware notion of GSO that interpreted
these equations as a generative model for the voltage phasor
data appeared in [22], where the authors proposed to use a
GSO equal to the system admittance matrix Y . The latter
is a complex symmetric weighted graph Laplacian, and [22]
extended several basic notions of real valued graph signal
processing to cope with the differences. The extensive tools
that exist for real-valued Graph NN are not, however, directly
accessible using the insights in [22]. In fact, the naı̈ve idea
of writing the algebra in terms of real and imaginary parts
works poorly. Let v represent the vector of the voltage phasors
at each bus on the grid, and ∠v and |v| the vectors of its
phase angles and amplitudes respectively. Intuitively, the grid
topology constrains the ∠v and |v| to be similar at neighboring
nodes, which is the graph equivalent of smoothness character-
izing low-pass graph signals [22]. No such property can be

1Note that the graph filter order K can be infinite.
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claimed for the real and imaginary parts of v. This is why,
in [21, Proposition 1], we have derived a physics-aware GSO
is in the real domain for three-phase unbalanced distribution
network and for a graph signal x concatenating ∠v and |v|.
More specifically, starting from the AC powerflow equations,
[21] we showed that they yield the following approximate
relationship:

[
p
q

]
−
[
pcst

qcst

]
=

S: GSO︷ ︸︸ ︷[
B̂ 0

0 B̂

] x: GS︷ ︸︸ ︷[
φ
|v|

]
= Sx (4)

where x and S are graph filters in our problem, and φ is
obtained re-centering voltage phase angles ∠v, by subtracting
their balanced three-phase component, and |v| is the vector of
voltage magnitudes and the matrix B̂, which defines the GSO,
is a function of the system susceptance matrix B, which is
defined as

B̂ ≜ ((11⊤)N ⊗ Γc) ◦B,

[Γc]kn = ℜ[ej
2(k−n)π

3 ], k, n ∈ {0, 1, 2}.
(5)

where ◦ is the Hadamard product and ⊗ is the Kronecker
product. The two vectors pcst and qcst are:

pcst
n ≜ 1

2D (ΓsB
s
mn) , qcst

n ≜ −1

2
D(B̂s

mn),

[Γc]kn∈{0,1,2} = ℑ[ej
2(k−n)π

3 ], B̂s
mn ≜ Γc ◦Bs

mn,

and D(A) is a vector whose entries are the diagonal entries
of the matrix A in the argument.

The notable facts are: 1) the relationship between phase
angles and active power resembles that of the DC power-flow
equations, with subtle differences; 2) a similar relationship is
found for the reactive power and the voltage amplitudes; 3) the
two are decoupled. Naturally, the lack of coupling is an artifact
of our approximations, but one needs to keep in mind that the
subsequent layers of the NN architecture mix the outputs of all
entries that emerge from the graph filter layer and, thus, can
learn the patterns that relate the features of the phase angles
and those of the voltage magnitudes.

B. A Brief Review of Proximal Policy Optimization
Policy gradient methods employ a policy modeled by a

neural network which is trained directly by gradient ascent
on the expected return. Among these methods, Actor-Critic is
one of the most important RL frameworks to learn both policy
and value functions.

1) Objective: Let a stochastic policy πθ, parameterized by
θ, model the probability distribution of at ∈ A given a
sequence of observations xt, · · · ,xt−Kt

, where Kt represents
the length of time windows. The goal of each agent is to find
a policy, which maximizes its expected discounted return:

π∗ ∈ argmax J(π) = Eµ∼πθ

[
T∑

t=0

γ⊤rt(xt,at)

]
, (6)

where µ is the trajectory generated by policy πθ, i.e., the
action at is taken according to policy πθ(·|xt, · · · ,xt−Kt),
rt represents rewards at time t (e.g. rt = rosnϕ,t

in (22)),
and xt denotes the state observation at time t. The parameter
γ ∈ (0, 1) is the discounting factor, discounting future rewards.

2) Policy Gradient: Let V π
ϑ (xt, · · · ,xt−Kt) be the value

function parametrized by ϑ, estimating the cumulative dis-
counted reward from the current state to the terminal state.
The gradient ascent method is applied to solve the optimization
problem in (18). For PPO, the gradient of J(θ) is:

∇J(θ) = Eµ∼πθ

[
Tb∑
t=0

∇θ log πθ(at|xt, · · · ,xt−Kt
)

Aπ
ϑ(xt, · · · ,xt−Kt ,at)] ,

(7)

Aπ
ϑ(xt, · · · ,xt−Kt

,at) = rt + γV π
ϑ (xt+1, · · · ,xt+1−Kt

)

−V π
ϑ (xt, · · · ,xt−Kt

),
(8)

where Aπ
ϑ(xt, · · · ,xt−Kt

,at) is the advantage function esti-
mate, γ is a the aforementioned discounting factor and Tb is
a batch size. The policy and value functions are updated by
gradient ascent/descent:

θk+1 = θk + α∇θJ(θ), (9)

ϑk+1 = ϑk − β∇ϑ(rt + V π
ϑ (xt+1, · · · ,xt+1−Kt)

−V π
ϑ (xt, · · · ,xt−Kt

))2,
(10)

where α and β are the constant step sizes. A PPO version using
a clipped surrogate objective simplifies the aforementioned
method and yields similar performance [23]:

LCLIP(θ) = Ê
[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

ρt(θ) ≜
πθ(at|xt, · · · ,xt−Kt)

πθold(at|xt, · · · ,xt−Kt
)
,

Ât ≜ Aπ
ϑ(xt, · · · ,xt−Kt

,at), (11)

where clip operation encourages a more gradual update to the
policy rather than large charges. The minimum between the
unclipped and the clipped objective values is used to bound
the unclipped objective.

C. STGCN-based Deep Reinforcement Learning

Power systems are dynamic systems with time-varying
voltage phasors. In order to fuse features from both spatial and
temporal domains in the DRL policy and value function we
propose to use the following feature extraction layer (layer1)
[21]:

wc
t =

K∑
k=0

ℏkSk

(
Kt∑
τ=0

hk,txt−τ

)
. (12)

where ℏk and hk,t are trainable parameters. As mentioned
before the goal is to approximate the policy function and value
function using graph neural networks. They are:

πθ = σ
(
Θπ

3 ·
2nd layer︷ ︸︸ ︷

σ (Θ2 ·wc
t)
)
,V ϑ = σ

(
ΘV

3 ·
2nd layer︷ ︸︸ ︷

σ (Θ2 ·wc
t)
)
,

(13)

where θ ≜ {(Θπ
3 ,Θ2, ℏk, hk,t)|∀k, t} represent the parame-

ters of πθ that need to be learnt, and σ(·) represents the
activation function. Here, we have omitted the biased term
to unburden the notation. Recall that the value function V ϑ
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share the STGCN layer and the second layer with the policy
function. Therefore, the parameters of V ϑ is defined as:
ϑ ≜ {(ΘV

3 ,Θ2, ℏk, hk,t)|∀k, t}. The resulting DRL algorithm
is summarized in Algorithm 1.

Algorithm 1: The STGCN-DRL Algorithm
Input: in training - True (stochastic) or False (static)

1 Initialization: The learning rates α and β, the discount rate
γ, the size of replay buffer RB, default actions a0;

2 Function RunPPO(in training):
3 Initialize state x0, r0 = ChooseRewardState(a0),

where r0 is a vector with each element rosnϕ,t=0

corresponding to each agent;
4 for t← 0 to Tmax do
5 for j ← 0 to RB do
6 Get actions and values

at,V
π
t = stgcn ppo(in training), where

V π
t is a vector [V π

t ]i = V π
nϕ,t with respect to

each agent;
7 Get new state and rewards

xt+1, rt+1 = ChooseRewardState(at);
8 Store them as a transition (xt, · · · ,xt−Kt ,at,

V π
t , rt+1,xt+1) in replay buffer;

9 Sample from the replay buffer to obtain tuple
(xt, · · · ,xt−Kt , at,V

π
t , rt+1,xt+1) to compute

(7) and (8);
10 Update the STGCN neural network by (9) and (10);

11 Function stgcn_ppo(in training):
12 V π

t = stgcn critic(xt, · · · ,xt−Kt );
13 if in training = True then
14 ap

t = stgcn actor(xt, · · · ,xt−Kt ), where ap
t is the

probability of actions;
15 Set agent policies to sample stochastic actions at;
16 else
17 ap

t = stgcn actor(xt, · · · ,xt−Kt );
18 Set agent policies to sample static actions at;

19 return actions at, values V π
t ;

20 Function ChooseRewardState(at):
21 Get rewards [rt]i = rosnϕ,t by (22) and states xt from the

environment envs(at);
22 return xt, rt;

Next, we introduce an application of the proposed scheme
to smart-total inverters.

III. CASE STUDY: POLICIES FOR SMART INVERTERS

This section introduces the model of smart inverters us-
ing Volt-Var (VV) and Volt-Watt (VW) schemes. Then, we
integrate such a model into the power flow calculation (e.g.
OpenDSS) to evaluate the impacts of the status changes on
distribution systems. Leveraging these changes, we proposed a
STGCN-DRL method to obtain control actions so as to realize
effective voltage regulation.

A. Control of Smart Inverters

The power injection control functionality of smart inverters
is defined by two VV and VW piece-wise functions of the
voltage magnitude, referred as “droop” curves. The VV-VW
curves are shown in Fig. 1(c) and Fig. 1(d); their set-points
are tied to the five parameters associated to the segments of

the piece-wise linear VV and VW curves, denoted by η =
[η1, · · · , η5]⊤ ∈ R5. Mathematically, they are:

fq
n(|ṽnϕ

|) ≜



q̄ |ṽnϕ
| ∈ [0, η1](

η2−|ṽnϕ
|

η2−η1

)
q̄ |ṽnϕ

| ∈ (η1, η2]

0 |ṽnϕ
| ∈ (η2, η3]

−
(

η3−|ṽnϕ
|

η4−η3

)
q̄ |ṽnϕ

| ∈ (η3, η4]

−q̄ |ṽnϕ
| ∈ (η4,∞)

(14)

fp
i (|ṽnϕ

|) ≜


p̃ |ṽnϕ

| ∈ [0, η4](
η5−|ṽnϕ

|
η5−η4

)
p̄ |ṽnϕ

| ∈ (η4, η5]

0 |ṽnϕ
| ∈ (η5,∞]

(15)

where p̄ and q̄ are the active and reactive powers injected into
the system, in response to the estimated voltage amplitude
|ṽnϕ

| obtained by low-pass filtering the measured voltage
magnitude signal at bus n on phase ϕ, to reject some of the
noise in the measurements |vnϕ,t|. In particular, |ṽnϕ,t| and
the limit on the choice of q̄ are:

|ṽnϕ,t| = |ṽnϕ,t−1|+ τ cn(|vnϕ,t| − |ṽnϕ,t−1|),
q̄2 + (fp(|ṽnϕ,t|))2 ≤ s̄2,

(16)

where τ cn is the time constant of the low pass filter, |vnϕ,t| is
the measured voltage magnitude, and s̄ is the capacity of the
inverter. The power injected also shall not change suddenly.
Hence, voltage control is completed by the following dynamics
on the injected active and reactive powers:

pnϕ,t = pnϕ,t−1 + τo(fp
n(|ṽnϕ,t|)− pnϕ,t−1),

qnϕ,t = qnϕ,t−1 + τo(fq
n(|ṽnϕ,t|)− qnϕ,t−1),

(17)

where τo is a time constant, and the complex power injected
into the distribution system is sn,t = −pn,t − jqn,t. The goal
of this paper is to determine an optimum control policy to
select the set-points of the inverter. In the next section we
describe the setup for DRL whose task is to learn a policy
to control the VV and VW curves set-points. In particular, as
shown in Fig. 1(c) and Fig. 1(d), to simplify the action space
of the DRL algorithm, we will only shift the VV curve.

B. DRL Design for VVC

In this paper the neural network (NN) trained by the DRL
algorithm is the agent selecting as action a specific inverter
setpoints, and the environment the agent acts upon, is the
electric distribution network. The agent NN must be trained
to respond to a variety of conditions and take control actions
with respect to the given operating condition to achieve VVC.
The interaction between the agent and the environment at time
t is described by: the state, comprising a set of past samples
(xt, . . . ,xt−Kt), the action at, and the reward rt. We describe
these three elements next.

1) State and Action: The tuple of actions for the VVCs of
the inverters in the bus set Ns is denoted by:

a = [a1, a2, · · · , ai, · · · , a|Ns|]
⊤, ai ∈ Ai,

η′
i = ηo

i + ai ∗ 1,
(18)
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Fig. 1: Overview of STGCN for VVC.

where |Ns| represents the number of smart inverters, ai
denotes the control action on the ith smart inverter, 1 ∈ R5

represents a vector of all one elements, Ai represents the
action space of the ith action, and ηo

i and η′
i define the

default and shifted values of VV-VW curves that define the
intervals in (14) and (16). As shown in Fig. 1, in this paper,
instead of controlling arbitrarily the parameters of the VV/VW
curves, we shift only by a common constant the intervals
[6, 24]. The vector of actions a, output of the NN that
approximates the optimum policy, is a function of the three-
phase voltages at all, or part, of buses in the distribution
system, which is the observation/input of the STGCN-DRL.
The state vector/observation is x = [φ; |v|]⊤, where φ is the
vector of voltage phase angels and |v| is the vector of voltage
magnitudes.

2) Reward: In this paper, the definition of reward comprises
multiple components in its expression, each targeting a mea-
sure of power quality. These components are defined below:

a) Voltage Magnitude Regulation: We define the com-
ponent of regret caused by voltage deviation (VD) in the
distribution network at bus nϕ at time t as follows [13, 18]:

rdnϕ,t =
∣∣|vnϕ,t| − v̄

∣∣ , nϕ ∈ Ns, (19)

where v̄ denotes the desired voltage magnitude at bus n (i.e., 1
p.u.), and |vnϕ,t| is the measured voltage magnitude on phase
ϕ, respectively. The second component of the total regret that
penalizes the active power curtailment is:

rpnϕ,t
=

(
1−

pnϕ,t

pmax
nϕ,t

)2

, nϕ ∈ Ns, (20)

where Ns denotes the set of smart inverters.
b) Oscillation Mitigation: To measure undesired varia-

tions of the voltage amplitudes, we define a filter whose output
measures the “energy” associated with voltage variations in the
distribution grid. The filter is the cascade of a high-pass filter,
a square law non-linearity, and a low-pass filter. A discrete
time block diagram of this part of the architecture is shown in

Fig. 1(b), at the top left corner of Fig. 1. Specifically, HHP

and HLP represent high-pass and low-pass filters, respectively,
and c is a positive gain. The high-pass filter removes DC
contents from vnϕ,t, yielding ∆vnϕ,t. After that, this signal
is squared to produce a DC term that is then averaged by a
low-pass filter. The filter parameters should be chosen such
that the filter does not attenuate oscillations due to inverter
instabilities. Therefore, in Fig. 1(b), we define the oscillation
regret ronϕ,t:

ronϕ,t = hLP
t ⋆

(
hHP
t ⋆ |vnϕ,t|

)2
, (21)

where hHP
t is the impulse response of a high-pass filter (here

we just used the finite difference), and hLP is a low-pass
filter (e.g. a moving average), and ⋆ defines the convolution
operator. Finally, the reward function for each smart inverter
is:
rosnϕ,t

= −(ζv × rdnϕ,t + ζp × rpnϕ,t
+ ζo × ronϕ,t), nϕ ∈ Ns,

(22)

where ζv , ζp and ζo are positive weights. In particular, the
third term ζo penalizes oscillations.

C. Voltage Control in Distribution Networks

While the policy learnt by the DRL is beneficial in general,
the primary motivation in this paper is to respond to the
nefarious effects of smart inverters VV/VM with inappropriate
set-points due to a cyber-attack. The set of inverters in the
system |Ns| is composed of two subsets, denoted by C and
U , representing the “compromised” and “uncompromised”
inverter, respectively. We assume that U ̸= ∅ and use DRL to
determine the optimum stochastic policy πθ which represents
the probability distribution of action a ∈ A given a sequence
of observations; θ are the neural network parameters that the
DRL selects to maximize the reward defined in (22).

The overview of the problem statement and methodology is
shown in Fig. 1. During the training stage, as illustrated in Fig.
1(a), we perform realistic simulation of the distribution system
with multiple smart inverters installed, to generate, using this
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digital twin of the system, the vector of states for training our
DRL algorithm. The distribution system simulations provide
the input to compute the instantaneous rewards of the policy
(as shown in Fig. 1(e)) during the training of the policy,
computed with the neural network architecture in Fig. 1(f ).
Moreover, both policy function and value function are trained
by the PPO algorithm, and share the same spatio-temporal
GCN feature extraction layers, which will be introduced
explicitly in Section III. As a feedback, the policy gives an
action to shift the VV-VW curves so as to change the active
and reactive power injections, as shown in Fig. 1(c) and Fig.
1(d). Note the the input voltages of the VV-VW curves are
low-pass filtered (see Fig. 1(g) and Fig. 1(h)) to smoothen
noisy measurements. The active and reactive power injections
from the inverters are low-pass filtered as well, to prevent
sudden jumps. After the policy is well trained, the parameters
of the neural network in Fig. 1(f ) are fixed and the policy
can be deployed in the real system. The details of the policy
function design are presented in the following section.

IV. NUMERICAL ANALYSIS

In this section, we adopt and the 123-bus feeder distribution
systems to validate the proposed STGCN-DRL algorithm,
mitigating instabilities and maintaining nodal voltage profiles
within a desirable range in the face of unbalanced load. The
PV smart inverters bus locations, including all uncompro-
mised and compromised ones on the 123-bus feeder. We train
these agents using the OpenDSS environment to estimate the
grid response. The formulation and training for the proposed
STGCN-DRL are performed by PyTorch.

The numerical experiments are divided in two parts. In
the first part, we apply the proposed STGCN-DRL algorithm
to control the smart inverters for oscillation mitigation, in
combination with voltage regulation. We also validate the can
of reduced-size input, and correspondingly reduced GSO in the
STGCN scheme. Finally, we consider the impact of having a
larger number of smart inverters in the system.

A. Experiment Setup

We utilize historical PV and load data with a 1-minute
resolution from the PecanStreet dataset for training and testing.
The dataset includes 25 household loads and 14 PV panel
powers from May 01, 2019 to July 31, 20192. In this dataset,
we choose 4800 samples for training, and 2400 samples for
testing. In Figs. 2(a) and 4(a) we show the training curves
averaged over 16 runs in the oscillation mitigation application
(the bands represents the standard deviation). We have three
PV smart inverters installed in the load buses (Bus 51a, Bus
53a, Bus 60a) with one compromised smart inverter (Bus
53a). In particular, the action range is set from −0.05 p.u
to 0.05 p.u with action range discrete step ∆η = 0.01 p.u. In
order to mitigate voltage unbalance, we set the desired voltage
magnitude v̄ = 1 p.u. We set c = 5000 for the high and low
pass filters, and V = 1.05 p.u. and V = 0.95 p.u. The default
configuration is η = [0.94, 0.96, 1.04, 1.06, 1.1]. Each epoch

2https://www.pecanstreet.org/dataport/

has 128 training samples. We set ζo = 1, ζv = 0.2 ζp = 0.005
in Figs. 2(a) and 2(c) and ζo = 0.8, ζv = 0.1 ζp = 0.005 in
Fig. 4(a).

(a) Training curves of STGCN-DRL. (b) Testing curves of STGCN-DRL.

(c) Oscillation w/o agent defense. (d) Oscillation with agent defense.

(e) VM curves w/o STGCN-DRL. (f) VM curves with STGCN-DRL.

Fig. 2: This system has 3 smart inverters. (a) and (b) illustrate the learning (training) and
testing curves of the STGCN-DRL. In (c) and (d), “Oscillation” represents the oscillation
regret ronϕ,t with the STGCN defense and without the STGCN defense, respectively.
(e) and (f) illustrate the voltage magnitude curves with the STGCN defense and without
the STGCN defense, respectively.

(a) Oscillation with agent defense. (b) VM curves with STGCN-DRL.

Fig. 3: Transfer Learning with GSO changes. This system has 3 smart inverters. (a) and
(b) illustrate the ronϕ,t and voltage magnitude curves by the STGCN defense with GSO
changes, respectively.

The STGCN-DRL parameters are as follows. The learning
rate is 0.0007. The discounted factor γ is 0.99. The PPO clip
parameter ϵ is 0.1, the entropy loss weight is 0.01 and value
loss weight is 1.0. For the GCN part, we set K = 4 and T =
10 for the oscillation mitigation control. For the STGCN the
graph filter order is 10, and the temporal filter order is also 10.
After the STGCN layer that performs the feature extraction,
we have 512 neurons of a fully-connected neural networks to
approximate the policy, and then the output layer. The network
is quite effective, even though it is relatively shallow.
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(a) Training curves of STGCN-DRL. (b) Testing curves of STGCN-DRL.

(c) Oscillation w/o agent defense. (d) Oscillation with agent defense.

(e) VM curves w/o STGCN-DRL. (f) VM curves with STGCN-DRL.

Fig. 4: This system has 12 smart inverters. (a) and (b) illustrate the learning (training) and
testing curves of the STGCN-DRL. In (c) and (d), “Oscillation” represents the oscillation
regret ronϕ,t with the STGCN defense and without the STGCN defense, respectively.
(e) and (f) illustrate the voltage magnitude curves with the STGCN defense and without
the STGCN defense, respectively.

(a) Oscillation with agent defense. (b) VM curves with STGCN-DRL.

Fig. 5: Transfer Learning with GSO changes. This system has 12 smart inverters. (a)
and (b) illustrate the ronϕ,t and voltage magnitude curves by the STGCN defense with
GSO changes, respectively.

B. Results

The cyber attack is launched by shifting the VV/VW curves
of the compromised smart inverters till they induce oscillations
(the setup is borrowed from [6]). In Fig. 2(a), after 300 epochs,
the total reward

∑
nϕ

rosnϕ,t
increases greatly from -0.2 to -

0.01. Fig. 2(b) shows that in the tests of the STGCN-DRL
policy. The values of |

∑
nϕ

rosnϕ,t
| are very small, indicating

that the agents STGCN-DRL policy successfully activated
in the uncompromised agents is successful in damping the
voltage profile oscillations. Recall also that small values of
|
∑

nϕ
rosnϕ,t

| indicate that the voltage magnitudes are very
closed to 1 p.u, which means that the system is also dealing
well with unbalanced injections.

The first example without the policy defense is shown in
Fig.2(c) and Fig.2(e) on the left. In Fig.2(c) and Fig.2(d),
the y-axis “Oscillation” represents the oscillation regret ronϕ,t

in Eq. (21). In Fig. 2(e), the attack starts at time t = 55s
and ends at time t = 205s. Correspondingly, the oscillation
regret ronϕ,t surges when the attack is launched in Fig. 2(c).
After the attack ends, the voltage magnitudes are very far
from 1 p.u. In contrast, in Fig. 2(f), before the policy begins,
the voltage magitudes are around 0.96 p.u because of the
unbalanced demands and inadequate reactive power support.
When the STGCN policy begins at t = 10s, the STGCN policy
regulates the voltage magnitudes closed to 1 p.u. by providing
the reactive power support. The staging of the attack is attained
by shifting VV/VW curves of compromised inverters so that
excessive amounts of reactive power VV are injected or drawn
from the distribution network; this behavior, sustained from
t = 55s to t = 205s, create oscillation events. The STGCN
policy controlling the uncompromised smart inverters responds
to the jump in oscillation regret ronϕ,t and is able to tame
its value to be very small in the attack time window. After
the attack ends at t = 205s, the STGCN policy continues to
regulate voltage magnitudes closed to 1 p.u. by taking optimal
actions that shift VV/VW curves.

In the grid, the system matrix changes as well, due to
switching or control equipment and retraining a new model
based on the new environment is time-consuming. In this ex-
periment, we test the transferability of the proposed STGCN-
DRL parameters to a case where the grid has changed topol-
ogy, by simply changing the GSO but retaining all other
STGCN parameters the same. In the simulation, the change
corresponds to a line tripping in the original system. The
results shown in Fig. 3, are very similar to those in the previous
case, where the training and testing environment had the same
GSO (i.e. no line tripped). This clearly indicates that STGCN-
DRL perform well in the new environment and retraining is
not necessary for small changes.

C. Large penetration of Smart Inverters
We further increase the ratio of compromised inverters to

50% in the 123-bus feeder, including 6 out of 12 inverters
in the subset. In particular, Fig. 4(a) and Fig. 4(b) show the
training and testing curves of STGCN-DRL, respectively. Also
in this case, without the policy defense, the values of the
oscillation regret ronϕ,t shown in Fig. 4(c) are high during
the attack, lasting from t = 105s to t = 255s with significant
oscillations shown in Fig. 4(e). However, with the policy
defense in Fig. 4(d), the oscillations are swiftly mitigated, and
the voltage magnitudes rapidly converge close to the desired
values of 1 per unit. The values of the oscillation regret ronϕ,t,
shown in Fig. 2(f), are also very small. Also in the presence
of more smart inverters, the STGCN parameters are robust to
changes in the GSO, as illustrated in Fig. 5 which shows that
the STGCN-DRL still performs well in the new environment
determined by having a line tripped in the system.

V. CONCLUSIONS

This paper proposed a novel STGCN-DRL algorithm to
control the smart inverters in unbalanced distribution systems.
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The proposed STGCN-DRL algorithm uses graph filters to
extract more efficiently the features of the voltage phasors
that are relevant to the control policy. The general GCN
structure is specialized to the STGCN model, to consider both
spatial and temporal correlations. Our STGCN-DRL algorithm
is capable of both mitigating oscillation due to unwanted
dynamics caused by a set of compromised inverters, while
maintaining nodal voltage profiles within a desirable range.
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