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An Alphabet of Leakage Measures

Atefeh Gilani, Gowtham R. Kurri, Oliver Kosut, Lalitha Sankar

Abstract—We introduce a family of information leakage mea-
sures called maximal o, $-leakage, parameterized by real num-
bers o and . The measure is formalized via an operational
definition involving an adversary guessing an unknown function
of the data given the released data. We obtain a simple,
computable expression for the measure and show that it satisfies
several basic properties such as monotonicity in 5 for a fixed o,
non-negativity, data processing inequalities, and additivity over
independent releases. Finally, we highlight the relevance of this
family by showing that it bridges several known leakage mea-
sures, including maximal o-leakage (3 = 1), maximal leakage
(a = 00, 8 = 1), local differential privacy (o = oo, 8 = 00), and
local Rényi differential privacy (a = ).

I. INTRODUCTION

How much information does an observation released to
an adversary reveal/leak about correlated sensitive data? This
fundamental question arises in many secrecy and privacy
problems whenever data about users is stored online (e.g.,
social networks and cloud-based services) and a certain level
of information leakage is unavoidable in exchange for certain
services. In an effort to quantify this leakage precisely, a
variety of privacy measures have been proposed [1]-[9].

For any leakage measure, one of the key challenges is to
associate an operational interpretation in terms of its definition.
Only a few leakage measures possess such an operational
meaning. For example, the works in [3], [5], [6], which
pertain to the release of observation due to a side channel,
measure privacy in terms of an adversary’s gain in guessing
the sensitive data after observing the released data. Issa et
al. [5] introduce maximal leakage (MaxL), which quantifies
the maximal logarithmic gain in the probability of correctly
guessing any arbitrary function of the original data from the
released data. Liao ef al. [6] later generalized maximal leakage
to a family of leakages, maximal a-leakage (Max-aL), that al-
lows tuning the measure to specific applications. In particular,
similar to MaxL, Max-aL quantifies the maximal logarithmic
gain in a monotonically increasing power function (dependent
on «) applied to the probability of correctly guessing.

Among leakage measures motivated by worst-case adver-
saries, differential privacy (DP) [7] has emerged as the gold
standard. A differentially private algorithm guarantees that
its outputs restrict the adversary from distinguishing between
neighboring data entries. When privacy guarantees have to
be provided in a distributed setting, local DP (LDP) [8], [9]
provides such strong guarantees for every pair of (users) data
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entries. In the context of composing DP outputs sequentially,
Rényi differential privacy (RDP) [4] has emerged as a mean-
ingful variant to compute overall DP guarantees. Specifically,
RDP relaxes DP based on the Rényi divergence.

No single measure of privacy/information leakages suits
all the scenarios in practice. In this paper, we undertake the
study of unifying various measures of information leakage so
that the leakage measure can be tailored to different settings
depending on the context. Motivated by [5], [6], in Section III,
we introduce a leakage measure, maximal «, 5-leakage, which
is parameterized by two real numbers « and . We obtain a
simple computable expression for it and show that this family
of measures encompasses a host of existing leakage measures:
in particular, Max-aL (8 = 1), MaxL (o« = oo, 5 = 1), LDP
(o = B = 00), and local Rényi differential privacy (LRDP)
(o = B) — a notion of RDP defined analogous to LDP
(see Fig. 1). An important consequence of our result is an
operational interpretation of LDP and LRDP (Section IV). We
note that this subsumes an operational meaning of LDP given
by Issa et al. [5] via maximal realizable leakage, a leakage
measure definition concerned with worst-case analysis, akin to
LDP. Interestingly, maximal «, 5-leakage is defined in terms
of average-case analysis (in the spirit of MaxL and Max-
al), and yet, it recovers the worst-case LDP by exploiting
the interplay between the parameters « and 8. We also show
that this general leakage measure satisfies all the axiomatic
properties of a measure of information leakage, including
non-negativity, equality to zero if and only if the original
data and the released data are independent of each other, and
data-processing inequalities. This can be viewed as another
proof that LDP satisfies both the post-processing and linkage
inequalities unlike DP which does not satisfy the linkage
inequality [10]. Due to space constraints, we have omitted
some proofs; detailed proofs for all results are in [11].

II. PRELIMINARIES

We begin by reviewing the definitions of some existing in-
formation leakage measures, in particular, maximal a-leakage
(which subsumes maximal leakage) and local (Rényi) DP.

Definition 1 (Maximal a-leakage [6]). Let Pxy be a joint
distribution, where X and Y represent the original data and
the released data, respectively. The maximal o-leakage from
X 10Y, for a € (1,00), is defined as

(6%
max ( Y) =
LX) a—1
a—1
max > uy Pov (u, ZI)PU\y(UH/)T
Uy
sup log o= ;o (D
U-X-Y

max ), Pu(w) Py (u) =
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where U represents any randomized function of X that the
adversary is interested in guessing and takes values in an
arbitrary finite alphabet. Moreover, U is an estimator of U
with the same support as U.

Maximal a-leakage is a generalization of another measure
of information leakage, the maximal leakage [5]. In particular,
the latter recovers the former when o« = oo. Liao et al. [6]
showed that

LYN(X = Y) =sup [3(X;Y), @)
Px
where the supremum is over all the probability distributions

Py on the support of Px and I3(-;-) is the Sibson mutual
information of order o [12].

Definition 2 (Local differential privacy [8], [9]). Given a
conditional distribution Py |x, the local differential privacy
(LDP) is defined as

Py x (y|z)
LPP(X 5 Y) = max log — 12X 3)
T I R i)

We may define local Rényi differential privacy as a gen-
eralization of local differential privacy based on the Rényi
divergence [13].

Definition 3 (Local Rényi differential privacy). Given a con-
ditional distribution Py |x, the local Rényi differential privacy
(LRDP) is defined as

LYROP (X Y)

IOgZPyp( (yl2")' = Py x (yl2)®. )

= max
zx'eX o — 1

It can be verified using L’Hopital’s rule that LRDP simpli-
fies to LDP as a — oo.

III. MAXIMAL «, 3-LEAKAGE

Motivated by the definitions of maximal leakage and maxi-
mal a-leakage, we introduce maximal «, 5-leakage as follows.

Definition 4 (Maximal «, $-leakage). Given a conditional
distribution Py x, the maximal o, (3-leakage from X to'Y
for a € (1,00) and 8 € [1,00) is defined as

Lopg(X —Y):=sup sup a
Py U—osXx—y a—1
g1 v/8
a—1
max ZPY <Z PU|Y(U|y)PU|y(uy)"‘>
Poy w
log a—1
nll)aﬁx; Py (u)Pp(u) =
4)

where U represents an estimator taking values from the same
arbitrary finite alphabet as U. It is defined by continuous
extension for a. = oo or 3 = oo.

We remark that the definition of maximal «, 8-leakage in
(5) nearly recovers the definition of maximal a-leakage from
(1) (and thus maximal leakage also) when 5 = 1. The reason
is that maximal a-leakage depends on the distribution of X
only through its support, as shown in (2), so including the
supremum over Px does not change the value. Moreover,
for ¢ = 1, maximal «, $-leakage recovers Shannon channel
capacity. We have included the supremum in the definition of
maximal «, 8-leakage in order to recover some of the worst-
case measures such as LDP and LRDP as special cases. One
can view the introduction of (3 into the summation in the
numerator in (5) as allowing a continuous transition from
a simple average over y (at § = 1) to a maximum over
y (at B = o00). This maximum over y is present in the
definition of maximal realizable leakage [5, Definition 8],
which corresponds to @ = 8 = oo, and has been shown to
be equal to LDP. This allows us to view maximal leakage
and maximal realizable leakage as two corner points of the
inner optimization problem in (5) for & = oo and § =1 and
B = oo, respectively (see also Fig. 1).

The following theorem simplifies the expression of maximal
a, f-leakage in (5).

Theorem 1. Maximal «, B-leakage defined in (5) simplifies to

a
Lop(X =Y)=max sup ———
s( ) = ma WP o= D)3

B/
logZPY\X yla')! (ZP z) Py x (ylz)" ) , (0)

where Py is a probability distribution on the support of Px.

A detailed proof for Theorem 1 is given in Section V-A. For
8 < «, the quantity inside the log in (6) is concave in Py ; thus
the supremum over Py can be efficiently solved using convex
optimization techniques. As we will show in Section IV, for
B > a, the supremum over Py can be replaced by a maximum
over x € X. Thus, in either case the quantity in (6) can be
efficiently computed for finite alphabets.

Like other leakage measures, maximal «, -leakage satisfies
several basic properties such as non-negativity, data processing
inequalities and additivity, as shown in the following theorem.

Theorem 2. For o € (1,00) and 8 € [1,00), maximal «, 3-
leakage

1) is monotonically non-decreasing in 3 for a fixed «;
2) satisfies data processing inequalities, i.e., for the Markov
chain X =Y — Z:

Log(X = 7)< Lapg(X =Y) (7a)
Lap(X = 2Z)< LopgY = 2). (7b)

3) is non-negative, i.e.,
Lop(X =Y)=>0 ®)

with equality if and only if X and Y are independent.
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Fig. 1. Relationship between maximal «,(-leakage and other leakage
measures as a function of o and 3. For a@ < 3, we obtain a scaled LRDP of
order 3. For « = 8 = oo, we obtain LDP. For 8 = 1, we obtain maximal -
leakage which simplifies to maximal leakage for a« = oo. Finally, for o« = co
and arbitrary 3, we obtain a variant of LRDP.

4) satisfies additivity: i.e.,
are independent, then

if (X3,Y3) fori = 1,2

yeeey

n
Eaﬁ(Xl,...,Xn — Yl,..
i=1

€))

Proofs for most of the claims of Theorem 2 are in Sec-
tion V-B.

Remark 1. Although maximal «, 8-leakage is monotonic in
only one of its orders, if we consider a reparameterization in
which 7 € [0,1] and § = T (i—ay- the new leakage measure
is non-increasing in 7 for a fixed «, and non-decreasing in «
for a fixed 7. A detailed proof is provided in [11].

IV. RELATIONSHIP BETWEEN MAXIMAL «, 3-LEAKAGE,
AND OTHER MEASURES

As mentioned earlier, maximal «, 8-leakage recovers max-
imal a-leakage (and thus maximal leakage) when 5 = 1. The
choices of o and S help to recover other leakage measures
such as a scaled LRDP for a < 3, LRDP for o« = 3, LDP
for (& = 00,8 = o0), and a variant of LRDP for & = oo
and arbitrary (3, as shown in Fig. 1. We now present these in
detail.

GYa) = Lap(Xi = Yi).

When a < 3, we have
EQ)Q(X — Y)
«
= max sup ——— lo P 2) P
12 P;F (@ —1)3 gzy: vix (y]z')

B/a
(ZP x) Py x (y|z)® >
logz PY|X(Z/|$/)1_6PY\X(ZU|$)B
y

(1D
where (11) follows because the argument of the logarithm in
(10) is convex in Pg and so the supremum is attained at an
extreme point. This quantity is a scaled LRDP of order f.
Furthermore, if a = 3, the expression in (11) reduces to

ﬁg,B(X — Y)

(10)

= Imax max
x’ T

(a— 1)ﬁ

1 -
=max max z— logZPy\x(l/W)1 BPY\X(Z/\@”)Ba
Y
(12)

which is exactly LRDP of order 5. Taking a limit as 3 — oo

in (12) gives
PY|X(y|fE)) (13)
Py x (ylz')
Pyix (ylz)
Py x (y|z")
which is LDP. So Lo (X — Y) passes from maximal

leakage at 5 =1 to LDP at 5 = 0.
From Theorem 1, for o = oo and arbitrary /3, we obtain

ﬁoo 5(X — Y)

= maxglogZPy‘X (yla")'~
y

Loo,00(X = Y) = max max log <max
x! x Y

(14)

maXPY|X(y\x) (15)
This quantity is a variant of LRDP, and it differs from LRDP
of order (3 only in that the max over « is inside the summation
over y rather than outside. As far as we know, this quantity
has not appeared before.

Finally, we propose an extension of maximal «, 5-leakage
so as to include the data of multiple users, shown in (16).
Here, X" = (X3, Xo,...,X,) is a dataset with n entries,
X_,; represents all entries except the ¢th, and as usual Y is
the released data. Thus, the measure in (16) characterizes a
situation in which an adversary may have side information
access to all entries of the dataset except one. It is clear that

sup
o Py,

Z PX ,,Y(-’Ij wy

B
ZPU|X oy (Ulr—i y) Py, v (ulz—i,y) = ]

U‘Xft Y T—iyY
log

bup ZPX
U\X

—i T—q

sup max
Pxn 1

sup
Uvosxnoy (@—1)8

. (16)

a—1

E
D) D Puix_ (ule—) Py (ulz- )a]
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this measure collapses to maximal «, 3-leakage for n = 1.
We conjecture that, for n > 1, it recovers (non-local) DP [7]
(¢ = 00,8 = 00) and RDP [4] (o« = ) for multi-user data
across neighbouring databases.

V. PROOFS

Due to space limitations, some proofs have been omitted.
Complete proofs can be found in [11].
A. Proof of Theorem 1

For a € (1,00) and § € [1,00), we first bound L, g(X —
Y’) from above and then, give an achievable scheme.
Upper Bound: Consider the denominator of (5):

rrll%xzu:PU(u)PU(u) o .

This is solved by Py (u)Pg(u)~*/% = v, for some constant
v. So we have

a7

) B PU (u)a
Py (u) = S Po(w)e (18)
Thus the denominator becomes
v\ _ A%
ZPU (Z P (o) ) = (;PU(U) > . (19)
Similarly, the numerator becomes
B/ 1/8
> Py(y) (Z Pmy(uly)a> (20)
Yy u
Thus, the logarithmic term in (5) reduces to
a11/8
(32, Pr(w) (S, Pory (uly)*) ]
log o 21
(20 Pu(u))
1/8
(32, Pr@)' 7 (2, Poy (u,5)") ]
= log o (22)
(>, Pu(u)®)
B
1 5[ PU(U)QPYU(ZUW)T“
=1 Py (y)'=* [ . (23
5loeL ) >, P >

Using Jensen’s inequality and the Markov chain U — X — Y,
we have

«
Py (ylu)® <Z Pxu( xu)Pyx(y|$)> (24)
< ZPX\U (zlu) Py x (y|z)*. (25)
x
So maximal a, ﬁ-leakage may be bounded from above by
log Z Py (y

“Px v (z|u) Py x (y]z)”

> Pu(u)>

sup sup
Px U%X%Y

> ot

ol

(26)

<sl})1p S]}ip logZPy )= ZPX(JC)
X é xT
PYX(Z/|$)“] (27)
where
Pe(s) = > Pu(u)* Pxju(z|u) 28)

> Pu(u)®

Lower Bound: The proof is based on the expression in (23)
as well as “shattering” method. Consider a random variable U
such that U — X — Y form a Markov chain and H(X|U) =
0. For each z, let U, be a finite set such that U = u € U,
if and only if X = 2 and U = |J ., U,. Moreover, given
X = x let U be uniformly distributed on /. That is,

L for all u € U,
0 otherwise,
and so
P x) for all u € U,
Pyl = { X W) . (30)
0 otherwise.
Therefore, we have
> u Pu(w)® Py (y[u)® 31)
> Pou(u)®
Px (x) Py x (u]z)\* o
Sex Sucte | Pyror(ylu)
B Pxy(x|u)
= = (32)
Sy (PX(33)PU|X(U|$))
reX UEU PX|U($|U)
_ > U '~ Px ()™ Py x (y|2)® (33)
> [Us|' = Px (z)™
So we may bound maximal «, 5-leakage from below by
o
sup su lo P 1-8
e U (- 1)B gz V()
8
(Z Uy |~ Px (2 )O‘Py|x(yfv)“> « (34)
Z |Z/{ |1 (XPX( )(x
8
3311 (@—1 IOgZPY ZPX(J:)PY|X(Z/|$) )
P xT
(35)

(Us|'~ Px ()
D (U]~ Px ()
the fact that any distribution Pg(x) can be reached with
appropriate choice of |U,|, assuming Px(z) > 0 for all z;
this condition can be assumed because any Py is arbitrarily
close to a distribution with full support. Thus, combining (27)
and (35), we have

where here Py (z) = and we have used

Lop(X =Y)=sup sup

(a—1)p
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(36)

logZPy( y=s (ZP r) Py x (y|z)” )

Since the choice of Px only impacts Py, and the supremum
of a convex function is attained at an extreme point, we may
simplify (36) as follows.

@
Losg(X —-Y)=max sup ——
A( ) = ma WP =18

B/
1OgZPY\X yla')' =" (ZP z) Py x (y|lz)® > :

B. Proof of Theorem 2

Monotonicity in 8: For a € (1,00), 1,82 € [1,00) and
(B2 > (1, consider the argument of the logarithm in (6):

B1

ZPY\X (yl")' =" ZP z) Py x (y|z)® 1 (37
= Pyix(yla’) | Pyix (yl2') ZP
! TN
aBa
Py x (y|z)® (38)
< ZPY|X(ZJ|$/)(PYX (ylz")~ ZP
Yy
8215
Prix(ylo)”) (9)

ZPY|X yla') B2<ZP z) Py x (ylz)" ) 1

(40)

where the inequality results from applying Jensen’s inequality
to the concave function f : x — 2P (x > 0, p < 1). For

a € (1,00) and 8 € [1,00), the function f : ¢t — a=1yp logt
is increasing in ¢ > 0. Therefore, we have
o
—1 P Py
@—1p ng Y|X (") {Z
B1
Prixlylo)? @)
o
<— 1 P, Py
Sla—1)5s ng Y|X (yl2")! {Z
B2
Prixlylo)? @)

Taking the max over 2’ and supremum over P; completes the
proof. Another way to prove this property is to consider the
numerator in (5) as the 8-norm of a random variable. Since the
B-norm of a random variable is non-decreasing in 3, maximal
«, B-leakage is non-decreasing in .

Data processing inequalities: Let random variables X, Y, Z
form a Markov chain, i.e., X — Y — Z. First consider the
post-processing inequality, that is,

Lop(X = Z)<Loyp(X =Y). (43)

The proof of this, contained in the extended version [11], is
based on the expression for maximal «, 8-leakage in (6), and
proper use of Jensen’s inequality.

We now prove the linkage inequality, that is

Lop(X = 7)< Lopg(Y — Z), (44)

using the definition of maximal «,(-leakage in (5). Let
f(Pyy) be the quantity inside the suprema in (5), which
depends only on the joint distribution of U and Y. Similarly,
we write f(Pyyz) for the same quantity when Y is replaced
by Z. For the Markov chain X — Y — Z, we have

Lop(X = Z)=sup sup f(Pyz)
Px U—=X—>Z
=sup  sup  f(Puz)
Px U—=>X—->Y—Z

<sup sup f(Puz)
Px U—=Y—>Z

<sup sup f(PUZ)
Py U—=Y—Z

= Loap(Y = 2)

where (46) follows because Py are the same under the
Markov chains U — X — Z and U — X — Y — Z, and (48)
follows from the fact that a subset of all distributions Py is
reachable from the distribution Px.

Non-negativity: Consider the logarithmic term in (6):

B

(45)
(46)
(47)

(48)

IOgZPY\X y|:1: (ZP PY|X (y|z)* ) 49)
B

2 IOgZPY|X yla')'™ ’8<ZP z)Py|x y|x)> (50)
N PX(x)PY|X(y|x)>B

=1 P 51
B

n 2oz Py (2) Py x (y|z)
> ] P 52
B
= log (ZP x) Py x ( y|x)> =logl=0 (53)

where both inequalities follow from applying Jensen’s inequal-
ity to the convex function f : z — zP (z > 0, p > 1) and the
fact that logarithmic functions are increasing. Equality holds
in the first inequality if and only if for any y € Y, Py x (y|z)
are the same for all x € X. Thus, we have

Py x(ylz) = Py (y)

which means X and Y are independent. This condition is also
sufficient for equality in the second inequality.

Additivity: Due to space limitations, the proof is relegated
to [11].

reX,ye)y (54)
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