
Resilience to Malicious Activity in Distributed Optimization
for Cyberphysical Systems
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Abstract— Enhancing resilience in distributed networks in
the face of malicious agents is an important problem for which
many key theoretical results and applications require further
development and characterization. This work develops a new
algorithmic and analytical framework for achieving resilience to
malicious agents in distributed optimization problems where a
legitimate agent’s dynamic is influenced by the values it receives
from neighboring agents and its own self-serving target func-
tion. We show that by utilizing stochastic values of trust between
agents it is possible to recover convergence to the system’s
global optimal point even in the presence of malicious agents.
Additionally, we provide expected convergence rate guarantees
in the form of an upper bound on the expected squared distance
to the optimal value. Finally, we present numerical results that
validate the analytical convergence guarantees we present in
this paper even when the malicious agents are the majority of
agents in the network.

I. INTRODUCTION

Distributed optimization is at the core of various multi-
agent tasks including distributed control and estimation,
multi-robot tasks such as mapping, and many learning tasks
such as Federated Learning [1]–[3]. Owing to a long history
and much attention in the research community, the theory for
distributed optimization has matured, and several important
results provide rigorous performance guarantees in the form
of convergence and convergence rate for different function
types, underlying graph topologies, and noise [4]–[8]. How-
ever, an understanding of how these results hold in the face
of malicious activity is largely unclear.

With the growing prevalence of multi-agent and cyber-
physical systems, and their reliance on distributed optimiza-
tion methods for correct functioning in the real world, it
becomes critical that the vulnerability of these methods is
well understood. In particular, malicious agents can greatly
interfere with the result of a distributed optimization scheme,
driving the convergence to a non-optimal result or pre-
venting convergence altogether by either not sharing key
information or by manipulating key information such as the
shared gradients critical for the correct functioning of the
distributed optimization scheme [9]–[11]. Note that while
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stochastic optimization methods have long given treatment
to the problem of noise for these systems [12], [13], a ma-
licious agent has the ability to inject intentionally biased or
manipulated information which can lead to greater potential
damage for these systems. As a result, recent works have
increasingly turned attention to the investigation of robust
and resilient versions of distributed optimization methods in
the face of malicious intent and/or severe (potentially biased)
noise [9]–[11], [14], [15]. These approaches can be coarsely
divided into two categories, those that use the transmitted
data between nodes to infer the presence of anomalies (for
example see [10], [16]), and those that exploit additional
side information from the network or the physicality of
the underlying cyberphysical system to provide additional
channels of resilience [17]–[19].

We are interested in investigating the class of problems
where the physicality of the system plays an important role
in achieving new possibilities of resilience for these systems.
Indeed the physicality of cyberphysical systems has been
shown to provide many new channels of verification and es-
tablishing inter-agent trust through watermarking [20], wire-
less signal characteristics [19], [21], side information [22],
and camera or lidar data cross-validation [23].

We capitalize on this observation which motivates us to
focus on a class of problems where there is some extra
information in the system that can be exploited. We abstract
this information as a value αij that indicates the likelihood
with which an agent i can trust data received from another
agent j. We show that under mild assumptions, when this in-
formation is available, several powerful results for distributed
optimization can be recovered such as 1) convergence to
the true optimal point in the case of minimization over the
sum of strongly convex functions, and 2) characterization
of convergence rate that depends on the network topology,
the amount of trust observations acquired, and the number
of legitimate and malicious agents in the system.

A. Related Work

In the absence of malicious agents, the legitimate agents
can construct iterates converging to an optimal point x⋆

L by
using either their gradients, or sub-gradients when their ob-
jective functions are not differentiable. Each agent i updates
its data value by considering the data values of its neighbors,
and its self-serving gradient direction of its objective function
fi or the directions obtained from its neighbors. Convergence
to an optimal point x⋆

L can be achieved for constrained
multi-agent problem (1) in [4], [6], [24]–[30] and with
limited gradient information [31], [32]. Also, a zero-order
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method has been proposed in [33]. Some works, such as [4],
assume that the weight matrices, which dictate how agents
incorporate the data they receive from their neighbors, are
doubly-stochastic. However, works such as [27] overcome
this assumption by performing additional weighted averaging
steps. The convergence rate of the method (2) is at best
O
(
1
T

)
where T is the algorithm running time, see [29].

To harm the system, a malicious agent can send falsified
data to their legitimate neighbors. If the legitimate agents
are unaware of their malicious neighbors, then the malicious
agents will succeed in controlling the system [9], [10],
[34]–[36]. To combat the harmful effect of an attack, the
approach taken in [34], [36] requires the existence of a set
of connected legitimate agents (trusting each other) such
that all other agents are connected to at least one trusted
agent, which is unrealistic, especially for robotic and ad-
hoc networks with sporadic communications. The approaches
in [9], [10], [35], [37] rely on the agent data values to detect
and discard the malicious inputs and have an upper bound
on the number of tolerable malicious agents (with a star
network having the largest number - half of the number of
agents in the network) [35]. When the number of malicious
agents exceeds the tolerable number, the attack succeeds
and malicious agents evade detection. In contrast with the
existing works, our proposed method provides a significantly
stronger resilience to malicious activity by exploiting the
physical aspect of the problem, i.e., the wireless medium.
Thus, each legitimate agent can learn trustworthy neighbors
while optimizing the system objective. Our prior work [38]
studies the implications of the agents’ learning ability, with
regards to the trustworthiness of their neighbors, on dis-
tributed consensus systems. In this work, we consider the
more general case of distributed optimization systems where
the agent’s goal is to minimize a global function under local
information.

B. Paper Organization

The rest of this paper is organized as follows: Section
II presents the system model and problem formulation.
Section III presents our learning mechanism for detecting
malicious agents. Section IV proposes our algorithm for
resilient distributed optimization, and Section V provides
analytical guarantees for its convergence. Finally, Section VI
presents numerical results to validate our analytical results,
and Section VII concludes the paper. Proofs are omitted due
to space limitations and can be found in an online extended
version of this paper [39].

II. PROBLEM FORMULATION

We consider a multi-agent system of n agents communi-
cating over a network, which is represented by an undirected
graph, G = (V,E). The node set V = {1, . . . , n} represents
the agents and the edge set E ⊂ V×V represents the set of
communication links, with {i, j} ∈ E indicating that agents
i and j are connected. We study the case where an unknown
subset of the agents is malicious and the trustworthy agents
are learning which neighbors they can trust. Thus, V =

L ∪M where L is the set of legitimate agents that execute
computational tasks and share their data truthfully, and M
denotes the set of agents that are not truthful. The sets L and
M are just modeling artifacts, and none of the legitimate
agents knows if it has malicious neighbors or not, at any
time. Throughout the paper, we will use the subscripts L
and M to denote the various quantities related to legitimate
and malicious agents, respectively.

We are interested in a general distributed optimization
problem, where the legitimate agents aim at optimizing a
common objective whereas the malicious agents try to impair
the legitimate agents by malicious injections of harmful data.
The aim of the legitimate agents is to minimize distributively
the sum of their objective functions in the constraint set
X ⊂ Rd, i.e.:

x⋆
L = argmin

x∈X
fL(x), with fL(x) =

1

|L|
∑
i∈L

fi(x). (1)

By choosing a local update rule and exchanging some infor-
mation with their neighbors, the legitimate agents want to
determine an optimal solution x⋆ to Eq. (1). In contrast, the
malicious agents aim to either lead the legitimate agents to a
common non-optimal value x such that fL(x) > fL(x

⋆), or
prevent the convergence of an optimization method employed
by legitimate agents.

A. Notation

Let xT denote the transpose of x, where x ∈ Rd. We
denote by ∥x∥ ≜

√
xTx the ℓ2 vector norm of x. We let

ΠX (x) be the projection of x onto the set X , i.e.,

ΠX (x) = argminy∈X ∥y − x∥.

Finally, we denote by E(·) the expectation operator.

B. The update rule of agents

We propose distributed methods with significantly stronger
resilience compared to [10]. This is enabled by each le-
gitimate agent learning which neighbors it can trust while
optimizing a system objective.
The update rule of legitimate agents. Each legitimate
agent i updates xi(t) by considering the values xj(t) of its
neighbors and the gradient of its own objective function fi
similarly to the iterates described in [4]1. When malicious
agents are present, this method takes the following form: for
every legitimate agent i,

ci(t) = wii(t)xi(t) +
∑
j∈Ni

wij(t)xj(t),

yi(t) = ci(t)− γ(t)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) , (2)

where γ(t) ≥ 0 is a stepsize that is common to all agents
i ∈ L at each time t, and Ni is the set of neighbors of agent
i in the communication graph. The set Ni is composed of
both legitimate and malicious agents. Finally, the weights
wij(t), j ∈ Ni ∪ {i}, are nonnegative and sum to 1.

1Note, however, that [4] does not include projection on the set X .
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The update rule for the malicious agents. Malicious agents
i ∈ M choose values arbitrarily in the set X . We assume
that their actions are not known, and thus we do not model
them. For simplicity of exposition, the dynamic (2) captures
malicious inputs, where an adversarial agent i ∈ M sends
all its legitimate neighbors identical copies of its chosen
input xi(t) at time t. Let us denote by xij(t) the input of
a malicious agent i to a legitimate agent j at time t, then
xij1(t) = xij2(t) for every j1, j2 ∈ L. Nonetheless, our
analytical results also hold for byzantine inputs where an
adversarial agent i ∈ M can send its legitimate neighbors
different inputs at time t. In this case xij1(t) need not be
equal to xij2(t) for every j1, j2 ∈ L.

C. Trust values

We employ a probabilistic framework of trustworthiness
where we assume the availability of stochastic observations
of trust between communicating agents. This information
is abstracted in the form of a random variable αij defined
below.

Definition II.1 (αij). For every i ∈ L and j ∈ Ni, the
random variable αij ∈ [0, 1] represents the probability that
agent j is a trustworthy neighbor of agent i. We assume the
availability of such observations αij(t) throughout the paper.

This model of inter-agent trust observations has been used
extensively in prior works [21], [38]. The focus of the current
work is not the derivation of the αij values themselves,
but rather on the derivation of a theoretical framework for
achieving resilient distributed optimization using this model.
Indeed, we show that much stronger results of convergence
are achievable by properly exploiting this information in
the network. We refer to [21] for an example of such an
αij value. Intuitively, a random realization αij(t) of αij

contains useful trust information regarding the legitimacy of
a transmission.

We assume that a value of αij(t) > 0.5 indicates a
legitimate transmission and αij(t) < 0.5 indicates a mali-
cious transmission in a stochastic sense (misclassifications
are possible). Note that αij(t) = 0.5 means that the obser-
vation is completely ambiguous and contains no useful trust
information for the transmission at time t.

We use the following assumptions throughout the paper:

Assumption 1. (i) [Sufficiently connected graph] The sub-
graph GL induced by the legitimate agents is connected.
(ii) [Homogeneity of trust variables] There are scalars EL >
0 and EM < 0 such that

EL ≜ E(αij(t))− 0.5 for all i ∈ L, j ∈ Ni ∩ L,

EM ≜ E(αij(t))− 0.5 for all i ∈ L, j ∈ Ni ∩M.

(iii) [Independence of trust observations] The observations
αij(t) are independent for all t and all pairs of agents i and
j, with i ∈ L, j ∈ Ni. Moreover, for any i ∈ L and j ∈ Ni,
the observation sequence {αij(t)} is identically distributed.
We note that these are standard assumptions when using the
probabilistic trust framework employed here [21], [38].

D. Assumptions on the objective functions and initial points

Assumption 2. We assume that X ⊂ Rd is compact and
convex and that there exists a known value η > 0 such that

∥x∥ ≤ η, ∀x ∈ X . (3)

The η value in Assumption 2 is arbitrary, and its role is
to bound the malicious agents’ inputs away from infinity.

Assumption 3. For all legitimate agents i ∈ L, the function
fi is µ-strongly convex and has L-Lipschitz continuous gra-
dients, i.e., ∥∇fi(x)−∇fi(y)∥ ≤ L∥x−y∥, for all x ∈ Rd.

Corollary 1. When X is compact, Assumption 3 implies that
there is a scalar G such that ∥∇fi(x)∥ ≤ G, ∀x ∈ X , i ∈ L.

Assumption 4. Let the stepsize sequence {γ(t)} be
nonnegative, monotonically nonincreasing, and such that∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

E. Objectives

The objective of this work is to arrive at strong
convergence results for the distributed optimization problem
in Eq. (1) in the presence of malicious agents M. We wish
to achieve this by carefully exploiting the availability of
trust values αij(t) in the network. Specifically we aim to
achieve the following:

Objective 1 - We wish to construct weight sequences
{wij(t)}, i ∈ L, j ∈ Ni in the method (2) to weight the
influence of neighboring nodes in each legitimate agent’s
update. Specifically, we wish to construct these sequences
such that they converge over time to some nominal weights
wij , i ∈ L, j ∈ Ni, almost surely (a.s.), where wij = 0 for
all malicious neighbors j ∈ Ni ∩M of agent i ∈ L.

Objective 2 - Utilizing the proposed weights {wij(t)}t=1,...,
we aim to show that the iterates given by (2) converge
(in some sense) to the true optimal point x⋆

L ∈ X under
Assumptions 1-4.

Objective 3 - We aim to establish an upper bound on the
expected value of ∥xi(t)−x⋆

L∥2, for all i ∈ L, as a function
of the time t, for the iterates xi(t) produced by the method.

III. LEARNING THE SETS OF TRUSTED NEIGHBORS

In this section we establish a few key characteristics of
the stochastic observations αij(t) that result from the model
described in Section II-C and that we will subsequently use
to establish the convergence of the iterates in Eq. (2). We
consider the sum over a history of αij(t) values that we
denote by βij(t):

βij(t) =
t−1∑
k=0

(αij(k)− 0.5) for t ≥ 1, i ∈ L, j ∈ Ni, (4)

and define βij(0) = 0. Intuitively, following the discussion
on αij’s immediately after Definition II.1, the values βij(t)
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will tend towards positive values for legitimate agent trans-
missions i ∈ L and j ∈ Ni ∩ L, and will tend towards neg-
ative values for malicious agent transmissions where i ∈ L
and j ∈ Ni∩M. We restate an important result shown in [38]
regarding the exponential decay rate of misclassifications
given a sum over the history of stochastic observation values
that we will use extensively in the forthcoming analysis.

Lemma 1 (Lemma 2 [38]). Consider the random variables
βij(t) as defined in Eq. (4). Then, for every t ≥ 0 and every
i ∈ L, j ∈ Ni ∩ L,

Pr (βij(t) < 0) ≤ max{exp(−2tE2
L),1{EL<0}}.

Additionally, for every t ≥ 0 and every i ∈ L, j ∈ Ni ∩M,

Pr (βij(t) ≥ 0) ≤ max{exp(−2tE2
M),1{EM>0}}.

In other words, the probability of misclassifying malicious
agents as legitimate, or vice versa, decays exponentially in
the accrued number of t observations.

Corollary 2. There exists a random finite time Tf such that

βij(t) ≥ 0 for all t ≥ Tf and all i ∈ L, j ∈ Ni ∩ L,
βij(t) < 0 for all t ≥ Tf and all i ∈ L, j ∈ Ni ∩M, (5)

and there exists i ∈ L such that

βij(Tf − 1) < 0 for some j ∈ Ni ∩ L, or

βij(Tf − 1) ≥ 0 for some j ∈ Ni ∩M. (6)

Proof. It follows directly from [38, Proposition 1].

Let |Ni ∩ L| be the number of legitimate neighbors of
agent i, and |Ni∩M| be the number of malicious neighbors
of agent i. We define by DL the total number of legitimate
neighbors, similarly we define by DM the total number of
malicious neighbors, with respect to the legitimate agents.
That is,

DL ≜
∑
i∈L

|Ni ∩ L| and DM ≜
∑
i∈L

|Ni ∩M|.

Additionally, we define the following upper bound on the
probability that at least one legitimate agent misclassifies
one of its legitimate neighbors as malicious or one of its
malicious neighbors as legitimate, when observing k trust
values for each of its neighbors

pc(k) ≜ 1{k≥0}

[
DLe

−2kE2
L +DMe−2kE2

M

]
.

Furthermore, we define the following upper bound on the
probability that a legitimate agent misclassifies one of its
legitimate or malicious neighbors, in one of the times after
observing k trust values for each of its neighbors

pe(k) ≜ DL
exp(−2kE2

L)

1− exp(−2E2
L)

+DM
exp(−2kE2

M)

1− exp(−2E2
M)

.

Using these quantities, we obtain some useful bounds on the
probabilities of the events (Tf = k) and (Tf > k − 1) for
any k ≥ 0, as follows.

Lemma 2. For every k ≥ 0

Pr(Tf = k) ≤ min{pc(k − 1), 1}, (7)

and

Pr(Tf > k − 1) ≤ min{pe(k − 1), 1}. (8)

IV. THE ALGORITHM

This section presents Algorithm 1 which incorporates the
agent’s learning of inter-agent trust values into the dynamic
(2) through the choice of the time-dependent weights wij(t).
These weights depend on a parameter T0 that captures the
number of trust measurements a legitimate agent collects
before trusting one of its neighbors. We note that the
parameter T0 is used to reduce the convergence rate of
Algorithm 1. Nonetheless, Algorithm 1 convergence to the
nominal optimal point x⋆

L for any choice of nonnegative
integer T0, including the special case where T0 = 0. In this
case, legitimate agents have no prior trust observations to rely
on when they first decide whether to trust their neighbors.

A. The weight matrix sequence

We define a time dependent trusted neighborhood for
agent i ∈ L as:

Ni(t) ≜ {j ∈ Ni : βij(t) ≥ 0}. (9)

This is the subset of neighbors that legitimate agent i
classifies as its legitimate neighbors at time t. For all t ≥ 0,
let

di(t) ≜ |Ni(t)|+ 1 ≥ 1 for all i ∈ L.

At each time t, every agent i sends the value di(t) to its
neighbors j ∈ Ni in addition to the value xi(t). Alterna-
tively, we can assume that agent i sends di(t) to its neighbors
only when the value di(t) changes.

Legitimate agents are the most susceptible to making
classification errors regarding the trustworthiness of their
neighbors when they have a small sample size of trust
value observations. Thus, we delay the updating of legitimate
agents’ values until time T0 ≥ 0. Up to that time, the
legitimate agents only collect observations of trust values.
Let 1{A} denote the indicator function; it is equal to one if
the event A is true and zero otherwise. We define the weight
matrix W (t) by choosing its entries wij(t) as follows: for
every i ∈ L, j ∈ Ni,

wij(t) =


1{t≥T0}

2·max{di(t),dj(t)} if j ∈ Ni(t),

0 if j /∈ Ni(t) ∪ {i},
1−

∑
m∈Ni

wim(t) if j = i.
(10)

Using the weights (10) and letting the stepsize γ(k) =
0, ∀k < 0, the dynamic in Eq. (2) is equivalent to the
following dynamic where agents only consider the data
values received from their trusted neighbors at time t, i.e.,
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Algorithm 1 The protocol of agent i ∈ L.
Inputs: T , T0, Ni, xi(0), ∇fi(·), γ(·).
Outputs: xi(T ).
Set βij(t) = 0 for all j ∈ Ni;
for t = 0, . . . , T − 1 do

Set Ni(t) = {j ∈ Ni : βij(t) ≥ 0};
Set di(t) = |Ni(t)|+ 1;
Send xi(t) and di(t) to neighbors;
for j ∈ Ni do

Receive xj(t) and dj(t);
Extract αij(t);
Set βij(t+ 1) =

∑t
k=0 (αij(k)− 0.5);

Set the weight wij(t) based on the values of T0,
βij(t), di(t), and dj(t) as follows:

wij(t) =
1{t≥T0}1{j∈Ni(t)}

2max{di(t), dj(t)}
;

end for
Set wii(t) = 1−

∑
m∈Ni

wim(t);
Set xi(t+ 1) according to the dynamic (11);

end for

Ni(t), when computing their own value updates:

ci(t) = wii(t)xi(t) +
∑

j∈Ni(t)∩L

wij(t)xj(t) +
∑

j∈Ni(t)∩M

wij(t)xj(t),

yi(t) = ci(t)− γ(t− T0)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) . (11)

The dependence of the weights wij(t) on the trust ob-
servation history βij(t) comes in through the choice of
time-dependent and random trusted neighborhood Ni(t) (cf.
Eqn. 9). Consequently, some entries of the matrix W (t) are
also random, as seen from Eq. (10). The gradients ∇fi(xi(t))
are stochastic due to the randomness of xi(t), however,
they are not unbiased as typically assumed in stochastic
approximation methods, including [40], thus we cannot
readily rely on prior analysis for stochastic approximation
methods. However, as we show in our subsequent analysis,
the variance of ∥∇fi(xi(t))∥ decays sufficiently fast and
allows convergence to the optimal point even in the presence
of malicious agents.

V. ANALYTICAL RESULTS

This section presents the convergence characteristics of
Algorithm 1. Our main result states that by incorporating
trust values through βij(t) for all i ∈ L and j ∈ Ni,
Algorithm 1 converges (in the mean-squared) sense to the
optimal value of the optimization problem in Eq. (1) even in
the presence of malicious agents.

The two forthcoming auxiliary lemmas help us establish
our main result given in Theorem 1.

Let us denote di,L ≜ |Ni ∩ L| + 1. Next, we define the
doubly stochastic matrix WL ∈ [0, 1]|L|×|L| with the entries

[WL]i,j , for every i, j ∈ L:

[WL]i,j =


1

2·max{di,L,dj,L} if , j ∈ Ni,

0 if , j /∈ Ni(t) ∪ {i},
1−

∑
m∈Ni∩L

wim if j = i.
(12)

Note that WL is the nominal weight matrix, or what the
weight matrix would be in the absence of malicious agents.
Let σ2(A) be the second largest singular value of A, and
denote ρL = maxk≥1 σ2(W

k

L). Since G is connected and
WL is doubly stochastic, ρL < 1 is equal to the second
largest eigenvalue modulus of WL. By [41, Lemma 2.2] ρL
can be upper bounded by (1 − 1/(71|L|2)), [42] improves
the constant of this bound to 4.

Lemma 3. Let r ∈ {1, 2}, i ∈ L, and t ≥ 0. Then,

E

 ∑
j∈Ni∩L

|wij(k)− wij |

r  ≤ pc(k),

E

 ∑
j∈Ni∩M

wij(k)

r  ≤ pc(k)

2r
,

E [|wii(k)− wii|r] ≤
pc(k)

2r
.

Next, we present an auxiliary lemma to upper bound the
expected distance between an agent’s value and the average
agents’ values at time t.

Denote, t/2 ≜ ⌊ t
2⌋,

xL(t) ≜
1

|L|
∑
i∈L

xi(t),

and

δM(t, T0) ≜ 2ηρt−T0

L +
(2η

√
pc(T0) +Gγ(0))ρ

(t−T0)/2
L

1− ρL

+
2(η

√
pc((t+ T0)/2) +Gγ((t− T0)/2))

1− ρL
.

(13)

Lemma 4. For every t ≥ 0

1

|L|
∑
i∈L

E∥xi(t)− xL(t)∥ ≤ δM(t, T0), and

1

|L|
∑
i∈L

E∥xi(t)− xL(t)∥2 ≤ δ2M(t, T0).

Before presenting the main result of this paper we denote
the special function h(T ) which has the form

h(T ) ≜
G2T

µ
+

2G2T

µ(1− ρL)
+

8(µ+ L)G2

µ2(1− ρL)2
ln

(
T + 2

2

)
+

2ηG

1− ρL
+

2(µ+ L)(µη + 2G)2

µ2(1− ρL)2

+
2G2 + 4Gη(µ+ L)

µ(1− ρL)3
+

G2(µ+ L)

µ2(1− ρL)4
.

Note that this function grows linearly in T and is comprised

4189

Authorized licensed use limited to: ASU Library. Downloaded on May 31,2023 at 00:29:13 UTC from IEEE Xplore.  Restrictions apply. 



of the first term which captures the error rate for the
centralized gradient descent optimization (see [43]) without
malicious agents, and the following terms that include ρL,
capture the contribution from distributing the optimization
over a decentralized network (without malicious agents) that
is characterized by the second largest eigenvalue modulus of
WL.

Theorem 1. Algorithm 1 converges to the optimal point x∗
L

in the mean-squared sense for every collection xi(0) ∈ X ,
i ∈ L, of initial points i.e.,

lim
t→∞

E
[
∥xi(t)− x⋆

L∥2
]
= 0, ∀ i ∈ L, (14)

whenever
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞.

Moreover, let γ(t) = 2
µ(t+2) . Then, for every T0 ≥ 0

and T ≥ T0 there exists a function CM(T0) that decreases
exponentially with T0 and is independent of T such that for
any collection xi(0) ∈ X , i ∈ L, and for all T ≥ T0,

1

|L|
∑
i∈L

E
[
∥xi(T )− x⋆

L∥2
]

≤ min

{
4η2,

4h(T − T0) + CM(T0)

µ(T − T0)(T − T0 + 1)

}
. (15)

Intuitively, the CM(T0) term above represents the error
term contributed by the presence of malicious agents in the
distributed network. It can be seen that for large enough T
the entire term on the right of the inequality (15) decays on
the order of O

(
1
T

)
.

We point out that unlike the analysis for stochastic gradient
models such as [40], in our model wij(t) and xj(t) are cor-
related. This follows by the statistical dependence of wij(t)
and wij(t − 1). Thus, we cannot use the standard analysis
which requires that E[wij(t)xj(t)] = E[wij(t)]E[xj(t)].
Finally, we observe that using the nonnegativity of the vari-
ance of random variables, the limit (14), and the sandwich
theorem we can conclude that limt→∞ E[∥xi(t) − x⋆

L∥] =
0, ∀i ∈ L. Alternatively, we can prove this result by recalling
that convergence in expectation in the rth moment implies
convergence in expectation in the sth moment whenever
0 < s < r.

By Theorem 1 we are able to recover convergence to
the optimal value of the original distributed optimization
problem given in Eq. (1) even in the presence of malicious
agents, and further, we have established an upper bound on
the expected value of ∥xi(t) − x⋆

L∥2, for all i ∈ L, as a
function of the time t as given by Eq. (15) in Theorem 1.

VI. NUMERICAL RESULTS

This section presents numerical results that validate the
convergence results we derived for Algorithm 1. As a
benchmark, we compare the performance of our proposed
Algorithm 1 to that of [10] which adapts the W-MSR
consensus algorithm [44] to the case of distributed optimiza-
tion. Following the notations in [10], we denote by F the
maximal number of highest values and lowest values that
each legitimate agent discards, overall a legitimate agent may
ignore no more than 2F values.

Fig. 1. Undirected graph G. Two agents are neighbors if they are
connected by an edge. Legitimate and malicious agents are depicted
by blue and red nodes, respectively. Edges between legitimate
agents are depicted by black solid lines. Edges between legitimate
and malicious agents are depicted by red dashed lines.

We consider a distributed network with |L| = 15 le-
gitimate agents and |M| ∈ {15, 30} malicious agents. To
maximize the malicious agents’ impact we assume that every
malicious agent is connected to all the legitimate agents.
The legitimate agents connectivity is captured by Fig. 1. The
legitimate agents values are one-dimensional and lie in the
interval [−η, η], where η = 50. The legitimate agents aim to
minimize the function

1

|L|
∑
i∈L

(x− ui)
2,

where (ui)
15
i=1 = (115.7, 163.3,−81.7, 127.2,−63.7, 58.4,

−3.1, 62.9, 54.5, 144.9,−121.1, 9.3,−2.6,−124.5, 131). In
this case, x⋆

L ≈ 31.367 where the approximation is to the
third digit on the right. The initial values of the legitimate
agents are chosen randomly in the set [−η, η]. Additionally,
we choose

γ(t) =
10

t+ 2
· 1{t≥0}.

To maximize the harmful impact of malicious agents on our
analytical results, we choose the malicious agents’ values to
be equal to −50, i.e., −η, at all times. Finally, we have
E[αij ] = 0.55 if j ∈ Ni ∩ L, and E[αij ] = 0.45 if
j ∈ Ni ∩ M. The random variables αij are uniformly
distributed on the interval

[
E[αij ]− ℓ

2 ,E[αij ] +
ℓ
2

]
. We

consider the values ℓ: 0.6, 0.8, in both scenarios |EL| =
|EM| = 0.05, however, the variance of the trust values
when ℓ = 0.8 are higher. We remark that the legitimate
agents are ignorant regarding the values E[αij ] and ℓ. We
average the results across 100 system realizations. Denote
e(t) ≜ 1

|L|
∑

i∈L |xi(t)− x⋆
L|.

Figs. 2 and 3 capture the average value of the distance of
each legitimate agent from the optimal point x⋆

L normalized
by the average of this initial distance, i.e., the average
value of e(t)

e(0) , for each time t. We can see that the W-
MSR algorithm fails to converge to the optimal solution.
This occurs due to the high number of malicious agents,
which is higher in this case than the tolerance threshold2 in
[10]. Additionally, the W-MSR algorithm is not guaranteed
to converge to the optimal value x⋆

L but to a value in

2We can upper bound the tolerance threshold for this setup by 2 following
our argument in [38].

4190

Authorized licensed use limited to: ASU Library. Downloaded on May 31,2023 at 00:29:13 UTC from IEEE Xplore.  Restrictions apply. 



0 500 1000 1500 2000 2500

10-2

10-1

100

101

W-MSR with F=8
T0=1

T0=25

T0=50

T0=100

T0=200

Fig. 2. Average of e(t)
e(0)

of as a function of t for |M| = 15, ℓ = 0.8.
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Fig. 3. e(t)
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as a function of t for |M| = 30, ℓ = 0.6.

the convex hull of Π[−η,η](ui), i ∈ L. In our case this
convex hull is exactly the interval [−η, η], thus the W-MSR
algorithm cannot guarantee the reduction of the distance
to the optimal value with respect to the interval [−η, η].
In contrast, Algorithm 1 provides resilience to malicious
activity and can tolerate even 15 = |L| and 30 = 2|L|
malicious agents, as evident in Figs. 2 and 3. Furthermore,
we can see from Figs. 2 and 3 that Algorithm 1 is robust to
small values of |EL| and |EM|. Finally, Figs. 2 and 3 show
that the variance of the trust values has more impact on T0

values that are smaller than 50. This occurs since the higher
variance of the trust values increases the misclassification
errors. Since the probability of these errors decreases with
T0, they are less impactful when T0 is 100 or higher.

VII. CONCLUSIONS

This work studies the problem of resilient distributed
optimization in the presence of malicious activity with an
emphasis on cyberphysical systems. We consider the case

where additional information in the form of stochastic inter-
agent trust values are available. Under this model, we pro-
pose a mechanism for exploiting these trust values where
legitimate agents learn to distinguish between their legitimate
and malicious neighbors. We incorporate this mechanism
to arrive at resilient distributed optimization where strong
performance guarantees can be recovered. Specifically, we
ensure the convergence of our algorithm to the optimal
solution of the nominal distributed optimization system with
no malicious agents, and we present an upper bound on the
expected distance of the agents’ iterates from the optimal so-
lution. Finally, we present numerical results that demonstrate
the performance of our proposed distributed optimization
framework.
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