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Abstract—Deep Learning (DL) models achieve great successes in
many domains. However, DL models increasingly face safety and ro-
bustness concerns, including noisy labeling in the training stage and
feature distribution shifts in the testing stage. Previous works made
significant progress in addressing these problems, but the focus has
largely been on developing solutions for only one problem at a time. For
example, recent work has argued for the use of tunable robust loss func-
tions to mitigate label noise, and data augmentation (e.g., AUGMIX) to
combat distribution shifts. As a step towards addressing both problems
simultaneously, we introduce AUGLOSS, a simple but effective methodol-
ogy that achieves robustness against both train-time noisy labeling and
test-time feature distribution shifts by unifying data augmentation and
robust loss functions. We conduct comprehensive experiments in varied
settings of real-world dataset corruption to showcase the gains achieved
by AUGLOSS compared to previous state-of-the-art methods. Lastly, we
hope this work will open new directions for designing more robust and
reliable DL models under real-world corruptions. The GitHub link to the
paper and code repository is: https://github.com/SankarLab/AugLoss.

1 INTRODUCTION

D EEP learning (DL) models achieve great successes in
many domains. With such great successes, DL models

have been deployed in many applications, even safety-
critical applications (e.g., autonomous driving and health-
care). Modern DL models rely heavily on the ability of
training data to estimate and represent the data encountered
during deployment. However, such a design introduces
problems in both the training and testing stages of the
machine learning (ML) pipeline. In the training stage, data
curating procedures are often imperfect, leading to errors
in the labeling process. For instance, recent results highlight
that the amount of label noise in publicly-available image
datasets is ≈ 8% to 38.5% [1]. This, in turn, affects the
robustness and reliability of the DL models.

In the testing stage, the trained and deployed model
often encounters new scenarios, thereby introducing a mis-
match between the train and test distributions. State-of-
the-art (SoTA) DL models exhibit overconfident predictions
when the train and test sets are independent and identically
distributed [2], which leaves them particularly vulnerable
to test-time feature distribution shifts [3]. For instance, [4]
shows that adding small common corruptions (e.g., snow,
blue, pixelation) to the test images are enough to subvert

existing classifiers; specifically, the test error of a ResNet-50
model rises from 24% on ImageNet to 76% on ImageNet-C.

The above two problems threaten the trustworthiness
and adoption of ML algorithms in safety and security-
critical domains; therefore, it is critical to develop techniques
that robustify ML models under both noisy labeling in the
training stage and feature distribution shift in the testing
stage. There has been steady progress made in addressing
these problems, but focus has largely been on developing
solutions for only one problem at a time. For instance,
a range of methods including meta-learning [5], [6], loss
correction [7], and parameterized loss functions [8], [9], [10],
[11] have been proposed to robustify models against noisy
labeling. However, it is unclear that such methods may
continue to be robust in the face of a test-time distribution
shift. Similarly, many methods have been shown to improve
a model’s generalization ability against feature distribution
shift, including data augmentation [12], [13], adversarial
learning [14], and pre-training [15], [16]. However, such
methods have only been considered when the dataset is
exclusively corrupted by distribution shifts; their ability to
handle noisy training labels are unknown and unexplored.

In this work, we highlight the necessity of considering
both problems simultaneously while designing robust DL
models for real-world systems. In doing so, we present a ro-
bust methodology to tackle corruptions in both training (e.g.,
noisy labeling) and testing (e.g., feature distribution shift)
stages. To this end, we select two representative methods,
namely, robust (parameterized) loss functions and data aug-
mentation, that have been often used to address training-
and testing-stage corruptions, respectively. Unifying data
augmentation techniques with robust loss functions, we
propose AUGLOSS as a simple, yet effective methodology to
enhance robustness against both train-time noisy labeling
and test-time distribution shifts.

We consider three realizations of AUGLOSS by pairing
each of three well-studied robust loss functions – focal
loss [17], normalized cross entropy + reverse cross en-
tropy (NCE+RCE) [9], and α-loss [11] – with AUGMIX data
augmentation [18]. For comparison with oft-used methods,
our experiments also include the following: (i) cross entropy
(CE) loss without AUGMIX, (ii) AUGMIX without a robust
loss (i.e., with CE), (iii) each of the three robust losses
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without AUGMIX. We evaluate all of these options for
augmentation-loss choices by conducting comprehensive
experiments with the CIFAR-10/100 datasets. For each real-
ization, we produce WideResNet [19] models by first train-
ing on varied settings of synthetic and human-annotated
label noise [20], then testing on corrupted images of CIFAR-
10/100 [4]. We summarize our key contributions below.
• To the best of our knowledge, our proposed methodology,

AUGLOSS, is the first to combine data augmentation and
robust loss functions, thus offering an effective solution to
train-time noisy labeling and test-time distribution shift.
More broadly, AUGLOSS provides a blueprint to study the
efficacy of different augmentation and loss combinations.

• Our comprehensive experiments in varied settings of
train-label and test-feature corruptions showcase the
gains achieved by AUGLOSS compared to all other
augmentation-loss combinations listed earlier. Our key
contribution is in highlighting the efficacy of different
combinations for different corruption scenarios. In par-
ticular, we show that AUGLOSS (AUGMIX + robust loss)
methods consistently outperform the other combinations
across every tested setting of label noise.

• Lastly, we observe that although AUGLOSS outperforms
SoTA methods, our results also suggest that no single
robust loss function within the AUGLOSS framework is
a universal "best fit" across all tested settings of label
noise. In particular, our results suggest that the focal loss
performs well on CIFAR-100 corrupted by asymmetric
noise, the NCE+RCE loss generally performs well un-
der settings of high label noise (0.3,0.4), and the α-loss
performs well on both CIFAR-10 and CIFAR-100 datasets
when corrupted by symmetric label noise.

Our results, detailed in the sequel, highlight that our
proposed AUGLOSS methodology can enhance the perfor-
mance of DL models under both train-time noisy labeling
and test-time feature distribution shifts. We believe this is
an important step toward real-world robust DL systems.
The rest of the paper is organized as follows. In Section
2, we review the literature of robust loss functions and
data augmentation techniques. In Section 3, we present the
background, problem setup, and formulation of both robust
loss and data augmentation. Section 4 outlines the AUGLOSS
framework, and Section 5 details our experimental setup,
results, and discussion. Finally, we conclude in Section 6.

2 RELATED WORK

2.1 Loss Functions for Noisy Labeling

Using loss functions to mitigate noisy labels during training
is a strong tradition in machine learning [7], [21], [22]. A
common approach is the enhancement of the cross entropy
loss with hyperparameters (and possibly additional reg-
ularizing terms) that enable the practitioner to tailor the
loss to the desired application. In this vein, an important
hyperparameterized loss is the generalized cross entropy
(GCE), which was motivated by the Box-Cox transforma-
tion in statistics [10]. GCE was experimentally shown to
be robust to noisy labels in neural-networks. A general-
ization of GCE, called α-loss, was motivated by Arimoto
entropies arising in information theory [11]. The α-loss was

experimentally shown to be robust to noisy labels during
training across several algorithms (neural-networks, logistic
regression, and boosting), along with theoretical support
of these robustness characteristics [23]. Another important
hyperparameterized loss is the focal loss [17]. While the
focal loss was initially used for dense object detection
with great success, it has recently received deeper theoret-
ical scrutiny [23], [24], been observed to improve neural-
network calibration [25], and also applied to the problem of
noisy labels [9]. Lastly, an important hyperparameterized
loss function for noisy labels is NCE+RCE, which stems
from the framework of active-passive losses [9]. Unlike α-
loss and focal loss, NCE+RCE employs two hyperparame-
ters and is a linear combination of losses (see Section 3.2.1
for more details). Important for our purposes, NCE+RCE
has been successfully employed in computer vision appli-
cations, particularly in the very high noise regime. Overall,
α-loss, focal loss, and NCE+RCE have all been shown to
be robust to label noise in the training data, and hence
comprise a strong representative subset of the robust loss
function literature (for more examples, see [26], [27], [28],
[29]). However, to the best of our knowledge, each of these
loss functions have not been previously considered in the
joint setting of training and test domain shift, which we
argue is the real-world scenario addressed by our proposed
AUGLOSS methodology.

2.2 Data Augmentation for Domain Adaptation
The issue of domain shifts is an active field. In particular, DL
models learning on train data may not generalize well to the
test data if the train and test distributions are misaligned.
For example, adding small corruptions (e.g., snow, blue,
pixelation) to test images nearly triples the generalization
error of ResNet-50 models training on ImageNet [4]. Conse-
quently, the field of domain adaption has received much
attention, including the proposal of data augmentation
techniques that help robustify models under domain shift.
Specifically, Cutout, the occlusion of square input regions
during training, was shown to improve generalization error
on clean images [30]. Building on this, CutMix replaces
the occluded regions with portions of different images,
and yields better test performance on out-of-distribution
examples [31]. Similarly, Mixup synthesizes information
from two images by training on convex combinations of
two feature-target pairs [32]. Taking a different approach,
AutoAugment searches for improved data augmentation
policies – successive operations (e.g., translation, rotation)
that preserve image semantics – achieving state-of-the-art
validation accuracy on clean datasets [33]. Combining the
previous two approaches, AUGMIX enhances the training
set with mixtures of three (or less) augmented images,
each generated by its own chain of stochastically-sampled
operations [18]. Out of the proposed data augmentation
methods, AUGMIX achieves the best performance for out-
of-distribution testing; however, descendants of AUGMIX,
namely AugMax [14] and NoisyMix [34], combine data aug-
mentation with adversarial learning and stability training,
respectively, to achieve even better results under domain
shift. In this work, we consider the unification of data
augmentation with robust loss functions – one that, to our
best knowledge, is unexplored.
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3 PRELIMINARIES

3.1 Image Classification

Consider a feature-label pair of random variables (X,Y ) ∼
qX,Y sampled over feature space X and label space Y . In
this, we acknowledge the existence of a ground-truth pos-
terior distribution qY |X where qY |X(y|x) is the probability
that feature x ∈ X is representative of label y ∈ Y , and
a ground-truth marginal (or prior) distribution qX over
the the feature space, where qX(x) is the probability that
we observe x ∈ X . The underlying distribution qX,Y is
unknown, but we have access to some dataset serving as
a finite representation of qX,Y . We then look to develop a
method that learns a best estimate q̂Y |X of the posterior
qY |X given the observed dataset. An effective method in
this context should work to minimize the difference between
q̂Y |X and qY |X .

Oftentimes, the inner workings of the data-generating
process are inaccessible, and consequently we are only
provided the outcome (i.e., the observed dataset), which has
encouraged the development of practical methods biased
to several convenient assumptions about the dataset. For
example, it is common to assume that all dataset samples
are i.i.d: independent, and identically distributed according
to the evaluation samples. This way, a model fitting on a
subset of the data can generalize to the unforeseen examples
reflective of the ground truth. However, the data-generating
process is susceptible to particular obstacles that prevent
the satisfaction of i.i.d. and consequently hinder the effi-
cacy of learning methods depending on these assumptions.
Unaddressed limitations of data collection can mislead the
model’s perspective of qY |X and qX – the two factors
composing qX,Y – and ultimately welcome data drawn
from some perturbation of the ground-truth. We note these
limitations below.

3.1.1 Mislabeling of the Sampled Features

Supervised learning requires each observed feature in the
dataset to be properly annotated, but the accuracy is often
mitigated by factors including the subversion of experi-
enced domain experts [35], the unreliable nature of crowd-
sourcing platforms [36], and the threat of adversarial label-
flip attacks [37]. As a result, large-scale datasets are prone to
noisy labeling, where a fraction of the true labels are flipped
to false classes. In this case, the train labels are drawn from
some perturbation q̃Y |X of the true posterior qY |X .

In response to the growing concern of noisy label-
ing, recent work has been done on synthetic label noise
generation within clean datasets [38]. Standard methods
consider both symmetric (random labels flipped to other
uniform-random classes) and asymmetric (random labels
flipped to other visually-similar classes) approaches to noise
generation. Since label noise is frequently associated with
human error, real-world examples of asymmetric genera-
tion have recently received much interest: CIFAR-10N and
CIFAR-100N (a.k.a. CIFAR-*N), for instance, contain human-
annotated noisy labeling for the CIFAR-10 and CIFAR-100
images, collected by Amazon Mechanical Turk [20].

DL models that exhibit robustness under label corrup-
tion (noise) should give accurate classifications even after

Fig. 1: The 15 common corruptions on a HORSE-labeled image,
found in the CIFAR-10-C dataset.

fitting on a dataset with noisy labeling. Therefore, the stan-
dard approach to evaluating a model’s robustness includes:
(1) training on noisy labels, generated symmetrically or
asymmetrically; and (2) testing on clean labels.

3.1.2 Imperfect Sampling of the Feature Space
The data collection process requires each image in the
dataset to be sampled randomly from the feature space.
However, the execution of random sampling in practice
is often challenged by several factors. For example, the
feature-generating distribution may evolve over time and
experience a distributional shift during deployment [2].
Additionally, image datasets tend to reflect built-in biases in
which the curated features are drawn from a small subset of
the underlying distribution [7]. In either case, a distribution
mismatch exists between the training and testing stages,
and as a result, the train features are sampled from a
perturbation q̃X of the true prior qX .

Recent work has been done to address scenarios of
unforeseen data shifts in the prior distribution, includ-
ing the generation of real-world feature noise on clean
datasets. CIFAR-10-C and CIFAR-100-C (a.k.a. CIFAR-*C),
for instance, use fifteen algorithmically-generated corrup-
tions – including real-world noise, blur, weather, and digital
categories – on the CIFAR-10 and CIFAR-100 datasets to
generate a new image set reflective of data shifts potentially
encountered in practice [4]. Figure 1 shows the fifteen cor-
ruptions on a CIFAR-10 image.

The classification ability of robust, real-world DL models
should generalize to corrupted features after fitting on a
clean dataset. Hence, the standard approach to evaluating
a model’s robustness under data shift should include: (1)
training on clean features; and (2) testing on noisy features,
generated by common corruptions.

3.2 Dataset Corruption & Proposed Remedies

In this paper, we consider a dataset to be corrupted if
its train labels and features are drawn from a misaligned
posterior q̃Y |X and misaligned prior q̃X , respectively. With
the increasing prevalence of such large-scale datasets, we
argue that errors in the data collection process are inevitable,
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so effective learning methods require a particular degree of
robustness under realistic settings of dataset corruption. Our
methodology is primarily motivated by previous work done
on model robustness under label noise or feature noise, but
not both. Specifically, we consider two proposed techniques
that robustify models under one of the two noise types. The
techniques are presented below.

3.2.1 Robust Loss Functions
The basic loss function ` : P(Y |X) × Y → R+ maps an
estimated posterior distribution and true class label to a
performance measure with the intent of learning a posterior
distribution p̂ that minimizes the expectation of ` (p̂(x), y)
across all (x, y) pairs in the train set. For any reasonable
label corruption Dtrain 7→ D̃train to the train set, we generally
expect a loss function ` to be robust when the following
property holds:

argmin
p̂

ED̃train
` (p̂(x), y) ≈ argmin

p̂
EDtrain` (p̂(x), y) . (1)

However, in this paper, we relax the intuitive representation
of "robust loss" by asserting the following: loss functions
exhibit robustness if they achieve better performance, in
settings of train-time noisy labeling, than the standard loss
function in image classification, cross entropy (CE)

`CE(p̂, y) = − log (p̂(y)) , (2)

which has been shown to be non-robust under label
noise [9]. Moreover, recent progress has been made in the
formulation of robust tunable loss function families, includ-
ing focal loss [39], active-passive loss [9], and α-loss [11].
Specifically, a loss function family `θ parameterized by θ in
the space Θ is considered robust when there exists a tuning
θ∗ ∈ Θ such that `θ∗ is robust.

The focal loss family parameterized by γ ∈ [0, 5],

`FL(p̂, y; γ) = − (1− p̂(y))
γ

log (p̂(y)) , (3)

is experimentally shown to perform better than CE loss
under label noise when γ is tuned above 0 [39] (γ = 0 is
equivalent to CE). The NCE+RCE loss family parameterized
by (β1, β2) ∈ R2

+,

`NCE+RCE(p̂, y;β1, β2) = β1 · `NCE(p̂, y) + β2 · `RCE(p̂, y), (4)

is an example of active-passive loss – a proposed group of
loss function families that linearly combine an active loss
function and passive loss function. In this case, the active
loss is normalized cross entropy (NCE)

`NCE(p̂, y) =
`CE(p̂, y)∑

y′∈Y `CE(p̂, y′)
, (5)

and the passive loss is reverse cross entropy (RCE)

`RCE(p̂, y; δ) = δ
∑
y′ 6=y

p̂(y′) , δ > 0. (6)

In the NCE+RCE paper, δ is fixed to 4. Lastly, the α-loss
family parameterized by α ∈ (0,∞],

`α(p̂, y;α) =
α

α− 1

(
1− p̂(y)1−1/α

)
, (7)

encapsulates the exponential (α = 1/2), cross entropy (α =
1), and 0-1 (α→∞) losses. This family is shown to perform
better than CE loss under label noise when α > 1 [11].

3.2.2 Data Augmentation
Motivated by previous work on data augmentation [40],
[41], we generalize the augmenter A : X → Xn to return
an n-tuple

A(x) = (xorig, xaug1, xaug2, . . . , xaug(n−1)) (8)

from a given feature x ∈ X , where xorig := x and each
xaug(i) is a unique transformation of x. The model then
learns n distinct distributions

P̂ :=
(
p̂orig, p̂aug1, p̂aug2, . . . , p̂aug(n−1)

)
, (9)

where p̂orig fits on the train set Dtrain, and each p̂aug(i) fits on
the dataset {(xaug(i), y) : (x, y) ∈ Dtrain}.

The use of augmentation warrants a loss supplement
`2 : P(Y |X)n → R+ that synthesizes the information of
each learned distribution in P̂ into a measure of similarity.
Assuming true class preservation within A(x), an effective
form of regularization will ensure that ∀i∈[n−1] p̂aug(i) ≈
p̂orig, which aims to improve the model’s robustness under
varied settings of feature corruption. Training with data
augmentation makes use of the general loss function L

L(P̂ , y;λ) = `1(p̂orig, y) + λ · `2(P̂ ), (10)

where `1 is a basic loss function (e.g., CE loss) and `2 is an
augmentation regularizer scaled by some constant λ ∈ R+.

4 AUGLOSS FRAMEWORK

Previously, we made note of the following:
1) Robustness under label corruption should be evaluated

by training on noisy labels, then testing on clean labels.
2) Robustness under feature corruption should be evalu-

ated by training models on clean features, then testing
them on noisy features.

Motivated by robustness under real-world dataset corrup-
tion, we choose to unify the above two statements and
propose that robust DL models should perform well on
the novel task of training on noisy labels and clean features,
followed by testing on clean labels and noisy features. In this
section, we introduce AUGLOSS: a learning methodology
that combines the known techniques of data augmentation
and robust loss functions, formulating an effective solution
to our novel task. The two stages of this methodology are
illustrated in Figure 2 and outlined below.

Stage 1: Classification
The classification stage begins with a random sampling
(x, y) ∈ Dtrain of the train set; in practice, samples are
done in batches, but for clarity of exposition we notate
a single example. In the first step, data augmentation
is performed with an augmenter-of-choice A. The aug-
menter runs the original image x through a number of
distinct transformations, returning xorig := x along with the
newly-transformed images. Appropriate transformations
for the task-at-hand should be nontrivial: xaug(i) 6= xorig;
uniquely generated: xaug(i) 6= xaug(j), ∀i6=j ; visually realistic:
qX=xaug(i) ≈ qX=xorig ; preservative of class representations:
qY |X=xaug(i)

≈ qY |X=xorig ; and computationally feasible.
Then, each image in A(x) is fed through a network of

sufficient capacity (relative to the dataset) to produce a tuple
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Fig. 2: AUGLOSS: the unification of data augmentation and robust loss functions.

of estimated posterior distributions. Each output p̂aug(i)
represents a distribution over the label space, conditioned
on the augmented feature xaug(i).

Stage 2: Evaluation & Correction
The transformations undergone in the augmentation stage
should work to preserve the true class representation of
the original image, so an accurate classifier should embed
each augmented image similarly to the original one. To
ensure this, we train the model with the loss function L
in Eq. 10, pairing a basic loss function `1(p̂orig, y) with an
augmentation regularizer `2(P̂ ) that is minimized when
the distributions in P̂ are all the same. We set `1 to be an
optimally-tuned instance of a robust loss function family.

As a result, the loss function takes the form L = `1+λ·`2,
where (1) the loss `1 works to robustify the model against
label noise in the training stage, and (2) the regularizer `2
works to generalize the performance of the model to un-
foreseen data shifts in the testing stage. The regularization
constant λ is fixed to a value that helps L balance between
these two objectives. The optimization stage of the model
searches for an estimated posterior distribution

p̂∗ := argmin
p̂

EDtrainL
(
(p̂orig, p̂aug1, ...), y;λ

)
(11)

by learning (on a noisy-labeled train set) the class represen-
tations invariant to common image corruptions.

5 EXPERIMENTS

In the context of our novel task, we showcase AUGLOSS
against previously-accepted SoTA methods that have been
shown to combat label or feature corruption. In doing so,
we explore how several realizations of AUGLOSS perform
on CIFAR-*-C after training on varied settings of synthetic
noise in the traditional CIFAR datasets, or human-annotated
noise in the CIFAR-*N datasets. In the next subsections, we
detail the experimental protocol and provide brief justifica-
tion for implementation choices.

5.1 Datasets & Metrics

Previous efforts have used synthetic approaches to noise
generation – namely symmetric and asymmetric noise – to
evaluate model robustness under label corruption. In the
symmetric case, the probability of a label flip is distributed
evenly among the false classes: if A, B, C, . . . , J are classes
and label A were flipped to a different class, then B, C,
. . . , J would be chosen with equal probability. Symmetric
noise is a consequence of class-independent errors in the data-
generating process – the same noise patterns are present
no matter the difficulty in differentiating between classes.
However, in crowdsourcing platforms (large-scale human-
annotated labeling) inter-class visual similarity often influ-
ences the distribution of label noise in real-world datasets,
giving rise to class-dependent asymmetric noise as an alter-
native synthetic approach.

Consistent with the standard, we train our models on
the CIFAR-10 and CIFAR-100 datasets corrupted by varied
levels of symmetric (Tables 1,2) and asymmetric (Tables 3,4)
noise. Each level is defined by the noise rate (η), which is
the probability that any given label is flipped. Our choice of
noise rates η ∈ {0, 0.1, 0.2, 0.3, 0.4} reflects the observation
by [1] that approximately 8% to 38.5% of labels in publicly-
available image datasets are noisy. For asymmetric noise, we
adhere to the standard mappings [9] outlined below:

• CIFAR-10: some classes flip to other visually-similar
ones – TRUCK 7→ AUTOMOBILE; BIRD 7→ AIR-
PLANE; DEER 7→ HORSE; CAT↔ DOG – and the rest
simply flip to itself.

• CIFAR-100: we partition the label space of 100 classes
into 20 superclasses1, where each class belongs to a
set containing four other visually-similar classes. Each
class flips symmetrically to another member of its own
superclass.

1. https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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Method TABLE 1: Symmetric CIFAR-10

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 27.57± 0.61 35.79± 0.62 40.45± 1.37 45.19± 1.06 50.94± 0.34 43.09± 0.85

Focal 33.81± 2.05 32.58± 0.95 37.98± 1.06 44.15± 0.22 50.47± 0.19 41.30± 0.61

NCE+RCE 30.02± 0.30 30.42± 0.13 31.80± 1.20 34.20± 0.24 35.96± 1.43 33.10± 0.75

α-loss 28.43± 0.47 29.28± 1.21 30.23± 0.81 32.22± 0.75 35.16± 0.51 31.72± 0.82

AUGMIX

CE 12.62± 0.40 15.14± 0.25 18.02± 0.11 21.23± 0.23 26.46± 0.59 20.21± 0.30

Focal 13.81± 0.21 12.59± 0.05 13.91± 0.2 17.79± 0.46 23.15± 0.33 16.86± 0.26

NCE+RCE 13.15± 0.16 13.72± 0.40 13.87± 0.09 14.19± 0.23 15.17± 0.12 14.24± 0.21

α-loss 12.55± 0.09 12.82± 0.09 13.23± 0.13 13.81± 0.07 15.10± 0.27 13.74± 0.14

Method TABLE 2: Symmetric CIFAR-100

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 53.84± 0.18 60.22± 0.35 64.93± 0.63 68.68± 0.23 72.74± 0.51 66.64± 0.43

Focal 53.50± 0.35 57.85± 0.21 62.73± 0.46 67.18± 0.35 72.35± 0.49 65.03± 0.38

NCE+RCE 54.66± 0.38 55.34± 0.54 56.91± 0.16 58.76± 0.60 61.92± 0.67 58.23± 0.49

α-loss 54.43± 0.13 55.58± 0.24 56.48± 0.40 58.11± 0.61 60.21± 0.81 57.60± 0.52

AUGMIX

CE 37.80± 0.22 42.11± 0.19 44.86± 0.50 48.34± 0.18 51.65± 0.09 46.74± 0.24

Focal 36.11± 0.2 38.55± 0.47 42.5± 0.26 46.97± 0.05 52.05± 0.09 45.02± 0.22

NCE+RCE 41.53± 0.96 42.18± 0.10 42.84± 0.14 42.71± 0.46 44.17± 0.80 42.98± 0.38

α-loss 37.66± 0.13 38.46± 0.26 40.03± 0.50 41.90± 0.51 44.54± 0.30 41.23± 0.39

Method TABLE 3: Asymmetric CIFAR-10

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 26.84± 0.10 30.19± 0.31 32.77± 0.51 35.32± 0.11 38.42± 0.45 34.18± 0.35

Focal 33.76± 2.00 32.73± 1.28 29.33± 1.01 31.48± 0.27 33.99± 0.86 31.88± 0.86

NCE+RCE 30.02± 0.30 29.68± 0.70 30.57± 0.51 32.01± 1.06 36.89± 0.20 32.29± 0.62

α-loss 28.98± 0.85 28.79± 0.21 30.46± 0.51 32.98± 0.36 39.09± 0.78 32.83± 0.47

AUGMIX

CE 12.67± 0.38 13.42± 0.36 14.97± 0.37 16.63± 0.57 20.27± 0.70 16.32± 0.50

Focal 13.81± 0.21 13.64± 0.15 14.17± 0.30 15.55± 0.34 20.28± 0.84 15.91± 0.41

NCE+RCE 13.13± 0.15 13.45± 0.11 13.86± 0.17 14.74± 0.06 18.29± 0.52 15.08± 0.22

α-loss 12.55± 0.09 12.84± 0.2 13.44± 0.08 14.88± 0.33 17.95± 0.36 14.78± 0.24

Method TABLE 4: Asymmetric CIFAR-100

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 53.92± 0.06 59.20± 0.32 63.11± 0.09 66.58± 0.38 69.98± 0.22 64.72± 0.25

Focal 53.53± 0.43 57.15± 0.40 60.28± 0.09 63.70± 0.67 67.64± 0.36 62.19± 0.38

NCE+RCE 54.45± 0.05 56.02± 0.66 57.19± 0.26 59.09± 0.53 61.34± 0.26 58.41± 0.43

α-loss 54.58± 0.12 56.07± 0.32 58.59± 0.25 61.41± 0.31 65.25± 0.26 60.33± 0.28

AUGMIX

CE 37.88± 0.29 41.14± 0.16 43.71± 0.12 46.37± 0.15 49.57± 0.44 45.20± 0.22

Focal 36.11± 0.20 37.64± 0.18 39.77± 0.10 42.37± 0.16 45.52± 0.27 41.32± 0.18

NCE+RCE 42.13± 0.30 42.81± 0.07 43.78± 0.15 44.77± 0.10 46.53± 0.45 44.47± 0.19

α-loss 37.64± 0.12 39.21± 0.10 41.21± 0.07 43.27± 0.04 45.74± 0.24 42.36± 0.11

TABLES 1-4: mCE (mean% ± std) over three random trials for the CIFAR-10 and CIFAR-100 datasets corrupted by varied levels
of synthetic (symmetric or asymmetric) label noise. Each combination of dataset, noise rate, augmentation, and loss function is
considered, and the average mCE across all nonzero noise rates for each method is reported in the Noisy Avg. column. The best
result for each augmentation + dataset combination is boldfaced.
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Method CIFAR-10N CIFAR-100N

Augment Loss Aggregate Random 1 Random 2 Random 3 Worst Noisy Fine

NoAug

CE 32.24± 0.41 37.56± 0.18 37.66± 0.30 37.96± 0.13 49.25± 0.34 67.66± 0.15

Focal 29.85± 0.42 34.84± 0.46 34.85± 0.52 35.20± 0.39 48.05± 0.96 66.13± 0.18

NCE+RCE 30.18± 0.21 31.11± 0.73 31.49± 0.31 32.35± 1.80 38.13± 0.46 62.82± 0.34

α-loss 29.22± 0.79 30.71± 1.18 30.44± 0.88 31.34± 0.36 39.93± 0.35 63.09± 0.38

AUGMIX

CE 15.40± 0.30 18.59± 0.15 18.76± 0.19 18.95± 0.17 29.73± 0.28 52.52± 0.32

Focal 13.28± 0.16 13.77± 0.11 13.60± 0.30 13.61± 0.20 24.31± 0.18 49.47± 0.18

NCE+RCE 13.72± 0.27 14.16± 0.03 13.85± 0.18 14.07± 0.09 18.14± 0.32 48.90± 0.05

α-loss 13.06± 0.13 14.07± 0.28 14.04± 0.07 14.00± 0.06 21.25± 0.04 48.78± 0.29

TABLE 5: mCE (mean% ± std) over three random trials across CIFAR-*N for each combination of augmentation and loss function.
Aggregate through Worst are corruptions of CIFAR-10 and Noisy Fine is the sole corruption of CIFAR-100. The best result for each
augmentation + dataset combination is boldfaced.

Although synthetic approaches are commonplace in the
evaluation of robust learning methods, we assert that
human-annotated noise, when available, offers a more accu-
rate representation of label corruption present in real-world
systems. Specifically, we justify the choice of CIFAR-*N over
synthetic noise with the following reasons [20]:

1) Datasets in CIFAR-*N provide more complex and di-
verse transition matrices compared to their synthetic
counterparts, as shown in Figure 3.

2) Human-annotated noise is feature-dependent (e.g., a
cat-looking dog breed is more likely to be labeled a cat)
while synthetic noise is strictly label-dependent.

3) CIFAR-*N takes into account the potential co-existence
of two classes in a single image, often found in the
CIFAR-100 dataset.

For these reasons, we additionally train our models on the
CIFAR-*N datasets provided in Table 5. The generation pro-
cess of CIFAR-*N collects data from three human annotators
of CIFAR-10; therefore, each image in the dataset is anno-
tated with three independent labels. Considering the three
labels reported for each CIFAR-10 image, (1) the Aggregate
dataset selects the most common label, (2) the Random 1/2/3
datasets uniformly sample the labels, and (3) the Worst
dataset uniformly samples one of the incorrect labels (if they

exist). On the other hand, CIFAR-*N only collects data from
one human annotator of CIFAR-100, and these results are
directly reflected in the Noisy Fine dataset.

For similar reasons, we select CIFAR-*-C for evaluation.
Since CIFAR-10-C (CIFAR-100-C) contains 15 corruptions of
each image in CIFAR-10 (CIFAR-100), we consider the mean
corruption error (mCE) – an average over the 15 individual
corruption errors – as our primary performance metric. We
consider the clean error – the test error on clean CIFAR
datasets – as a baseline metric, and these results are reported
in Tables A.1-A.5 in Appendix A.

5.2 Network Settings & Preprocessing

The following settings are fixed for all experiments: we use
a WideResNet-40-2 model [19], and train for 100 epochs;
the optimizer is SGD with a Nesterov momentum of 0.9
and weight decay of 5 × 10−4; the learning rate scheduler
is cosine annealing with an initial value of 0.1 and final
value of 10−6. Additionally, train batches of size 32 are
preprocessed with random horizontal flips and batch nor-
malization before being fed into the network.

(a) Symmetric (b) Asymmetric (c) CIFAR-10N Random 2

Fig. 3: Transition matrices for three methods of label noise generation, highlighting the greater diversity in human-annotated
noisy labels (c) compared to its synthetically-generated counterparts (a, b).
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Fig. 4: The performances of each method type across symmetric, asymmetric, and human-annotated settings of label noise. The
Noisy Avg. results for both CIFAR-10 and CIFAR-100 are included in the synthetic panels, while the CIFAR-10N results are
included in the human-annotated panel. Hatched bars indicate the best performing method types for each setting. Note that our
proposed methodology, AUGLOSS, a.k.a. Augmix+Robust, is the clear winner in all settings considered.

5.3 Augmentation + Loss Combinations
We compare the performances of several AUGLOSS-specific
methods in the settings outlined above. These methods are
created by pairing known data augmentation techniques
with a variety of basic loss functions. Specifically, we con-
sider two types of data augmentation: NoAug (no augmen-
tation) and the SoTA example AUGMIX, proposed by [40].
The AUGMIX technique is defined by its two nontrivial
transformations, each composed of stochastically-sampled
operations (e.g., autocontrast, rotate, solarize, etc.) organized
in three chains of varied length, concluding with a mix-
ture between each chain’s output and the original image
(see Figure B.1). Three generated images xorig, xaug1, xaug2
are fed through the network to produce three posteriors
p̂orig, p̂aug1, p̂aug2. The Jensen-Shannon divergence consis-
tency loss (`JS) serves as the augmentation regularizer

`JS(P̂ ) =
1

3

∑
p̂i∈P̂

KL (p̂i‖p̂mix) , (12)

where p̂mix is the mean of the three posteriors in P̂ :=(
p̂orig, p̂aug1, p̂aug2

)
. Consistent with [40], λ is set to 12.

For basic loss functions, we consider the standard cross
entropy loss along with three tunable robust loss function
families: focal loss, NCE+RCE loss, and α-loss. Each family
is optimally tuned on the CIFAR-10 and CIFAR-100 datasets
under 20% symmetric noise, with the parameter search
spaces motivated by [9], [11], [39] and reported in Table
6. We tune on symmetric noise because: (1) this approach
is computationally inexpensive and requires no extra infor-
mation on class relationships; (2) we seek to evaluate each
loss’ ability to generalize its robust behavior to unforeseen
transition matrices and varied label noise rates.

5.4 Main Results & Discussion
For each pair of augmentation + loss combination and noisy-
labeled train set, the mCE (mean% ± standard deviation) is
reported over three random trials in Tables 1-5. Interpreting
the results, two key observations are discussed below.

AUGLOSS best addresses dataset corruption.

As previously stated, there exist widely-accepted methods
that effectively combat label noise in the training stage (i.e.,
robust loss without augmentation) or feature noise in the
testing stage (i.e., AUGMIX+CE paired with Jensen-Shannon
loss), compared to the oft-used methodology, namely, CE
loss without augmentation. Our experimental setup encap-
sulates these baseline methods to showcase the nontrivial
gains achieved by AUGLOSS methods when training on
noisy CIFAR-10/100 and testing on CIFAR-*-C. Specifically,
for analysis, we partition the augmentation + loss combina-
tions into the following four method types:

• NoAug+CE: the baseline method of CE loss without
AUGMIX. These results are primarily included to high-
light the need for a solution to combat both train-time
label noise and test-time feature distribution shifts.

• NoAug+Robust: the group of widely-accepted meth-
ods that train with a robust loss function, specifically to
combat label noise in the training stage. In this case, we
group together three specific instances – NoAug+Focal,
NoAug+NCE+RCE, and NoAug+α-loss – by averaging
over the three results in each setting of train data.

• AUGMIX+CE: the specific method proposed by [21],
using AUGMIX data augmentation with CE loss to
combat data distribution shifts in the testing stage.

• AUGMIX+Robust: the group of methods that follow
the AUGLOSS framework. Each method trains with
AUGMIX and a robust loss function (focal, NCE+RCE,
or α-loss) in order to simultaneously harden the clas-
sifier against train-time label noise and test-time distri-
bution shifts. As with NoAug+Robust, we average over
the results given by the three robust loss functions.

In Figure 4, we compare the performances (with respect to
mCE) of each method type – NoAug+CE, NoAug+Robust,
AUGMIX+CE, and AUGMIX+Robust – under the different
settings of label noise. Specifically, the two leftmost panels
highlight the performance of each method type under syn-
thetic (symmetric/asymmetric) label noise, while the right-
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Fig. 5: The performances of each loss function across the synthetic (symmetric + asymmetric) settings of label noise. Dots are
color-coded according to the best-performing loss functions at each setting and noise rate.

most panel considers the performance of each method type
under human-annotated (CIFAR-10N) label noise. Taking
both settings into account, the results show that the group
of AUGLOSS methods (AUGMIX+Robust) consistently out-
performs the other three types across all reported label noise
settings. Although the well-known pairing of AUGMIX with
CE loss already yields a drastic improvement in perfor-
mance over the NoAug+CE baseline (e.g., −18.9% mCE
in the CIFAR-10N Random 2 setting), the novel pairing of
AUGMIX with a robust loss showcases the potential for fur-
ther improvement in real-world noisy settings (e.g., −23.8%
mCE in the CIFAR-10N Random 2 setting). Overall, these
results underscore the pressing need for models to contain
both data augmentation and robust loss functions (not just
one) in order to simultaneously learn on noisy labels in
the training stage, and generalize its classification ability to
unforeseen feature distribution shifts in the testing stage.

No single robust loss function works best in all settings.
Within the AUGLOSS framework, we seek to evaluate and
compare the performances of each robust loss function
family – focal, NCE+RCE, and α-loss – paired with AUGMIX
when training on noisy-labeled data and testing on CIFAR-
*-C. In doing so, we observe that the best results in Tables
1-5 come from a mixture of the three losses, not just one.
Figure 5, for example, illustrates the performance of each
loss function in varied settings of synthetic label noise; here,
we observe that α-loss generally performs the best in both
symmetric settings (CIFAR-10 and CIFAR-100), as well as
the asymmetric CIFAR-10 setting. Additionally, NCE+RCE
loss tends to perform worse in low levels of label noise –
especially with CIFAR-100 – but shows to be very com-
petitive in high levels of label noise. In the three settings
that α-loss achieves the best results, focal loss appears to

approach CE loss – the non-robust baseline – as label noise
increases; however, focal loss clearly outperforms the others
across all noise rates in the asymmetric CIFAR-100 setting,
which underscores the idea that no robust loss function is
the universal "best fit" for all settings of synthetic label noise.

Fig. 6: The performances of each loss function across the five
CIFAR-10N datasets. Dots are color-coded according to the
best-performing loss functions for each dataset.

On the other hand, Figure 6 displays the performance of
each loss function in varied settings of human-annotated la-
bel noise– namely CIFAR-10N. Specifically, this figure shows
that in our experiment, α-loss performed the best with low-
level noise (Aggregate), Focal loss performed the best with
mid-level noise (Random 1-3), and NCE+RCE performed
the best with higher levels of noise (Worst). Keeping in mind
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that each family is optimized under 20% symmetric noise,
these results suggest the following:
• α-loss may be the appropriate choice in settings of label

noise over-estimation, where α is tuned against a noise
rate (i.e., 20%) higher than the true rate (i.e., 9%).

• Focal loss shows to be effective when the true noise rate
is predictable (i.e., 20% ≈ 18%).

• NCE+RCE loss appears to be valuable in settings of label
noise under-estimation – a useful property in safety-
critical applications – where its parameters are tuned
against a lower noise level but can generalize to higher
levels (i.e., 40%).

Since each loss clearly has its own merits, we conclude that
no single choice appears to be the universal "best fit" within
the AUGLOSS framework; rather, with more context on the
task at hand, an appropriate loss function can be tailored to
the specific needs of the problem.

6 CONCLUSION

In this work, we have proposed a novel methodology, AU-
GLOSS, wherein we have synthesized data augmentation
techniques and robust loss functions in order to learn mod-
els that exhibit robustness to both train-time noisy labeling
and test-time feature distribution shifts. In particular, using
AUGMIX as the augmentation method, we have evaluated
the performance of several tunable robust loss functions,
including focal loss, NCE+RCE, and α-loss. Through our
experimental procedure, we have demonstrated that on the
whole, AUGLOSS yields much better mCE than either the
robust loss functions or augmentation techniques alone. We
have also observed that no tunable robust loss function
stands out with different corruption settings handled better
by different losses. Our novel methodology and the ensuing
benchmarks significantly enhance existing results based on
just loss functions or just augmentations. These benchmarks
can further propel the field in identifying other augmenta-
tion techniques and robust loss functions to improve the
robustness of models for out-of-distribution training and
testing. In particular, a possible future effort is to leverage
the recently introduced real-world WILDS dataset [42] to
further evaluate the efficacy of AUGLOSS. Augmentations
based on adversarial approaches [14] and NoisyMix [34] are
other potential directions.
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ADDITIONAL EXPERIMENT DETAILS

Computing Resources
Our experiments were executed on a cluster of K80 GPUs.
The installed CUDA version was v11.2. The settings with
NoAug would generally take 3-4 hours to finish, while the
settings with AUGMIX would generally take 8-10 hours.

Hyperparameter Tuning
The focal loss is parameterized by γ ∈ R+ and we consider
the following search space [17]:

γ ∈ {0.0, 0.5, 1.0, 2.0, 5.0}.

Furthermore, the NCE+RCE loss employs two hyperparam-
eters (β1, β2) ∈ R2 and motivated by [9], we consider the
following search space:

(β1, β2) ∈ {0.1, 1.0, 10, 99, 99.9} × {0.1, 1.0, 10, 100}.

Lastly, the α-loss is parameterized by α ∈ R+ and we
consider the following search space [11]:

α ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 3.0, 4.0}

The best-performing parameters with respect to mCE for
each family are shown below in Table 6.

Focal: γ NCE+RCE: (β1, β2) α-loss: α

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

NoAug 5.0 5.0 (1.0,0.1) (99.9,0.1) 3.0 2.0

AUGMIX 5.0 5.0 (1.0,0.1) (99,1.0) 2.0 1.3

TABLE 6: Hyperparameters for each tunable loss function.
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APPENDIX A
CLEAN ERROR RESULTS

Method Symmetric CIFAR-10

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 5.36± 0.21 11.18± 0.23 15.84± 0.32 21.25± 0.30 28.21± 0.85 19.12± 0.42

Focal 10.30± 1.79 8.56± 0.22 13.54± 0.21 19.25± 0.35 26.74± 0.49 17.02± 0.32

NCE+RCE 7.66± 0.12 8.13± 0.26 9.50± 0.12 10.53± 0.13 12.10± 0.43 10.06± 0.23

α-loss 6.15± 0.08 7.22± 0.13 8.13± 0.12 9.45± 0.25 11.39± 0.16 9.05± 0.16

AUGMIX

CE 4.69± 0.16 6.96± 0.18 9.70± 0.05 12.78± 0.29 18.32± 0.71 11.94± 0.31

Focal 8.31± 0.03 6.46± 0.14 6.81± 0.08 9.88± 0.43 15.07± 0.50 9.55± 0.29

NCE+RCE 6.25± 0.04 6.96± 0.18 7.33± 0.11 7.74± 0.17 8.83± 0.21 7.72± 0.17

α-loss 5.15± 0.17 5.70± 0.21 6.08± 0.20 7.07± 0.18 8.40± 0.24 6.81± 0.21

TABLE A.1: Clean error (mean% ± std) over three random trials for the CIFAR-10 dataset corrupted by symmetric label noise.
Each combination of dataset, noise rate, augmentation, and loss function is considered, and the average mCE across all nonzero
noise rates for each method is reported in the Noisy Avg. column. The top result for each setting is boldfaced.

Method Symmetric CIFAR-100

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 24.67± 0.39 32.01± 0.14 38.06± 0.18 44.08± 0.32 50.26± 0.71 41.1± 0.34

Focal 25.8± 0.55 29.56± 0.39 35.16± 0.39 42.44± 0.24 49.7± 0.12 39.22± 0.28

NCE+RCE 25.62± 0.25 26.84± 0.4 29.27± 0.35 31.63± 0.37 35.33± 0.08 30.77± 0.3

α-loss 25.53± 0.36 27.08± 0.4 28.75± 0.28 30.77± 0.32 33.61± 0.41 30.05± 0.35

AUGMIX

CE 23.04± 0.23 27.74± 0.15 31.18± 0.61 35.2± 0.18 39.34± 0.17 33.36± 0.28

Focal 25.18± 0.11 26.08± 0.36 29.25± 0.08 34.03± 0.22 39.47± 0.34 32.21± 0.25

NCE+RCE 26.5± 0.67 26.98± 0.42 28.23± 0.2 29.77± 0.36 31.43± 0.23 29.1± 0.3

α-loss 23.42± 0.26 24.9± 0.04 26.92± 0.27 29.41± 0.32 32.43± 0.52 28.42± 0.29

TABLE A.2: Clean error (mean% ± std) over three random trials for the CIFAR-100 dataset corrupted by symmetric label noise.
Each combination of dataset, noise rate, augmentation, and loss function is considered, and the average mCE across all nonzero
noise rates for each method is reported in the Noisy Avg. column. The top result for each setting is boldfaced.

Method Asymmetric CIFAR-10

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 5.21± 0.26 8.4± 0.45 11.71± 0.25 15.71± 0.53 20.69± 0.17 14.13± 0.35

Focal 9.83± 2.05 9.77± 0.06 8.4± 0.11 10.56± 0.18 13.77± 0.27 10.62± 0.16

NCE+RCE 7.66± 0.12 8.22± 0.34 8.91± 0.26 11.16± 0.35 15.62± 0.33 10.98± 0.32

α-loss 6.34± 0.13 7.02± 0.15 8.76± 0.12 12.29± 0.31 19.33± 0.48 11.85± 0.26

AUGMIX

CE 4.72± 0.01 5.92± 0.13 7.31± 0.3 9.3± 0.59 13.01± 0.09 8.88± 0.28

Focal 8.31± 0.03 8.33± 0.08 8.5± 0.08 9.71± 0.28 14.21± 0.59 10.19± 0.26

NCE+RCE 6.25± 0.04 6.72± 0.19 7.27± 0.08 8.47± 0.16 12.14± 0.47 8.65± 0.23

α-loss 5.15± 0.17 5.6± 0.17 6.44± 0.05 8.04± 0.3 11.54± 0.42 7.91± 0.23

TABLE A.3: Clean error (mean% ± std) over three random trials for the CIFAR-10 dataset corrupted by asymmetric label noise.
Each combination of dataset, noise rate, augmentation, and loss function is considered, and the average mCE across all nonzero
noise rates for each method is reported in the Noisy Avg. column. The top result for each setting is boldfaced.
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Method Asymmetric CIFAR-100

Augment Loss η = 0 0.1 0.2 0.3 0.4 Noisy Avg.

NoAug

CE 24.4± 0.09 30.95± 0.35 36.83± 0.19 41.88± 0.6 48.08± 0.67 39.44± 0.45

Focal 25.72± 0.37 29.25± 0.29 32.92± 0.35 38.35± 0.23 44.69± 0.3 36.3± 0.29

NCE+RCE 25.45± 0.14 27.51± 0.53 29.24± 0.16 31.71± 0.31 35.12± 0.37 30.9± 0.34

α-loss 25.66± 0.24 28.11± 0.48 30.91± 0.35 34.53± 0.26 40.45± 0.26 33.5± 0.34

AUGMIX

CE 23.28± 0.45 26.76± 0.29 30.17± 0.32 33.02± 0.48 36.84± 0.51 31.7± 0.4

Focal 25.18± 0.11 25.67± 0.33 27.18± 0.35 29.54± 0.18 32.85± 0.18 28.81± 0.26

NCE+RCE 26.39± 0.43 27.31± 0.54 28.97± 0.1 30.82± 0.34 33.4± 0.54 30.12± 0.38

α-loss 23.38± 0.26 25.64± 0.47 28.05± 0.11 30.35± 0.31 33.53± 0.64 29.39± 0.38

TABLE A.4: Clean error (mean% ± std) over three random trials for the CIFAR-100 dataset corrupted by asymmetric label noise.
Each combination of dataset, noise rate, augmentation, and loss function is considered, and the average mCE across all nonzero
noise rates for each method is reported in the Noisy Avg. column. The top result for each setting is boldfaced.

Method CIFAR-10N CIFAR-100N

Augment Loss Aggregate Random 1 Random 2 Random 3 Worst Noisy Fine

NoAug

CE 10.96± 0.29 16.09± 0.20 16.14± 0.36 15.98± 0.13 30.60± 0.27 47.21± 0.29

Focal 9.37± 0.13 13.75± 0.25 13.92± 0.09 14.06± 0.08 29.50± 0.11 45.09± 0.47

NCE+RCE 9.11± 0.20 9.86± 0.11 10.34± 0.26 10.21± 0.28 17.13± 0.39 40.25± 0.37

α-loss 8.23± 0.26 9.64± 0.05 9.94± 0.25 9.86± 0.22 19.36± 0.38 40.94± 0.33

AUGMIX

CE 7.93± 0.28 10.93± 0.19 10.82± 0.21 11.24± 0.30 22.85± 0.17 41.01± 0.58

Focal 8.00± 0.23 7.93± 0.15 7.62± 0.25 7.93± 0.04 17.85± 0.16 38.80± 0.27

NCE+RCE 7.20± 0.13 7.94± 0.08 7.87± 0.11 7.70± 0.10 12.81± 0.30 38.10± 0.06

α-loss 6.29± 0.05 7.43± 0.14 7.53± 0.12 7.64± 0.07 15.88± 0.39 38.07± 0.08

TABLE A.5: Clean error (mean% ± std) over three random trials across CIFAR-*N for each combination of augmentation and
loss function. Aggregate through Worst are corruptions of CIFAR-10 and Noisy Fine is the sole corruption of CIFAR-100. The best
result for each augmentation + dataset combination is boldfaced.

APPENDIX B
EXAMPLE OF AUGMIX

In Figure B.1, we illustrate one realization of AUGMIX, highlighting the preservation of image semantics.

Fig. B.1: Realization of AUGMIX on a TRUCK-labeled image.
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