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Abstract—In this paper, we study the problem of global
reward maximization with only partial distributed feedback.
This problem is motivated by several real-world applications
(e.g., cellular network configuration, dynamic pricing, and policy
selection) where an action taken by a central entity influences a
large population that contributes to the global reward. However,
collecting such reward feedback from the entire population not
only incurs a prohibitively high cost, but often leads to privacy
concerns. To tackle this problem, we consider differentially
private distributed linear bandits, where only a subset of users
from the population are selected (called clients) to participate
in the learning process and the central server learns the global
model from such partial feedback by iteratively aggregating these
clients’ local feedback in a differentially private fashion. We then
propose a unified algorithmic learning framework, called differ-
entially private distributed phased elimination (DP-DPE), which
can be naturally integrated with popular differential privacy
(DP) models (including central DP, local DP, and shuffle DP).
Furthermore, we prove that DP-DPE achieves both sublinear
regret and sublinear communication cost. Interestingly, DP-DPE
also achieves privacy protection “for free” in the sense that
the additional cost due to privacy guarantees is a lower-order
additive term. Finally, we conduct simulations to corroborate our
theoretical results and demonstrate the effectiveness of DP-DPE.

I. INTRODUCTION

The bandit learning models have been widely adopted for
many sequential decision-making problems, such as clinical
trials, recommender systems, and configuration selection. Each
action (called arm), if selected in a round, generates a (noisy)
reward. By observing such reward feedback, the learning agent
gradually learns the unknown parameters of the model (e.g.,
mean rewards) and decides the action in the next round. The
objective here is to maximize the cumulative reward over a
finite time horizon, balancing the tradeoff between exploitation
and exploration. While the stochastic multi-armed bandits
(MAB) model is useful for these applications [1], one key
limitation is that actions are assumed to be independent, which,
however, is usually not the case in practice. Therefore, the
linear bandit model that captures the correlation among actions
has been extensively studied [2]-[4].

In this paper, we introduce a new linear bandit setting where
the reward of an action could be from a large population.
Take the cellular network configuration as an example (see
Fig. 1). The configuration (antenna tilt, maximum output
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Fig. 1. Cellular network configuration: a motivating application of global
reward maximization with partial feedback in a linear bandit setting.

power, inactivity timer, etc.) of a base station (BS), denoted
by =z € RY influences all the users under the coverage of
this BS [5]. After a configuration is applied, the BS receives
a reward in terms of the network-level performance, which
accounts for the performance of all users within the coverage
(e.g., average user-perceived Quality of Experience (QoE)).
Specifically, let the mean global reward of configuration x
be f(x) = (6%, x), where §* € R? represents the unknown
global parameter. While some configuration may work best
for a specific user, only one configuration can be applied at
the BS at a time, which, however, simultaneously influences
all the users within the coverage. Therefore, the goal here is to
find the best configuration that maximizes the global reward
(i.e., the network-level performance).

At first glance, it seems that one can address the above
problem by applying existing linear bandit algorithms (e.g.,
LinUCB [4]) to learn the global parameter 6*. However, this
would require collecting reward feedback from the entire
population, which could incur a prohibitively high cost or
could even be impossible to implement in practice when the
population is large. To learn the global parameter, one natural
way is to sample a subset of users from the population and
aggregate this distributed partial feedback. This leads to a new
problem we consider in this paper: global reward maximization
with partial feedback in a distributed linear bandit setting.
As in many distributed supervised learning problems [7]-[9],
privacy protection is also of significant importance in our
setting as clients’ local feedback may contain their sensitive
information. In summary, we are interested in the following
fundamental question: How to privately achieve global reward
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TABLE I
SUMMARY OF MAIN RESULTS

Algorithm! Regret’ Communication cost® Privacy
DPE o) (TI*Q/Q \/mgTT)) o@dr®) None
CDP-DPE O (TH’/Q\/W +d3/21 - W/e) o(dTe) (¢, 8)-DP
LDPDPE O (T““/? VIog(RT) + d3/2T1—a/2 W/e) o@dr®) (¢,5)-LDP
SDP-DPE O (Tl—aﬂm + d3/2T1 = In(d/8) \/Tog (KT, /e) O(dT3*/2) (bits) (¢, 6)-SDP

TDPE is the non-private DP-DPE algorithm; CDP-DPE, LDP-DPE, and SDP-DPE represent the DP-DPE algorithm in the central, local, and

shuffle models, respectively, which guarantee (e, §)-DP, (€, §)-LDP, and (e, §)-SDP, respectively.

2In the regret upper bounds, T is the time horizon, k is the number of actions, d is the dimension of the action space, and « is a design parameter
that can be used to tune the tradeoff between the regret and the communication cost. We ignore lower-order terms for simplicity.

3While the communication cost of CDP-DPE and LDP-DPE is measured in the number of real numbers transmitted between the clients and

the server, SDP-DPE directly uses bits for reporting feedback. A detailed discussion is provided in our online technical report [6].

maximization with only partial distributed feedback?

To that end, we introduce a new model called differentially
private distributed linear bandit (DP-DLB). In DP-DLB, there
is a global linear bandit model f(z) = (#*,z) with an
unknown parameter * € R at the central server (e.g., the
BS); each user u of a large population has a local linear
bandit model f,(x) = (f,,x), which represents the mean
local reward for user u. Here, we assume that each user u
has a local parameter 6, € R?, motivated by the fact that the
mean local reward (e.g., the expected QoE of a user under
a certain network configuration) varies across the users. In
addition, each local parameter 6,, is unknown and is assumed
to be a realization of a random vector with the mean being
the global model parameter 6*. The server makes decisions
based on the estimated global model, which can be learned
through sampling a subset of users (referred to as clients)
and iteratively aggregating these distributed partial feedback.
While sampling more clients could improve the learning
accuracy and thus lead to a better performance, it also incurs
a higher communication cost. Therefore, it is important to
address this tradeoff in the design of communication protocols.
Furthermore, to protect users’ privacy, we resort to differential
privacy (DP) to guarantee that clients’ sensitive information
will not be inferred by an adversary. Therefore, the goal is
to maximize the cumulative global reward (or equivalently
minimize the regret due to not choosing the optimal action in
hindsight) in a communication-efficient manner while provid-
ing privacy guarantees for the participating clients. Our main
contributions are summarized as follows.

o« We present the first work that considers global reward
maximization with partial feedback in the distributed linear
bandit setting. In addition to the traditional tradeoff between
exploitation and exploration, learning with distributed feed-
back introduces two practical challenges: communication
efficiency and privacy concerns. This adds an extra layer of
difficulty in the design of learning algorithms.

o To address these challenges, we introduce a DP-DLB
model and develop a carefully-crafted algorithmic learning
framework, called differentially private distributed phased
elimination (DP-DPE), which allows the server and the
clients to work in concert and can be naturally integrated
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with several state-of-the-art DP trust models (including
central model, local model, and shuffle model). This unified
framework enables us to systemically study the key regret-
communication-privacy tradeoff.

o We then establish the regret-communication-privacy trade-
off of DP-DPE in various settings including the non-private
case as well as the central, local, and shuffle DP models. Our
main results are summarized in Table I. These results reveal
that DP-DPE achieves privacy “for-free” in the central and
shuffle models, in the sense that the additional regret due to
privacy protection is only a lower-order additive term. More-
over, this is the first work that considers the shuffle model
in distributed linear bandits to attain a better regret-privacy
tradeoff, i.e., guaranteeing a similar privacy protection as the
strong local model while achieving the same regret as the
central model. We further perform simulations on synthetic
data to corroborate our theoretical results.

Due to space limitations, we provide all the detailed proofs
of our results in our online technical report [6].

II. RELATED WORK

We discuss the most relevant work here and provide a more
detailed discussion in our technical report [6].
Distributed bandits. Our model is related to multi-agent col-
laborative learning in the distributed bandits setting [10]-[15].
The most relevant work to ours is the distributed linear bandit
problem studied in [15]. Similarly, they design a distributed
phased elimination algorithm where a central server aggregates
data provided by the local clients and iteratively eliminates
suboptimal actions. However, there are two key differences: (i)
they consider the standard group regret minimization problem
with homogeneous clients that have the same unknown pa-
rameter; (ii) the clients send the rewards to the central server
without any privacy protection.
Federated bandits. Another line of related work is bandits
in the federated setting [16]-[20], among which [19] and [20]
are most relevant. In addition to different model and problem
formulation we consider, we also highlight our main technical
contributions compared to these works. While a phased elim-
ination algorithm is also employed in [19], there are two key
differences: (i) They do not consider the correlation among
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the actions. Specifically, they consider a linear reward for
contextual bandits while still studying MAB with independent
actions, each of which is associated with a distinct parameter
vector. Differently, the linear bandits formulation in our work
is used to capture the correlation among the actions; (ii) When
aggregating users’ feedback for learning the global parameter,
we protect users’ data privacy through rigorous differential
privacy guarantees, which is not considered in their design.
While DP is also employed to protect users’ data privacy in
[20], they require that both the Gram matrix of actions (of
size O(d?)) and reward vectors (of size O(d)) be periodically
communicated. Differently, our algorithm only requires that
private average local reward for the chosen actions (of size
O(dloglogd)) be communicated in each phase. Moreover,
while they only consider the central DP model, we provide a
unified algorithmic learning framework that can be integrated
with different DP models. In particular, our proposed DP-DPE
algorithm integrated with the shuffle DP model can achieve a
better regret-communication-privacy tradeoff (see Table I).

Differentially private bandits. Since proposed in [21], DP has
become the de facto privacy-preserving model in many appli-
cations, including online learning [22] and bandit problems
[23]. Specifically, in [24]-[26], MAB has been studied in the
central, local, and shuffle DP models, respectively. In [27], the
authors explore DP in contextual linear bandits and introduce
a joint DP model. As a stronger privacy notion, local DP is
also studied for contextual linear bandits [28] and Bayesian
optimization [29]. However, none of them considers shuffle DP
in the linear bandits setting. Moreover, our DP-DPE algorithm
can be naturally integrated with several different DP models.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We begin with some notations: [N] £ {1,..., N} for any
positive integer N; |S| denotes the cardinality of set S; ||z||2
denotes the ¢s-norm of vector z; the inner product is denoted
by (-, -). For a positive definite matrix A € R%*?, the weighted
o-norm of vector x € R is defined as |z|[4 £ Va T Ax.

A. Global Reward Maximization with Partial Feedback

We consider the global reward maximization problem over
a large population, which is a sequential decision making
problem. In each round ¢, the learning agent (e.g., the BS or
the policy maker) selects an action x; from a finite decision
set D C {x € R? : ||z]|3 < 1} with |D| = k. This action
leads to a global reward with mean (0*,;), where 0* € R?¢
with [|0*]]2 < 1 is unknown to the agent. This global reward
captures the overall effectiveness of action x; over a large
population Y. The local reward of action x; at user u has a
mean (0, x;), where 6, € R? is the local parameter, which
is assumed to be a realization of a random vector with mean
¢* and is also unknown. Let z* £ argmax,.p (0%, z) be the
unique global optimal action. Then, the objective of the agent
is to maximize the cumulative global reward, or equivalently,
to minimize the regret defined as follows:

T
R(T) £ T(0",a*) = Y (0%, 24). (1)

t=1

At first glance, standard linear bandit algorithms (e.g., Lin-
UCB in [4]) can be applied to addressing the above problem.
However, the exact reward here is a global quantity, which
is the average over the entire population. The learning agent
may not be able to observe this exact reward, since collecting
such global information from the entire population incurs a
prohibitively high cost, is often impossible to implement in
practice, and could lead to privacy concerns.

B. Differentially Private Distributed Linear Bandits

To address the above problem, we consider a differentially
private distributed linear bandit (DP-DLB) formulation, where
there are two important entities: a central server (which wants
to learn the global model) and participating clients (i.e., a
subset of users from the population who are willing to share
their feedback). In the following, we discuss important aspects
of the DP-DLB formulation.

Server. The server aims to learn the global linear bandit model,
i.e., unknown parameter 6*. In each round ¢, it selects an action
x; with the objective of maximizing the cumulative global
reward 2321(9*, x+). Without observing the exact reward of
action x4, the server collects only partial feedback from a
subset of users sampled from the population, called clients,
and then aggregates this partial feedback to update the estimate
of the global parameter 0*. Based on the updated model, the
server chooses an action in the next round.

Clients. We assume that each participating client is randomly
sampled from the population and is independent from each
other and also from other randomness. Specifically, we assume
that local parameter 6,, at client u satisfies 6, = 6*+¢,,, where
&y € R? is a zero-mean o-sub-Gaussian random vector* and
is independently and identically distributed (i.i.d.) across all
clients. Let U; be the set of clients in round ¢. After action x; is
chosen by the server in round ¢, each client u € U, observes
a noisy local reward: y,; = (0u, i) + N, Where 1, is
a conditionally 1-sub-Gaussian® noise and i.i.d. across the
clients and over time. We also assume that the local rewards
are bounded, i.e., ||y, +|l2 < B, for all w € U and ¢ € [T).
Communication. The communication happens when the
clients report their feedback to the server. At the beginning
of each communication step, each participating client reports
feedback to the server based on the local reward observations
during a certain number of rounds. In particular, the time
duration between reporting feedback is called a phase. By
aggregating such feedback from the clients, the server esti-
mates the global parameter #* and adjusts its decisions in the
following rounds accordingly. We assume that the clients do
not quit before a phase ends. By slightly abusing the notation,
we use U; to denote the set of clients in the [-th phase.

The communication cost is a critical factor in DP-DLB. As
in [15], we define the communication cost as the total number

“A random vector & € R? is said to be o-sub-Gaussian if E[¢] = 0 and
v T ¢ is o-sub-Gaussian for any unit vector v € R% and ||v||2 = 1 [30].

SConsider noise sequence {nt}$2,. As in the general linear bandit
model [2], 7n¢ is assumed to be conditionally 1-sub-Gaussian, meaning
E[e*"f/\xlzt,m;t} < exp(A2/2) for all A\ € R, where a;.; denotes the

subsequence a, ..., a;.
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of real numbers (or bits, depending on the adopted DP model)
communicated between the server and the clients. Let L be the
number of phases in 7' rounds, and let /V; be the number of
real numbers (or bits) communicated in the [-th phase. Then,
the total communication cost, denoted by C(T), is

L
C(T) £ > |Ui|Ni. )
=1

Data privacy. In practice, even if users are willing to share
their feedback, they typically require privacy protection as
a premise. To that end, we resort to differential privacy
(DP) [21] to formally address the privacy concerns in the
learning process. More importantly, instead of only consid-
ering the standard central model where the central server is
responsible for protecting the privacy, we will also incorporate
other popular DP models, including the stronger local model
(where each client directly protects her data) [31] and the
recently proposed shuffle model (where a trusted shuffler
between clients and server is adopted to amplify privacy) [32],
in a unified algorithmic learning framework.

IV. ALGORITHM DESIGN

In this section, we first present the key challenges associated
with the introduced DP-DLB model and then explain how
the developed DP-DPE framework addresses these challenges,
followed by a brief description of DP-DPE instantiations with
three different DP models (central, local, and shuffle).

A. Key Challenges

To solve the problem of global reward maximization with
partial distributed feedback using the DP-DLB formulation,
we face four key challenges, discussed in detail below.

As in the standard stochastic bandits problem, there is an
uncertainty due to noisy rewards of each chosen action, which
is called the action-related uncertainty. In addition to this, we
face another type of uncertainty related to the sampled clients
in DP-DLB, called the client-related uncertainty. The client-
related uncertainty lies in estimating the global model at the
server based on randomly sampled clients with biased local
models. Note that the global model may not be accurately
estimated even if exact rewards of the sampled clients are
known when the number of clients is insufficient. Therefore,
the first challenge lies in simultaneously addressing both types
of uncertainty in a sample-efficient way (Challenge @)).

To handle the newly introduced client-related uncertainty,
we must sample a sufficiently large number of clients so that
the global parameter can be accurately estimated using the
partial distributed feedback. However, too many clients result
in a large communication cost (see Eq. (2)). Therefore, the
second challenge is to decide the number of sampled clients
to balance the regret (due to the client-related uncertainty)
and the communication cost (Challenge (©)).

Finally, to ensure privacy guarantees for the clients, one
needs to add additional perturbations (or noises) to the local
feedback. Such randomness introduces another type of uncer-
tainty to the learning process (Challenge (©)), and it is unclear

how to integrate different trust DP models into a unified
algorithmic learning framework (Challenge (d). These add an
extra layer of difficulty to the design of learning algorithms.
Main ideas. In the following, we present our main ideas
for addressing the above challenges. We propose a phased
elimination algorithm that gradually eliminates suboptimal
actions by periodically aggregating the local feedback from
the sampled clients in a privacy-preserving manner. To address
the multiple types of uncertainty when estimating the global
reward (@ and (©)), we carefully construct a confidence width
to incorporate all three types of uncertainty. To achieve a
sublinear regret while saving communication cost (), we
increase both the phase length and the number of clients
exponentially. To ensure privacy guarantees (@), we introduce
a PRIVATIZER that can be easily tailored under different DP
models. The PRIVATIZER is a process consisting of tasks
to be collaboratively completed by the clients, the server,
and/or even a trusted third party. To keep it general, we use
P = (R,S,A) to denote a PRIVATIZER, where R is the
procedure at each client (usually a local randomizer), S is a
trusted third party that helps privatize data (e.g., a shuffler that
permutes received messages), and A is an analyzer operated at
the central server. Next, we will show how to integrate these
main ideas into a unified algorithmic learning framework.

B. Differentially Private Distributed Phased Elimination

With the main ideas presented above, we now propose a
unified algorithmic learning framework, called differentially
private distributed phased elimination (DP-DPE), which is
presented in Algorithm 1. The DP-DPE runs in phases and
operates with the coordination of the central server and the
participating clients in a synchronized manner. At a high level,
each phase consists of the following three steps:

« Action selection (Lines 4-6): computing a near-G-optimal
design (i.e., a distribution) over a set of possibly optimal
actions and playing these actions;

o Clients sampling and private feedback aggregation
(Lines 7-16): sampling participating clients and aggregating
their local feedback in a privacy-preserving fashion;

o Parameter estimation and action elimination (Lines 17-
19): using (privately) aggregated data to estimate 6* and
eliminating actions that are likely to be suboptimal.

In the following, we describe the detailed operations of DP-
DPE. We begin by giving some necessary notations. Consider
the [-th phase. Let ¢; and 7} be the index of the starting round
and the length of the I-th phase, respectively. Then, let 7; £
{t € [T] : t; <t < t; + T;} be the round indices in the I-th
phase, let 7;(x) £ {t € T : x; = x} be the time indices in
the [-th phase when action x is selected, and let D; C D be
the set of active actions in the /-th phase.

Action selection (Lines 4-6): In the [-th phase, the action
set D; consists of active actions that are possibly optimal.
We compute a distribution 7;(-) over D; and choose actions
according to 7;(+). We briefly explain the intuition below. Let
V() 2 Y, epm@)ar’ and g(r) 2 maxeep |22, .-
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Algorithm 1 Differentially Private Distributed Phased Elimi-
nation (DP-DPE)
1: Input: D C R%, o € (0,1), B € (0,1), and o,
2: Initialization: [ =1,¢t; =1, D; =D, and hy =2
3: while t; < T do
4:  Find a distribution m;(-) over D; such that g(m;)
maxaen, o3 < 24 and |supp(m)
4dloglogd + 16, where V(m) £ 3 . m(z)zx
5. Let Ty(x) = [hym(z)] for each = € supp(m;) and T; =
Zw€supp(ﬂ'l) ﬂ(l‘)
6:  Play each action = € supp(m;) exactly T;(x) times if
not reaching T’
7. Randomly select [2%!] participating clients U

IN >

T

8:  for each client u € U; do
: for each action = € supp(m;) do
10: Compute average local reward over 7;(x) rounds:

y'(x) = ﬁ > teTi(w) (0w @) + 1ut)
11: end for

12: Let g? = (ylu(x))mesupp(m)
13: Run the local randomizer R and send the output
R(y}) to S

14:  end for

15:  Run the computation function S and send the output
SHR(Y") }ueu,) to the analyzer A

16:  Generate the privately aggregated statistics: §; =
ASHRG) Fuerr))

17:  Compute the following quantities:
Vi =2 esupp(m) Ti(w)zz "
gl = ZzEsupp(wl) 71l(m)gygl (l‘)
0, =Vv,'G,

18:  Find low-rewarding actions with confidence width W:

B, = {x e D max(él,b— x) > QI/VZ}
beD,

19: Update: Djyq = Dl\El, hiv1 = 2hy, tiv1 =t + 13,
and l=1+1
20: end while

According to the analysis in [2, Chapter 21], if action z € D
is played [hm(z)] times (where h is a positive constant), the
estimation error associated with the action-related uncertainty
for action x is at most /2¢(w)log(1/3)/h with probability
1 — 8 for any 8 € (0,1). That is, for a fixed number of
rounds, a distribution 7(-) with a smaller value of g(7) helps
achieve a better estimation. Note that minimizing g(-) is a
well-known G-optimal design problem [33]. By the Kiefer-
Wolfowitz Theorem [34], one can find a distribution 7*

minimizing ¢(-) with g(7*) = d, and the support set® of 7*,
denoted by supp(7*), has a size no greater than d(d + 1)/2.
In our problem, however, it suffices to solve it near-optimally,
ie., finding a distribution 7; such that g(m) < 2d with
|supp(m;)| < 4dloglogd + 16 (Line 4), which follows from
[35, Proposition 3.7]. The near-G-optimal design reduces the
complexity to O(kd?) while keeping the same order of regret.
Clients sampling and private feedback aggregation
(Lines 7-16): The central server randomly samples a subset
U, of [2%!] users (called clients) from the population U/ to
participate in the global bandit learning (Line 7). Each sampled
client © € Uj collects their local reward observations of each
chosen action = € supp(m;) by the server and computes the
average y;‘(x) as feedback (Line 10). Before being used to
estimate the global parameter by the central server, these
feedback 7' = (y1'(2))sesupp(r) € RIUPTI! are processed
by a PRIVATIZER P to ensure differential privacy. Recall
that a PRIVATIZER P = (R,S,A) is a process completed
by the clients, the server, and/or a trusted third party. In
particular, according to the privacy requirement under different
DP models, the PRIVATIZER P enjoys flexible instantiations
(see Section IV-C). Generally, a PRIVATIZER works in the
following manner: each client u runs the randomizer R on its
local average reward ;' (over 7; pulls) and then sends the
resulting (potentially private) messages R(%;") to S (Line 13).
The computation function in S operates on these messages
and then sends results S({R(4}") fuev,) to the analyzer A at
the central server (Line 15). Finally, the analyzer A aggregates
received messages (potentially in a privacy-preserving manner)
and outputs a private averaged local reward ¢, (z) (over partic-
ipating clients U;) for each action = € supp(m;) (Line 16). We
provide the rigorous formulation of different DP models for
PRIVATIZER P in our technical report [6], with corresponding
detailed instantiations of R, S, and A.

Parameter estimation and action elimination (Lines 17-
19): Using privately aggregated feedback (i.e., the private av-
eraged local reward ¢, of the chosen actions x € supp(m;)), the
central server computes the least-square estimator él (Line 17).
We perform action elimination based on the following confi-

dence width:
1
2log <> ,
B

3)
where o is the standard variance associated with client sam-
pling, o, is related to the privacy noise determined by the
DP model, and 3 is the confidence level. We choose this
confidence width based on the concentration inequality for
sub-Gaussian variables. Specifically, the three terms in Eq. (3)
capture the action-related uncertainty, client-related uncer-
tainty, and the added noise for privacy guarantees, respectively.

2d n o n
Uil /U]
——— N——

client-related

N
Wl = On
privacy noise
action-related

The support set of a distribution 7 over set D, denoted by suppp (),
is the subset of elements with a nonzero 7(-), i.e., suppp(m) = {z € D :
m(x) # 0}. We drop the subscript D in suppp () for notational simplicity.
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This privacy noise o, depends on the adopted DP model.
Using this confidence width W, and the estimated global
model parameter #;, we can identify a subset of suboptimal
actions F; with high probability (Line 18). At the end of
the [-th phase, we update the set of active actions D;yq by
eliminating F; from D; and double h; (Line 19).

C. DP-DPE under Different DP Models

We now briefly explain how to instantiate the PRIVATIZER

P =(R,S,.A) in DP-DPE using three representative DP trust
models: the central, local, and shuffle models. In addition, we
also present the formal definition of the privacy guarantees
regarding P under each trust model, which further implies
respective privacy guarantee of DP-DPE according to the post-
processing property of DP [36, Proposition 2.1]. We provide
the detailed descriptions in our technical report [6].
DP-DPE under the central DP model (CDP-DPE). Under
the central DP model, each client trusts the server, and the
outputs of the server on two neighboring datasets (differing
by only one client) must be indistinguishable [21]. To achieve
this, the PRIVATIZER functions as follows: while both R and
S are simply identity mappings, A injects well-tuned Gaussian
noise to the aggregated statistics for privacy. That is,

1
gl:A({W}UGUz):w Zgjlu+(717“w’ysz)a 4)

uel

where s; = [supp(m)|, v, £ N(0,02,), and the variance
o2, is chosen according to the fy-sensitivity of the average
ﬁ EueU; ;. Consider a particular phase [. The PRIVATIZER
P is (e, )-differentially-private (or (¢, d)-DP) if the following
is satisfied for any pair of U;, U] C U that differ by at most
one client and for any output y of A:

PLA{G Yuev,) = 9] < e - PLAN{G buer;) = 9] + 6.

DP-DPE under the local DP model (LDP-DPE). Under the
local DP model, since clients do not trust the server, each client
with a local randomizer R is responsible for privacy protection
by injecting Gaussian noise; S is an identity mapping; A is a
simple aggregation function. That is,

Bi= o SR = 7 3 G (s )
| l‘ uel,; |Ul| uel;

. ©)
where 7, & N(0,02,) and the variance o2, is chosen
according to the sensitivity of 7j*. Consider any phase [. Let Y},
be the set of all possible values of the average local reward ;'
for client u. The PRIVATIZER P is (e, ¢)-local-differentially-
private (or (e,0)-LDP) if the following is satisfied for any
client u, for any pair of 7,7 € Y,, and for any output
0 € {R(YIF € Yu}:

PIR(f) = o] < - BIR(7') = o] + 6.

DP-DPE under the shuffle DP model (SDP-DPE). Under
the shuffle model, without a trusted server, we instantiate DP-
DPE by building on the vector summation protocol recently

proposed in [37]. Specifically, each local randomizer R en-
codes its inputs by adding random bits; the analyzer .4 outputs
the random vector whose expectation is the average of the
input vectors; beyond that, we leverage a third-party shuffler S,
which uniformly at random permutes users’ messages (in bits)
to hide their sources. That is,

o =P ({71 uerr) = ASERG) buerr)), (©)

where the additional randomness introduced by S allows each
local R to inject only a small amount of noise o, while still
guaranteeing a private view at the analyzer A. Consider any
phase 1. We use (SoR)(U;) = S({R(4}") }uer,) to denote the
composite mechanism. Formally, the PRIVATIZER P is (¢, d)-
shuffle-differentially-private (or (e, 0)-SDP) if the following is
satisfied for any pair of U;, U] C U that differ by one client
and for any possible output z of S o R:

P[(SoR)(U;) = z] < e -P[(SoR)(U]) = 2] + 6.
V. MAIN RESULTS

In this section, we study the performance of DP-DPE under
different DP models in terms of regret and communication
cost. We start with the non-private DP-DPE algorithm (called
DPE, with §; = ﬁ > wew, i and o, = 0 for all [) and
present the main result in Theorem 1.

Theorem 1 (DPE): Let 8 = 1/(kT) and o,, = 0 in Algo-
rithm 1. Then, the non-private DP-DPE algorithm achieves the
following expected regret:

E[R(T)] = O(\/dT log(kT)) + O(aT*~*/?\/log(kT)),

with a communication cost of O(dT?).

Remark 1: Theorem 1 gives a problem-independent regret
upper bound for DPE. We can observe an obvious tradeoff
between regret and communication cost, captured by the value
of a. While a larger « leads to a smaller regret, it also incurs
a larger communication cost. Setting o = 2/3 gives O(T?/3)
for both regret and communication cost.

In Theorem 2, we present the performance of DP-DPE
under different DP models in terms of regret, communication
cost, and privacy guarantee. Let S = 4dloglogd + 16.

Theorem 2: Let $ = 1/(kT). DP-DPE under different DP
models with the following parameters achieves the correspond-

ing results in Table I:
(i) CDP-DPE. Set 0, = O BW) in (4) for each

phase [ and o, = 20,.V.Sd in (3);
(i) LDP-DPE. Set o, = O ( ZV4n(/9)

phase [ and o,, = 20,,;1/5d/|U;| in (3);

(iii) SDP-DPE. Set 0,,, = O (W) in (6) for each

phase [ and o, = 20,5V Sd in (3).

Remark 2 (Privacy “for-free”): Comparing the above results
with Theorem 1 for the non-private case, we observe that the
DP-DPE algorithm enables us to achieve privacy guarantees
“for free” in the central and shuffie DP models, in the
sense that the additional regret due to privacy protection is

in (5) for each
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Fig. 2. Performance comparisons of different algorithms. The shaded area indicates the standard deviation. (a) Final cumulative regret vs. the privacy budget
€. (b) Per-round regret vs. time with privacy parameters ¢ = 10 and § = 0.25. (c) Per-round regret vs. time for two non-private algorithms. Here, we choose

the number of clients in DPE-FixedU to be U = 97 based on the calculation.

only a lower-order additive term. Essentially, this is because
the uncertainty introduced by privacy noise is dominated by
the client-related uncertainty, which can be captured by our
carefully designed confidence width W; in Eq. (3) and our
choice of o, for different PRIVATIZERS.

Remark 3 (Regret-privacy tradeoff under the shuffle model):
Consider the regret due to privacy protection. From Theo-
rem 2, we can see that while the local DP model ensures a
stronger privacy guarantee compared to the central DP model,
it introduces an additional regret of O(T"~*/2) compared to
O(T'~%) in the central DP model. The shuffle DP model,
however, leads to a much better tradeoff between regret and
privacy, achieving nearly the same regret guarantee as the
central DP model, yet assuming a similar trust model to the
local DP model (i.e., without a trustworthy central server).

Remark 4 (Communication cost): Both CDP-DPE and LDP-
DPE consume the same amount of communication resources
as the non-private DP-DPE algorithm, measured by the num-
ber of real numbers [15]. In contrast, SDP-DPE relies only on
binary feedback from the clients, and thus, the communication
cost is measured by the number of bits. It is worth noting
that sending messages consisting of real numbers could be
difficult in practice on finite computers [38], [39], and hence
in this case, it is desirable to use SDP-DPE, which incurs a
communication cost of O(dT3*/2) bits.

VI. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the per-
formance of DP-DPE. The detailed setting of our simulations
is as follows: d = 20,k = 103,0 = 0.1, [U| = 10°,a = 0.8,
and T = 105. We perform 20 independent runs for each set
of simulations.

First, we study the regret performance of DP-DPE under
different DP models. Recall that we use CDP-DPE, LDP-
DPE, and SDP-DPE to denote DP-DPE in the central, local,
and shuffle DP models, respectively. In Fig. 2(a), we present
the cumulative regret at the end of 7' rounds for the three
algorithms under different values of privacy budget e. We can
observe an obvious tradeoff between the privacy budget and
the regret performance for all the DP models: the cumulative
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regret decreases as the privacy requirement becomes less
stringent (i.e., a larger €). In addition, it also reflects the regret-
privacy tradeoff across different DP models. That is, with the
same privacy budget ¢, while LDP-DPE has the largest regret
yet without requiring the clients to trust anyone else (neither
the server nor a third party), CDP-DPE achieves the smallest
regret but relies on the assumption that the clients trust the
server. Interestingly, SDP-DPE achieves a regret fairly close
to that of CDP-DPE, yet without the need to trust the server.
This is well aligned with our theoretical results that SDP-DPE
achieves a better regret-privacy tradeoff.

In addition, we are also interested in the regret loss due
to privacy protection and how efficiently DP-DPE performs
the global bandit learning. Fix the privacy parameters € = 10
and 6 = 0.25. In Fig. 2(b), we plot how the per-round
regret of the three algorithms (i.e., CDP-DPE, LDP-DPE,
and SDP-DPE) varies over time compared to the non-private
DP-DPE algorithm (i.e., DPE). We observe that LDP-DPE
incurs the largest regret while ensuring the strongest privacy
guarantee (i.e., (¢,0)-LDP). On the other hand, the regret
performance of CDP-DPE and SDP-DPE is very close to that
of DPE (that does not ensure any privacy guarantee), under
the assumption of a trusted central server and a trusted third
party shuffler, respectively. This observation, along with our
theoretical results, shows that DP-DPE can indeed achieve
privacy “for-free” under the central and shuffle models.

Finally, we show that the exponentially-increasing client-
sampling plays a key role in balancing the regret and the
communication cost. To this end, we compare DPE (i.e., non-
private DP-DPE) with another non-private algorithm, called
DPE-FixedU in Fig. 2(c). DPE-FixedU is similar to DPE but
samples only a fixed number U of participating clients in
each phase (i.e., the participating clients are different, but
the number of clients in each phase is fixed, in contrast to
our increasing sampling schedule). For a fair comparison, we
choose the value of U such that the communication, cost is the
same under DPE and DPE-FixedU, i.e., U = [%U’A‘,NI]
The results show that DPE learns much faster than ]5PE-
FixedU while incurring the same communication cost.
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VII. CONCLUSION

In this paper, we studied a new problem of global reward
maximization with partial distributed feedback. This problem
is motivated by several practical applications where the ex-
pected reward of an action represents the overall performance
over a large population. In such scenarios, it is often dif-
ficult, if not impossible, to collect exact reward feedback.
To that end, we proposed a differentially private distributed
linear bandits formulation, where the learning agent samples
clients and interacts with them by iteratively aggregating such
partial distributed feedback in a privacy-preserving fashion.
We then developed a unified algorithmic learning framework,
called DP-DPE, which can be naturally integrated with dif-
ferent DP models, and systematically established the regret-
communication-privacy tradeoff.

In this work, we assumed that actions are correlated through
a common linear function with parameter §*. One interesting
direction for future work is to extend linear functions to gen-
eral (possibly non-convex) functions via kernelized bandits.
In addition, our work also raises several interesting questions
that are worth investigating. For example, can we further im-
prove the communication efficiency by using advanced shuffle
protocols? Can we generalize our formulation to studying
reinforcement learning problems?
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