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Dimerized valence bond solids appear naturally in spin-1/2 systems on bipartite lattices, with the
geometric frustrations playing a key role both in their stability and the eventual ‘melting’ due to
quantum fluctuations. Here, we ask the question of the stability of such dimerized solids in spin-1
systems, taking the anisotropic square lattice with bilinear and biquadratic spin-spin interactions
as a paradigmatic model. The lattice can be viewed as a set of coupled spin-1 chains, which in the
limit of vanishing inter-chain coupling are known to possess a stable dimer phase. We study this
model using the density matrix renormalization group (DMRG) and infinite projected entangled-
pair states (iPEPS) techniques, supplemented by the analytical mean-field and linear flavor wave
theory calculations. While the latter predicts the dimer phase to remain stable up to a reasonably
large interchain-to-intrachain coupling ratio r . 0.6, the DMRG and iPEPS find that the dimer
solid melts for much weaker interchain coupling not exceeding r . 0.15. We find the transition into
a magnetically ordered state to be first order, manifested by a hysteresis and order parameter jump,
precluding the deconfined quantum critical scenario. The apparent lack of stability of dimerized
phases in 2D spin-1 systems is indicative of strong quantum fluctuations that melt the dimer solid.

Dimerized valence bond solid (DVBS) is a magnetic
analog of an atomic crystal, with the spin singlets on the
non-overlapping links of a lattice forming a long-range or-
der that spontaneously breaks the translation symmetry.
Such DVBS are known to be the exact ground states of
certain models [1, 2] and are expected to appear naturally
in spin-1/2 systems on bipartite lattices, where extensive
numerical studies using density matrix renormalization
group (DMRG), variational Monte Carlo (VMC) and
tensor-network methods corroborate that VBS phases
(including plaquette VBS) are stable on the square [3–7]
and honeycomb [8, 9] lattices. Of particular interest is the
effect of geometric frustrations that enhance the quan-
tum fluctuations which can “melt” the DVBS solid in
favor of the resonating valence bond (RVB) state [10, 11]
– a long sought-after quantum spin liquid in the paradig-
matic J1 − J2 model on the square lattice [3–7]

While spin-1/2 models have been studied extensively,
the appeal of higher-spin systems (where S is not too
large so as not to become quasi-classical) is that they
allow for non-geometric frustration due to the nontriv-
ial biquadratic interactions (Si · Sj)2. The competition
with the familiar Heisenberg term then results in a rich
phase diagram that, in the case of two-dimensional (2D)
S = 1 model can potentially host more exotic phases,
including the ferroquadrupolar and antiferroquadrupo-
lar (spin nematic) orders [12–18], as well as a puta-
tive quantum spin liquid that breaks the lattice point-
group symmetry [19, 20]. Experimentally, compounds
like NiGaS2 [21–23] and Ba3NiSb2O9 [24, 25] with S = 1
moments have been proposed to be close to the spin-
nematic phases. Spin-1 model can also be fine-tuned
to the SU(3)-symmetric points (there are two [26, 27])

which lend themselves to possible realization in ultracold
alkaline-earth atoms [28].

This raises a question – to what extent the DVBS
phases, so central to the discussion of the dimer mod-
els [29, 30] and RVB spin liquids [10, 11], are prevalent
in higher spin models, in particular in spin-1 counter-
parts? In principle, spin singlet state is allowed to form
on a pair of sites for an arbitrary spin representation of
SU(2), so there is no fundamental obstruction. Yet nu-
merical studies point to the lack of stability of DVBS
states in SO(3)-symmetric spin-1 models on either the
square or the honeycomb lattices in 2D [15, 31–33]. This
is to be contrasted with 1D spin chains, where the DVBS
state (sometimes called spin-Peierls state) is well docu-
mented in the bilinear-biquadratic spin-1 model [34, 35].
To understand the reason for this dichotomy, we consider
the paradigmatic bilinear-biquadratic spin-1 model on an
anisotropic square lattice with the vertical links weaker
than the horizontal ones:

H =
∑
i,j

[
J‖Si,j · Si+1,j +K‖(Si,j · Si+1,j)

2

]

+
∑
i,j

[
J⊥Si,j · Si,j+1 +K⊥(Si,j · Si,j+1)2

]
. (1)

The degree of the lattice anisotropy can be captured by
the ratio r ≡ J⊥/J‖ = K⊥/K‖ (we assume the last
equality for simplicity, but it does not affect our con-
clusions qualitatively). Clearly, r = 0 corresponds to the
limit of decoupled spin chains, for which we know the
DVBS phase to be stable as long as K‖ is negative and
|K‖| > |J‖| [34, 35]. How far does this DVBS phase ex-
tend toward the isotropic square lattice limit (r = 1)?
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FIG. 1. (a) A schematic illustration of the piled-up phase dia-
grams for the spin-1 BBH chain (inner circle) and the spin-1 BBH
model on the square lattice (outer circle), with the shaded region
in-between representing the phase diagram of the coupled spin-1
BBH chains. The radical axis describes the relative strength of
inter-chain couplings. (b) Phase diagram for the coupled spin-1
BBH chains, where mean-field, the linear flavor wave theory and
iPEPS results are plotted. The solid lines indicate the actual phase
boundaries, which are of first order.

To answer this question, in this Letter we have per-
formed numerical analysis by two different tensor net-
work methods, DMRG and infinite projected entangled-
pair state (iPEPS), supplemented by the analytical
mean-field (MF) and linear flavor-wave theory (LFWT)
calculations. Our main findings are summarized in Fig. 1,
utilizing the commonly used parametrization J‖ = cos θ,
K‖ = sin θ in terms of the polar angle θ. We find
that a relatively weak interchain coupling (rc . 0.15)
is sufficient to melt the VBS solid, yielding one of the
rotational-symmetry-broken long range ordered phases:
either the Néel (at θ > −π/2) or the ferroquadrupo-
lar phase (at −2π/3 . θ < −π/2). Since these phases
break a different symmetry then the SO(3)-symmetric
VBS state, a direct second-order phase transition be-
tween such states is seemingly not allowed in the Landau–
Ginzburg paradigm. However, when topological defects
of either order parameter are considered, a field the-
ory supporting a putative continuous phase transition
between the VBS and Néel state can be written down,
oultining the framework of so-called deconfined quantum

criticality [36, 37]. This provides a second motivation
for the present study, namely: can the model in Eq. (1)
support such a continuous phase transition? Our results
show that the answer is negative, with a clear hystere-
sis indicating a first-order phase transition from the VBS
into either the Néel or FQ ordered state.
DVBS phase. In 1D, the existence of the dimerized VBS
phase is well established, with the simplest wavefunction
being a product of dimers on alternating bonds along the
decoupled chains:

|DVBS〉 =
∏
j

∏
i=2m+1

|dimer(Si,j , Si+1,j)〉, (2)

bearing in mind that the singlet state of two spins-1 is
written as |dimer(S1, S2)〉 = 1√

3
(|11̄〉+ |11〉 − |00〉). The

corresponding dimer order parameter Dh is defined by

〈Dh〉 = 〈Si,j · Si+1,j〉 − 〈Si+1,j · Si+2,j〉. (3)

Note that the |DVBS〉 ansatz is a zero-length entangled
state with no correlation between the dimers, achieving
the maximal possible |〈Dh〉| = S(S + 1) = 2. A most
general dimer state need not be a product state, and
correlations can develop between the dimers; in all cases
a non-vanishing Landau order parameter (3) serves as a
definition of the DVBS long-range order [38].

Competing phases. In the 2D limit of isotropic square lat-
tice (r = 1), prior iPEPS results find no DVBS phase [15],
instead the interval θ ∈ [−3π/4,−π/4] is occupied by
the FQ (yellow) and Néel (green) phases, as indicated
in Fig. 1a. The Néel phase is characterized by the stag-
gered magnetization ms. The FQ phase, on the other
hand, features a vanishing magnetic moment 〈S〉 = 0,
but breaks the SO(3) spin symmetry in a more subtle
way. Namely, FQ phase can be written (up to an over-
all phase) as a linear superposition with real coefficients
of three quadrupolar basis states |x〉 = i√

2
(|1〉 − |1̄〉),

|y〉 = 1√
2
(|1〉+ |1̄〉), z = −i|0〉 [39]:

|FQ〉 = dx|x〉+ dy|y〉+ dz|z〉. (4)

The real coefficients dα form the components of a direc-
tor, which spontaneosly breaks the SO(3) symmetry. One
can show that the FQ state has a non-zero value of the
ferroquandrupolar operators defined as a traceless sym-
metric tensor Q̂αβ ≡ ŜαŜβ + ŜβŜα− 2

3S(S+ 1)δαβ . One
way to define the FQ order parameter is proportional to
the trace of this matrix squared: IIQ = − 1

2Tr(〈Q̂〉2) [15].

Mean-field and LFWT insights. Using the product state
ansätze for the Néel, FQ and DVBS phases, we obtain
the expressions for the mean-field energies (see SM):

Emf
N (r) = −(1 + r) cos θ + (S2 + 1)(1 + r) sin θ

Emf
FQ(r) =

(
S2 +

1

2
+

1

2
Θ(

5

4
− S)

)
(1 + r) sin θ (5)

Emf
DVBS(r) = −S + 1

2S
cos θ +

(S + 1)2

3
(2 + r) sin θ,
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which for S = 1 results in the transitions indicated by the
dotted lines in Fig. 1b. The mean-field treatment overes-
timates the stability of the DVBS phase and we use the
linear flavour-wave theory to account for the quantum
fluctuations around the FQ and Néel phase, respectively.
Starting from the Néel phase, the LFWT treatment is
equivalent to the Holstein–Primakoff bosons, with the
resulting energy lowered by the zero-point fluctuations
(see SM). The flavor-wave expansion around the FQ or-
der requires more care, representing the spin operators
Sα and quadrupolar operators Qαβ in terms of the bi-
linears of the three flavors of Schwinger bosons forming
a fundamental representation of group SU(3), namely:

Sα = −iεαβγb†βbγ , Qαβ = 2
3δαβ − b

†
αbβ − b

†
βbα. One then

treats the FQ phase as a Bose–Einstein condensation of
one of the boson flavors 〈bz〉 6= 0, and uses the constraint∑
α b
†
αbα = 1 to express the condensate fraction as

〈bz〉 =

√
1− b†xbx − b†yby, (6)

where expanding the square root to first order in boson
bilinears amounts to LFWT. Diagonalizing the resulting
Hamiltonian and computing the zero-point energy cor-
rection to the mean-field expression (5) makes the FQ
and Néel phases more energetically favourable, thus low-
ering the critical value rc at which the VBS phase melts,
shown by the dashed line in Fig. 1b.

iPEPS. In order to provide an unbiased corroboration
of the above LFWT results, we have used the iPEPS
method [40], which has been previously demonstrated to
describe well both the FQ and Néel order of spin-1 on the
square lattice [15]. In iPEPS, the wavefunction on the
(infinite) square lattice is written in terms of a product
of tensors, with the contraction over the auxiliary indices
that are defined on the links of the lattice. Based on the
known phases in 1D and 2D, we choose the bipartite tiling
by a 2× 1 unit cell containing two distinct tensors a and
b which we then variationally optimize [41]. Such ansatz
can describe the staggered pattern of the Néel ordered
states as well as the DVBS covering

|ψ(a, b)〉 = . (7)

The physical indices associated to physical spin S = 1 de-
grees of freedom are represented by black vertical lines.
The approximation is controlled by the bond dimensions
of auxiliary indices in horizontal (gray indices l, r) and
vertical direction (magenta u, d), now denoted Dx and
Dy respectively, which need not to be the same. Indeed,
the decoupled chain limit r → 0 can be described just
with Dy = 1. Evaluation of energy and order parameters
requires additional environment tensors whose precision

is controlled by their environment dimension χ, here con-
structed by corner transfer matrix method [42]. In our
simulations, we found it sufficient to set Dx = 9, Dy = 4
and χ = 16 in order to obtain well converged results
in all three phases (Dx = 9 turns out to be the mini-
mal bond dimension that allows to realize a variationally
competitive SU(2)-symmetric DVBS state in the limit of
decoupled chains). To verify, we have run the iPEPS
calculations with more exacting parameters (Dx = 9,
Dy = 6, and χ up to 32) at several points in each phase,
which gave nearly identical results. The relatively small
environment dimension χ necessary to obtain converged
results points to the short correlation lengths of opti-
mized iPEPS in the competing ordered phases. We refer
the reader to the Supplementary Materials for further
details of the iPEPS simulations.

The resulting phase diagram is shown in Fig. 1b and
Fig. 2e, with the solid black line indicating the bound-
ary of the DVBS phase. It is immediately apparent that
a small value of interchain coupling (anisotropy ratio
rc . 0.15) is sufficient to melt the DVBS phase in fa-
vor of a long-range ordered magnetic or nematic (Néel
or FQ) phase. This is completely consistent with the
prior iPEPS results on the isotropic square lattice (r = 1)
where the DVBS order is conspicuously absent [15].

DMRG. As a complementary method, we also use the
density matrix renormalization group method to simulate
the coupled chains. DMRG is a numerical method first
proposed to study 1D systems [43] and subsequently gen-
eralized to the studies of finite 2D systems in a cylindrical
geometry [44]. Aligning the chains along the cylinder di-
rection (x) with open boundary conditions, we chose long
cylinders of dimension Nx×Ny with Nx = 30−80 to min-
imize the effect of the boundaries. The results were then
extrapolated to the 1D thermodynamic limit Nx → ∞.
The computational complexity grows exponentially with
the cylinder circumference, which was therefore kept at
Ny = 4 for most of the calculations. We checked that
larger Ny = 6 simulations do not qualitatively change our
conclusion. We used DMRG implementation provided by
ITensor library [45], with explicit U(1) symmetry. The
maximum number of states kept in our simulations were
M = 1600, achieving acceptable truncation errors less
than 8× 10−5.

It turns out that cylinders of Ny = 4 are able to cap-
ture the phase transitions as the DVBS order melts very
quickly even with weak inter-chain couplings, corroborat-
ing our iPEPS results. Shown in Fig. 3 are the two orders
parameters along the DVBS–Néel phase transition, aver-
aged over the middle portion ∆Nx ×Ny = 12× 4 of the
cylinders for all Nx so as to avoid the boundary effects.
We note in passing that care must be taken in computing
the order parameter in DMRG, since spontaneous break-
ing of the SO(3) spin symmetry is only possible in the
thermodynamic limit. To overcome this, we introduced
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FIG. 2. Hysteresis. (a)-(d) Order parameters for cut A (θ =
−0.5625π) and B (θ = −0.4375π). States for each ratio are opti-
mized using both dimerized initial states (blue curves) and ferro-
quadrupolar states (red curves). (e) Hysteresis is indicated by
shaded region (iPEPS) and errorbars (DMRG).

the pinning fields on the open boundaries of the cylinder
(see SM for more details), as is the standard practice in
U(1)-symmetric DMRG calculations.

It is clear from the order parameter plots Fig. 3 that
there is a (narrow) regime of coexistence, indicating that
the DVBS–Néel transition is first order. To further cor-
roborate this finding, we analyze below the hysteresis of
both this and the DVBS–FQ transition.

Hysteretic melting of the DVBS order. We corroborate
the first-order nature of the phase transitions from DVBS
phase by observing the hysteresis. Indeed, we found that
the critical value rc at which the DVBS phase melts de-
pends on the choice of the initialization in DMRG (or
the initial choice of tensors in iPEPS). To systematically
investigate this effect, we have prepared the initial state
to either be the |DVBS〉 product state in Eq. (2) or one of
the ordered states: FQ for θ < −π/2 (“cut A” in Fig. 2)
or Néel for θ > −π/2 (“cut B” in Fig. 2). We then plot
the dimer order parameter 〈Dh〉 (solid lines in Fig. 2),
which shows a clear hysteresis loop traced between the
blue and red lines in Figs. 2a-2d depending on the choice
of the initial condition. We similarly plot with the dashed

FIG. 3. Finite size scaling of the VBS order parameter Dh and
the staggered magnetization ms in DMRG calculations, plotted
along the vertical cut B (θ = −0.4375π) in the phase diagram
(Fig. 2e). Different symbols/colors label the cylinder lengths Nx,
extrapolated to the thermodynamic limit. The Néel AFM state
was used to initialize the density matrices.

lines the FQ order parameter (IIQ, defined below Eq. 4)
along cut A in Figs. 2(a,c) and the staggered magnetiza-
tion ms along cut B in Figs. 2(b,d). In all cases, a clear
hysteresis associated with a discontinuous phase transi-
tion is observed. The width of the hysteresis is narrower
in our DMRG data compared with iPEPS, which we at-
tribute to the practical limitations on the circumference
of the cylinder used in DMRG calculations.

We determine the position of the DVBS melting phase
transition by following the energy level crossing between
the two differently initialized configurations (see SM).
The transition rc thus obtained falls roughly halfway in-
side the hysteresis loop (greyed area in the phase diagram
Fig. 2e) – this is how the phase boundaries (solid black
lines) were obtained in Figs. 1b and 2e. We have also veri-
fied that the correlation functions all remain short-ranged
across the DVBS melting transition (see SM), again cor-
roborating the discontinuous nature of the transition.

Discussion. As the comparison between the MF results,
LFWT and DMRG/iPEPS indicates, quantum fluctua-
tions tend to destabilize the dimerized VBS order even
at very weak interchain couplings rc . 0.15. We find
that the DVBS state, even when stable, is not a sim-
ple product state such as in the MF ansatz (2), but
that dimer-dimer correlations are pronounced, eventually
melting the dimer order.

While the present study focuses on the frustration in-
duced by the biquadratic interaction, the implications
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hold for more general models with geometric frustrations.
For instance, no VBS state appears to be stable on J1–J2

spin-1 square lattice [31]. In fact the only isotropic lattice
(that the authors are aware of) appearing to support a
VBS state is the honeycomb J1–J2 model, where DMRG
calculations find a stable plaquette VBS order [33].

The discontinuous nature of the DVBS quantum melt-
ing transition we found precludes the possibility of a
deconfined quantum criticality mentioned earlier in the
context of spin-1/2 models, in agreement with the find-
ing in Ref. 46 for a more complicated spin-1 model. It
is conceivable that the deep reason for the difference in
the stability of the VBS phases between spin-1/2 and
spin-1 models lies in the Lieb–Schultz–Mattis–Oshikawa–
Hastings theorem [47–49], which prohibits existence of
gapped non-topological phases in spin-1/2 systems unless
the unit cell is doubled due to the dimer formation. There
is no such restriction for integer spin systems however,
with a featureless correlated paramagnet state possible,
which has been suggested in several numerical studies on
spin-1 models [15–17, 32]. As the present work indicates,
spin-1 models offer a rich palette of quantum phases that
deserve future investigation.
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Supplementary Materials for “ Quantum Melting of Spin-1 Dimer Solid Induced
by Inter-chain Couplings ”

INFINITE PROJECTED ENTANGLED-PAIR
STATES (IPEPS)

The ground-state wave function is parametrized by a
set of rank-5 on-site tensors {asuldr} associated with phys-
ical sites in the unit cell (depending on the spatial pat-
tern) which then tiles the entire square lattice. The phys-
ical index s runs over states of S = 1 degrees of freedom
while u, l, d, and r are auxiliary indices of bond dimension
D associated with up, left, down and right bonds of each
site on the square lattice. The physical wavefunction on
(infinite) square lattice is then formally obtained by con-
tracting on-site tensors along pairs of auxiliary indices
common to the bonds of the lattice

|ψ({a})〉 =
∑
{s}

Tr[. . . as−1as0as1 . . .] | . . . s−1 s0 s1 . . .〉

(S1)
The quality of the approximation is controlled by

D, starting from trivial D = 1 iPEPS describing only
mean-field wave functions to highly-entangled states as
D grows. Tractable manipulation of iPEPS is realized by
considering only reduced density matrices of finite sub-
systems, which are sufficient to compute physical quan-
tities of interests such as energy, local order parame-
ters or correlation functions. We construct such reduced
density matrices from iPEPS environments which pro-
vide finite-dimensional embedding of subsystems. The
environments are obtained by the corner transfer ma-
trix renormalization group (CTMRG) algorithm [42, 50],
with their precision controlled by environment bond di-
mension χ. For given iPEPS, one recovers its exact re-
duced density matrices in the limit of χ → ∞. To find
optimal values for elements of on-site tensors, we per-
form their gradient-based optimization using automatic
differentiation [41]. These simulations were realized using
peps-torch library [51].

The variational energy per site e of iPEPS state given
in Eq. 7 is obtained by evaluating four non-equivalent
contributions

e =
∑
i=0,1

〈J‖Si,0 · Si+1,0 +K‖(Si,0 · Si+1,0)2〉+

∑
j=0,1

〈J⊥S0,j · S0,j+1 +K⊥(S0,j · S0,j+1)2〉.
(S2)

To evaluate the above terms, we construct four dis-
tinct reduced density matrices (RDMs) of nearest-
neighbor sites using environment tensors {C, T} obtained
from CTMRG. Assuming tensor a is assigned to site
[i, j] = [0, 0], the first two RDMs are ρ2×1([0, 0], [1, 0]),

ρ1×2([0, 1], [0, 2])

, , . . . (S3)

and the remaining two, ρ2×1([1, 0], [2, 0]) and
ρ1×2([0, 0], [0, 1]), which we do not show can be con-
structed analogously. Tensors A and B are double-layer
tensors obtained by contracting the physical index, i.e.,
A(uu′)(ll′)(dd′)(rr′) =

∑
s a

s
uldra

∗s
u′l′d′r′ , while sites with

open physical indices, Ass
′

(uu′)(ll′)(dd′)(rr′) = asuldra
∗s
u′l′d′r′ ,

have diagonal black lines.
The optimization is done by repeating four steps: (i)

perform CTMRG for state |ψ(a, b)〉 and obtain environ-
ment tensors {C, T}, (ii) evaluate variational energy e,
(iii) compute gradients ga = ∂e/∂a, gb = ∂e/∂b, (iv)
update tensors a and b using L-BFGS method with a
backtracking line search. The optimization terminates
once the relative difference in variational energies be-
tween consecutive steps becomes lower than 10−8. For
details regarding L-BFGS gradient descent, which is a
quasi-Newton method constructing an approximate Hes-
sian from past gradients, and line search see Ref. [52].

In the main text, we have used exclusively bipartite
tiling of the square lattice with 2 × 1 unit cell. In the
dimerized phase this choice leads to staggered dimer state
(sVBS). The second option is to use stripe tiling, where
horizontal dimers are aligned in columns (cVBS). We
have verified, that these two choices are very close in
energies in the dimer phase. For example, at (θ, r) =
(−0.5625π, 0.02), with Dx = 9, Dy = 4 and χ = 16,
esVBS = −2.558822, EcVBS = −2.558595.

Although the dimerized phase of coupled spin-1 chains
is gapped, its accurate description in terms of iPEPS re-
quires a relatively large bond dimension. We study the
limiting case of iPEPS ansatz with Dy = 1, which in ef-
fect parametrizes the ground state of decoupled chains
(r = 1) as a product state of MPS with bond dimension
Dx for each individual spin-1 chain. In Fig. S1 we show
the breaking of expected SU(2) symmetry through non-
vanishing expectation values of m, IIQ, and IIIQ as func-
tion of 1/Dx. This computation reveals that Dx ≥ 9 is
necessary to obtain a good approximation of the ground
state even in this simple limit, since iPEPS with smaller
Dx display substantial breaking of SU(2) either by devel-
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FIG. S1. Spurious SU(2)-symmetry breaking induced by finite-D
effects in dimerized phase of decoupled chains, r = 0, for θ = −5/8π
(left) and θ = −3/8π (right). Keeping Dy = 1, for Dx ≥ 9 all order
parameters ms and IIQ become small.

oping large magnetization or higher moments IIQ, IIIQ.

DENSITY MATRIX RENORMALIZATION
GROUP (DMRG)

Subtleties in defining the Néel order parameters on
finite systems

In the main text, the order parameter for Néel phase is
defined as the staggered magnetization, which is not an
SU(2)-invariant observable. This will cause trouble when
studying the SU(2) symmetry broken states in finite size
systems because the SU(2) symmetry can only be broken
in the thermodynamic limits. Specifically speaking, the
DMRG algorithm that deals with the finite size cylin-
ders does not have a preference on the choice of sym-
metry breaking ”direction”. As a result, in practice one
may end up with states which are some linear superposi-
tion of different symmetry broken states, or even SU(2)-
symmetric states. If the state is SU(2)-symmetric, the
U(1)-symmetric staggered magnetization will apparently
be vanishing. In our case, this situation corresponds to
the simulations for the cut B (θ = −0.4375π) which was
initialized by the DVBS states (the simulations initialized
by the Néel AFM states do not suffer from the problem
since the initial states have already broken the SU(2)
spin-rotation symmetry).

To resolve this issue with DMRG on finite cylinders, we
apply the pinning fields of Néel type at boundaries [44] to
explicitly break the global spin-rotation symmetry with-
out disrupting too much the bulk physics. The pinning
field strength is |hpin

Néel| = 0.5.

Finite size scaling

In the main context, we show the finite size scaling
plot for cut B initialized by the Néel AFM state, in
Fig. 3. Here, we also attach the result for cut A with
the FQ initial state. Given that the exponential decay-
ing edge effects, we use an exponential fitting form versus
the cylinder length Nx introduced by [13] for finite size
extrapolation in our analysis.

FIG. S2. Finite size scaling of order parameters Dh and IIQ
versus Nx for cut A initialized by |FQ〉.

In this work, DMRG simulations are performed sys-
tematically mainly for Ny = 4, because we are more in-
terested in the coupled chains behavior, and the compu-
tational cost of finite size scaling versus Ny is very expen-
sive. Here, we present how the dimerized order melts as
ratio increases for fixed Nx = 30 and different Ny’s (with
M = 2000 states kept, truncation errors Ny = 4, 5, 6
simulations are εNy=4 < 2 × 10−5, εNy=5 < 5 × 10−5,
εNy=6 < 3 × 10−5), as shown by Fig. S3. As Ny in-
creases, the DVBS melting transition may happen at dif-
ferent ratios (r = 0.06 0.1) for different Ny’s, but this do
not qualitatively change our conclusion that the DVBS
order melts very quickly.
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FIG. S3. Melting of the dimerized order for different cylinder
circumferences for cut A and fixed Nx = 30.

ENERGY LEVEL CROSSINGS

In iPEPS and DMRG simulations, the simulations for
each θ were initialized by two different states which rep-
resent different orders of the 1D- and 2D-limit phases.
Apart from the hysterestic melting process of the DVBS
order, we also observe the energy level crossings. By
making use of this, we determine the phase boundary of
the DVBS phase by the crossing points. Here, we show
the energy level crossings (the energy difference) for both
cuts A and B where both iPEPS and DMRG results are
present, as shown by Fig. S4. Also, note that for DMRG
results, we first extrapolated the energies in the Nx →∞
using the linear fitting function. The blue and orange
dashed lines represent the ”virtual” energies that are ob-
tained by evaluating the Hamiltonian at some ratio r yet
using the states at r1 and r2.

FIG. S4. (a)-(d) Energy level crossings using different initial
states for cuts A and B. 〈H〉1,2 are computed using the state
at r1 initialized by |DV BS〉 at and the state at r2 initialized
by |FQ〉 for cut A or |NAF 〉 for cut B.

CORRELATION FUNCTIONS AND
CORRELATION LENGTHS

We computed different types of correlation functions
including the spin-spin, dimer-dimer and quadrupole-
quadrupole correlation functions (CS(r), CD(r) and
CQ(r) ) for cuts A and B.

The spin-spin correlation is simply defined as

CS(r) = 〈S(r) · S(0)〉 , (S4)

The dimer-dimer correlation function is defined as the
product of two dimers, D(0) and D(r), given by (note
that they are different from the dimer order parame-
ter Dh). The two dimers should not overlap with each
other, which means that the position of the nearest dimer
should be shifted by 2 with respect to the reference dimer.

CD(r) = 〈D((r + 1)x)D(0)〉 , (S5)

where the dimer is defined as D(r) = S(r) · S(r + x).

The quadrupole-quadrupole correlation function is
given by

CQ(r) = 〈Q(r) ·Q(0)〉 , (S6)

where the quadrupolar operator Q, as a generalization
of the spin vector for magnetic order, describes the
quadrupolar order of spin-1 states, and is given by [39]

Q =


Qx

2−y2

Q3z2−r2

Qxy

Qyz

Qzx

 =


(Sx)2 − (Sy)2

1√
3
[3(Sz)2 − S(S + 1)]

SxSy + SySx

SySz + SzSy

SxSz + SzSx

 (S7)

To extract the correlation lengths, we compute the con-
nected version of correlation functions,

CCO(r) = 〈O(0) · O(r)〉 − 〈O(0)〉 · 〈O(r)〉 (S8)

(for the operator O = S,Q, or D). We present the re-
sults of the connected correlation functions at two ra-
tios for both cut A and cut B, as shown by Fig. S5(a,c)
and Fig. S6(a,c). Then, the Ornstein-Zernike formula is
used to extract the correlation lengths for both cuts, as
shown in Fig. S5(b,d) and Fig. S6(b,d). In the vicin-
ity of the phase boundary, we do not observe any singu-
lar behaviors for all the connected correlation function,
excluding the possibility of continuous phase transition.
The spin-spin and quadrupolar-quadrupolar correlation
lengths are correspondingly finite in the DVBS phase, as
shown in Fig. S6(c,d). The same is true of the dimer
correlation length ξD in Fig. S5(c,d), which is extracted
from the long-distance tail of the dimer-dimer correla-
tion function (after the short-range transient component
decays).



10

FIG. S5. (a,b) Connected dimer-dimer correlation functions at two
ratios deeply in the two phases for cuts A and B. (c,d) Dimer-dimer
correlation lengths for the two cuts.

FIG. S6. (a,b) Connected quadrupole-quadrupole or spin-spin cor-
relation functions at two ratios for the two cuts. (c,d) Quadrupole-
Quadrupole and spin-spin correlation lengths for the two cuts.

MEAN-FIELD RESULT

Consider the following Hamiltonian for general spin-S.

H =
1

S2

∑
i,j

[
J‖Si,j · Si+1,j +K‖(Si,j · Si+1,j)

2

+ J⊥Si,j · Si,j+1 +K⊥(Si,j · Si,j+1)2

]
(S9)

where J‖ = cos θ, K‖ = sin θ, J⊥ = r cos θ, K⊥ =

r sin θ. The biquadratic term can be expanded as follow.

(S1 · S2)2 =
1

4
S1+S1+S2−S2−

::::::::::::::

+
1

4
S1+S1−S2−S2+

+
1

2
S1+S1zS2−S2z +

1

4
S1−S1+S2+S2−

+
1

4
S1−S1−S2+S2+

::::::::::::::

+
1

2
S1−S1zS2+S2z

+
1

2
S1zS1+S2zS2− +

1

2
S1zS1−S2zS2+

+ S1zS1zS2zS2z (S10)

For Néel and dimerized state, only the underlined
terms can have non-trivial contributions (S11,S15,S19)
because they do not change the onsite Sz quantum num-
bers. For the S = 1 SN state (FQ), if one chooses |x〉 or
|y〉, the wavy underlined terms will also contribute (S14).

Néel AFM

〈SS|S1 · S2|SS〉 = −S2

〈SS|(S1 · S2)2|SS〉 =
1

4

√
2S
√

2S + S2(−S)2

= S4 + S2 (S11)

Spin-nematic (FQ) (S ≥ 1)

|ψFQ〉 = |φS〉 =
1√
2

(
|S〉+ |S〉

)
(S12)

〈φS1 φS2 |S1 · S2|φS1 φS2 〉 = 0 (S13)

S = 1:

〈φS1 φS2 |(S1 · S2)2|φS1 φS2 〉 = 2× 1

4
(
2S

2
)2 + 2× 1

4
(
2S

2
)2 + S4

= S4 + S2 = 2 (S14)

S > 1:

〈φS1 φS2 |(S1 · S2)2|φS1 φS2 〉 = 2× 1

4
(
2S

2
)2 + S4

= S4 +
1

2
S2 (S15)

Dimerized VBS
Note that there are two degenerate ground states for

the dimerized (DVBS) order on the spin chain due to the
translational symmetry breaking. The energy per site for
the dimerized state should be averaged.

For the two spins from one dimer,

|Stot = 0〉 =
1√

2S + 1

S∑
m=−S

(−1)S−m|m〉1|S −m〉2

(S16)
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Since 2S1 · S2 = (S1 + S2)2 − S2
1 − S2

2 , we have

〈Stot = 0|S1 · S2|Stot = 0〉 = −S(S + 1)

〈Stot = 0|(S1 · S2)2|Stot = 0〉 = S2(S + 1)2 (S17)

For the two spins from two different dimers,

〈S13
tot = 0|〈S24

tot = 0|S1 · S2|S13
tot = 0〉|S24

tot = 0〉 = 0
(S18)

〈S13
tot = 0|〈S24

tot = 0|(S1 · S2)2|S13
tot = 0〉|S24

tot = 0〉

=
2

4
×
{

1

2S + 1

S−1∑
m=−S

[
S(S + 1)−m(m+ 1)

]
× 1

2S + 1

S∑
m=−S+1

[S(S + 1)−m(m− 1)]

}

+

[
1

2S + 1

S∑
m=−S

m2

]2

=
1

3
S2(S + 1)2 (S19)

With the information above, we then have the expres-
sions for the mean-field ansatz. The mean-field phase
diagram is shown by Fig. S7.

Emf
NAF = −(1 + r) cos θ + (S2 + 1)(1 + r) sin θ (S20)

Emf
DVBS = −S + 1

2S
cos θ +

(S + 1)2

3
(2 + r) sin θ (S21)

Emf
FQ =

(
S2 +

1

2
+

1

2
Θ(

5

4
− S)

)
(1 + r) sin θ (S22)

FIG. S7. Mean-field phase diagram for spin-S BBH coupled
chains with θ ∈ [−3π/4,−π/4]. The shaded region indicates
the dimerized phase. The solid lines indicate the boundaries
for integer spins, and the dashed lines represent the bound-
aries for half integer spins.

LINEAR FLAVOR WAVE THEORY

Consider S = 1 case. The Hamiltonian is given by

H =
∑
i,j

[
J‖Si,j · Si+1,j +K‖(Si,j · Si+1,j)

2

]

+
∑
i,j

[
J⊥Si,j · Si,j+1 +K⊥(Si,j · Si,j+1)2

]
(S23)

Flavor wave boson representation (dipolar basis)

In the dipolar (Sz) basis, the matrix form for operators
S and Q are

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 ,
Sz =

1 0 0
0 0 0
0 0 −1

 , Qx
2−y2 =

0 0 1
0 0 0
1 0 0

 ,
Q3z2−r2 =

1√
3

1 0 0
0 −2 0
0 0 1

 , Qxy =

0 0 −i
0 0 0
i 0 0

 ,
Qyz =

1√
2

0 −i 0
i 0 i
0 −i 0

 , Qzx =
1√
2

0 1 0
1 0 −1
0 −1 0


(S24)

Switching to the bosonic language, the operators S
and Q can be written in terms of the bosonic cre-
ation/annihilation operator, i.e.,

Sxi =
1√
2

(a1†
i a

0
i + a0†

i a
1
i + a0†

i a
−1
i + a−1†

i a0
i )

Syi =
1√
2

(−ia1†
i a

0
i + ia0†

i a
1
i − ia

0†
i a
−1
i + ia−1†

i a0
i )

Szi = a1†
i a

1
i − a

−1†
i a−1

i

Qx
2−y2
i = a1†

i a
1
i + a−1†

i a−1
i

Q3z2−r2
i =

1√
3

(a1†
i a

1
i + a−1†

i a−1
i − 2a0†

i a
0
i )

Qxyi = −ia1†
i a
−1
i + ia−1†

i a1
i

Qyzi =
1√
2

(−ia1†
i a

0
i + ia0†

i a
1
i + ia0†

i a
−1
i − ia

−1†
i a0

i )

Qzxi =
1√
2

(a1†
i a

0
i + a0†

i a
1
i − a

0†
i a
−1
i − a

−1†
i a0

i )

(S25)
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Flavor wave boson representation (quadrupolar
basis)

In the quadrupolar basis (|α〉, α = x, y, z), the matrix
form for operators S and Q are

Sx =
1√
2

0 0 0
0 0 −i
0 i 0

 , Sy =
1√
2

 0 0 i
0 0 0
−i 0 0

 ,
Sz =

0 −i 0
i 0 0
0 0 0

 , Qx
2−y2 =

−1 0 0
0 1 0
0 0 0

 ,
Q3z2−r2 =

1√
3

1 0 0
0 1 0
0 0 −2

 , Qxy =

 0 −1 0
−1 0 0
0 0 0

 ,
Qyz =

1√
2

0 0 0
0 0 −1
0 −1 0

 , Qzx =
1√
2

 0 0 −1
0 0 0
−1 0 0


(S26)

Similar to the case in the dipolar basis, in the
quadrupolar basis, the operators S and Q can be ex-
pressed as follows.

Sxi = −iay†i a
z
i + iaz†i a

y
i

Syi = −iaz†i a
x
i + iax†i a

z
i

Szi = −iax†i a
y
i + iay†i a

x
i

Qx
2−y2
i = −ax†i a

x
i + ay†i a

y
i

Q3z2−r2
i =

1√
3

(ax†i a
x
i + ay†i a

y
i − 2az†i a

z
i )

Qxyi = −ax†i a
y
i − a

y†
i a

x
i

Qyzi = −ay†i a
z
i − a

z†
i a

y
i

Qzxi = −az†i a
x
i − a

x†
i a

z
i (S27)

Néel phase

For the Néel AFM state, we choose |1〉 for A sublattice
and | − 1〉 for B sublattice. Then, we can replace a1

i and
b−1
i by

a1
i = a1†

i =

√
M − a0†

i a
0
i − a

−1†
i a−1

i

≈
√
M − 1

2
√
M
a0†
i a

0
i −

1

2
√
M
a−1†
i a−1

i

(S28)

b−1
i = b−1†

i =

√
M − b0†i b0i − b

1†
i b

1
i

≈
√
M − 1

2
√
M
a0†
i a

0
i −

1

2
√
M
a−1†
i a−1

i

(S29)

here M = 1 for S = 1. Then, we only keep terms up
to the bilinear order for the interaction terms Si ·Sj and

Qi ·Qj = 2(Si · Sj)2 + Si · Sj − 8/3. By doing such, we
can get

HAB
〈ij〉η = (Jη −Kη)(a0†

i a
0
i + a0†

i a
0
i + b0†j b

0
j + a0

i b
0
j + a0†

i b
0†
j )

+ (2Jη −Kη)(a−1†
i a−1

i + b1†j b
1
j )

+Kη(a−1
i b1j + a−1†

i b1†j ) + (−Jη + 2Kη) (S30)

where η =‖,⊥. After that, we perform Fourier trans-
formation fi = N−1

∑
k fk exp(−ik · ri) and then obtain

the energy with quantum fluctuation.

E =E0
MF +

∑
k

[a0†
k , b

0
−k]H1(k)[a0

k, b
0†
−k]

+ [a−1†
k , b1−k]H2(k)[a−1

k , b1†−k]− f1k − f2k (S31)

where

Hi(k) =

[
fik gik
gik fik

]
, i = 1, 2 (S32)

with

f1k = 2(J‖ −K‖) + 2(J⊥ −K⊥)

g1k = 2(J‖ −K‖) cos kx + 2(J⊥ −K⊥) cos ky

f2k = 2(2J‖ −K‖) + 2(2J⊥ −K⊥)

g2k = 2K‖ cos kx + 2K⊥ cos ky (S33)

By doing the Bogoliubov diagonalization, the energy
expression becomes

E = E0
MF +

1

2

∑
k

[
ω1k(α†kαk + β†kβk + 1)− f1k

+ω2k(γ†kγk + η†kηk + 1)− f2k

]
(S34)

where ωik =
√
f2
ik − g2

ik are the energy eigenvalues.
Thus, the correction to the mean-field energy is

∆E =
1

2

∑
k

(ω1k + ω2k − f1k − f2k)

=
1

2

1

(2π)2

∫
BZ

dk(ω1k + ω2k − f1k − f2k) (S35)

FQ phase

For the FQ case, we choose |z〉 for all the sites. Then,
we can replace azi by

azi = az†i =

√
M − ax†i axi − a

y†
i a

y
i

≈
√
M − 1

2
√
M
ax†i a

x
i −

1

2
√
M
ay†i a

y
i (S36)

here M = 1 for S = 1. Then, again, we only keep terms
up to the bilinear order, O(M), for the interaction terms
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and perform the Fourier transform. In this way, one can
obtain the energy expression in momentum space.

E = E0
MF +

1

2

∑
k

[
fk(ax†k a

x
k + ax†−ka

x
−k + ay†k a

y
k + ay†−ka

y
−k)

+gk(ax†k a
x†
−k + axka

x
−k + ay†k a

y†
−k + ayka

y
−k)
]

(S37)

with

fk = −2(K‖ +K⊥) + 2(J‖ cos kx +K⊥ cos ky)

gk = 2(−J‖ +K‖) cos kx + 2(−J⊥ +K⊥) cos ky (S38)

By doing the Bogoliubov diagonalization, we get

E = E0
MF +

1

2

∑
k

[
ωk(α†kαk + α†kαk + 1)− fk

+β2k(β†kγk + β†kβk + 1)− fk
]

(S39)

where ωk =
√
f2
k − g2

k are the energy eigenvalues.
Thus, the correction to the FQ mean-field energy is

∆E =
∑
k

(ωk − fk) =
1

(2π)2

∫
BZ

dk(ωk − fk) (S40)
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