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Abstract— Background: Lung cancer is the leading cause of
death compared to other cancers in the USA. The overall
survival rate of lung cancer is not satisfactory even though there
are cutting-edge treatment methods for cancers. Genomic
profiling and biomarker gene identification of lung cancer
patients may play a role in the therapeutics of lung cancer
patients. The biomarker genes identified by most of the existing
methods (statistical and machine learning based) belong to the
whole cohort or population. That is why different people with
the same disease get the same kind of treatment, but results in
different outcomes in terms of success and side effects. So, the
identification of biomarker genes for individual patients is very
crucial for finding efficacious therapeutics leading to precision
medicine. Methods: In this study, we propose a pipeline to
identify lung cancer class-specific and patient-specific key genes
which may help formulate effective therapies for lung cancer
patients. We have used expression profiles of two types of lung
cancers, lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC), and Healthy lung tissues to identify LUAD-
and LUSC-specific (class-specific) and individual patient-
specific key genes using an explainable machine learning
approach, SHaphley Additive ExPlanations (SHAP). This
approach provides scores for each of the genes for individual
patients which tells us the attribution of each feature (gene) for
each sample (patient). Result: In this study, we applied two
variations of SHAP - tree explainer and gradient explainer for
which tree-based classifier, XGBoost, and deep learning-based
classifier, convolutional neural network (CNN) were used as
classification algorithms, respectively. Our results showed that
the proposed approach successfully identified class-specific
(LUAD, LUSC, and Healthy) and patient-specific key genes
based on the SHAP scores. Conclusion: This study demonstrated
a pipeline to identify cohort-based and patient-specific
biomarker genes by incorporating an explainable machine
learning technique, SHAP. The patient-specific genes identified
using SHAP scores may provide biological and clinical insights
into the patient's diagnosis.

Keywords— explainable machine learning, lung cancer,
patient-specific biomarkers, precision medicine

I. INTRODUCTION

Cancer is a disease in which some cells of the body grow
uncontrollably and spread to other organs of the body.
Cancer is a genetic disease that is caused by the changes in
the genes which control the cell’s function, especially the
growth and division of cells [1]. Three different kinds of
genes are responsible for cancer - proto-oncogenes, tumor
suppressor genes, and DNA repair genes [2], [3]. There are
more than 100 types of cancers, but carcinomas are the most
common type of cancer [1].
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Lung cancer is the second most prevalent type of cancer
[4], and it is the leading cause of death related to cancer in the
United States [5]. There are mainly two types of lung cancer
- non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) [6]. Two subtypes of NSCLC are lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC). There have been many studies where lung cancer
biomarkers were identified. Some studies identified race-
related biomarkers [7]-[9]. The researchers also applied
various well-known and novel machine learning and deep
learning techniques for feature selection and classification of
lung cancers and other cancer types [9]-[11]. But they have
mostly used machine learning and deep learning models as
"black boxes." Recently, researchers have been using various
approaches to explain the black box models. Several methods
have been proposed to make the machine learning and deep
learning models explainable, including Shapley Sampling
[12], Relevance Propagation [13], LIME [14], ANCHOR
[15], and DeepLIFT [16]. But it is not clear how these
methods are related and which method to select for a
particular problem. To overcome this issue, Lundberg and
Lee developed a unified framework for interpreting
predictions, SHAP [17]. Recently there has been adequate
work to explain the machine learning models using SHAP.
Levy et al. used SHAP to discover important methylation
states in different cell types and cancer subtypes [18]. In a
more recent study, SHAP was used to explain the deep
learning model which classified the cancer tissues using
RNA-sequence data [19]. Most of the studies identified the
global features using SHAP wvalues which represent the
average impacts of the genes on that model [20].

Researchers also use various statistical tools, such as
DESeq2 [21], edgeR [22], or LIMMA [23] to identify
biologically significant genes or differentially expressed
genes (DEGs) [24]-[26] from differential gene expression
(DGE) analysis by comparing patient cohort with healthy
cohort. The DGE analysis helps to identify potential genes
associated with the pathogenesis and prognosis of lung cancer
[27]. The study [27] developed an integrated approach for
identifying  genes associated with pathogenesis and
prognosis from four different sets of DEGs from four
different cohorts of lung cancer patients and corresponding
normal cohorts, which means that DEGs are cohort-
dependent biomarker genes and do not reflect the patient-
specific heterogeneity. A recent study [28] used DGE
analysis to find African American (AA) and European
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American (EA) cohort-based lung cancer biomarkers where
they showed that using principal component analysis (PCA),
AA genes are able to distinguish the normal and tumor group
of AA lung cancer cohort. But surprisingly, the same AA
genes are also able to distinguish the normal and tumor group
of EA lung cancer cohort. This observation suggests that this
cohort-based study failed to discover biomarkers for a
particular cohort. Another recent study [29] also used DGE
analysis to find biomarkers for lung cancer using two sets of
datasets- tumor and normal samples for non-treatment
studies, and cell lines after treatment and cell lines before
treatment for treatment studies. The hypothesis of this study
is the up-regulated genes in non-treatment studies should be
down-regulated in treatment studies and vice versa. But the
authors found two different sets of Biomarkers without any
common genes which implies that this cohort-based study
failed to discover expected biomarker. Researchers also used
genome wide association studies (GWAS) to find the
biomarker. In one of the studies researchers found two key
loci 15g25 and 5p15 for AA cohort [30]. Another study also
found eighteen key loci including 15925 and 5p15 [31]. From
these two studies, we can conclude that these GWAS studies
failed to identify cohort-based biomarkers. Researchers also
used machine learning-based feature selection algorithms
[32]-[34] to identify biomarkers for pan cancer classification
which do not belong to any cancer cohort or any specific
patient. These studies (DGE analysis, GWAS, and Machine
Learning-based feature seclection) are similar to the
population-based studies where the aim is to find cohort-
based genetic changes. . As a result, the same treatment
provided to the patients with the same cancer type shows
different outcomes among the patients [35]. This is because
each patient has unique combination of genetic changes and
specific genetic changes require specific treatments. That is
why it is necessary to identify the patient-specific
biomarkers, which we can accomplish by identifying local
interpretable features by explaining the machine learning
models. The patient-specific biomarkers can be used for
targeted therapy leading to precision medicine which the
earlier computational studies fail to identify.

We hypothesize that biomarker genes may express
differently in different patients due to the variability of
mutations of genes for which cohort-based gene therapy may
not be beneficial to most of the patients. To solve this issue,
identifying patient-specific biomarker genes is very crucial
and it may aid in precision medicine or personalized
medicine. In this study, we developed a pipeline to discover
global and local NSCLC-associated genes using an
explainable machine learning tool, SHAP. This study
identified both class-specific and patient-specific genes based
on SHAP scores by calculating global and local SHAP scores,
respectively. To our knowledge, there has not been any study
identifying lung cancer patient-specific genes using SHAP.

The later part of this paper is ordered as follows. The
"Materials and Methods" section includes the cohort analysis,
preparation of the dataset, and the methods used for the
research. The "Experimental Results" section provides the
outcome of the research and analysis of the results. We
briefly discussed our result in the "Discussion" section.
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Finally, conclusions and the future scope is discussed in the
"Conclusion" section.

II. MATERIALS AND METHODS

A. Workflow of the study
The overall workflow of this study is shown in Fig. 1.
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Fig. 1. Workflow of the study to identify patient-specific and class-specific
genes.

The overall workflow of this study is as follows. At first,
the lung cancer tumor (LUAD and LUSC), and healthy tissue
samples were downloaded from the UCSC Xena database.
Next, the dataset was filtered by dropping the duplicate
records of the same patients having the same tumor type. The
filtered data were used to classify three different classes
(LUAD, LUSC, and healthy) using two different algorithms-
XGBoost and CNN. Hyperparameters were tuned to achieve
a higher classification accuracy. 5-fold cross-validation was
performed to measure the performance of the two algorithms.
Then the two models from two different genres of
classification algorithms — XGBoost from tree-based and
CNN from deep learning-based classifiers - were used for
interpretation using SHAP. As such, we used the tree
explainer technique for the XGBoost and the gradient
explainer for the CNN model for interpretation. Next, we
analyzed the two different interpretation techniques to get
class-specific genes and patient-specific genes. We also used
a statistical tool DESEQ?2 to get the important genes across the
populations.

B. Data Collection and Cohort Analysis

To characterize the lung-cancer-associated mRNA, the
expression profiles and clinical data associated with lung
cancer were collected from the UCSC Xena database [36].
The normal tissue samples were downloaded from the Xena
database and the mskcc GitHub repository [37], [38]. There
are 1415 samples, including 503 LUAD, 489 LUSC, and 423
healthy, as shown in Table 1.
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TABLE L SAMPLE DISTRIBUTION AND COHORT ANALYSIS OF LUNG
ADENOCARCINOMA (LUAD), LUNG SQUAMOUS CELL CARCINOMA (LUSC)
AND HEALTHY SAMPLES

LUAD Tumor LUSC Tumor Healthy Samples
Samples Samples
503 489 423
Total= 1415

C. Data Preparation

Fourteen of 1415 samples were duplicates. We kept only
one record of the same patients. So, the final cohort size for
this analysis was 1401 with 492 LUAD tumors, 486 LUSC
tumors, and 423 healthy samples, respectively. We used the
dataset with FPKM values which were already log-
normalized. The raw gene count dataset was also considered
in this study. The data distribution of the three categories is
well distributed and there is little chance of bias towards the
larger group. The final dataset consists of 1401 samples with
19,648 mRNA expression values. Then we used this dataset
to classify LUAD, LUSC, and healthy using a tree-based
machine learning algorithm and a deep learning algorithm.

D. Classification Algorithms

We used two algorithms in our analysis - Extreme
Gradient Boosting (XGBoost) [39] and Convolutional Neural
Network (CNN) [40]. XGBoost is a decision tree-based
machine learning algorithm that uses a process called boosting
to help improve performance. It is an optimized gradient-
boosting algorithm through parallel processing, tree pruning,
handling missing values, and regularization to avoid bias or
overfitting.

CNN is a deep neural network primarily used in image
classification or computer vision applications. But it has also
wide applications in analyzing tabular data. The convolution
layers extract features from the samples. A small filter or
kernel scans through the samples and extracts features from
the samples. The following layer is the pooling layer which
down-samples the feature map extracted by the convolution
layer. The pooling layer runs a filter across the feature map
and takes the specific information from that filter. It translates
the features’ exact spatial information to latent information.
The final pooling layer is then flattened out and transformed
into a one-dimensional array and fed to the fully connected
layers that predict the output.

The samples of each class were divided into 80/20 split in
a stratified manner for training and testing respectively. 5-fold
cross-validation was used for measuring the classification
performance. For the stratification of the samples, we used
StratifiedKFold from the scikit-learn library.
Hyperparameters were also tuned to get optimized results
from both XGBoost and CNN classifiers.

Next, the contribution of all the features of individual
samples for the two classifiers was determined. We wanted to
identify the reasons for the machine learning models’ success
or accuracy. Feature contributions, both globally and locally,
can decipher the models’ accomplishment. That is why we
applied an explainable machine learning tool that can identify
the feature contribution that caused the models’ success.
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E. Global and Local Feature Interpretation
Global Feature Interpretation

The global features are a set of features that reflect the
average behavior of a cohort of samples or patients. For global
feature interpretation, we used two techniques: (a) DESeq2, a
statistical tool, and (b) SHAP (SHapley Additive
exPlanations) a game theoretic approach. DESeq?2 is a tool for
differential gene expression analysis of RNA-seq data. It
provides a list of important genes for a cohort of patients,
which reflects the average or global impact of genes across the
cohort.

SHAP is a game theoretic approach to explain the output
of any machine learning model. It takes the machine learning
or deep learning algorithms into account and then calculates a
score for each feature. The first step to calculate the SHAP
score is taking the differences in the model’s prediction with
and without a feature from all the coalition sets. Then taking
the average of all the values from each of the coalition sets
provides the SHAP score. In short, the average marginal
contribution of a feature value across all possible coalitions is
the SHAP score. The collective SHAP values can show how
much each predictor or feature contributes, either positively or
negatively, to the target variable or output of the model. The
collective SHAP values refer to the global features of the
dataset.

Local Feature Interpretation

Local features are a set of features that reflect the
characteristics or behavior of an individual sample or patient.
Along with identifying global important features, SHAP
identifies local important features as well. Each sample for
each feature or predictor gets its SHAP value. It increases
transparency by calculating the contributions of the predictors.
Traditional feature importance or selection algorithms
produce results across the entire population, not on each
individual. The idea of local interpretability of SHAP was
used for identifying patient-specific genes which may help
devise the strategy for personalized treatment.

III. EXPERIMENTAL RESULT

A. Classification Accuracy

The dataset was divided into 80/20 split for training and
testing. Also, 5-fold cross-validation was performed to
measure the performance of the models. The testing accuracy
of algorithms from 5 folds was measured and then the average
was calculated to finalize the accuracy. Table II summarizes
the results of 5-fold cross-validation. The testing accuracy of
XGBoost and CNN were 96.3% and 92.6%, respectively.

TABLE IL RESULTS OF 5-FOLD CROSS-VALIDATION. FIRST ROW:
DISTRIBTUIION OF ACTUAL LABELED DATA; SECOND ROW: DISTRIBTUIION
OF CORRECTLY PREDICTED DATA; THIRD ROW: AVERAGE CLASSIFICATION

ACCURACY OF 5-FOLD CROSS-VALIDATION.

XGBoost CNN
Healt LUA | LUS Healt
LUAD | LUSC hy D c hy
Actual Data 492 486 423 492 486 423
Correct 473 | 453 | 423 | 468 | 450 | 7°
Prediction
Accuracy 96.3% 92.6%
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B. Differential Gene Expression Analysis

Differential gene expression (DGE) analysis was
performed using the statistical tool DESEq2. Raw counts of
gene expression value were used in this analysis. We used 492
LUAD tumor samples, 486 LUSC tumor samples, 59 healthy
tissues from LUAD patients, and 51 healthy tissues from
LUSC patients. We ran the DGE analysis tool on LUAD and
LUSC samples separately to get the most important lung
cancer subtype (LUAD and LUSC) specific genes. These
genes represent the average behavior of the population related
to the subtypes (LUAD and LUSC). These genes can also be
named global features as they represented the average
importance of the cohorts. We identified LUAD-specific
differentially expressed genes (LUAD-DEGs) and LUSC-
specific differentially expressed genes (LUSC_DEGs) based
on the thresholds |log2Fold-change| >3 and adjusted p-value <
0.001, which provided us 1,037 and 1,773 genes, respectively.

C. Global Interpretability using SHAP

We used the explainable machine learning tool, SHAP, to
identify the important genes by leveraging XGBoost and CNN
classifier models. The important genes were compared with
the differential gene expression genes derived from the
DESeq2 tool discussed in section ‘B’. SHAP and DESeq2
tools both were used to identify the important genes across the
population.

In our analysis total number of features (genes) used for
XGBoost and CNN algorithms was 19,648. SHAP generates
a shapely score for each gene for each patient. The scores were
then averaged across the samples of correctly classified
classes. Thus, we got three sets of genes (LUAD-specific,
LUSC-specific, and healthy-specific) with scores. We sorted
the genes of each class based on the shapely values. Both
XGBoost and CNN generated 5 different models because of
five-fold validation. For global interpretation, we considered
the average of the five models’ output (five sets of test data
from 5-fold) from XGBoost and CNN. Next, we took the top
1037 genes from LUAD and 1773 genes from LUSC class
each, the same as the number of DEGs. The top genes of
LUAD and LUSC classes were compared with LUAD-DEGs
and LUSC-DEGs, respectively. From the analysis we noticed
that the tree explainer leveraging the XGBoost model and
gradient explainer for the CNN classifier model were able to
identify a significant number of global genes for both LUAD
and LUSC classes which are shown in Fig. 2. From the figure
it is clear that XGBoost model identified 89 LUAD and 214
LUSC common genes with LUAD DEGs and LUSC DEGs
respectively. Whereas CNN only identifies 68 LUAD
common and 218 LUSC common genes.

Optimal Genes for global interpretation

To find the optimal number of genes for global
interpretation, we ran four classifiers- three variants of SVM
(linear, rbf and polynomial) and logistic regression with
different set of top genes. To identify the top genes, at first,
the genes were sorted in a descending order based on SHAP
score and then picked up the important genes. Genes having
higher SHAP score are considered as the important genes. For
example, top 25 genes indicate the most important 25 genes
from each of the classes (LUAD, LUSC and Healthy). The
criteria to select optimal number of genes was to find a
minimal number of genes with high accuracy. We found out
that SVM rbf and SVM polynomial are not good classifiers
for the three classes. Logistic regression and SVM linear were
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good at classifying the three classes using the top genes. But
unfortunately, SVM linear failed to classify using top 25
genes. Logistic regression and SVM linear showed that the
classification accuracies were high using top 50 genes. Thus,
for this study we chose top 50 genes as the optimal number of
genes for global interpretation. This scenario is shown in Fig.
3.

a LUAD Genes b LUSC Genes
948 89 948 1559 214 1559
SHAP(XGBoost) DEGs SHAP(XGBoost) DEGs
c LUAD Genes d LUSC Genes
969 68 969 1555 218 1555
SHAP(CNN) DEGs SHAP(CNN) DEGs

Fig. 2. Venn diagram of SHAP genes and DEGs. (a) and (c) represent the
SHAP genes and DEGs for LUAD tumor. (b) and (d) represent the SHAP
genes and DEGs for LUSC tumor.
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Fig. 3. Classification accuracy of four classifiers using top genes to find
optimal set of genes for global interpretation . Top 50 genes from each
classes (LUAD, LUSC and Healthy) are the optimal number of genes for
global interpretation as top 50 genes has a minimum number of genes with
high accuracy.

Next, we examined whether the top 50 genes are truly
class-specific genes. If these genes are truly class-specific then
there must be few overlaps among the three groups (LUAD,
LUSC, and Healthy). This scenario is shown in Fig. 4 (a). We
considered the top 50 genes from LUAD, LUSC, and Healthy
samples separately. We found that there is no common gene
among the three sets derived from both XGBoost and CNN.
There are very few or no common genes when considering
two of the three classes. Also, t-SNE plot shows that, using the
top 50 genes from three classes, there are three clusters for the
three different classes shown in Fig. 4(b). Thus, we can
conclude that the identified top 50 genes for three classes are
truly class-specific. Fig. 4. only represents the genes identified
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by tree explainer. Similar scenarios were observed for the
genes identified by gradient explainer.

a) XGBoost: top 50 genes b) T-SNE projection with top 50 genes from each class
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Fig. 4. Venn diagram and t-SNE plot of class-specific genes. (a) Top 50
genes of LUAD, LUSC and Healthy from tree-explainer shows mimum
overlap among the genes (b) Top 50 genes of LUAD, LUSC and Healthy
from tree-explainer shows three clusters for three classes.

SHAP also provides us the information on important genes
that contributed most to the model along with its shapely
scores and class impact of the genes. Fig. 5 shows the top 10
genes that contributed most to the XGBoost model (CNN is
not shown). It also provides information about the class-
specific impact of the genes. For example, ACVRLI (gene)
contributed most to both healthy class and model output. TP63
contributed most to the LUSC class and slightly contributed
to LUAD class. This means that the TP63 gene could be an
important biomarker for LUSC. Similarly, we can say that
GOLM1 is an important biomarker gene for LUAD.
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Fig. 5. Barplot of top 10 genes. The X-axis is the mean SHAP values scored
by XGBoost. The values indicate the average score of the model output for
the genes. Blue, orange, and green color represent three different classes-
healthy, luad, and lusc. The Y-axis represents the top gene symbols
determined by the tree explainer.

D. Local Interpretability using SHAP

We identified the most salient genes from the XGBoost
and Convolutional neural network (CNN) model using SHAP
for each gene and each sample. This level of local
interpretability helped to identify patient-specific biomarkers
which may be used as personalized medicine or therapy. To
get the scores for each of the genes and samples, we trained
both XGBoost and CNN with 80% of the data and tested with
the rest 20% of the data. We followed this procedure five
times and in each of the cases, there was a new 20% of the
data in the testing set, thus providing 100% of data after
testing. But XGBoost and CNN have 96.3% and 92.6%
accuracy respectively which indicates that there are few false
predictions. Next, we discarded the false predicted samples
and kept only the true prediction. Out of 1,401 samples, the
numbers of correctly classified samples were 1,349 and 1,297
for XGBoost and CNN, respectively. So, each of the samples
has all the genes scored based on shapely values. Next, we
sorted all the genes in descending order based on the score.
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Fig. 6 shows the most important genes for a single patient.
This figure is a force plot for a particular LUSC tumor patient.
The predicted SHAP score of this sample is 6.23 where the
base value is 0.8992. This score indicates that the expression
values of the genes for this patient have a higher influence on
the model. The base value is the average of the model output
of LUSC class. The red arrow indicates that the genes pushed
the model score higher and the blue arrow indicates the genes
that pushed the model score lower. From the gene expression
values, we also see that DSG3 has a high expression value and
SLC4A4 has a low expression value thus the former is red and
the latter is blue.

6.23

oy ) ) ) ) ) (((

Fig. 6. Force plot of a single LUSC patient. The numerical values along
with the genes are the expression values for this patient. This plot shows the
most important genes for this particular patient.
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Fig. 7. Heatmap of LUAD patients with corresponding top 100 genes. (a)
Heatmap of 100 genes derived from tree explainer (XGBoost model) across
5 LUAD patients. (b) Heatmap of 100 genes derived from gradient explainer
(CNN model) across 5 LUAD patients.

Next, we tried to interpret the patient-specific genes of
each of the samples. We wanted to make sure whether these
genes are really patient-specific or not. To prove it we
considered randomly chosen five LUAD and five LUSC
samples. For each of the patients, we picked the top 100 genes
based on the SHAP score (higher SHAP-scored genes were
chosen). Our hypothesis was that if these genes are really
patient-specific then there should be very few overlapping
genes as each individual has different mutations of genes and
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different expression profiles. To validate this hypothesis, we
plotted a heatmap for LUAD samples which is shown in Fig.
7. From the figure, we see that there are very few overlapping
genes from the tree explainer output leveraging the XGBoost
model. On the other hand, the gradient explainer was able to
find totally unique genes or almost zero overlapping genes
among the five patients. The same scenario was observed with
the LUSC patients as well (not shown). Also, the heatmap was
plotted across all the patients and very few overlapping genes
were found. This indicates that, even though these samples are
coming from the same class, SHAP was able to score patient-
specific genes.

Next, we hypothesized that there should be many
overlapping genes in the healthy samples. This is because
there should be very few mutations of genes as the tissue
samples are not affected by the tumor. Again, we plotted a
heatmap with randomly chosen 5 healthy patients shown in
Fig. 8. From the heatmap, it is evident that there are lots of
overlapping genes which proves our hypothesis.
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Fig. 8. Heatmap of healthy samples with corresponding top 100 genes. (a)
Heatmap of 100 genes derived from tree explainer (XGBoost model) across
5 healthy samples. (b) Heatmap of 100 genes derived from gradient explainer
(CNN model) across 5 healthy samples.
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IV. DISCUSSION

Most of the prior machine learning and deep learning
works were involved in cancer classification and the
algorithms were used as a "black box." But recently a few
algorithms like- SHAP, LIME, ANCHOR, DeepLIFT, etc.
algorithms have been introduced to explain the black box. In
this study, we used a tree-based algorithm, XGBoost, and a
deep learning classifier CNN to classify the two types of lung
cancer (LUAD and LUSC) and Healthy cohorts. Then the
models generated by the classifiers were used in SHAP to
explain the output of the models. SHAP is a unified approach
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to explaining machine learning models which addresses the
limitations of the black box models by explaining local and
global features. We used two different explainers- a tree
explainer for the XGBoost model and a gradient explainer for
the CNN model. Tree explainer is a fast and exact method to
estimate SHAP values for the tree models. Gradient explainer
is another kind of SHAP explainer that can handle neural
network models. In this study, we tried to address an important
task that may play a vital role in the field of healthcare,
personalized medicine, by adopting the proposed pipeline.

SHAP is able to identify global features that explain the
impact of the model output on the whole population. To
identify whether the SHAP explainability model was able to
identify plausible features, we compared the output of the two
explainers with the differential gene expression (DGE)
analysis tool DESEq2 output. The DGE tool was used as the
reference to assess the correctness of the predicted genes from
the explainers. Unlike DESEq2, there is no standard approach
for selecting SHAP features (genes). That is why we ranked
the genes based on the SHAP values and considered the only
top-ranked genes to compare with differentially expressed
genes (DEGs). The outputs of both the explainers had some
common genes with the output DGE analysis. We also tried to
find out the common genes among the three classes (LUAD,
LUSC, and healthy) and found very few genes overlapping
among the two classes, and none of the genes overlapped
among the three classes. It tells us that SHAP was able to
identify biologically significant class-specific genes.

One of the greatest challenges in healthcare is to identify
patient-specific important biomarkers which can aid in
personalized medicine. In this study, we addressed this issue
by explaining the local interpretability of SHAP output. SHAP
scores were assigned to every gene of every sample leveraging
the modification of the game theoretic approach. So, each of
the genes of every sample consists of a SHAP score which is
then ranked based on the score. To explain the local
interpretability, we considered the top 100 genes of each
patient. We tried to find out the common genes among the
samples of the same classes and found that tree explainer
output has very few common genes across the samples,
whereas gradient explainer has almost zero overlapping genes
across the samples. It tells us that SHAP can identify patient-
specific important genes in the tumor classes (LUAD and
LUSC) as the tumor is more likely to work differently in
different patients. We also noticed that there are lots of
overlapping genes across the healthy samples. It is
understandable because there is no mutation or few genomic
alterations in the patients.

V. CONCLUSION

Majority of previous studies identified only cohort-based
important genes or population-based important genes. But it
was observed that different patients require different kinds of
treatment for the same disease due to the various genomic
alterations and mutations. In this study, we addressed two
important issues of therapeutics- the identification of subtype-
specific (class-specific) and patient-specific genes. To solve
these issues, we developed a pipeline that can identify both
subtype-specific and patient-specific genes leveraging SHAP
scores. For this analysis, we used RNA-seq data of lung cancer
to show that SHAP was able to identify both class-specific and
patient-specific genes. This study shows that SHAP can be
used to find many biological insights by identifying local
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(patient-specific) and global (class-specific) genes which may
help to develop better therapeutics for individual patients.

All the output shown in this analysis is machine learning

and deep learning-based computational outcome. These
outcomes should be verified in the wet lab to strongly validate
our result. If they can be verified in the wet lab, the pipeline
can be used to identify important genes for any type of disease.
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