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Abstract— 1t is crucial to find prognostic biomarkers that can
predict the cancer prognosis and estimate risk, as they can be used
in clinical settings to treat patients. Probing the biomarkers
themselves will reveal important insights into the cancer dynamics
and molecular pathways underlying pathological behavior. To
achieve that goal, this work proposes a bioinformatics framework,
taking advantage of the deep learning-based feature selection
method Concrete Autoencoder (CAE) to identify key genes and to
build a prognostic score model that can assess the risk of cancer
patients. 48 gene-pairs were identified to form a prognostic
signature model that can significantly differentiate between high-
risk and low-risk patients with breast cancer. This prognostic
signature was comprised of 42 genes enriched in cancer-related
pathways and molecular functions. The proposed framework and
the prognostic model can be used as clinical tools to assess the risk
levels of breast cancer patients. The identified genes can be studied
further for potential targets for cancer therapy.
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I. INTRODUCTION

Breast cancer is the most frequent cancer in women
worldwide. In the United States, it is estimated that in 2022,
about 287,850 new cases of breast cancer will be diagnosed in
women, and 43,250 women will die from breast cancer [1].
Breast cancer is extremely heterogeneous in terms of molecular
alterations, cellular makeup, therapeutic response, and clinical
consequences. It can be classified into five intrinsic subtypes at
the transcriptional level: luminal A (LumA), luminal B (LumB),
HER2-enriched, basal-like, and normal-like [2].

There is a pressing need to predict prognosis accurately and
distinguish the high-risk group from the low-risk group [3].
Predicting prognosis can help avoid overtreatment for low-risk
patients and the risk of undertreatment for high-risk patients. A
prognostic model uses statistical techniques to calculate the
quantitative correlation between risk variables and the
likelihood of specific clinical outcomes considering the patient's
medical status [4]. Clinicians and healthcare professionals can
use breast cancer prognostic models to assist them not only in
providing better therapeutics but also in making better-informed
decisions about whether to forgo treatment.

Researchers developed many prognostic signature models
for breast cancer [5]-[10]. The first step to developing these
signatures is to select a reduced set of genes from 20,000, which
can be solved as a feature selection problem using machine
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learning or deep learning methods. However, to develop most of
these prognostic signature models, a short list of genes related to
a certain biological function was curated manually or identified
by statistical approaches, like differential gene expression
analysis. For example, prognostic models designed based on
manually curated gene sets are related to autophagy [5],
ferroptosis [7], etc. On the other hand, Zhang et al. [6] and Sun
et al [8] used differential gene expression analysis to identify a
short list of DNA repair and hypoxia related genes, respectively.
These lists of genes were later used in designing the prognostic
models.

It is clear from the literature that the short lists of genes to
develop signature models are selected based on a single
biological function either manually or by statistical approaches
like differential gene expression analysis. The major
shortcoming of the existing approaches is that the genes for the
signature models are coming from a single biological function,
thus, failing to take into account of holistic nature of
heterogeneity that exists in breast cancer development and
progression. To overcome this issue, we are proposing a feature
selection-based approach to select the short list of genes with the
assumption that it takes account of heterogeneity in breast
cancer development and progression. Deep learning-based
feature selection methods such as, Concrete Autoencoder (CAE)
[11] has shown to perform better as a feature selection method
both in single-run [12]-{14] and multi-run [15]-[17] modes. For
example, single-run CAE was used to select salient features for
pan-cancer classification [12], [13] and racial disparity in lung
cancer between African American males and FEuropean
American males [14]. Researchers also used multi-run CAE to
identify key IncRNAs for classification of 12 different cancer
types [15] and to identify key pixels for classification of
Fitzpatrick skin types [16], [17]. These studies motivates us to
investigate whether it can also identify the key genes for breast
cancer and use them to develop a prognostic signature.

This study proposes a bioinformatics framework that
incorporates CAE to identify key genes, which are later used in
downstream tasks to formulate a prognostic signature model to
predict prognosis for breast cancer patients. To validate the
prognostic risk model, survival analysis was performed based on
risk score on BRCA whole cohort and for each subtype cohort
and functional enrichment to uncover the biological insight
about the genes.



II. MATERIALS AND METHODS

The study design is illustrated in Figure 1 and each step of
the methodology is described in the following subsections.

A. Dataset Collection and Preprocessing

We collected the gene expression dataset of TCGA Breast
Carcinoma (BRCA) from UCSC Xena Browser database [18]
(Dataset ID: TCGA.BRCA.sampleMap/HiSeqV?2). The dataset
contains expression profiles of 20,531 mRNAs for 1218
samples. Of 1218 samples, there were 1097 tumor, 114 normal,
and 7 metastatic samples. The subtype label information was
collected from Xena Browser as well. (Dataset ID:
TCGA.BRCA.sampleMap/BRCA_ clinicalMatrix, GDC-
PANCAN.basic_phenotype.tsv). The distribution of the breast
cancer subtypes is given in Table I. It is clear that the dataset is
highly imbalanced for classification with subtype labels. To
resolve this issue, we did random oversampling and
undersampling to make sure that the number of samples in each
subtype is 217, which was the second largest subtype in terms
of sample size in the breast cancer dataset. The number of
oversampling and undersampling and the final distribution of
the subtypes after resampling are given in Table I.

TABLE L DISTRIBUTION OF BREAST CANCER SUBTYPES IN TCGA-
BRCA COHORT BEFORE AND AFTER RESMAPLING.
Subtypes #0Of % Of Resampling # Of
samples | samples samples
Basal 192 17.56% +25 217
Her2 82 7.50% +135 217
Luminal A 566 51.78% -349 217
Luminal B 217 19.85% 0 217
Normal-Like 40 3.66% +177 217
Total 1097 100.00% 1085
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Fig. 1. The overall process flow of the methodologies .

B. Concrete Autoencoder

Concrete Autoencoder (CAE) [11] is a variant of an
autoencoder, an unsupervised deep learning feature selection
method. It has an additional layer named the concrete layer
which incorporates the Concrete [19] or Gumbel-Softmax
distribution [20] which is a relaxed variant of
discrete/categorical distribution. This layer is used to
incorporate discrete distribution into deep learning algorithm
which helps CAE to learn a subset of features that are most
informative and yields a minimum reconstruction error. The
learning of a set of features depends on a hyperparameter called
temperature (T), which is gradually lowered during the training
phase to a low value using a simple annealing schedule. Unlike
the encoder part, the decoder part resembles closely with the
decoder of the standard autoencoder.
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Fig. 2. The architecture of the concrete autoencoder (CAE). The encoder part
contains the input layer and the concrete selector layer. The decoder in this
figure is a 2-layer neural network, with the final layer having the same number
of nodes as the input layer.

In the selector layer, each node selects a feature with the
highest probability. The difference between concrete
autoencoder and standard autoencoder is that the features
learned by the autoencoder are latent features, whereas the
features learned by CAE are actual features.

Implementation: The CAE was implemented using Keras
(https://keras.io/). Experiments were conducted in a parallel
manner on high-performance cluster with NVIDIA Quatro
K620 GPU with 384 cores and 2GB memory devices.

C. Hyperparameter Tuning

To train the CAE, we performed the hyperparameter tuning
for three hyperparameters - learning rate, number of epochs,
and the decoder architecture of the CAE using the grid search
method. In this case, the best parameters were selected based
on three criteria - reconstruction error of validation set,
percentage of unique features selected, and mean of maximum
probability of the selected feature in each node in the concrete
selector layer. The grid search experiment was designed using
6 values for the number of epochs, 5 values of learning rates,
and 5 different combinations of decoder architecture. The
optimum values of the number of epochs, learning rate, and
decoder architecture were 1500, 0.01, and 2-layer decoder with
each layer having 300 nodes, respectively.



D. Optimal Number of features and Resampling

Using the optimized hyperparameters, the number of
optimal features was selected based on the subtype
classification accuracy of breast cancer patients. For
classification, XGBoost was used as the classifier model since,
it is shown that it works best on tabular data [21]. Using the
resampled dataset, as shown in Table I, CAE was trained 3
times for different values of K between 50 to 500 with a step
size of 50. The average classification accuracy by XGBoost
using 3 sets of selected features of different sizes was plotted in
Figure 3. It is clear from Figure 3 that the model produced the
highest average accuracy at K = 250. Then the accuracy
decreases with the increase in the number of features and again
reaches a maximal value at K = 475. Since the two optimal
average accuracy values (at K = 250 and 475) are almost the
same, we chose K = 250 (the smaller number of features), as
the optimal number of features.
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Fig. 3. Accuracy of classification by XGBoost using a different number of
features (K) from 50 to 500 with a step size of 50. Accuracy from 3 runs and
their average is plotted for each value of K.

E. Multi-Run CAE and Feature selection

Due to the stochastic nature of the CAE, it was shown that
CAE selects a different set of features at a different run and each
set of features is equally informative in the sense that they all
yield the same reconstruction error [15]. So, CAE was trained
100 times as used in [15] and each time 250 features were
selected. The union of all the features from 100 different runs
was selected as the most informative features and used for the
downstream tasks.

F. Univariate Survival Analysis

For the genes selected by the multi-run concrete
autoencoder, we performed univariate survival analysis. For
each gene, the samples were divided into two groups — Low-
risk samples with expression values less than or equal to the
median and high-risk samples with expression values greater
than the median. Then hazard ratio (HR) and logrank test [22]
P-value were calculated. In this case, the logrank test P-value
less than 0.05 would mean that the gene could divide the
samples into two groups that are prognostically and
significantly different. We used overall survival (OS) time and
overall survival event for this analysis.

G. Gene Pair Formation

Using the prognostically significant genes found from the
previous step, the gene expression dataset was then transformed
into a gene pair dataset using the following rule. For each
sample and each pair of genes (g,,g,) we set 1 if g; > g, and 0
otherwise. Then from the gene pair dataset, for each gene pair,
the frequency of 1 was calculated. The gene pair with a
frequency greater than 10% and less than 90% were retained
and the remaining gene pairs were discarded. This was done
based on the rationale (explained in Result Section IIIC) that
the gene pairs that have the same value for most of the samples
are not useful features for the downstream tasks.

H. Prognostic Signature Building

LASSO Regression [23] was used for another step of
feature selection using gene pairs as features and survival event
time as output. LASSO regression removes uninformative
features with respect to the output (survival time) by reducing
their coefficients to zero. The value of the hyperparameter, a,
for LASSO regression, was chosen as 1.0 based on cross
validation grid search with mean absolute error as the loss to
optimize.

In the following step, multivariate Cox Proportional Hazard
regression [24] was performed. This method investigates the
effects of several variables upon the time a specific event takes
place, which in this case death. From the Cox Regression
model, the coefficients for each gene pair represent a hazard
ratio and P-value represents a strong relationship between the
gene pair and the decreased/increased risk of death. The gene
pairs with P-value less than 0.05 were selected and their cox-
coefficients were taken as coefficients for their respective gene-
pairs to form the prognostic signature risk model (PSRM),
shown below.

PSRM = eS¥m

n
where, Sum = Z GP; x Coef;

i
Where, GP; is i-th gene-pair, Coef; is the coefficient of i-th
gene-pair from the Cox Proportional Hazard Regression. Then
the value of prognostic signature risk model (PRSM) is used to
differentiate the high score patients from the low score patients
to do survival analysis to test the efficacy of derived prognostic
signature.

ITII. RESULTS

A. Multi-Run CAE and Most informative features.

To pick the most informative genes, CAE was run in a
multi-run fashion from 10 to 100 runs with a step size of 10
runs. The unique set of features from these 10 different multi-
runs was used to calculate the classification accuracy using
XGBoost as the classifier model. This classification was done
on the resampled dataset, using subtypes as the labels. From
this test, 100-runs with 1867 features produced the highest
accuracy, as shown in Figure 4. This set of genes is used for
downstream analysis.
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Fig. 4. Bar plot of accuracy for 10 different multi-run systems, from 10-run to
100-runs. The numbers inside the parenthesis denote the total number of unique
features. The classification was done using XGBoost on resampled breast
cancer dataset with subtypes as labels.

TABLE II. THE GENE PAIRS AND THEIR CORRESPONDING COEFFICIENTS
FROM COX PROPORTIONAL HAZARD REGRESSION, WHICH IS USED IN THE
PROGNOSTIC SIGNATURE MODEL. THE GENE PAIRS WERE SHOWN IN g; > g,
FORMAT AS THEY WERE USED IN THE ORIGINAL GENE PAIR DATASET.

Covariate Coefficie Covariate Coefficie
nt nt
AGTR2>CD300E 1.6552 MAPT-ASI >SHC4 | -1.3277
Clorfl11>C20rf71 | 1.6855 MAG>SERPINA4 1.3480
f] orfl11>CEACAM | | 505 MAG>SHC4 -1.9228
Clorfl11>UTS2R 1.1822 MMP20>NPFFRI -1.4100
C50rf60>CD300E | -1.1701 MMP20>TACI 22915
j;;”f 60> MAPT- | 1 3117 | MMP20>TERC 131214
C501f60>XCRI 1.3982 MMP20>XCRI 1.9357
CA6>FAMI534 23887 MYBPCI>SPATA4 | -1.3984
CA6>SERPINA4 -1.7345 MYBPCI>TTC24 1.8648
CA6>XCRI 3.3782 MYBPCI>UTS2R -1.5502
CD300E>TACI 1.1120 GRIKI-ASI>PROLI | -1.0338
CD300E>UTS2R -1.1441 GRIKI-ASI>SHC4 | 1.0787
CEACAM4>MAG -1.0683 NPFFRI>PAX7 -1.8096
CEACAM4>MMP20 | 13415 ;VP FFRIZSERPINA | | 3387
CGBS>SPATA3 2.0971 NXNL2>WFDC6 -1.3421
CLNK>SPATA4 1.0897 ORG6B3>PAX7 -1.4770
CTRC>GPR25 1.7202 PSPN>TTC24 1.1864
CTRC>HEPACAM | -1.7292 PSPN>XCRI -1.0401
CTRC>RNASE3 1.9775 RMST>SPATA4 1.4915
CXorf65>TAS2R9 | 1.1961 ?gASﬂ >TMPRSSI | o 8671
GLTPD2>TERC -1.7591 RNASE3>WFDC6 | -1.3100
KRTAPI7-
ToAMPI0 2.0559 SH3GL3>SPATA4 1.5980
KRTAPI7-
TNPEERI 2.5136 SHC4>TACI 17188
MAPT-
S1>SERPINAA -1.6841 SPATA4>TTC24 1.3682

B. Univariate Survival Analysis

For each of the 1867 genes, the univariate survival analysis
was performed. For each gene, the whole cohort was divided
into two groups based on the median of gene expression values.
Then Logrank test [22] was performed, and the hazard ratio was
calculated. Based on the threshold of the Log-rank test P-value
<< 0.05 and hazard ratio, HR # 1.0, 120 genes were selected.

This means that each of the 120 genes has prognostic
capabilities as they can significantly divide samples into low-
risk and high-risk based on expression values. Among the 120
genes, 65 genes had hazard ratio below 1.0 and the remaining
55 genes had hazard ratio above 1.0.

C. Gene Pairs and Prognostic Signature Model Building

From the 120 genes, the gene pair dataset was formed.
There were 7140 gene-pairs with values 0 and 1. Then
according to the frequency of gene-pairs with value 1 among all
samples that are between 10% and 90%, 2986 gene-pairs
remained. This was done based on the hypothesis that the
features (or, gene-pairs) that have the same values (0 or 1) on
most of the samples contribute less to the classification. To test
this hypothesis, the accuracy is calculated by applying
XGBoost using the resampled dataset with gene-pairs as
features, where gene-pairs are reduced from two ends by 5%. It
is observed that for the gene-pairs with a frequency range 5%-
95% and 10%-90% the accuracy was higher, and after this
point, the accuracy reduces significantly. Thus, it is justified to
use the gene-pairs with frequency ranges between 10% and
90% for further analysis.

Classification Accuracy For Different Set of Gene
Pairs Based on Frequency of Values
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Fig. 5. Bar plot of accuracy for 7 different sets of gene-pairs as features, from
the frequency of [0%-100%] to [30%-70%] with a step size of 5%. The numbers
inside the parenthesis denote the total number of gene-pairs as features. The
classification was done using XGBoost on resampled breast cancer dataset with
subtypes as labels.

Then, LASSO regression was performed using these 2986
gene-pairs as features and overall survival time as output. This
was done to remove the uninformative gene-pairs in relation to
overall survival time to death. Based on LASSO regression,
1416 gene-pairs remained, and the 1570 uninformative gene-
pairs were discarded. Then using the 1416 gene-pairs,
multivariate Cox Proportional Hazard Regression was
performed. 48 significant gene-pairs were selected using the
threshold of P-value < 0.05 from the prognostic signature score
equation. The list of 48 significant gene-pairs and their
coefficients from Cox Proportional Hazard Regression, which
are used in the prognostic signature risk model (PRSM) are
provided in Table II.



D. Validation of the Prognostic Model

To validate the prognostic risk model with 48 gene-pairs,
we calculated the prognostic risk score on the TCGA-BRCA
cohort. The whole cohort was divided into two cohorts based
on the median of the score - the first group is formed by samples
with a score less than equal to the median and the second group
is greater than the median. Then Kaplan-Meier [25] method and
the logrank test were performed. The Kaplan-Meier curve is
shown in Figure 6. It is clear from Figure 6 that the derived
signature scores can significantly differentiate the low-risk
patients from high-risk patients with logrank test P-value 5.39
x 10718 and a Hazard Ratio is 0.22. It is also clear that the lower
the risk score, the higher the chance of survival for patients.
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Fig. 6. Survival Analysis using PSRM score on BRCA cohort. Kaplan-Meier
plot on PSRM score calculated for the whole cohort of BRCA patients.

The prognostic risk model was also tested on two other
TCGA cohorts- namely UVM (Uveal Melanoma) and HNSC
(Head and Neck Cancer) and it was found that for both cohorts,
the prognostic risk score could significantly distinguish high-
risk and low-risk patients. For UVM, the hazard ratio was 0.21
and the logrank P-value was 0.0005. Similarly, For HNSC the
hazard ratio was 0.76 and the logrank P-value was 0.049.

Forest Plot

HR 95% Cl
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Fig. 7. Forest plot summarizing the prognostic capability of the 48 gene-pair
prognostic signature model on 7 different cohorts- BRCA, UVM, and HNSC
whole cohort and for breast cancer subtype-specific — Basal, Her2, Luminal A,
and Luminal B. The diamond shape denotes the value of the hazard ratio and
the straight line denotes the 95% confidence interval. The X-axis denotes the
hazard ratio. The logrank P-value is represented by the number of stars
alongside the gene (* - P < 0.05, ** - P < 0.01, *** - P < 0.001, **** . P <
0.0001).

For each of the subtypes of breast cancer, the prognostic
model was tested to see if it could perform the same. It was
found that the model could significantly distinguish the high-
risk group and low-risk group for four out of five subtypes
(Basal, Her2, Luminal A, Luminal B). The summary is shown
as a forest plot in Fig. 7.

E. Functional Enrichment of the Genes

gProfiler [26] was used to perform gene ontology and
pathway enrichment analysis of the genes that are incorporated
in the prognostic signature model. There are 42 genes in the 48
gene-pair prognostic signature model. The summary of the
enrichment analysis is given in Table III. The genes are
enriched in two molecular functions and four Reactome
pathways and they are related to peptide receptor activity and
G-protein coupled receptors (GPCR).

TABLE III. FUNCTIONAL ENRICHMENT ANALYSIS OF THE GENES IN
PROGNOSTIC SIGNATURE MODEL
Source Term ID Term Name Adjusted
P-value
GO:MF GO:0001653 peptide receptor 2.734x107
activity
GO:MF GO:0008528 G protein-coupled 2.342x1072
peptide receptor
activity
Reactome | REAC:R- GPCR ligand binding 3.041x1072
HSA-500792
Reactome REAC:R- GPCR downstream 1.724x1072
HSA-388396 | signaling
Reactome REAC:R- Peptide ligand-binding 5.430x10°
HSA-375276 receptors
Reactome REAC:R- Signaling by GPCR 3.501x10
HSA-372790

IV. DISCUSSION

This study proposes a framework for building a prognostic
signature model for breast cancer, which can be used to assess
the risk of patients. It can distinguish high-risk patients from
low-risk patients with statistical significance. The genes
incorporated in the prognostic model also possess the prognostic
capability and they are associated with cancer-related molecular
functions and pathways. The prognostic model was also
effective in two other TCGA cancer cohorts, namely UVM and
HNSC.

This work has some limitations and scope for future work.
For instance, due to time and resource constraint, the number of
runs in multi-run systems were tested up to 100. In the future, it
can be checked whether the increasing number of runs also
increases the number of key genes. Also, this work can be
generalized to other cancers which needs further investigation
and validation. In our future work, we will also compare our
proposed method with the existing approaches.

V. CONCLUSION

We developed a bioinformatics framework to formulate a
prognostic  signature model for breast cancer, which
incorporates key genes identified by the unsupervised deep
learning feature selection method, concrete autoencoder. The
prognostic signature contained 48 gene-pairs consisting of 42



genes and it could distinguish high-risk and low-risk groups of
the TCGA-BRCA cohort significantly. The 42 genes are
functionally enriched in activities related to peptide receptors
and G-protein coupled receptors.
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