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Abstract— It is crucial to find prognostic biomarkers that can 

predict the cancer prognosis and estimate risk, as they can be used 

in clinical settings to treat patients. Probing the biomarkers 

themselves will reveal important insights into the cancer dynamics 

and molecular pathways underlying pathological behavior. To 

achieve that goal, this work proposes a bioinformatics framework, 

taking advantage of the deep learning-based feature selection 

method Concrete Autoencoder (CAE) to identify key genes and to 

build a prognostic score model that can assess the risk of cancer 

patients. 48 gene-pairs were identified to form a prognostic 

signature model that can significantly differentiate between high-

risk and low-risk patients with breast cancer. This prognostic 

signature was comprised of 42 genes enriched in cancer-related 

pathways and molecular functions. The proposed framework and 

the prognostic model can be used as clinical tools to assess the risk 

levels of breast cancer patients. The identified genes can be studied 

further for potential targets for cancer therapy.  
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I. INTRODUCTION 

Breast cancer is the most frequent cancer in women 
worldwide. In the United States, it is estimated that in 2022, 
about 287,850 new cases of breast cancer will be diagnosed in 
women, and 43,250 women will die from breast cancer [1]. 
Breast cancer is extremely heterogeneous in terms of molecular 
alterations, cellular makeup, therapeutic response, and clinical 
consequences. It can be classified into five intrinsic subtypes at 
the transcriptional level: luminal A (LumA), luminal B (LumB), 
HER2-enriched, basal-like, and normal-like [2].  

There is a pressing need to predict prognosis accurately and 
distinguish the high-risk group from the low-risk group [3]. 
Predicting prognosis can help avoid overtreatment for low-risk 
patients and the risk of undertreatment for high-risk patients. A 
prognostic model uses statistical techniques to calculate the 
quantitative correlation between risk variables and the 
likelihood of specific clinical outcomes considering the patient's 
medical status [4]. Clinicians and healthcare professionals can 
use breast cancer prognostic models to assist them not only in 
providing better therapeutics but also in making better-informed 
decisions about whether to forgo treatment. 

Researchers developed many prognostic signature models 
for breast cancer [5]–[10]. The first step to developing these 
signatures is to select a reduced set of genes from 20,000, which 
can be solved as a feature selection problem using machine 

learning or deep learning methods. However, to develop most of 
these prognostic signature models, a short list of genes related to 
a certain biological function was curated manually or identified 
by statistical approaches, like differential gene expression 
analysis. For example, prognostic models designed based on 
manually curated gene sets are related to autophagy [5], 
ferroptosis [7], etc.  On the other hand, Zhang et al. [6] and Sun 
et al [8] used differential gene expression analysis to identify a 
short list of DNA repair  and hypoxia related genes, respectively. 
These lists of genes were later used in designing the prognostic 
models.  

It is clear from the literature that the short lists of genes to 
develop signature models are selected based on a single 
biological function either manually or by statistical approaches 
like differential gene expression analysis. The major 
shortcoming of the existing approaches is that the genes for the 
signature models are coming from a single biological function, 
thus, failing to take into account of holistic nature of 
heterogeneity that exists in breast cancer development and 
progression. To overcome this issue, we are proposing a feature 
selection-based approach to select the short list of genes with the 
assumption that it takes account of heterogeneity in breast 
cancer development and progression. Deep learning-based 
feature selection methods such as, Concrete Autoencoder (CAE) 
[11] has shown to perform better as a feature selection method 
both in single-run [12]–[14] and multi-run [15]–[17] modes. For 
example, single-run CAE was used to select salient features for 
pan-cancer classification [12], [13] and racial disparity in lung 
cancer between African American males and European 
American males [14]. Researchers also used multi-run CAE to 
identify key lncRNAs for classification of 12 different cancer 
types [15] and to identify key pixels for classification of 
Fitzpatrick skin types [16], [17]. These studies motivates us to 
investigate whether it can also identify the key genes for breast 
cancer and use them to develop a prognostic signature. 

This study proposes a bioinformatics framework that 
incorporates CAE to identify key genes, which are later used in 
downstream tasks to formulate a prognostic signature model to 
predict prognosis for breast cancer patients. To validate the 
prognostic risk model, survival analysis was performed based on 
risk score on BRCA whole cohort and for each subtype cohort 
and functional enrichment to uncover the biological insight 
about the genes.  



II. MATERIALS AND METHODS 

The study design is illustrated in Figure 1 and each step of 
the methodology is described in the following subsections.  

A. Dataset Collection and Preprocessing 

We collected the gene expression dataset of TCGA Breast 
Carcinoma (BRCA) from UCSC Xena Browser database [18] 
(Dataset ID: TCGA.BRCA.sampleMap/HiSeqV2). The dataset 
contains expression profiles of 20,531 mRNAs for 1218 
samples. Of 1218 samples, there were 1097 tumor, 114 normal, 
and 7 metastatic samples. The subtype label information was 
collected from Xena Browser as well. (Dataset ID: 

TCGA.BRCA.sampleMap/BRCA_clinicalMatrix, GDC-

PANCAN.basic_phenotype.tsv). The distribution of the breast 
cancer subtypes is given in Table I. It is clear that the dataset is 
highly imbalanced for classification with subtype labels. To 
resolve this issue, we did random oversampling and 
undersampling to make sure that the number of samples in each 
subtype is 217, which was the second largest subtype in terms 
of sample size in the breast cancer dataset. The number of 
oversampling and undersampling and the final distribution of 
the subtypes after resampling are given in Table I. 

TABLE I.  DISTRIBUTION OF BREAST CANCER SUBTYPES IN TCGA-
BRCA COHORT BEFORE AND AFTER RESMAPLING. 

Subtypes # Of 

samples 
% Of 

samples 

Resampling # Of 

samples 

Basal 192 17.56% +25 217 

Her2 82 7.50% +135 217 

Luminal A 566 51.78% -349 217 

Luminal B 217 19.85% 0 217 

Normal-Like 40 3.66% +177 217 

Total 1097 100.00%  1085 

 

 

Fig. 1. The overall process flow of the methodologies . 

B. Concrete Autoencoder 

Concrete Autoencoder (CAE) [11] is a variant of an 
autoencoder, an unsupervised deep learning feature selection 
method. It has an additional layer named the concrete layer 
which incorporates the Concrete [19] or Gumbel-Softmax 
distribution [20] which is a relaxed variant of 
discrete/categorical distribution. This layer is used to 
incorporate discrete distribution into deep learning algorithm 
which helps CAE to learn a subset of features that are most 
informative and yields a minimum reconstruction error. The 
learning of a set of features depends on a hyperparameter called 
temperature (T), which is gradually lowered during the training 
phase to a low value using a simple annealing schedule. Unlike 
the encoder part, the decoder part resembles closely with the 
decoder of the standard autoencoder. 

 
Fig. 2. The architecture of the concrete autoencoder (CAE). The encoder part 
contains the input layer and the concrete selector layer. The decoder in this 
figure is a 2-layer neural network, with the final layer having the same number 
of nodes as the input layer. 

In the selector layer, each node selects a feature with the 
highest probability. The difference between concrete 
autoencoder and standard autoencoder is that the features 
learned by the autoencoder are latent features, whereas the 
features learned by CAE are actual features.  

Implementation: The CAE was implemented using Keras 
(https://keras.io/). Experiments were conducted in a parallel 
manner on high-performance cluster with NVIDIA Quatro 
K620 GPU with 384 cores and 2GB memory devices.  

C. Hyperparameter Tuning 

To train the CAE, we performed the hyperparameter tuning 
for three hyperparameters - learning rate, number of epochs, 
and the decoder architecture of the CAE using the grid search 
method. In this case, the best parameters were selected based 
on three criteria - reconstruction error of validation set, 
percentage of unique features selected, and mean of maximum 
probability of the selected feature in each node in the concrete 
selector layer. The grid search experiment was designed using 
6 values for the number of epochs, 5 values of learning rates, 
and 5 different combinations of decoder architecture. The 
optimum values of the number of epochs, learning rate, and 
decoder architecture were 1500, 0.01, and 2-layer decoder with 
each layer having 300 nodes, respectively. 



D. Optimal Number of features and Resampling 

Using the optimized hyperparameters, the number of 
optimal features was selected based on the subtype 
classification accuracy of breast cancer patients. For 
classification, XGBoost was used as the classifier model since, 
it is shown that it works best on tabular data [21]. Using the 
resampled dataset, as shown in Table I, CAE was trained 3 
times for different values of K between 50 to 500 with a step 
size of 50. The average classification accuracy by XGBoost 
using 3 sets of selected features of different sizes was plotted in 
Figure 3. It is clear from Figure 3 that the model produced the 
highest average accuracy at K = 250. Then the accuracy 
decreases with the increase in the number of features and again 
reaches a maximal value at K = 475. Since the two optimal 
average accuracy values (at K = 250 and 475) are almost the 
same, we chose K = 250 (the smaller number of features), as 
the optimal number of features.   
 

 
Fig. 3. Accuracy of classification by XGBoost using a different number of 
features (K) from 50 to 500 with a step size of 50. Accuracy from 3 runs and 
their average is plotted for each value of K. 

E. Multi-Run CAE and Feature selection 

Due to the stochastic nature of the CAE, it was shown that 
CAE selects a different set of features at a different run and each 
set of features is equally informative in the sense that they all 
yield the same reconstruction error [15]. So, CAE was trained 
100 times as used in [15] and each time 250  features were 
selected. The union of all the features from 100 different runs 
was selected as the most informative features and used for the 
downstream tasks. 

F. Univariate Survival Analysis 

For the genes selected by the multi-run concrete 
autoencoder, we performed univariate survival analysis. For 
each gene, the samples were divided into two groups – Low-
risk samples with expression values less than or equal to the 
median and high-risk samples with expression values greater 
than the median. Then hazard ratio (HR) and logrank test [22] 
P-value were calculated. In this case, the logrank test P-value 
less than 0.05 would mean that the gene could divide the 
samples into two groups that are prognostically and 
significantly different. We used overall survival (OS) time and 
overall survival event for this analysis. 

G. Gene Pair Formation 

Using the prognostically significant genes found from the 
previous step, the gene expression dataset was then transformed 
into a gene pair dataset using the following rule. For each 
sample and each pair of genes (,  we set 1 if     and 0 
otherwise. Then from the gene pair dataset, for each gene pair, 
the frequency of 1 was calculated. The gene pair with a 
frequency greater than 10% and less than 90% were retained 
and the remaining gene pairs were discarded. This was done 
based on the rationale (explained in Result Section IIIC) that 
the gene pairs that have the same value for most of the samples 
are not useful features for the downstream tasks.  

H. Prognostic Signature Building 

LASSO Regression [23] was used for another step of 
feature selection using gene pairs as features and survival event 
time as output. LASSO regression removes uninformative 
features with respect to the output (survival time) by reducing 

their coefficients to zero. The value of the hyperparameter, , 
for LASSO regression, was chosen as 1.0 based on cross 
validation grid search with mean absolute error as the loss to 
optimize. 

 
In the following step, multivariate Cox Proportional Hazard 

regression [24] was performed. This method investigates the 
effects of several variables upon the time a specific event takes 
place, which in this case death. From the Cox Regression 
model, the coefficients for each gene pair represent a hazard 
ratio and P-value represents a strong relationship between the 
gene pair and the decreased/increased risk of death. The gene 
pairs with P-value less than 0.05 were selected and their cox-
coefficients were taken as coefficients for their respective gene-
pairs to form the prognostic signature risk model (PSRM), 
shown below.  

    
ℎ,     ∗  




 

Where,   is i-th gene-pair,   is the coefficient of i-th 
gene-pair from the Cox Proportional Hazard Regression. Then 
the value of prognostic signature risk model (PRSM) is used to 
differentiate the high score patients from the low score patients 
to do survival analysis to test the efficacy of derived prognostic 
signature.   

III. RESULTS  

A. Multi-Run CAE and Most informative features.  

To pick the most informative genes, CAE was run in a 
multi-run fashion from 10 to 100 runs with a step size of 10 
runs. The unique set of features from these 10 different multi-
runs was used to calculate the classification accuracy using 
XGBoost as the classifier model. This classification was done 
on the resampled dataset, using subtypes as the labels. From 
this test, 100-runs with 1867 features produced the highest 
accuracy, as shown in Figure 4. This set of genes is used for 
downstream analysis. 

 



 
Fig. 4. Bar plot of accuracy for 10 different multi-run systems, from 10-run to 
100-runs. The numbers inside the parenthesis denote the total number of unique 
features. The classification was done using XGBoost on resampled breast 
cancer dataset with subtypes as labels.  

TABLE II.  THE GENE PAIRS AND THEIR CORRESPONDING COEFFICIENTS 

FROM COX PROPORTIONAL HAZARD REGRESSION, WHICH IS USED IN THE 

PROGNOSTIC SIGNATURE MODEL. THE GENE PAIRS WERE SHOWN IN     

FORMAT AS THEY WERE USED IN THE ORIGINAL GENE PAIR DATASET. 

B. Univariate Survival Analysis 

For each of the 1867 genes, the univariate survival analysis 
was performed. For each gene, the whole cohort was divided 
into two groups based on the median of gene expression values. 
Then Logrank test [22] was performed, and the hazard ratio was 
calculated. Based on the threshold of the Log-rank test P-value 

≤ 0.05 and hazard ratio, HR ≠ 1.0, 120 genes were selected. 

This means that each of the 120 genes has prognostic 
capabilities as they can significantly divide samples into low-
risk and high-risk based on expression values. Among the 120 
genes, 65 genes had hazard ratio below 1.0 and the remaining 
55 genes had hazard ratio above 1.0.  

C. Gene Pairs and Prognostic Signature Model Building 

From the 120 genes, the gene pair dataset was formed. 
There were 7140 gene-pairs with values 0 and 1. Then 
according to the frequency of gene-pairs with value 1 among all 
samples that are between 10% and 90%, 2986 gene-pairs 
remained. This was done based on the hypothesis that the 
features (or, gene-pairs) that have the same values (0 or 1) on 
most of the samples contribute less to the classification. To test 
this hypothesis, the accuracy is calculated by applying 
XGBoost using the resampled dataset with gene-pairs as 
features, where gene-pairs are reduced from two ends by 5%. It 
is observed that for the gene-pairs with a frequency range 5%-
95% and 10%-90% the accuracy was higher, and after this 
point, the accuracy reduces significantly. Thus, it is justified to 
use the gene-pairs with frequency ranges between 10% and 
90% for further analysis. 

 

 
Fig. 5. Bar plot of accuracy for 7 different sets of gene-pairs as features, from 
the frequency of [0%-100%] to [30%-70%] with a step size of 5%. The numbers 
inside the parenthesis denote the total number of gene-pairs as features. The 
classification was done using XGBoost on resampled breast cancer dataset with 
subtypes as labels.  

Then, LASSO regression was performed using these 2986 
gene-pairs as features and overall survival time as output. This 
was done to remove the uninformative gene-pairs in relation to 
overall survival time to death. Based on LASSO regression, 
1416 gene-pairs remained, and the 1570 uninformative gene-
pairs were discarded. Then using the 1416 gene-pairs, 
multivariate Cox Proportional Hazard Regression was 
performed. 48 significant gene-pairs were selected using the 
threshold of P-value ≤ 0.05 from the prognostic signature score 
equation. The list of 48 significant gene-pairs and their 
coefficients from Cox Proportional Hazard Regression, which 
are used in the prognostic signature risk model (PRSM) are 
provided in Table II. 

 

Covariate 
Coefficie

nt 
Covariate 

Coefficie

nt 

AGTR2>CD300E 1.6552 MAPT-AS1 >SHC4 -1.3277 

C1orf111>C2orf71 1.6855 MAG>SERPINA4 1.3480 

C1orf111>CEACAM

4 
-1.2805 MAG>SHC4 -1.9228 

C1orf111>UTS2R 1.1822 MMP20>NPFFR1 -1.4100 

C5orf60>CD300E -1.1701 MMP20>TAC1 -2.2915 

C5orf60> MAPT-

AS1 
-1.3117 MMP20>TERC 1.31214 

C5orf60>XCR1 1.3982 MMP20>XCR1 1.9357 

CA6>FAM153A -2.3887 MYBPC1>SPATA4 -1.3984 

CA6>SERPINA4 -1.7345 MYBPC1>TTC24 1.8648 

CA6>XCR1 3.3782 MYBPC1>UTS2R -1.5502 

CD300E>TAC1 1.1120 GRIK1-AS1>PROL1 -1.0338 

CD300E>UTS2R -1.1441 GRIK1-AS1>SHC4 1.0787 

CEACAM4>MAG -1.0683 NPFFR1>PAX7 -1.8096 

CEACAM4>MMP20 1.3415 
NPFFR1>SERPINA
4 

1.3387 

CGB8>SPATA3 2.0971 NXNL2>WFDC6 -1.3421 

CLNK>SPATA4 1.0897 OR6B3>PAX7 -1.4770 

CTRC>GPR25 1.7202 PSPN>TTC24 1.1864 

CTRC>HEPACAM -1.7292 PSPN>XCR1 -1.0401 

CTRC>RNASE3 1.9775 RMST>SPATA4 1.4915 

CXorf65>TAS2R9 1.1961 
RNASE3>TMPRSS1

1B 
0.8671 

GLTPD2>TERC -1.7591 RNASE3>WFDC6 -1.3100 

KRTAP17-

1>MMP20 
-2.0559 SH3GL3>SPATA4 1.5980 

KRTAP17-
1>NPFFR1 

2.5136 SHC4>TAC1 -1.7188 

MAPT-

AS1>SERPINA4 
-1.6841 SPATA4>TTC24 1.3682 



D. Validation of the Prognostic Model 

To validate the prognostic risk model with 48 gene-pairs, 
we calculated the prognostic risk score on the TCGA-BRCA 
cohort. The whole cohort was divided into two cohorts based 
on the median of the score - the first group is formed by samples 
with a score less than equal to the median and the second group 
is greater than the median. Then Kaplan-Meier [25] method and 
the logrank test were performed. The Kaplan-Meier curve is 
shown in Figure 6. It is clear from Figure 6 that the derived 
signature scores can significantly differentiate the low-risk 
patients from high-risk patients with logrank test P-value 5.39 

x 10 and a Hazard Ratio is 0.22. It is also clear that the lower 
the risk score, the higher the chance of survival for patients. 

 

 
Fig. 6. Survival Analysis using PSRM score on BRCA cohort. Kaplan-Meier 
plot on PSRM score calculated for the whole cohort of BRCA patients.  

The prognostic risk model was also tested on two other 
TCGA cohorts- namely UVM (Uveal Melanoma) and HNSC 
(Head and Neck Cancer) and it was found that for both cohorts, 
the prognostic risk score could significantly distinguish high-
risk and low-risk patients. For UVM, the hazard ratio was 0.21 
and the logrank P-value was 0.0005. Similarly, For HNSC the 
hazard ratio was 0.76 and the logrank P-value was 0.049.  

 

 
Fig. 7. Forest plot summarizing the prognostic capability of the 48 gene-pair 
prognostic signature model on 7 different cohorts- BRCA, UVM, and HNSC 
whole cohort and for breast cancer subtype-specific – Basal, Her2, Luminal A, 
and Luminal B. The diamond shape denotes the value of the hazard ratio and 
the straight line denotes the 95% confidence interval. The X-axis denotes the 
hazard ratio. The logrank P-value is represented by the number of stars 

alongside the gene (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P ≤ 0.001, **** - P ≤ 

0.0001). 

For each of the subtypes of breast cancer, the prognostic 
model was tested to see if it could perform the same. It was 
found that the model could significantly distinguish the high-
risk group and low-risk group for four out of five subtypes 
(Basal, Her2, Luminal A, Luminal B). The summary is shown 
as a forest plot in Fig. 7. 
 

E. Functional Enrichment of the Genes 

gProfiler [26] was used to perform gene ontology and 
pathway enrichment analysis of the genes that are incorporated 
in the prognostic signature model. There are 42 genes in the 48 
gene-pair prognostic signature model. The summary of the 
enrichment analysis is given in Table III. The genes are 
enriched in two molecular functions and four Reactome 
pathways and they are related to peptide receptor activity and 
G-protein coupled receptors (GPCR).  

TABLE III.  FUNCTIONAL ENRICHMENT ANALYSIS OF THE GENES IN 

PROGNOSTIC SIGNATURE MODEL 

IV. DISCUSSION 

This study proposes a framework for building a prognostic 
signature model for breast cancer, which can be used to assess 
the risk of patients. It can distinguish high-risk patients from 
low-risk patients with statistical significance. The genes 
incorporated in the prognostic model also possess the prognostic 
capability and they are associated with cancer-related molecular 
functions and pathways. The prognostic model was also 
effective in two other TCGA cancer cohorts, namely UVM and 
HNSC.  

This work has some limitations and scope for future work. 
For instance, due to time and resource constraint, the number of 
runs in multi-run systems were tested up to 100. In the future, it 
can be checked whether the increasing number of runs also 
increases the number of key genes. Also, this work can be 
generalized to other cancers which needs further investigation 
and validation. In our future work, we will also compare our 
proposed method with the existing approaches.  

V. CONCLUSION 

We developed a bioinformatics framework to formulate a 
prognostic signature model for breast cancer, which 
incorporates key genes identified by the unsupervised deep 
learning feature selection method, concrete autoencoder. The 
prognostic signature contained 48 gene-pairs consisting of 42 

Source Term ID Term Name Adjusted  

P-value 

GO:MF GO:0001653 peptide receptor 
activity 

2.734×10-2 

GO:MF GO:0008528 G protein-coupled 
peptide receptor 
activity 

2.342×10-2 

Reactome REAC:R-
HSA-500792 

GPCR ligand binding 3.041×10-2 

Reactome REAC:R-
HSA-388396 

GPCR downstream 
signaling 

1.724×10-2 

Reactome REAC:R-
HSA-375276 

Peptide ligand-binding 
receptors 

5.430×10-3 

Reactome REAC:R-
HSA-372790 

Signaling by GPCR 3.501×10-2 



genes and it could distinguish high-risk and low-risk groups of 
the TCGA-BRCA cohort significantly. The 42 genes are 
functionally enriched in activities related to peptide receptors 
and G-protein coupled receptors. 
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