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Abstract—The ability to quantify the strength of an interaction
between events represented by random variables is important in
many applications such as medicine and environmental science.
We present the problem of measuring the strength of a causal
interaction, starting from the linear perspective and generalizing
to a nonlinear measure of causal influence, using a differential
calculus approach. The proposed measure of causal strength is
interpretable and may be estimated efficiently using Gaussian
process regression. We validate our estimation approach on
several synthesized data sets, considering both static variables
and time series.

Index Terms—causality, Gaussian processes, nonlinear systems,
Simpson’s paradox

I. INTRODUCTION

In scientific problems, we are frequently interested in un-
derstanding the cause and effect relationships between events
represented by the signals or variables observed in an exper-
iment. Many techniques have been developed to detect the
existence of causal interactions [1], [2], [3], but we often desire
to quantify the intensity or strength of the interaction [4], [5],
[6]. A good notion of causal strength enables many useful
analyses, such as permitting doctors to determine the risk
or severity associated with a physiological state or allowing
climate scientists to rank several factors that cause global
warming by their strength of causation.

Depending on the context, there are several measures of
causal strength that may be useful. In our context, we are
interested in studying a continuous random variable y whose
value is determined by a set of continuous random variables
x1, x2, · · · , xD. If the dependence of y on its causes is linear,
e.g.

y := a1x1 + · · ·+ aDxD + ε, (1)

where ε is a noise variable, then we may interpret the linear
model coefficient ai as a measure of the sensitivity of y to a
small change in the value of xi. The sensitivity of the effect
variable to small changes in a cause variable will be called
the causal strength or causal effect throughout this letter. We
point out that the causal strength has a physical unit defined
by the units of y and xi, respectively.

The linear model shown in (1) is useful, but there are many
phenomena that linear models cannot describe. The analogue
of the linear coefficients for a nonlinear model are the partial
derivatives. Generally, partial derivatives are not constants
but rather functions that vary with the input variables. This
feature complicates their interpretation, but also makes them
more expressive. Approaches to measuring causation based
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Fig. 1. Simpson’s paradox [9] demonstrates that a measurement of causal
effect depends critically on what features are included in the regression model.
Left: A set of samples of points (x, y) from the generative model in (5).
Fitting a regression model y := ax + ε yields an ACE a > 0. Right: We
show the same set of samples colored by the value of z. A joint regression
model y := ax+ bz + ε now reveals a < 0.

on multivariate calculus have appeared before in some form
in other disciplines [7], [8], and in [6] the idea of a nonlinear
causal effect is briefly mentioned, but to the knowledge of the
authors no data-driven estimator exists in the literature.

The contribution of this letter is to propose a measure of
causal strength based on partial derivatives and to provide a
novel and nonparametric method of estimating the measure
using Gaussian processes. The method is appropriate for any
model in which the dependence between random variables is
described by a differentiable function for any fixed realization.

We organize this letter as follows. In Section II, we propose
the notion of differential causal effect as a measure of causal
strength and show that it is a nonlinear generalization of
average causal effect. We demonstrate how to estimate the
proposed measure using Gaussian processes in Section III.
We provide several examples and explain the connection of
the method to causal inference in Section IV. We conclude
this letter in Section V.

II. BACKGROUND

The framework presented here can be used to study any
relationship of the form

y := F (x, ε), (2)

where F is a differentiable function depending on a vector of
inputs x = [x1 · · ·xD]⊤ and a noise variable ε, and the symbol
:= denotes a causal assignment [6]. When the function F is
linear, we may rewrite (2) as

y := a1x1 + · · ·+ aDxD + bε. (3)

The coefficient ai controls how strong the coupling is between
xi and y, and when used as a measure of strength of causation
it is called the average causal effect (ACE) of xi on y
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[6]. Estimation of ai can be done using linear regression or
covariances since

cov(xi, y)

var(xi)
=

∑
j=1:D ajcov(xi, xj) + bcov(xi, ε)

var(xi)
= ai (4)

whenever xi is uncorrelated with the other inputs xj and ε
[6]. If the observed variables xi are correlated, then linear
regression can still be used to learn the ACE correctly.
However, the problem can be much more challenging if there
are unobserved variables. In [6], the ACE is defined using the
do-operator [3], and in the supplemental material we comment
on how to incorporate interventions into our analysis.

Simpson’s paradox [9] demonstrates that the existence of
unobserved variables can critically change the causal effect
that we measure. We illustrate Simpson’s paradox by consid-
ering the following generative model:

wx, wy
i.i.d.∼ N (0, 1), (5)

z
i.i.d.∼ U({1, ..., 5}),

x := 2z + wx,

y := 4z − x+ wy,

where N (µ, σ2) denotes a Gaussian distribution with mean µ
and variance σ2, and U(A) denotes the uniform distribution
over a finite set A. In Figure 1, we draw 100 samples from
this model and compare two models fitted to this data set.
We find that knowledge of the common cause variable z will
affect the detect sign and magnitude of causal effect of x on
y. The dilemma presented by Simpson’s paradox is difficult
and well known within the causality literature [6], [9]. As a
result, when we say the “causal effect of x on y,” we mean
the causal effect of x on y in the assumed model.1

ACE for linear models is interpretable and straightforward
to estimate, but for nonlinear functions F we need to choose
a particular generalization. A natural choice is to consider the
partial derivatives, denoted either ∂F/∂xi or ∂y/∂xi, which
we will call the differential causal effect (DCE) of xi on y.
The DCE measures how small changes in xi will change
the affected variable y. When F is linear, the differential
cause effect coincides with the linear coefficients. When F
is nonlinear, the DCE varies with the current value of x and
ε, which may be advantageous in modeling nonlinear systems.

To give a motivating example, in neuroscience there is a
popular Bayesian modeling framework called dynamic causal
modeling (DCM) [10]. In DCM one considers a bilinear
model2 of neuronal dynamics, which in our notation could
be expressed as

y := F (x, u, ε) = a⊤x+ b⊤xu+ ε, (6)

where we interpret x as the current state of a neuron pop-
ulation and u as an exogenous influence to the population.
Differentiating (6) yields

∂F (x, u, ε)

∂xi
= ai + biu, (7)

1The problem here is that the inferred causal effect depends critically on
what we regress on. As a result, we should always consider the causal strength
as dependent on our current model [1].

2The bilinear models used in DCM are somewhat more complicated than
the one in (6), but we simplify the model to exemplify modulated causation.

and hence the causal coupling of xi and y depends on the
state of the exogenous variable u. Thus, the partial derivative
function in (7) allows us to model modulatory effects, i.e.,
causal strength that is amplified or inhibited by other variables
in the system.

To use DCE in practice, we have two problems. The first
is the estimation of the DCE from a finite set of observed
data. To this end, in the next section, we propose an approach
based on Gaussian process regression. The second issue is
how to appropriately summarize the DCE for general signals.
We suggest several potentially useful techniques in Section IV,
namely the use of histograms, averaging, and bilinear model
coefficients.

III. PROPOSED SOLUTION

To estimate the DCE from data, we employ Gaussian
process regression (GPR). GPR is a flexible, non-parametric
and Bayesian approach to learning functions from data [11].
Given a vector of covariates x = (x1, x2, ..., xD) and a target
quantity y = F (x), GPR estimates the function F by placing
a Gaussian process prior over the space of possible functions
F : RD → R, where we assume zero mean and the covariance
between F (x) and F (x′) is controlled by a kernel function
k(x,x′). After receiving data, the GPR estimate F̂ of the
function is given by the posterior mean and can be expressed
in closed form, as derived in [11], by

F̂ (x) = E(F (x)|X,y,x) (8)

= k∗(x)
⊤(K+ σ2I)−1y (9)

=
N∑

n=1

k
(
x,x(n)

)
αn, (10)

where y is a vector of training observations, X ∈ RN×D

is a matrix of training inputs x(n), and x is the test point
corresponding to the value F (x) that we would like to predict,
and αn is the n-th entry in the vector (K+σ2I)−1y. Since the
terms αn do not depend on the particular test point x, they
are constants from the perspective of the derivative. Hence,
the estimated DCE takes on a general form:

∂F̂

∂xi
=

N∑
n=1

∂k
(
x,x(n)

)
∂xi

αn. (11)

The derivative ∂k/∂xi of the kernel depends on the partic-
ular choice of kernel used in GPR, but (11) clarifies how a
change of kernel modifies our estimate of the DCE. For many
popular kernels, we may compute ∂k/∂xi easily. A common
kernel is the squared-exponential (SE) kernel [11]:

kSE(x,x
′) = σ2

f exp

−
D∑

j=1

(xj − x′
j)

2

2ℓ2

 , (12)

where ℓ and σf are parameters. The derivative of k(x,x(n))
shown in (11) is straightforward to compute, i.e.,

∂kSE
(
x,x(n)

)
∂xi

= σ2
f exp

−
D∑

j=1

(xj − x
(n)
j )2

2ℓ2

 xi − x
(n)
i

−ℓ2
.

(13)
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A popular extension of the SE kernel is the SE kernel with
automatic relevance detection (ARD-SE) [12]. The ARD-SE
kernel modifies (12) to let the parameter ℓ vary for each input
dimension,

kARD-SE(x,x
′) = σ2

f exp

−
D∑

j=1

(xj − x′
j)

2

2ℓ2j

 . (14)

As a result, the ARD-SE kernel may automatically weight
the importance of each input dimension xi by varying the
parameter ℓi. The corresponding modification to the derivative
is also immediate

∂kARD-SE
(
x,x(n)

)
∂xi

= σ2
f exp

−
D∑

j=1

(xj − x
(n)
j )2

2ℓ2j

 xi − x
(n)
i

−ℓ2i
.

(15)

Another common choice of kernel is the Matérn kernels.
Matérn Gaussian processes are used because they can impose
a restriction on the differentiability of the GP posterior samples
[11]. The SE, ARD-SE and Matérn kernels are all universal
kernels, meaning that they can be used to approximate any
continuous function [13]. The Matérn 3/2 and 5/2 kernels
are known to be once and twice continuously differentiable
respectively, and they are given by the following equations:

kMat3/2(x,x
(n)) =

(
1 +

√
3rn
ℓ

)
exp

(
−
√
3rn
ℓ

)
, (16)

kMat5/2(x,x
(n)) =

(
1 +

√
5rn
ℓ

+
5r2n
3ℓ2

)
exp

(
−
√
5rn
ℓ

)
,

(17)
where rn = ||x − x(n)|| is the Euclidean distance of the
test point x from the n-th training point. The corresponding
derivatives can again be computed,

∂kMat3/2

∂xi
=

−3rn
ℓ2

exp

(
−
√
3rn
ℓ

)
xi − x

(n)
i

rn
, (18)

∂kMat5/2

∂xi
=

(
−5rn
3ℓ2

− 5
√
5r2n

3ℓ3

)
exp

(
−
√
5rn
ℓ

)
xi − x

(n)
i

rn
.

(19)

Naturally there are many other candidate kernels that we could
discuss, but computation of their derivatives is completely
analogous to the examples shown here. Interesting discussion
on kernel selection and design can be found in [11], [14].

In large datasets, the direct implementation of GPR is
prohibited by the difficultly in inverting the resulting large
covariance matrix. In these cases it is common to approxi-
mate the kernel to improve scalability [15]. In such cases,
derivations like above can be employed to produce estimators
of the DCE, but this is beyond the scope of the current work.

IV. RESULTS

To validate our approach, we study three simple models.
Each model is intended to highlight different aspects of the
DCE approach, and the utility of GPR as a tool for estimating
the DCE in a data-driven manner.

Fig. 2. DCE recovers the linear coefficients for the linear model in (20).
Using three different kernels, the DCE estimated from 200 data points
averages on the correct values. The black dots represent the mean values
of each distribution, and the white crosses on top of each dot represents the
corresponding estimate obtained using ordinary least squares.

A. Linear model

First, we demonstrate that the GPR-based estimate of DCE
can reproduce the coefficients of a linear model. In Figure
2, we consider 200 data points sampled from the following
model:

xi
i.i.d.∼ N (0, 1), i = 1, ..., 4,

ε ∼ N (0, 1),

y := x1 + 2x2 + 3x3 + 4x4 + ε. (20)

We estimate the differential causal estimate by regressing y
on x1, ..., x4.

We observe that the average GPR-estimate coincides with
the least squares model coefficients for each covariate and
each kernel. However, we did not assume the functional form
of the relationship in (20) during inference, which suggests
that the average DCE will generally reproduce the ACE. We
include in the supplemental material some results suggesting
that this behavior is typical, even when the generative process
is nonlinear.

B. Nonlinear model

Next, we consider a system in which x and y are related
by a nonlinear function. We observe 500 samples from the
following model:

x, z
i.i.d.∼ U(0, 5),

ε ∼ N (0, 1),

f(x) = sin(x) + cos(2x) + sin(3x) + 0.1x2,

y := f(x) + cos(z) + ε. (21)

The DCE ∂y/∂x is only a function of x in this model.
In Figure 3, we show the result of regressing y on x using

GPR with an SE kernel, and then we show that the estimated
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Fig. 3. DCE for the nonlinear model in (21). Top: The Gaussian process
posterior mean and one standard deviation of variation for the data in the
figure is shown, learned using the SE kernel. Middle: The DCE is estimated
using SE kernel. The ACE is also shown, but is approximately zero. Bottom:
Comparison of DCE estimates for several kernels.

DCE is close to the true causal effect as we vary the input x.
Visualizing the ACE on the same plot, we see that it is close
to zero (about −0.2), indicating that the ACE will not detect
any causal influence from x to y because the distribution of
DCE values has mean zero. However, the DCE is only zero in
mean, and on average the magnitude of the DCE is about 2.1.
Hence, the DCE encodes information about the causal strength
that is more difficult to detect using the ACE.

Additionally in Figure 3, we compare the estimates of the
DCE using the SE, Mat3/2 and Mat5/2 kernels. The ARD-SE
kernel performed indistinguishably from the SE kernel, and so
it was not plotted. We observe that while all kernels provided
appropriate estimates, the Mat3/2 was more oscillatory than
the other kernels. This is possibly due to the Mat3/2 kernel’s
limited differentiability, which suggests that kernel design may
be important to refine a DCE estimator.

C. Modulated causation

As a final example, we consider the following signals:

wx, wy
i.i.d.∼ N (0, 1),

x(t) := sin

(
t

2

)
+ cos

(√
2t

6

)
+ wx,

z(t) :=
1

1 + exp(15 sin(t/20))
,

y(t+ 1) := 0.9y(t) + (β + z(t))x(t) + wy, (22)

where we selected β = 0.1. Note that z(t) varies smoothly
between 0 and 1, and x(t) is just a superposition of sinusoids
in noise.

Fig. 4. DCE in a time series model. The signal yt evolves according to
yt+1 = ayt +(β+ zt)xt + εt, where zt smoothly toggles between 0 and 1.
Top: The signals x(t), y(t) that are observed. Middle: The true DCE of x(t)
on y(t + 1) is ∂y(t + 1)/∂x(t) = β + z(t). The GPR estimate tracks the
true value closely in time. Bottom: We plot the estimated DCE against the
corresponding values of z(t). The strong linear trend suggests that a bilinear
model may accurately capture the dynamics.

The DCE of x(t) on y(t+1) is given by β+z(t). Hence, the
next observation y(t+1) depends strongly on both the current
x(t) only when the modulation signal z(t) is high (near 1).

We observe 1000 samples from this model and attempt to
estimate the DCE of x(t) on y(t+ 1) by regressing y(t+ 1)
on x(t) and y(t). In Figure 4, we show that our estimated
DCE tracks the true modulation signal z(t) in time. We see
that DCE is approximately linear in z(t), indicating that the
underlying process is likely to be bilinear. Fitting a line to the
scatterplot yields a slope of 1.007, close to the true value.

V. CONCLUSION

In this letter, we introduced a measure for strength of
causation using ordinary calculus and presented a method
to estimate it from data using Gaussian process regression.
The proposed method was motivated by generalizing the
analysis of linear models to nonlinear relationship. The pro-
posed method can be used to study modulatory effects in
neurological and biological systems.
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