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Abstract— This paper proposes an innovative IoT service 

platform that leverages blockchain technology to enable secure 

and scalable IoT services. The platform is designed to be open to 

multiple IoT services and applications, and can be easily extended 

to provide secure registration, discovery, access, and payment 

services to both IoT providers and consumers. The proposed 

platform adopts an ontology-based approach for describing IoT 

services, which enables flexible and natural search for relevant 

services by both humans and machines. The use of semantic 

service descriptions also allows for effective access control to 

device data and secure transactions through the use of smart 

contracts.  To increase scalability, we have utilized a peer-to-peer 

(P2P) based method to store and index service metadata, which 

enables efficient and scalable service discovery. Our experimental 

results have demonstrated the effectiveness of the proposed system 

in providing secure and scalable IoT services, while also enabling 

flexible and natural search for relevant services. Overall, the 

proposed IoT service platform has the potential to make IoT more 

accessible for daily use, while also providing enhanced security 

and scalability for IoT services. 

Keywords—Internet of Things, blockchain, service, ontology, 

security, smart contract, access control 

I. INTRODUCTION  

The growth of the Internet of Things (IoT) has led to the 
deployment of millions of IoT devices across various domains, 
including homes, hospitals, laboratories, factories, and cars. 
However, with the increasing number of IoT devices, 
discovering and consuming IoT services in a secure, flexible, 
and efficient manner has become a significant challenge[1]. 
Numerous IoT platforms are available for consumers to access 
IoT services, such as smart home platforms like Google Home 
and Amazon Alexa, which provide a user interface for 
connected devices. Healthcare IoT platforms, like GE Health 
Cloud [2] and IBM Watson Health [3], offer medical 
professionals access to patient data and analytics, while 
industrial IoT platforms like Siemens MindSphere [4] and 
General Electric's Predix [5] provide real-time data monitoring 
and analysis in manufacturing and industrial settings.  

However, current IoT service platforms are typically 
designed for single domains, where project-specific policies and 
requirements are predefined, and all platform components are 
tightly coupled. This limitation makes it difficult to extend and 

integrate IoT services, hindering the platform's ability to support 
new business and applications. 

This paper presents an innovative solution to overcome the 
challenges faced by current IoT service platforms. The proposed 
platform provides a flexible and open environment, allowing 
easy integration and extension of IoT services for multiple 
domains. It offers secure IoT registration, discovery, access, and 
payment services to both providers and consumers. The platform 
employs ontology-based descriptions to facilitate both human 
and machine understanding of IoT services, while smart 
contracts ensure encryption, access control, and secure 
transactions. Additionally, the platform leverages a 
decentralized peer-to-peer network for service registration and 
discovery, ensuring scalable and robust services. By using 
blockchain technology, the platform offers a structured, logical, 
and secure ecosystem for IoT devices, making IoT services 
accessible and consumable like any other daily service.  

The proposed platform has undergone comprehensive 
evaluations through use case studies, simulations, and emulation 
experiments, revealing that it functions as expected. In essence, 
this paper offers a novel solution to the current limitations of IoT 
service platforms by providing an open, extensible, and secure 
ecosystem that easily integrates IoT devices into new business 
and applications. 

II. RELATED WORK 

In recent years, there has been a growing interest in 
developing IoT service platforms. Here, we review some of the 
most relevant works in this area. 

One of the most popular approaches for building IoT service 
platforms is based on centralized cloud architectures [6][7][8].  
For example, in [9] Taherkordi et al. proposed a generic cloud-
based IoT service access model for smart cities. They structure 
the description of IoT services in a hierarchical model and 
populate them in a tree structure containing pointers to services 
and their corresponding data. The cloud-based tree ensures 
scalable and fast service provisioning. To improve the security 
of cloud based IoT service platforms, Li et al. proposed a 
platform that include a trust assessment framework for security 
and reputation of IoT services [10]. The trust assessment method 
based on security employs security metrics that are specific to 
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the cloud in order to evaluate the security of a cloud service. 
Additionally, the trust assessment method based on reputation 
utilizes feedback ratings on the quality of cloud service to 
evaluate the reputation of a cloud service. These platforms offer 
a range of features for device management, data processing, and 
visualization. However, these platforms have limitations in 
terms of scalability, flexibility, and privacy. 

To overcome the limitations of centralized architectures, a 
number of decentralized approaches have been proposed. For 
instance, some works propose to use distributed ledger 
technologies, such as blockchain, to create decentralized IoT 
service platforms [11][12][13]. For example, in [14] the authors 
proposed a decentralized name resolving system for IoT 
services. They construct the IoT name resolving database on the 
blockchain leger. The system incorporates multiple name 
resolving schemes to facilitate the adoption of existing IoT 
naming schemes, and delegates the responsibility of locating 
individual IoT devices to the respective IoT service providers. 
While in [15], the authors propose DeTEC, a decentralized and 
trusted edge computing platform that provides a unified 
interface to users, resolves requests to the most appropriate 
server through a domain name server, and utilizes blockchain 
technology for accountability and rewards. These platforms 
enable users to register and discover IoT devices and services in 
a more secure and transparent way. However, they often suffer 
from low scalability due to the high computational overhead of 
the blockchain consensus mechanisms. In addition, they cannot 
support search or query of services based on complex service 
descriptions.  

Another line of research focuses on using semantic web 
technologies to enhance the interoperability and understanding 
of IoT data [16][17][18]. These works propose to use semantic 
ontologies to describe IoT devices and services in a machine-
readable way. This approach can improve the searchability and 
reuse of IoT data. However, due to the complexity of semantic 
description, these service platform need to be run on a 
centralized server, which may cause the security and scalability 
issue.  

In spite of the numerous IoT service platforms available, 
there remains a demand for a more open and decentralized 
platform that offers advanced security and semantics to enable 
efficient discovery and consumption of IoT services. 

III. SYSTEM DESIGN 

A. System Overview 

The proposed system architecture consists of multiple 
components including IoT devices, fog nodes, and end users.  

• IoT devices: Devices that are equipped with sensors, 
processors, and communication modules that allow them to 
collect and transmit data to other devices or systems. They 
provide a wide range of services such as monitoring, 
control, automation, and analytics. These services can be 
used by end users or other IoT devices for integrated 
services. IoT devices are typically connected to the system 
through wireless connections such as Wi-Fi, Bluetooth, 
ZigBee, or cellular networks, and they have limited battery 
power, computing and storage capacity.  

•  Fog nodes: Fog nodes are computing and storage nodes 
located at the edge of the network, closer to IoT devices. 
They provide computational and storage resources for IoT 
devices, and can act as gateways to connect IoT devices to 
the blockchain or other network resources. In a blockchain 
network, fog nodes act as full nodes, which means they 
maintain a complete copy of the blockchain ledger, validate 
transactions and blocks, and participate in the consensus 
mechanism. In addition to their role as blockchain full 
nodes, fog nodes also index store service descriptions from 
other IoT devices. These service descriptions are 
represented using ontologies, which provide a machine-
understandable description of the service, including its 
inputs, outputs, and capabilities. By storing service 
descriptions, fog nodes can act as intermediaries between 
IoT devices and end-users, allowing them to discover, 
select and access services provided by other devices in the 
network. 

• End users: End users are individuals or organizations who 
consume or utilize the IoT data and services stored on the 
blockchain. They interact with the blockchain network 
through light nodes, which are typically mobile or web 
applications that can connect to the network and perform 
read-only operations such as accessing data and verifying 
transactions. End users can also request new services or 
register their own devices on the network by interacting 
with the smart contract deployed on the blockchain. The 
smart contract facilitates interactions between end users and 
IoT devices, ensuring secure and efficient access to services 
while eliminating the need for a trusted third party.  

 This architecture enables the creation of a fully 
decentralized platform that eliminates the need for a centralized 
cloud server, which can be a security risk and scalability issue. 
It ensures secure, efficient, and flexible access to IoT services. 

B. Ontology-based Service Description 

We designed an ontology for IoT devices and services to 
improve interoperability in distributed environments. This 
ontology is a formal representation of the concepts, entities, and 
relationships that define the structure and behavior of IoT 
service[19]. It provides a standardized vocabulary for describing 
and categorizing IoT services and their associated data, 
functions, and features. We employ IoT-Lite [20], a lightweight 
instantiation of the semantic sensor network (SSN) ontology  to 
describe the key IoT concepts and relationships. It includes 
classes to represent IoT devices, sensors, actuators, and other 
components, as well as properties to describe their attributes and 
behaviors. Additionally, the ontology defines relationships 
between services, such as composition or aggregation, and 
provide mechanisms for service discovery, composition, and 
management[21][22][23]. Fig. 1 shows part of the proposed 
ontology.   



 

Fig. 1 The high level ontology 

An IoT service example is shown below.  

@prefix : < http:// https://cs.ndsu.edu /iot-onto# > . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 
 
:Sensor1 rdf:type owl:NamedIndividual ; 
   rdf:type :TemperatureSensor ; 
   :hasAccessLevel :Public ; 
   :hasQuantityKind :Temperature ; 
   :hasUnit “Celcius"^^xsd:string ; 
   :exposedBy :EnvironmentalMonitoringService ; 
   :locatedIn :MonitoringRoom1 ; 
   :hasSerialNumber "12345"^^xsd:string ; 
   :hasMeasurementRange "−40 to 125 °C"^^xsd:string ; 
   :hasAccuracy "±0.5 °C"^^xsd:string ; 
   :hasResolution "0.0625 °C"^^xsd:string . 
 
:MonitoringRoom1 rdf:type owl:NamedIndividual ; 
   rdf:type :Room ; 
   :hasLatitude 46.92^^xsd:decimal ; 

       :hasLongitude  -96.81^^xsd:decimal. 

In this example, the service is a temperature sensor that 
measures temperature in Celcius. The sensor is kept in a 
Monitoring Room called “MontoringRoom1” and the location 
is also described using the latitude and longitude. This ontology 
provides a complete description of a temperature sensor IoT 
service, including its unique identifier, location, measurement 
unit, and sampling interval. It is represented in Web Ontology 
Language (OWL).   Now assume an end user wants to find a 
publicly accessible IoT service that provides temperature 
observations at a specific location. A query written in SPARQL 
is as follows:  

SELECT ?sensor 
WHERE {  
  ?sensor a :TemperatureSensor . 
  ?sensor :hasAccessLevel ?accessLevel . 
  ?sensor :hasQuantityKind ?measures . 

  ?sensor :exposedBy ?service . 
  ?service a :EnvironmentalMonitoring . 
  ?sensor geo:location ?point . 
  ?point :hasLatitude ?lat . 
  ?point :hasLongitude ?lon . 
  FILTER ( 
    ?accessLevel = :Public && 
    ?measures = :Temperature && 
    ?lat >= 46.00 && ?lat < 47.00 && 
    ?lon <= -96.00 && ?lon > -97.00 
  ) 
} 

 

Overall, an IoT service ontology aims to enhance 
interoperability and enable more efficient and effective 
development, deployment, and discovery of IoT applications 
and services. 

C. Blockchain Network Formation  

By forming a blockchain network with fog nodes as full 
nodes, the platform enables service registration/verification, 
service access, and user authentication to be performed through 
smart contracts. Fog nodes can also participate in the consensus 
process to validate transactions and add new blocks to the 
blockchain. This architecture enables the creation of a fully 
decentralized platform that eliminates the need for a centralized 
cloud server, which can be a security risk and scalability issue. 
Fog nodes can help to distribute the computation and storage 
tasks that would otherwise burden the cloud, resulting in a more 
efficient and scalable system. The main functions of a full node 
in a blockchain network include: 

• Validating transactions: Full nodes verify and validate every 
transaction added to the blockchain network, ensuring that 
they comply with the network's rules and protocols. 

• Propagating transactions: Once a transaction is validated, 
full nodes broadcast it to other nodes on the network, 
helping to ensure that the transaction is included in the next 
block. 

• Maintaining a copy of the blockchain: Full nodes store a 
complete copy of the blockchain ledger, which enables 
them to validate new transactions and blocks, as well as 
maintain a history of all previous transactions. 

• Mining blocks: Some full nodes participate in the process of 
adding new blocks to the blockchain, known as mining. As 
fog nodes may have limited resources, they are designed to 
mine blocks in a more energy-efficient manner by using 
proof-of-stake (PoS) consensus algorithms[24]. In PoS, 
nodes are selected to validate transactions and create new 
blocks based on the amount of cryptocurrency they hold 
(i.e., their stake) instead of solving complex mathematical 
problems as in proof-of-work (PoW). This eliminates the 
need for energy-intensive mining hardware and reduces the 
energy consumption of the network. 

• Enforcing network rules: Full nodes help enforce the 
network's consensus rules by rejecting any blocks or 
transactions that do not comply with the established rules. 

D. Smart Contract-enabled Service Operations 

Smart contracts have been employed to enable secure and 
efficient IoT service operations[25]. With smart contracts, 



service providers and consumers can interact with each other 
directly without the need for intermediaries, such as centralized 
platforms or third-party payment processors. This results in 
reduced transaction costs, increased transparency, and improved 
trust between service providers and consumers. Smart contracts 
are created and deployed on the blockchain network, which is 
accessible by the fog nodes and other blockchain full nodes. The 
end-users and IoT owners access the smart contract using 
clients, which can be either web-based or mobile-based. These 
clients interact with the smart contract using its function.  

The smart contract functions can be executed by the users to 
perform different tasks such as registering their devices/service 
on the network, requesting access to the IoT device data, paying 
for the services. The fog nodes in the network act as full nodes, 
which store a complete copy of the blockchain and execute the 
smart contract functions on behalf of the users. This reduces the 
workload on the end-user devices and provides a secure 
environment for executing the smart contract functions. After 
executing the smart contract function, the fog node generates an 
authorization token for the user, which can be verified off-chain 
by sending a hash of the token and the private and public keys 
to the access point.  

In our system, smart contracts are used to enable user 
authentication, service registration and verification, service 
access, and secure payment. 

•  User registration: The user registration function allows 
users to securely register and authenticate their identities, 
enabling them to access the network's services. It requires 
certain user details, such as a public key and other relevant 
personal information. Once the registration is complete, the 
smart contract can generate a unique user ID and record it 
on the blockchain, creating an immutable and transparent 
record of the user's identity. The user ID can be used to 
authenticate the user for subsequent network access 
requests. 

• Service registration: The service registration function 
enables service providers to register their IoT services. It 
requires service providers to provide details about their 
services, such as service type, location, access policy, and 
service fees. The smart contract then generates a unique 
service ID and records it on the blockchain, creating a 
tamper-proof and immutable record of the service's 
availability. 

• Service access: Service access requires that a user provide a 
valid authentication token before accessing a service. The 
smart contract can then check that the token is valid, and 
that the user has the necessary permissions to access the 
service. Additionally, service providers can leverage smart 
contracts to validate their financial capacity to pay for the 
service. Service access can be based on various access 
control policies, such as role-based access control, attribute-
based access control, and blockchain-based access control. 
Once the user is authenticated and authorized to access the 
service, the smart contract can execute the service and 
record the transaction on the blockchain. 

• Service payment: When a user requests a service, the smart 
contract can automatically verify the user's account balance, 

ensuring that they have sufficient funds to pay for the 
service. If the user has enough funds, the smart contract can 
execute the payment and record the transaction on the 
blockchain, generating a unique payment ID for future 
reference. The service payment function can also 
incorporate features such as escrow and dispute resolution 
mechanisms to mitigate any potential conflicts or disputes 
between users and service providers. For example, the 
smart contract can hold the payment in escrow until the 
service has been fully delivered, ensuring that both parties 
are satisfied with the transaction before releasing the funds. 

Fig. 2 shows a smart contract function "requestServiceAccess" 
that allows authorized service consumers to access an IoT device 
by paying a specified amount of service fee. The function starts 
by getting the address of the user who called the function and 

the amount deposited by the user. It then checks if the user has 
enough funds to pay for the service and if the user has the 
required role to access the device. If both conditions are met, the 
function transfers the payment to the owner of the IoT device 
and issues a token to the consumer to access the device. 

Our smart contract, built on the Ethereum ecosystem, 
provides end-users and IoT owners with access via clients[26]. 
It facilitates access to IoT device data through a public platform, 
with payment details and steps outlined on the platform. The 
smart contract generates authorization tokens that users can use 
to authenticate themselves and access data off-chain. It offers 
various functions such as: 

• userRegistration(): This function is executed by the 
role issuing authority to register and provide the 
requested role to the consumers. 

 

Fig. 2 Example smart contract function 

 



• serviceProviderRegistration(): This function is used by 
the role issuing authority to register and provide role to 
the service provider. 

• registerService(): This function is used by the service 
providers to add their IoT devices with the service 
platform. 

• requestServiceAccess(): Service consumers execute 
this function to get the access for the IoT services. 

• servicePayment():Service consumers execute this 
function to send payment required for accessing the 
IoT Device. 

E. Decentralzied Service Discovery 

In our IoT service platform, the metadata about the services 
is stored on the P2P network rather than the blockchain. The 
peers in the P2P network are nodes that form the blockchain 
network. However, the metadata about the services is not stored 
on the blockchain. This decision was made because the P2P 
network allows for more flexible and complex queries than the 
blockchain, which is better suited for recording immutable and 
tamper-proof transactions.  

To enable efficient and flexible service discovery, we 
propose a two-layer query routing scheme. The first layer is a 
coarse-grained abstract search, which enables quick location of 
services in several main categories, while the second layer is a 
fine-grained detailed semantic search, which provides a 
semantically rich way of search of the services. 

When service providers register their services to the 
blockchain, they also publish the metadata on the P2P network 
using a two-layer service publishing scheme. The first layer of 
service publishing is known as the service abstract publishing. It 
involves publishing the service abstract, which allows for the 
quick location of services in main categories like service type, 
location, provider, and price (as shown in Fig. 5’s Service 
abstract example). These categories are published as key-value 
pairs and are propagated to all peers in the network, ensuring 
fast locating of services falling under these categories. For 
instance, a user can locate temperature sensors or sensors located 
in a particular location through this layer. The second layer, 
known as service description publishing, enables flexible and 
expressive querying by publishing service details using the 
ontology description. The ontology description provides a 
standardized and semantically rich way of describing services 
and includes essential metadata such as service name, type, 
Ethereum address, description, price, and more. For further 
details, refer to Section III.B. 

Corresponding to the two service publishing schemes, two 
service query interfaces are provided. The first is category-based 
coarse grain query, which allows users to browse through the 
services and narrow down their search by specific categories, 
like finding temperature sensing services in a particular location. 
The second layer is a detailed semantic-rich query, such as a 
SPARQL query, which is matched at the abstract level first and 
then refined based on the results found in the first level. For 
example, a user is interested in finding temperature sensors in a 
particular location that provide data in a specific format, such as 

Fahrenheit. They could use a SPARQL query to search for this 
information using the query example listed in Section III.B. 

IV. EVALUATION 

To assess the effectiveness of our proposed mechanism, we 
deployed it on an Ethereum blockchain network. This platform 
provides a higher level of security and privacy protection 
through the use of smart contracts. We conducted a 
comprehensive evaluation by performing a use case study that 
illustrates how smart contracts can be used to enhance security 
and protect IoT devices through user and device authentication, 
access control for IoT services, and secure payment. We then 
analyzed how our proposed mechanism protects IoT systems 
from various types of attacks and ensures security. Additionally, 
we showcased the robust search mechanism that enables 
discovery of IoT services through various search techniques. 
Finally, we assessed the performance of our decentralized 
service metadata indexing system, focusing on key metrics such 
as scalability, load balancing, and fault tolerance, to ensure 
optimal system performance. 

A. Use Case Evaluation 

Use case evaluations are a common method for assessing the 
functionality and effectiveness of a proposed system in a 
practical context. By using examples and specific scenarios, use 
case evaluations provide a more tangible and understandable 
way to assess the platform's capabilities and limitations. In 
essence, use cases allow us to demonstrate how the proposed 
platform addresses the challenges and limitations of current IoT 
service platforms and how it can provide secure and efficient 
services in practice.  

• Secure Access and payment 

This use case outlines how a service provider can securely 
connect their IoT device to our platform, allowing for automated 
usage by various consumers and generating revenue. For 
example, a device owner with a long-range temperature sensor 
can securely connect it to our platform, enabling automatic use 
and secure payments for their sensor. 

To ensure security in the Ethereum ecosystem, both the 
service provider and consumer require public and private keys. 
In this use case, the IoT device owner (service provider) has the 
Ethereum Address 0xAb8…35cb2, while the service consumer 
has the Ethereum Address 0x4B2…C02db. The service provider 
registers their service: a temperature sensor, sets a tariff of $10 
per day (5600000000000000 wei), and associates it with our 
platform. The consumer can use the semantic search on our 
platform to locate the required service provider with the address 
0x787…cabaB.  Security is maintained through the use of public 
and private keys. Fig. 3 illustrates the smart contract output 
when the role-issuing authority executes the register service 
function and provides the role "NDSUProvider" to the service 
provider. The output includes information about the unique hash 
of the transaction, transaction status, sender address details, 
function executed by the transaction sender, and logs generated 
by the function's execution, which includes event logs. 



 

Fig. 3. Service provider is registered by the role issuing authority. 

The service consumer (Ethereum address: 0x4B2…C02db) 
wishes to access the temperature service provided by the IoT 
device owner. The consumer checks the platform to obtain the 
service tariff and deposits the corresponding amount with the 
smart contract to gain access. In Fig. 4, the "payment for service 
access" function is executed by the consumer, allowing them to 
make a payment equal to the tariff amount to the smart contract. 

 

Fig. 4. Payment deposited by the service consumer. 

Once the necessary amount is deposited, the consumer can 

use the "requestAccess" function on the smart contract to receive 

a token granting them access to the temperature service. The 

results of the smart contract are recorded in the logs, as shown 

in Fig. 5, which demonstrate the creation of the token that 

authorizes the service consumers to access the service. 

 

Fig. 5. Service access token is generated for the consumer. 

Fig.6 demonstrates that if the service consumer attempts to 
deposit an amount that is below the tariff set by the service 
provider and requests a service access token, the smart contract 
will automatically reject the transaction. 

 

Fig. 6. The smart contract rejects service access requests that involve 

insufficient payment for the requested service. 

In Fig. 7, it is demonstrated that if a different service 

consumer, with the Ethereum Address (0x17...8c372), attempts 

to access the temperature sensor service without providing the 

necessary tariff payment, the smart contract will automatically 

reject the transaction. 

 
Fig. 7. Automatic rejection from smart contract on access request without 

payment. 

 
Fig. 8. Automatic rejection from smart contract on access request for 
unregistered consumers. 



Fig. 8 demonstrates that if an unauthorized service 

consumer, with the Ethereum Address (0x5c6…21678), 

attempts to obtain a token for service access without being 

registered with the platform through the role issuing authority, 

the smart contract will automatically reject the transaction. 

B. Simulation Evaluation 

Besides the security performance, we also designed a 

sequential network simulator to evaluate the performance of the 

proposed IoT network architecture. The simulator was 

implemented using a discrete event simulation approach, in 

which the simulation time is divided into discrete time steps. At 

each time step, the simulator updates the state of the network 

based on the events that have occurred since the previous time 

step. Events include things like a node joining the network, a 

node leaving the network, or a node requesting service from the 

IoT network. 

The experiments evaluated the scalability of the proposed 

architecture. We used service request latency and network 

overhead as our evaluation metrics. Fig. 9 shows the network 

latency with the increasing number of users.  Specifically, it 

compares three different system architecture: an ideal 

centralized cloud that has unlimited computing power, storage 

and bandwidth, a single server cloud with limited computing, 

storage, and bandwidth, and our decentralized blockchain-based 

system.  

Latency is defined as the average time taken for an IoT 

service request to be responded. This can be expressed as: 

𝐷 = 𝐷𝑝𝑟𝑜𝑝 +  𝐷𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑞𝑢𝑒𝑢𝑒 + 𝐷𝑝𝑟𝑜𝑐    (1) 
In Equation 1, we can see that the delay of a request denoted 

as D, is dependent on several factors. Firstly, the propagation 
delay, Dprop, is the time taken for a signal to travel from the 
sender to the receiver, and is determined by the distance between 
the two parties and the transmission speed. Next, the 
transmission delay, Dtrans, is the time needed to transmit all 
data in a packet through the transmission link, and is determined 
by the packet length and transmission rate. The queuing delay, 
Dqueue, is the waiting time for a packet in a router's buffer 
before processing, which is influenced by the rate of incoming 
data, the outgoing link bandwidth, and network traffic. Lastly, 
the processing delay, Dproc, is the time for to process the packet 
and is dependent on the processing speed. 

As shown in Fig. 9, the optimal cloud would result in the 
lowest latency, but this assumes an unrealistic scenario where 
the cloud has unlimited bandwidth and computing power. In 
contrast, a cloud with limited resources can result in significant 
latency or even become inoperable as the number of users 
increases, in our case at around 400 users. In contrast, our 
proposed decentralized system (with 500 P2P nodes) 
demonstrates linearly increasing latency in proportion to the 
number of users, which highlights the system's scalability in 
terms of service request latency. 

 
Fig. 9.  Latency comparison of different network architectures with increasing 
user load. 

 

In addition to evaluating the scalability of the proposed 

decentralized architecture in terms of service request latency, we 

also analyzed its network overhead. As shown in Fig. 10, we 

compared two networks with sizes of 500 nodes and 100 nodes, 

respectively. The results indicate that the network overhead (per 

node) increases in a linear fashion with the number of users. This 

finding reinforces the system's scalability, indicating that it can 

handle a growing number of users without significantly 

impacting its network performance. Overall, these results 

support the effectiveness of the proposed decentralized 

architecture in achieving both scalability and efficiency in the 

face of increasing user demand.  

 

 
Fig. 10.  Network overhead of different network sizes with increasing user load 

 

V. CONCLUSION 

This paper discusses the challenges faced by current IoT 
service platforms due to the increasing number of IoT devices. 
While there are numerous platforms available, they are typically 
designed for single domains, making it difficult to extend and 
integrate IoT services. To overcome these challenges, the paper 
presents an innovative solution - a flexible and open IoT service 
platform that enables easy integration and extension of services 
for multiple domains. The platform offers secure registration, 
discovery, access, and payment services to both providers and 
consumers, employing ontology-based descriptions and smart 
contracts for encryption, access control, and secure transactions. 
The platform also uses a decentralized peer-to-peer network for 
service registration and discovery, making it scalable and robust. 
The paper presents comprehensive evaluations through use case 
studies, and simulation experiments, demonstrating the 
platform's effectiveness. Overall, the proposed platform 
provides an open, extensible, and secure ecosystem that easily 
integrates IoT devices into new business and applications.  
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