
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Secure Semantics-enhanced Decentralized Open

IoT Service Platform

Vikram Pandey
Department of Computer Science

North Dakota State University

Fargo, USA
vikram.pandey@ndsu.edu

Juan Li
Department of Computer Science

North Dakota State University
Fargo, USA

j.li@ndsu.edu

Yan Bai

School of Engineering and Technology

University of Washington Tacoma

Tacoma, USA

yanb@uw.edu

Abstract— This paper proposes an innovative IoT service

platform that leverages blockchain technology to enable secure

and scalable IoT services. The platform is designed to be open to

multiple IoT services and applications, and can be easily extended

to provide secure registration, discovery, access, and payment

services to both IoT providers and consumers. The proposed

platform adopts an ontology-based approach for describing IoT

services, which enables flexible and natural search for relevant

services by both humans and machines. The use of semantic

service descriptions also allows for effective access control to

device data and secure transactions through the use of smart

contracts. To increase scalability, we have utilized a peer-to-peer

(P2P) based method to store and index service metadata, which

enables efficient and scalable service discovery. Our experimental

results have demonstrated the effectiveness of the proposed system

in providing secure and scalable IoT services, while also enabling

flexible and natural search for relevant services. Overall, the

proposed IoT service platform has the potential to make IoT more

accessible for daily use, while also providing enhanced security

and scalability for IoT services.

Keywords—Internet of Things, blockchain, service, ontology,

security, smart contract, access control

I. INTRODUCTION

The growth of the Internet of Things (IoT) has led to the
deployment of millions of IoT devices across various domains,
including homes, hospitals, laboratories, factories, and cars.
However, with the increasing number of IoT devices,
discovering and consuming IoT services in a secure, flexible,
and efficient manner has become a significant challenge[1].
Numerous IoT platforms are available for consumers to access
IoT services, such as smart home platforms like Google Home
and Amazon Alexa, which provide a user interface for
connected devices. Healthcare IoT platforms, like GE Health
Cloud [2] and IBM Watson Health [3], offer medical
professionals access to patient data and analytics, while
industrial IoT platforms like Siemens MindSphere [4] and
General Electric's Predix [5] provide real-time data monitoring
and analysis in manufacturing and industrial settings.

However, current IoT service platforms are typically
designed for single domains, where project-specific policies and
requirements are predefined, and all platform components are
tightly coupled. This limitation makes it difficult to extend and

integrate IoT services, hindering the platform's ability to support
new business and applications.

This paper presents an innovative solution to overcome the
challenges faced by current IoT service platforms. The proposed
platform provides a flexible and open environment, allowing
easy integration and extension of IoT services for multiple
domains. It offers secure IoT registration, discovery, access, and
payment services to both providers and consumers. The platform
employs ontology-based descriptions to facilitate both human
and machine understanding of IoT services, while smart
contracts ensure encryption, access control, and secure
transactions. Additionally, the platform leverages a
decentralized peer-to-peer network for service registration and
discovery, ensuring scalable and robust services. By using
blockchain technology, the platform offers a structured, logical,
and secure ecosystem for IoT devices, making IoT services
accessible and consumable like any other daily service.

The proposed platform has undergone comprehensive
evaluations through use case studies, simulations, and emulation
experiments, revealing that it functions as expected. In essence,
this paper offers a novel solution to the current limitations of IoT
service platforms by providing an open, extensible, and secure
ecosystem that easily integrates IoT devices into new business
and applications.

II. RELATED WORK

In recent years, there has been a growing interest in
developing IoT service platforms. Here, we review some of the
most relevant works in this area.

One of the most popular approaches for building IoT service
platforms is based on centralized cloud architectures [6][7][8].
For example, in [9] Taherkordi et al. proposed a generic cloud-
based IoT service access model for smart cities. They structure
the description of IoT services in a hierarchical model and
populate them in a tree structure containing pointers to services
and their corresponding data. The cloud-based tree ensures
scalable and fast service provisioning. To improve the security
of cloud based IoT service platforms, Li et al. proposed a
platform that include a trust assessment framework for security
and reputation of IoT services [10]. The trust assessment method
based on security employs security metrics that are specific to

This work was supported by the National Science Foundation (NSF) with
award numbers: 1722913, 2218046 and 1921576.

mailto:j.li@ndsu.ed

the cloud in order to evaluate the security of a cloud service.
Additionally, the trust assessment method based on reputation
utilizes feedback ratings on the quality of cloud service to
evaluate the reputation of a cloud service. These platforms offer
a range of features for device management, data processing, and
visualization. However, these platforms have limitations in
terms of scalability, flexibility, and privacy.

To overcome the limitations of centralized architectures, a
number of decentralized approaches have been proposed. For
instance, some works propose to use distributed ledger
technologies, such as blockchain, to create decentralized IoT
service platforms [11][12][13]. For example, in [14] the authors
proposed a decentralized name resolving system for IoT
services. They construct the IoT name resolving database on the
blockchain leger. The system incorporates multiple name
resolving schemes to facilitate the adoption of existing IoT
naming schemes, and delegates the responsibility of locating
individual IoT devices to the respective IoT service providers.
While in [15], the authors propose DeTEC, a decentralized and
trusted edge computing platform that provides a unified
interface to users, resolves requests to the most appropriate
server through a domain name server, and utilizes blockchain
technology for accountability and rewards. These platforms
enable users to register and discover IoT devices and services in
a more secure and transparent way. However, they often suffer
from low scalability due to the high computational overhead of
the blockchain consensus mechanisms. In addition, they cannot
support search or query of services based on complex service
descriptions.

Another line of research focuses on using semantic web
technologies to enhance the interoperability and understanding
of IoT data [16][17][18]. These works propose to use semantic
ontologies to describe IoT devices and services in a machine-
readable way. This approach can improve the searchability and
reuse of IoT data. However, due to the complexity of semantic
description, these service platform need to be run on a
centralized server, which may cause the security and scalability
issue.

In spite of the numerous IoT service platforms available,
there remains a demand for a more open and decentralized
platform that offers advanced security and semantics to enable
efficient discovery and consumption of IoT services.

III. SYSTEM DESIGN

A. System Overview

The proposed system architecture consists of multiple
components including IoT devices, fog nodes, and end users.

• IoT devices: Devices that are equipped with sensors,
processors, and communication modules that allow them to
collect and transmit data to other devices or systems. They
provide a wide range of services such as monitoring,
control, automation, and analytics. These services can be
used by end users or other IoT devices for integrated
services. IoT devices are typically connected to the system
through wireless connections such as Wi-Fi, Bluetooth,
ZigBee, or cellular networks, and they have limited battery
power, computing and storage capacity.

• Fog nodes: Fog nodes are computing and storage nodes
located at the edge of the network, closer to IoT devices.
They provide computational and storage resources for IoT
devices, and can act as gateways to connect IoT devices to
the blockchain or other network resources. In a blockchain
network, fog nodes act as full nodes, which means they
maintain a complete copy of the blockchain ledger, validate
transactions and blocks, and participate in the consensus
mechanism. In addition to their role as blockchain full
nodes, fog nodes also index store service descriptions from
other IoT devices. These service descriptions are
represented using ontologies, which provide a machine-
understandable description of the service, including its
inputs, outputs, and capabilities. By storing service
descriptions, fog nodes can act as intermediaries between
IoT devices and end-users, allowing them to discover,
select and access services provided by other devices in the
network.

• End users: End users are individuals or organizations who
consume or utilize the IoT data and services stored on the
blockchain. They interact with the blockchain network
through light nodes, which are typically mobile or web
applications that can connect to the network and perform
read-only operations such as accessing data and verifying
transactions. End users can also request new services or
register their own devices on the network by interacting
with the smart contract deployed on the blockchain. The
smart contract facilitates interactions between end users and
IoT devices, ensuring secure and efficient access to services
while eliminating the need for a trusted third party.

 This architecture enables the creation of a fully
decentralized platform that eliminates the need for a centralized
cloud server, which can be a security risk and scalability issue.
It ensures secure, efficient, and flexible access to IoT services.

B. Ontology-based Service Description

We designed an ontology for IoT devices and services to
improve interoperability in distributed environments. This
ontology is a formal representation of the concepts, entities, and
relationships that define the structure and behavior of IoT
service[19]. It provides a standardized vocabulary for describing
and categorizing IoT services and their associated data,
functions, and features. We employ IoT-Lite [20], a lightweight
instantiation of the semantic sensor network (SSN) ontology to
describe the key IoT concepts and relationships. It includes
classes to represent IoT devices, sensors, actuators, and other
components, as well as properties to describe their attributes and
behaviors. Additionally, the ontology defines relationships
between services, such as composition or aggregation, and
provide mechanisms for service discovery, composition, and
management[21][22][23]. Fig. 1 shows part of the proposed
ontology.

Fig. 1 The high level ontology

An IoT service example is shown below.

@prefix : < http:// https://cs.ndsu.edu /iot-onto# > .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

:Sensor1 rdf:type owl:NamedIndividual ;
 rdf:type :TemperatureSensor ;
 :hasAccessLevel :Public ;
 :hasQuantityKind :Temperature ;
 :hasUnit “Celcius"^^xsd:string ;
 :exposedBy :EnvironmentalMonitoringService ;
 :locatedIn :MonitoringRoom1 ;
 :hasSerialNumber "12345"^^xsd:string ;
 :hasMeasurementRange "−40 to 125 °C"^^xsd:string ;
 :hasAccuracy "±0.5 °C"^^xsd:string ;
 :hasResolution "0.0625 °C"^^xsd:string .

:MonitoringRoom1 rdf:type owl:NamedIndividual ;
 rdf:type :Room ;
 :hasLatitude 46.92^^xsd:decimal ;

 :hasLongitude -96.81^^xsd:decimal.

In this example, the service is a temperature sensor that
measures temperature in Celcius. The sensor is kept in a
Monitoring Room called “MontoringRoom1” and the location
is also described using the latitude and longitude. This ontology
provides a complete description of a temperature sensor IoT
service, including its unique identifier, location, measurement
unit, and sampling interval. It is represented in Web Ontology
Language (OWL). Now assume an end user wants to find a
publicly accessible IoT service that provides temperature
observations at a specific location. A query written in SPARQL
is as follows:

SELECT ?sensor
WHERE {
 ?sensor a :TemperatureSensor .
 ?sensor :hasAccessLevel ?accessLevel .
 ?sensor :hasQuantityKind ?measures .

 ?sensor :exposedBy ?service .
 ?service a :EnvironmentalMonitoring .
 ?sensor geo:location ?point .
 ?point :hasLatitude ?lat .
 ?point :hasLongitude ?lon .
 FILTER (
 ?accessLevel = :Public &&
 ?measures = :Temperature &&
 ?lat >= 46.00 && ?lat < 47.00 &&
 ?lon <= -96.00 && ?lon > -97.00
)
}

Overall, an IoT service ontology aims to enhance
interoperability and enable more efficient and effective
development, deployment, and discovery of IoT applications
and services.

C. Blockchain Network Formation

By forming a blockchain network with fog nodes as full
nodes, the platform enables service registration/verification,
service access, and user authentication to be performed through
smart contracts. Fog nodes can also participate in the consensus
process to validate transactions and add new blocks to the
blockchain. This architecture enables the creation of a fully
decentralized platform that eliminates the need for a centralized
cloud server, which can be a security risk and scalability issue.
Fog nodes can help to distribute the computation and storage
tasks that would otherwise burden the cloud, resulting in a more
efficient and scalable system. The main functions of a full node
in a blockchain network include:

• Validating transactions: Full nodes verify and validate every
transaction added to the blockchain network, ensuring that
they comply with the network's rules and protocols.

• Propagating transactions: Once a transaction is validated,
full nodes broadcast it to other nodes on the network,
helping to ensure that the transaction is included in the next
block.

• Maintaining a copy of the blockchain: Full nodes store a
complete copy of the blockchain ledger, which enables
them to validate new transactions and blocks, as well as
maintain a history of all previous transactions.

• Mining blocks: Some full nodes participate in the process of
adding new blocks to the blockchain, known as mining. As
fog nodes may have limited resources, they are designed to
mine blocks in a more energy-efficient manner by using
proof-of-stake (PoS) consensus algorithms[24]. In PoS,
nodes are selected to validate transactions and create new
blocks based on the amount of cryptocurrency they hold
(i.e., their stake) instead of solving complex mathematical
problems as in proof-of-work (PoW). This eliminates the
need for energy-intensive mining hardware and reduces the
energy consumption of the network.

• Enforcing network rules: Full nodes help enforce the
network's consensus rules by rejecting any blocks or
transactions that do not comply with the established rules.

D. Smart Contract-enabled Service Operations

Smart contracts have been employed to enable secure and
efficient IoT service operations[25]. With smart contracts,

service providers and consumers can interact with each other
directly without the need for intermediaries, such as centralized
platforms or third-party payment processors. This results in
reduced transaction costs, increased transparency, and improved
trust between service providers and consumers. Smart contracts
are created and deployed on the blockchain network, which is
accessible by the fog nodes and other blockchain full nodes. The
end-users and IoT owners access the smart contract using
clients, which can be either web-based or mobile-based. These
clients interact with the smart contract using its function.

The smart contract functions can be executed by the users to
perform different tasks such as registering their devices/service
on the network, requesting access to the IoT device data, paying
for the services. The fog nodes in the network act as full nodes,
which store a complete copy of the blockchain and execute the
smart contract functions on behalf of the users. This reduces the
workload on the end-user devices and provides a secure
environment for executing the smart contract functions. After
executing the smart contract function, the fog node generates an
authorization token for the user, which can be verified off-chain
by sending a hash of the token and the private and public keys
to the access point.

In our system, smart contracts are used to enable user
authentication, service registration and verification, service
access, and secure payment.

• User registration: The user registration function allows
users to securely register and authenticate their identities,
enabling them to access the network's services. It requires
certain user details, such as a public key and other relevant
personal information. Once the registration is complete, the
smart contract can generate a unique user ID and record it
on the blockchain, creating an immutable and transparent
record of the user's identity. The user ID can be used to
authenticate the user for subsequent network access
requests.

• Service registration: The service registration function
enables service providers to register their IoT services. It
requires service providers to provide details about their
services, such as service type, location, access policy, and
service fees. The smart contract then generates a unique
service ID and records it on the blockchain, creating a
tamper-proof and immutable record of the service's
availability.

• Service access: Service access requires that a user provide a
valid authentication token before accessing a service. The
smart contract can then check that the token is valid, and
that the user has the necessary permissions to access the
service. Additionally, service providers can leverage smart
contracts to validate their financial capacity to pay for the
service. Service access can be based on various access
control policies, such as role-based access control, attribute-
based access control, and blockchain-based access control.
Once the user is authenticated and authorized to access the
service, the smart contract can execute the service and
record the transaction on the blockchain.

• Service payment: When a user requests a service, the smart
contract can automatically verify the user's account balance,

ensuring that they have sufficient funds to pay for the
service. If the user has enough funds, the smart contract can
execute the payment and record the transaction on the
blockchain, generating a unique payment ID for future
reference. The service payment function can also
incorporate features such as escrow and dispute resolution
mechanisms to mitigate any potential conflicts or disputes
between users and service providers. For example, the
smart contract can hold the payment in escrow until the
service has been fully delivered, ensuring that both parties
are satisfied with the transaction before releasing the funds.

Fig. 2 shows a smart contract function "requestServiceAccess"
that allows authorized service consumers to access an IoT device
by paying a specified amount of service fee. The function starts
by getting the address of the user who called the function and

the amount deposited by the user. It then checks if the user has
enough funds to pay for the service and if the user has the
required role to access the device. If both conditions are met, the
function transfers the payment to the owner of the IoT device
and issues a token to the consumer to access the device.

Our smart contract, built on the Ethereum ecosystem,
provides end-users and IoT owners with access via clients[26].
It facilitates access to IoT device data through a public platform,
with payment details and steps outlined on the platform. The
smart contract generates authorization tokens that users can use
to authenticate themselves and access data off-chain. It offers
various functions such as:

• userRegistration(): This function is executed by the
role issuing authority to register and provide the
requested role to the consumers.

Fig. 2 Example smart contract function

• serviceProviderRegistration(): This function is used by
the role issuing authority to register and provide role to
the service provider.

• registerService(): This function is used by the service
providers to add their IoT devices with the service
platform.

• requestServiceAccess(): Service consumers execute
this function to get the access for the IoT services.

• servicePayment():Service consumers execute this
function to send payment required for accessing the
IoT Device.

E. Decentralzied Service Discovery

In our IoT service platform, the metadata about the services
is stored on the P2P network rather than the blockchain. The
peers in the P2P network are nodes that form the blockchain
network. However, the metadata about the services is not stored
on the blockchain. This decision was made because the P2P
network allows for more flexible and complex queries than the
blockchain, which is better suited for recording immutable and
tamper-proof transactions.

To enable efficient and flexible service discovery, we
propose a two-layer query routing scheme. The first layer is a
coarse-grained abstract search, which enables quick location of
services in several main categories, while the second layer is a
fine-grained detailed semantic search, which provides a
semantically rich way of search of the services.

When service providers register their services to the
blockchain, they also publish the metadata on the P2P network
using a two-layer service publishing scheme. The first layer of
service publishing is known as the service abstract publishing. It
involves publishing the service abstract, which allows for the
quick location of services in main categories like service type,
location, provider, and price (as shown in Fig. 5’s Service
abstract example). These categories are published as key-value
pairs and are propagated to all peers in the network, ensuring
fast locating of services falling under these categories. For
instance, a user can locate temperature sensors or sensors located
in a particular location through this layer. The second layer,
known as service description publishing, enables flexible and
expressive querying by publishing service details using the
ontology description. The ontology description provides a
standardized and semantically rich way of describing services
and includes essential metadata such as service name, type,
Ethereum address, description, price, and more. For further
details, refer to Section III.B.

Corresponding to the two service publishing schemes, two
service query interfaces are provided. The first is category-based
coarse grain query, which allows users to browse through the
services and narrow down their search by specific categories,
like finding temperature sensing services in a particular location.
The second layer is a detailed semantic-rich query, such as a
SPARQL query, which is matched at the abstract level first and
then refined based on the results found in the first level. For
example, a user is interested in finding temperature sensors in a
particular location that provide data in a specific format, such as

Fahrenheit. They could use a SPARQL query to search for this
information using the query example listed in Section III.B.

IV. EVALUATION

To assess the effectiveness of our proposed mechanism, we
deployed it on an Ethereum blockchain network. This platform
provides a higher level of security and privacy protection
through the use of smart contracts. We conducted a
comprehensive evaluation by performing a use case study that
illustrates how smart contracts can be used to enhance security
and protect IoT devices through user and device authentication,
access control for IoT services, and secure payment. We then
analyzed how our proposed mechanism protects IoT systems
from various types of attacks and ensures security. Additionally,
we showcased the robust search mechanism that enables
discovery of IoT services through various search techniques.
Finally, we assessed the performance of our decentralized
service metadata indexing system, focusing on key metrics such
as scalability, load balancing, and fault tolerance, to ensure
optimal system performance.

A. Use Case Evaluation

Use case evaluations are a common method for assessing the
functionality and effectiveness of a proposed system in a
practical context. By using examples and specific scenarios, use
case evaluations provide a more tangible and understandable
way to assess the platform's capabilities and limitations. In
essence, use cases allow us to demonstrate how the proposed
platform addresses the challenges and limitations of current IoT
service platforms and how it can provide secure and efficient
services in practice.

• Secure Access and payment

This use case outlines how a service provider can securely
connect their IoT device to our platform, allowing for automated
usage by various consumers and generating revenue. For
example, a device owner with a long-range temperature sensor
can securely connect it to our platform, enabling automatic use
and secure payments for their sensor.

To ensure security in the Ethereum ecosystem, both the
service provider and consumer require public and private keys.
In this use case, the IoT device owner (service provider) has the
Ethereum Address 0xAb8…35cb2, while the service consumer
has the Ethereum Address 0x4B2…C02db. The service provider
registers their service: a temperature sensor, sets a tariff of $10
per day (5600000000000000 wei), and associates it with our
platform. The consumer can use the semantic search on our
platform to locate the required service provider with the address
0x787…cabaB. Security is maintained through the use of public
and private keys. Fig. 3 illustrates the smart contract output
when the role-issuing authority executes the register service
function and provides the role "NDSUProvider" to the service
provider. The output includes information about the unique hash
of the transaction, transaction status, sender address details,
function executed by the transaction sender, and logs generated
by the function's execution, which includes event logs.

Fig. 3. Service provider is registered by the role issuing authority.

The service consumer (Ethereum address: 0x4B2…C02db)
wishes to access the temperature service provided by the IoT
device owner. The consumer checks the platform to obtain the
service tariff and deposits the corresponding amount with the
smart contract to gain access. In Fig. 4, the "payment for service
access" function is executed by the consumer, allowing them to
make a payment equal to the tariff amount to the smart contract.

Fig. 4. Payment deposited by the service consumer.

Once the necessary amount is deposited, the consumer can

use the "requestAccess" function on the smart contract to receive

a token granting them access to the temperature service. The

results of the smart contract are recorded in the logs, as shown

in Fig. 5, which demonstrate the creation of the token that

authorizes the service consumers to access the service.

Fig. 5. Service access token is generated for the consumer.

Fig.6 demonstrates that if the service consumer attempts to
deposit an amount that is below the tariff set by the service
provider and requests a service access token, the smart contract
will automatically reject the transaction.

Fig. 6. The smart contract rejects service access requests that involve

insufficient payment for the requested service.

In Fig. 7, it is demonstrated that if a different service

consumer, with the Ethereum Address (0x17...8c372), attempts

to access the temperature sensor service without providing the

necessary tariff payment, the smart contract will automatically

reject the transaction.

Fig. 7. Automatic rejection from smart contract on access request without

payment.

Fig. 8. Automatic rejection from smart contract on access request for
unregistered consumers.

Fig. 8 demonstrates that if an unauthorized service

consumer, with the Ethereum Address (0x5c6…21678),

attempts to obtain a token for service access without being

registered with the platform through the role issuing authority,

the smart contract will automatically reject the transaction.

B. Simulation Evaluation

Besides the security performance, we also designed a

sequential network simulator to evaluate the performance of the

proposed IoT network architecture. The simulator was

implemented using a discrete event simulation approach, in

which the simulation time is divided into discrete time steps. At

each time step, the simulator updates the state of the network

based on the events that have occurred since the previous time

step. Events include things like a node joining the network, a

node leaving the network, or a node requesting service from the

IoT network.

The experiments evaluated the scalability of the proposed

architecture. We used service request latency and network

overhead as our evaluation metrics. Fig. 9 shows the network

latency with the increasing number of users. Specifically, it

compares three different system architecture: an ideal

centralized cloud that has unlimited computing power, storage

and bandwidth, a single server cloud with limited computing,

storage, and bandwidth, and our decentralized blockchain-based

system.

Latency is defined as the average time taken for an IoT

service request to be responded. This can be expressed as:

𝐷 = 𝐷𝑝𝑟𝑜𝑝 + 𝐷𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑞𝑢𝑒𝑢𝑒 + 𝐷𝑝𝑟𝑜𝑐 (1)
In Equation 1, we can see that the delay of a request denoted

as D, is dependent on several factors. Firstly, the propagation
delay, Dprop, is the time taken for a signal to travel from the
sender to the receiver, and is determined by the distance between
the two parties and the transmission speed. Next, the
transmission delay, Dtrans, is the time needed to transmit all
data in a packet through the transmission link, and is determined
by the packet length and transmission rate. The queuing delay,
Dqueue, is the waiting time for a packet in a router's buffer
before processing, which is influenced by the rate of incoming
data, the outgoing link bandwidth, and network traffic. Lastly,
the processing delay, Dproc, is the time for to process the packet
and is dependent on the processing speed.

As shown in Fig. 9, the optimal cloud would result in the
lowest latency, but this assumes an unrealistic scenario where
the cloud has unlimited bandwidth and computing power. In
contrast, a cloud with limited resources can result in significant
latency or even become inoperable as the number of users
increases, in our case at around 400 users. In contrast, our
proposed decentralized system (with 500 P2P nodes)
demonstrates linearly increasing latency in proportion to the
number of users, which highlights the system's scalability in
terms of service request latency.

Fig. 9. Latency comparison of different network architectures with increasing
user load.

In addition to evaluating the scalability of the proposed

decentralized architecture in terms of service request latency, we

also analyzed its network overhead. As shown in Fig. 10, we

compared two networks with sizes of 500 nodes and 100 nodes,

respectively. The results indicate that the network overhead (per

node) increases in a linear fashion with the number of users. This

finding reinforces the system's scalability, indicating that it can

handle a growing number of users without significantly

impacting its network performance. Overall, these results

support the effectiveness of the proposed decentralized

architecture in achieving both scalability and efficiency in the

face of increasing user demand.

Fig. 10. Network overhead of different network sizes with increasing user load

V. CONCLUSION

This paper discusses the challenges faced by current IoT
service platforms due to the increasing number of IoT devices.
While there are numerous platforms available, they are typically
designed for single domains, making it difficult to extend and
integrate IoT services. To overcome these challenges, the paper
presents an innovative solution - a flexible and open IoT service
platform that enables easy integration and extension of services
for multiple domains. The platform offers secure registration,
discovery, access, and payment services to both providers and
consumers, employing ontology-based descriptions and smart
contracts for encryption, access control, and secure transactions.
The platform also uses a decentralized peer-to-peer network for
service registration and discovery, making it scalable and robust.
The paper presents comprehensive evaluations through use case
studies, and simulation experiments, demonstrating the
platform's effectiveness. Overall, the proposed platform
provides an open, extensible, and secure ecosystem that easily
integrates IoT devices into new business and applications.

-500

1000

2500

4000

5500

7000

8500

10000

100 200 300 400 500 600 700 800 900 1000

A
vg

 L
at

en
cy

 (
m

s)

No. of users

Decentralzied

OptimalCloud

LimitedCloud

0
2000
4000
6000
8000

10000
12000
14000

100 150 200 250 300 350 400 450 500A
vg

 O
ve

rh
ea

d
 (

B
yt

e)

No. of users

500 100

REFERENCES

[1] B. Pourghebleh, V. Hayyolalam, and A. Aghaei Anvigh, “Service

discovery in the Internet of Things: review of current trends and

research challenges,” Wirel. Networks, vol. 26, no. 7, pp. 5371–5391,

2020, doi: 10.1007/s11276-020-02405-0.
[2] R. Basatneh, B. Najafi, and D. G. Armstrong, “Health Sensors, Smart

Home Devices, and the Internet of Medical Things: An Opportunity for

Dramatic Improvement in Care for the Lower Extremity Complications
of Diabetes,” J. Diabetes Sci. Technol., vol. 12, no. 3, pp. 577–586,

2018, doi: 10.1177/1932296818768618.

[3] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “A
survey on IoT platforms: Communication, security, and privacy

perspectives,” Comput. Networks, vol. 192, no. January, p. 108040,

2021, doi: 10.1016/j.comnet.2021.108040.
[4] G. Fortino, A. Guerrieri, P. Pace, C. Savaglio, and G. Spezzano, “IoT

Platforms and Security: An Analysis of the Leading

Industrial/Commercial Solutions,” Sensors, vol. 22, no. 6, pp. 1–17,
2022, doi: 10.3390/s22062196.

[5] D. Wu et al., “A fog computing-based framework for process

monitoring and prognosis in cyber-manufacturing,” J. Manuf. Syst., vol.

43, no. 2017, pp. 25–34, 2017, doi: 10.1016/j.jmsy.2017.02.011.

[6] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A secure

IoT service architecture with an efficient balance dynamics based on
cloud and edge computing,” IEEE Internet Things J., vol. 6, no. 3, pp.

4831–4843, 2019, doi: 10.1109/JIOT.2018.2870288.

[7] R. Sikarwar, P. Yadav, and A. Dubey, “A survey on IOT enabled cloud
platforms,” Proc. - 2020 IEEE 9th Int. Conf. Commun. Syst. Netw.

Technol. CSNT 2020, pp. 120–124, 2020, doi:

10.1109/CSNT48778.2020.9115735.
[8] D. Pizzolli et al., “Cloud4IoT: A heterogeneous, distributed and

autonomic cloud platform for the IoT,” Proc. Int. Conf. Cloud Comput.

Technol. Sci. CloudCom, vol. 0, pp. 476–479, 2016, doi:
10.1109/CloudCom.2016.0082.

[9] A. Taherkordi and F. Eliassen, “Scalable modeling of cloud-based IoT

services for smart cities,” 2016 IEEE Int. Conf. Pervasive Comput.
Commun. Work. PerCom Work. 2016, 2016, doi:

10.1109/PERCOMW.2016.7457098.

[10] X. Li, Q. Wang, X. Lan, X. Chen, N. Zhang, and D. Chen, “Enhancing

cloud-based IoT security through trustworthy cloud service: An

integration of security and reputation approach,” IEEE Access, vol. 7,

pp. 9368–9383, 2019, doi: 10.1109/ACCESS.2018.2890432.
[11] S. S. Arslan, R. Jurdak, J. Jelitto, and B. Krishnamachari,

“Advancements in distributed ledger technology for Internet of Things,”

Internet of Things (Netherlands), vol. 9, p. 100114, 2020, doi:
10.1016/j.iot.2019.100114.

[12] Q. Zhu, S. W. Loke, R. Trujillo-Rasua, F. Jiang, and Y. Xiang,

“Applications of distributed ledger technologies to the internet of things:
A survey,” ACM Comput. Surv., vol. 52, no. 6, 2019, doi:

10.1145/3359982.

[13] B. Farahani, F. Firouzi, and M. Luecking, “The convergence of IoT and
distributed ledger technologies (DLT): Opportunities, challenges, and

solutions,” J. Netw. Comput. Appl., vol. 177, no. September 2020, p.

102936, 2021, doi: 10.1016/j.jnca.2020.102936.
[14] S. Su et al., “IoT root union: A decentralized name resolving system for

IoT based on blockchain,” Inf. Process. Manag., vol. 58, no. 3, p.

102553, 2021, doi: 10.1016/j.ipm.2021.102553.
[15] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A

Decentralized and Trusted Edge Computing Platform for Internet of

Things,” IEEE Internet Things J., vol. 7, no. 5, pp. 3910–3922, 2020,
doi: 10.1109/JIOT.2019.2951619.

[16] I. Szilagyi and P. Wira, “Ontologies and semantic Web for the internet

of things - A survey,” IECON Proc. (Industrial Electron. Conf., pp.
6949–6954, 2016, doi: 10.1109/IECON.2016.7793744.

[17] D. Andročec, M. Novak, and D. Oreški, “Using semantic web for

internet of things interoperability: A systematic review,” Int. J. Semant.
Web Inf. Syst., vol. 14, no. 4, pp. 147–171, 2018, doi:

10.4018/IJSWIS.2018100108.

[18] F. Z. Amara, M. Hemam, M. Djezzar, and M. Maimor, “Semantic Web
and Internet of Things: Challenges, Applications and Perspectives,” J.

ICT Stand., vol. 10, no. 2, pp. 261–292, 2022, doi: 10.13052/jicts2245-

800X.1029.
[19] S. Staab and R. Studer, Handbook on ontologies. Springer Science \&

Business Media, 2010.

[20] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite: a
lightweight semantic model for the internet of things and its use with

dynamic semantics,” Pers. Ubiquitous Comput., vol. 21, no. 3, pp. 475–
487, 2017, doi: 10.1007/s00779-017-1010-8.

[21] M. Achir, A. Abdelli, L. Mokdad, and J. Benothman, “Service discovery

and selection in IoT: A survey and a taxonomy,” J. Netw. Comput.
Appl., vol. 200, no. January, p. 103331, 2022, doi:

10.1016/j.jnca.2021.103331.

[22] S. Alian, J. Li, and V. Pandey, “A personalized recommendation system
to support diabetes self-management for American Indians,” IEEE

Access, vol. 6, pp. 73041–73051, 2018.

[23] V. Pandey, J. Li, and S. Alian, “Evaluation and Evolution of NAOnto -
An Ontology for Personalized Diabetes Management for Native

Americans,” 2021 7th Int. Conf. Comput. Commun. ICCC 2021, pp.

1635–1641, 2021, doi: 10.1109/ICCC54389.2021.9674339.

[24] Vitalik Buterin, “pos_faq @ vitalik.ca.” [Online]. Available:

https://vitalik.ca/general/2017/12/31/pos_faq.html.

[25] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Y. Wang, “An
Overview of Smart Contract: Architecture, Applications, and Future

Trends,” IEEE Intell. Veh. Symp. Proc., vol. 2018-June, no. Iv, pp. 108–

113, 2018, doi: 10.1109/IVS.2018.8500488.
[26] Buterin and Vitalik, “Ethereum White Paper: A Next Generation Smart

Contract & Decentralized Application Platform,” Etherum, no. January,

pp. 1–36, 2014, [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

