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Electronic spins can form long-range entangled phases of condensed matter named quantum spin 

liquids1–4. Their existence is conceptualized in models of two- or three-dimensional frustrated magnets that 

evade symmetry-breaking order down to zero temperature. Quantum spin ice (QSI) is a theoretically well-

established example described by an emergent quantum electrodynamics, with excitations behaving like 

photon and matter quasiparticles5–6. The latter are fractionally charged and equivalent to the ‘spinons’ 

emerging from coherent phases of singlets in one dimension, where clear experimental proofs of 

fractionalization exist7–9. However, in frustrated magnets it remains difficult to establish consensual 

evidence for quantum spin liquid ground states and their fractional excitations. Here, we use 

backscattering neutron spectroscopy10 to achieve extremely high resolution of the time-dependent 

magnetic response of the candidate QSI material Ce2Sn2O7 (refs. 11,12). We find a gapped spectrum 

featuring a threshold and peaks that match theories13–17 for pair production and propagation of fractional 

matter excitations (spinons) strongly coupled to a background gauge field. The observed peaks provide 

evidence for a QSI through spectroscopic signatures of space-time symmetry fractionalization16-18, while 

the threshold behavior corroborates the regime of strong light-matter interaction predicted for the 

emergent universe in a QSI19. 

The idea that certain phases of condensed matter have “quantum orders” alludes to the description of their 

electronic correlations with an effective low-energy gauge theory, without spontaneous symmetry breaking20–21. 

The emergent gauge field reflects the long-range and/or topological entanglement of a complex ground-state 

wavefunction, which results in a variety of exotic properties such as excitations carrying fractional quantum 

numbers. A famed example is the collective behavior of a two-dimensional electron gas where electrons acquire a 
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fractional elementary charge22. Similar states termed quantum spin liquids (QSL) are predicted to emerge in models 

of two- and three-dimensional frustrated magnets1–4. Their effective low-energy description is a deconfined gauge 

theory where quasiparticles that carry spin 1/2 and no charge, known as spinons, can propagate coherently with 

the background gauge field. However, because the fractional spin excitations interact strongly with the background 

gauge field under which they are charged, their dynamics is highly non-trivial. The symmetries of the underlying 

crystal structure can additionally enrich topological phases: spinons can carry fractional crystal momentum, 

leading to enhanced periodicity of the excitation spectrum in momentum23-24,18. 

A prototypical model of a three-dimensional frustrated magnet is the spin ice25, whose magnetic degrees of freedom 

reside on a lattice of corner-sharing tetrahedra where each motif results in a local ‘2-in-2-out’ constrain due to 

nearest-neighbor ferromagnetic interactions 𝐽//. The classical limit of this model is called classical spin ice (CSI) 

and consists of a macroscopically degenerate manifold of ground states obeying this local rule reminiscent of the 

arrangement of hydrogens in water ice26 (Fig. 1a). Such physics is realized in rare-earth pyrochlore materials with 

large uniaxial magnetic moments, where thermally-driven spin flips create pairs of emergent fractional 

quasiparticles called “magnetic monopoles” (Fig. 1b-c)27. These quasiparticles interact through an effective 

Coulomb potential, which, in materials like Ho2Ti2O7 (ref. 28), arises from classical dipole–dipole forces. It is 

theoretically well established that a true QSL can be stabilized in rare-earth pyrochlores with an isolated ground-

state doublet (an effective spin-1/2) by nearest-neighbor transverse interactions 𝐽± acting perturbatively on CSI 

states5–6,29–31. The dominant tunneling process of this quantum spin ice (QSI) is a ring exchange term (𝐽#$%&	~	𝐽±'/𝐽//( ) 

that corresponds to flipping loops of head-to-tail spins on a hexagonal plaquette5 (Fig. 1d). The ring exchange 

terms have local symmetry properties – a U(1) invariance – making their effective lattice gauge theory analogous 

to quantum electrodynamics (QED). The sign of the transverse interaction translates into distinct QSI phases where 

the hexagonal plaquettes are threaded by static 0 (𝐽± > 0) and 𝜋 (𝐽± < 0) fluxes of the emergent gauge field32-33,18. 

At temperatures 𝑇 ≈ 𝐽#$%&, the QSI ground state is characterized by gapless, linearly dispersing excitations, which 

are transverse fluctuations of the gauge field and correspond to the photons of the emergent QED. At higher 

temperatures 𝐽#$%& ≪ 𝑇 ≪ 𝐽//, however, thermal fluctuations destroy part of the quantum coherence and gradually 

restore a CSI29–31. The exotic nature of QSI also stands out from its gapped, fractional excitations – spinons, which 

are characterized by a larger energy scale set by 𝐽//. They correspond to “magnetic monopoles” (electric charges 

in QED language) executing coherent quantum motion5–6. 
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Neutrons can create spin-flip excitations leading to integer changes of the total spin, which in a QSL is expected 

to generate pairs of spinons that separate and execute quantum motion under the constraints of the emergent 

background gauge field. Here, we present neutron spectroscopy data of a candidate QSI material – Ce2Sn2O7 

(refs. 11–12), providing a wavevector-integrated spectrum of its magnetic response with µeV resolution. From a 

technical perspective, our findings demonstrate an advance in terms of energy resolution improved by more than 

an order of magnitude compared to other studies, allowing quantitative comparisons with theories for spinon 

dynamics in QSI. 

We first present inelastic neutron scattering (INS) data acquired using a time-of-flight (TOF) spectrometer (Fig. 2a), 

at different temperatures across the dominant energy scale in Ce2Sn2O7 (𝐽// ≈ 50 µeV ≈ 0.6 K)12. The magnetic 

response is essentially inelastic, as shown by the lack of temperature dependence of the elastic line (Fig. 2c). We 

use the highest temperature spectrum measured at 5 K, which is well above the correlated regime in this material, 

in order to evaluate the magnetic scattering 𝑆(𝐸) at lower temperatures by difference. Fig. 2b shows the imaginary 

part of the dynamic spin susceptibility calculated as 𝜒))(𝐸) = 𝑆(𝐸) × [1 − exp(−𝐸/𝑘*𝑇)], where 𝐸 is the neutron 

energy transfer and 𝑘* is the Boltzmann’s constant. This data shows the typical magnetic response in cerium 

pyrochlores12,34–35: a continuum of spin excitations, as expected from spinons13–17, peaked at the energy of the 

dominant exchange interaction 𝐽//. We fit these spectra using a phenomenological Lorentzian peak shape in order 

to capture their temperature evolution (Fig. 2d-f). The center of the band is temperature independent within the 

resolution of the measurement, and the intensity of the continuum increases while its width reduces upon cooling. 

This evolution occurs mostly below 1 K, which is consistent with changes previously reported in bulk magnetic 

susceptibility and diffuse magnetic scattering11–12. At the lowest measured temperature 𝑇	~	0.2 K, the data suggest 

a gapped spectrum with a non-trivial density of states (DOS) as shown in the inset of Fig. 2b. The TOF energy 

resolution of about 11 µeV, however, does not allow to characterize the DOS in sufficient details. 

While in TOF data the energy resolution is largely determined by the value and spread of the incident neutron 

wavelength, in backscattering spectroscopy it is mainly limited by the properties of crystal analyzers (Fig. 3a)10. 

Fig. 3b presents data acquired using a typical backscattering geometry where the incident energy is varied by 

Doppler effect, covering a window of ±30 µeV around the elastic line with a high resolution (HR) of 0.7 µeV. 

Remarkably, this allows to observe the gap expected for spinons in a QSI (Fig. 3b inset). We also performed 
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another experiment on the same instrument but using a recently developed option of ‘backscattering and time-of-

flight spectrometer’ (BATS)36. The latter provides a larger energy window of ±250 µeV, covering the entire 

bandwidth of the continuum in Ce2Sn2O7. The increase in energy range comes at the cost of a coarser resolution 

of 3.3 µeV in our data, which still provides a more than threefold improvement in resolution over the TOF data in 

Fig. 2, and allows to capture fine details throughout the entire continuum. 

In Fig. 3c we show the dynamic spin susceptibility 𝜒))(𝐸) obtained from combined HR and BATS data. At the base 

temperature of these experiments ( 𝑇 ≈ 0.17  K), 𝜒))(𝐸)  can be well fitted using three Gaussian peaks of 

unconstrained widths. The maximum of the spectrum is reproduced by the main Gaussian peak located around 50 

µeV, above which a gradual intensity decrease is observed, well accounted for by the two weaker Gaussian peaks 

around 100 µeV and 150 µeV, resulting in an overall asymmetric spectrum. Comparing the total fitted curve with 

an extrapolation of the experimental data points shows that the latter deviates slightly from the former at the lowest 

energy transfers, suggesting a threshold behavior at the bottom edge of the gapped continuum. The threshold 

eventually leads to a slight shoulder around 25 µeV energy transfers, identified in both the residual of the fit and 

the derivative of the extrapolated data (see Fig. 3c). At a higher temperature close to the uncorrelated regime (𝑇 ≈

0.8 K), 𝜒))(𝐸) shows much weaker inelastic scattering, in excellent agreement with the TOF data. 

A continuous spectrum of excitations is usually taken as a hallmark of QSL states, but there can be alternative 

explanations for their existence, such as disorder37. These continua are therefore less deterministic of fractional 

quasiparticles than, for instance, jumps in the electric conductance of a two-dimensional electron gas22. However, 

using combinations of analytical and numerical methods applied to the case of QSI14–17,38, theory has recently 

focused on studying the DOS in the two-monopole sector (spinons). Importantly, these predictions provide more 

specific features than just a continuum, highlighting the structure of the underlying gauge field theory. 

We first consider analytical results for the quantum dynamics of spinons hopping on a CSI background14, which is 

relevant at finite temperatures 𝐽#$%& ≪ 𝑇 ≪ 𝐽//. The spinon hopping is constrained by the flippable spins in the CSI 

background – a condition that makes its propagation deviate significantly from a free hopping model and results in 

the unique threshold and asymmetry in the wavevector-integrated DOS14. Remarkably, this model captures the 

gross features observed in the excitation spectrum of Ce2Sn2O7 (solid blue line in Fig. 4a). The threshold and 

asymmetry of the continuum are important experimental observations, since they reflect the effect of the 
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background gauge field on the dynamics of the fractional quasiparticles14. These two features, as well as the spinon 

band being centered on the energy of the dominant exchange, were also observed in numerical calculations using 

exact diagonalization14 as well as in quantum Monte Carlo simulations38. The fitted exchange parameters based 

on the analytical hopping model, 𝐽// = 48 µeV and 𝐽± = −5.2 µeV, are in good agreement with previous estimates 

based on fits of bulk thermodynamic properties at the mean-field level12. In the context of Ce2Sn2O7, 𝐽// refers to 

the coupling between octupolar components of the pseudo-spins39 – a possibility that was predicted by theory13,40 

and later observed experimentally12. The asymmetry observed in the data indicates 𝐽± < 0, as confirmed by the fit, 

because flipping the sign of 𝐽± in the spinon hopping model would otherwise invert the shape of the spectrum along 

the energy axis14. The data thus confirms12 that Ce2Sn2O7 stabilizes the 𝜋-flux phase of QSI – the symmetry 

enriched state occupying a large portion of the QSI phase space41, as also argued in Ce2Zr2O7 (refs. 42-43). In the 

𝜋-flux phase, translational symmetry fractionalizes32-33,18, so that the spinons acquire a finite Aharonov-Bohm phase 

after transporting them around any hexagonal plaquette, leading to an enhanced periodicity of the two-spinon 

density of states in the Brillouin zone16-17.  

A widely used theoretical framework to study QSI is gauge mean-field theory – a parton construction where bosonic 

spinons hop on the parent diamond lattice (c.f. Fig. 1) while interacting with the emergent U(1) gauge field44,32. A 

recent extension of this theory allows for the classification of symmetry fractionalization16, predicting clear 

spectroscopic signatures for the 𝜋-flux phase17. The spinon dispersion is expected to be composed of two bands 

that are mostly flat, leading to three peaks in the two-spinon density of states, with energy separations proportional 

to 𝐽±/𝐽// and intensity ratios reproducing an overall asymmetric spectrum. We use these results16-17 to fit 𝜒))(𝐸) 

including a phenomenological line broadening accounting for finite spinon lifetime and thermal fluctuations (black 

curve in Fig. 4b), giving 𝐽// = 69 µeV and 𝐽± = −17 µeV. Remarkably, this model provides an explanation for the 

scattering observed at 𝐸 > 80 µeV that is not accounted for by the spinon hopping model where gauge fluxes are 

thermally activated and incoherent (𝐽#$%& ≪ 𝑇 ≪ 𝐽//). Although the intensity of the second peak is overestimated by 

the gauge mean-field theory at zero temperature, the level of agreement is remarkable given the nature of this 

model, i.e. the qualitative observation of peaks in the data and reproducing their positions in energy is significant. 

At finite temperatures	𝑇 ≈ 𝐽#$%&, when gauge fluxes just start to freeze and become coherent, we expect that thermal 

fluctuations renormalize the relative intensities of the three peaks. The exchange constants translate into 𝐽#$%& =
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12.4	µeV, which indicates that our experiments at 𝑇 ≈ 0.17 K ≈ 15 µeV were indeed performed in the intermediate 

temperature regime where quantum coherence is not completely destroyed by thermal fluctuations. The physical 

existence of a second peak in the two-spinon density of states, at approximately the same energy as in the gauge 

mean-field theory, is also confirmed by recent numerical results using exact diagonalization45 (grey curve in Fig. 

4b). 

We next consider the theoretical DOS taking into account the QED effects of spinons (electric charges) propagating 

on a coherent QSI background (photons)15. In this case, the most significant consequence of the Coulomb 

interaction is an abrupt step-function onset of spinon production at small momenta, which is known as the 

Sommerfeld enhancement15. Additionally, a crucial nature of the non-relativistic emergent QED is the hierarchy of 

exchange parameters, leading to spinons propagating much faster than the photons. This effectively leads to a 

broadening of the threshold at larger momenta, because spinons start to emit diffuse Cerenkov radiation15. The 

corresponding analytical model applies in the long-wavelength limit and thus can only be compared with our data 

at the low-energy onset of the spinon band. Therefore, we fit the analytical QED model to our HR backscattering 

data as shown with the dashed red lines in Fig. 4. The exchange parameters obtained from the spinon hopping 

model14 (Fig. 4a) and gauge mean field theory16-17 (Fig. 4b) were converted to predefined parameters in the QED 

model – namely the ring exchange, spinon mass and speed of light. The fine-structure constant of the emergent 

QED – a dimensionless value characterizing how strongly light and matter couple, was fixed to 𝛼	 = 0.08 based on 

numerical estimates for QSI19. After integrating the analytical model over the experimental window of momentum 

transfers, the calculated DOS matches the experiment remarkably well with a spinon gap ∆	≈ 17	µeV. 

Finely resolving the spectrum of continuous excitations in a candidate QSI material opens the door to benchmarking 

important theory predictions on this unique quantum mechanical ground state. The agreement with the DOS 

expected for QSI is significant for several reasons. The characteristic features observed in the data – threshold, 

main peak and asymmetry, are signatures of the strong interaction of fractional spinons with the emergent gauge 

field. The asymmetry of the spectrum results from discernable peaks in the data, implying that the experiment 

probes a model-specific signature of fractionalization, at a temperature where quantum coherence has developed. 

This is especially remarkable given the notorious difficulties of experimentally assessing defining characteristics of 

QSLs. Moreover, we extract the exchange parameters of a QSL using a microscopic probe, directly from the spin 

liquid ground state excitation spectrum. This contrasts with the method of inferring exchange parameters from spin 
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waves of a related field-induced ordered phase. Finally, the comparison of the edge structure at the threshold of 

the spinon continuum appears to agree with predictions for the effects of photons on the pair production and 

propagation of electric charges. Recent numerical results have established how the emergent QED compares with 

that of our universe through estimates of its fine-structure constant19. It is predicted that the alternative vacuum of 

this condensed matter system is drastically different, with phenomena arising from strong light-matter 

interactions15,19. Although our data cannot be used to directly determine the fine-structure constant, they 

corroborate these theoretical predictions. Momentum-resolved experiments on single-crystal samples would 

certainly further our understanding, however, directly fitting QED parameters from such data may require 

resolutions in both energy and momentum space that are far beyond current spectroscopic techniques. We note 

that a recent report possibly indicates the selection of a different ground state in samples of Ce2Sn2O7 prepared 

hydrothermally and at much lower temperatures46. Together with the fact that different ratios of exchange 

interactions were found in the three known cerium pyrochlore materials42-43,47, this may suggest a high degree of 

tunability of the emergent QED, perhaps opening the door to its experimental control. 
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Figure 1 | Correlations and excitations in quantum spin ices. The ‘2-in-2-out’ ice configurations found in spin ices 

(a), as well as the creation (b) and propagation (c) of ‘magnetic monopole’ quasiparticles. The ellipses represent uniaxial 

magnetic moments, with blue and red poles, defining magnetic flux variables that live on a diamond lattice (blue lines). 

In Ce2Sn2O7 the ice rule applies similarly on objects of a more complex magnetization density (magnetic octupoles)12,13,40. 

In classical spin ice, thermal fluctuations create spin flips leading to fractional magnetic charges propagating through the 

sample (blue and red spheres)27. In a quantum spin ice (QSI)5–6, the corresponding fractional gapped excitations 

(spinons) execute quantum coherent motion. The dominant tunneling process in QSI occurs on hexagonal plaquettes 

highlighted by the blue loop on panel d. This quantum dynamics is encoded by the fluctuation of electric flux variables 

living on a second diamond lattice (drawn in green) interpenetrating the first one. In this emergent quantum 

electrodynamics, transverse fluctuations of the dual gauge field are gapless ‘magnetic photon’ excitations5–6. 

 

 

 

 

 

 

SPIN FLIP

2-IN-2-OUT
STATES

“MAGNETIC
MONOPOLES”

a d

b

c



 

9 

 

Figure 2 | Temperature evolution of spin excitations in Ce2Sn2O7. a, Inelastic neutron scattering data measured at 

the time-of-flight spectrometer IN5 using an incident wavelength of 10 Å, providing an energy resolution of 11 µeV. The 

spectra were collected at various temperatures indicated in the plot, integrated on a range of momentum transfers |Q| 

from 0.3 to 1.1 Å-1 and corrected for instrumental background, resulting in the experimental data points with error bars 

corresponding to ±1 standard error. b, Imaginary part of the dynamic spin susceptibility 𝜒##(𝐸) (data points with error bars 

corresponding to ±1 standard error) extracted from the data shown in panel a, as described in the main text. The red 

lines represent phenomenological Lorentzian fits of the data, allowing to numerically track the temperature dependence 

of the spin excitations. The fit function is defined as 𝜒##(𝐸) = $!%&
(()*)",%"

, with 𝑆- a global scale factor, 𝛾 the Lorentzian width 

and 𝛿  its center. Panel c shows the temperature evolution of the scattering at the elastic line, with error bars 

corresponding to ±1 standard error, indicating that the magnetic scattering in the accessible |Q| range is essentially 

inelastic. Panels d, e and f present the temperature dependence of the center, intensity and width of the Lorentzian fit to 

the 𝜒##(𝐸) data, respectively, with error bars corresponding to ±1 standard error. 
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Figure 3 | High-resolution neutron spectroscopy of fractional excitations in Ce2Sn2O7. a, Sketch of the neutron 

backscattering technique. Neutrons are first scattered by the sample towards crystal analyzers – a component that 

discriminates their energy with a very high resolution, and then backscattered towards a detector10. b, Comparison of the 

Ce2Sn2O7 spectra collected at 0.17 K and 5 K using the IN16B instrument (Institut Laue–Langevin, Grenoble) in 

‘backscattering and time-of-flight spectrometer’ (BATS)36 and ‘high-resolution’ (HR)50 modes. The spectra (data points 

with error bars corresponding to ±1 standard error) were integrated on an identical range of momentum transfers |Q| (0.4 

to 1.7 Å-1) and rescaled on the basis of their respective elastic line intensities, effectively correcting any discrepancies 

between the two configurations. The inset shows a zoom into the HR data, focusing on the threshold part of the spectra 

and showing the clear rise of the continuum on top of the remaining paramagnetic quasi-elastic signal. The latter is 

attributed to fluctuations of the dipole components of the pseudo-spin at finite temperatures. c, Superposition of the 

imaginary part of the dynamical spin susceptibility, 𝜒##(𝐸) (data points with error bars corresponding to ±1 standard error), 

extracted from the continuation of HR (dark colored symbols) and BATS (light colored symbols) experiments at 0.17 K 

(blue shades) and 0.8 K (green shades). The continuous red line is a fit using a constant background and three Gaussian 

peaks individually shown as dashed black curves. The centers, intensities and widths are unconstrained, confirming the 

significance of each contribution to the spectrum. The continuous blue line and the grey points are the residual of the fit 

and the derivative of the experimental data, respectively, both shifted by -1.5 arbitrary units for clarity. The two insets in 

panel c show the energy resolution provided by each instrument configuration, on the same energy scale as the main 

panel. 
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Figure 4 | Comparison of the dynamical spin susceptibility with models of spinon dynamics for the 𝝅-flux phase 

of quantum spin ice. In a, the continuous blue line is a fit of the combined HR and BATS data on their full energy 

window at 0.17 K, using the analytical model of Udagawa & Moessner for the quantum dynamics of spinons hopping on 

a lattice and considering a classical spin ice background14. Similarly, in b, we show the best fit using the gauge mean 

field theory of quantum spin ice revised by Desrochers, Chern & Kim16-17. In both these fits, the adjustment variables are 

exchange parameters 𝐽// and 𝐽± whose fitted values are indicated in the respective panels, corresponding to 𝐽±/𝐽// =

−0.1083  (a) and 𝐽±/𝐽// = −0.2464  (b). The fit using the gauge mean-field theory incorporates a peak broadening 

(standard deviation 𝜎 = 11.2 µeV). In panel b, we also compare the fit with available results of numerical calculations for  

𝐽±/𝐽// = −0.1875 using exact diagonalization on 32 sites (Hosoi, Zhang, Patri & Kim45). The corresponding curve (solid 

grey line) is the average of results at the Γ and Χ points of the Brillouin zone after setting the energy scale of 𝐽// to the 

value determined from the fit of the gauge mean field theory. The red dashed lines in panels a and b use the analytical 

model of Morampudi, Wilczek & Laumann considering a QSI background, i.e., including photons, which effectively 

broadens the threshold for our experimental |Q| window due to the emission of Cerenkov radiation15. These QED effects 

are neglected in the other models, while the model of Morampudi et al. neglects the lattice and therefore can only be 

used to compare with data at the lower edge of the continuum. We used a numerical estimate for the fine-structure 

constant, 𝛼	 = 0.08 (ref. 19), and other QED parameters obtained from the conversion of the exchange parameters 𝐽// 

and 𝐽± deduced from the fits to either the spinon hopping model (blue line on panel a) or gauge mean field theory (black 

line on panel b) – see Methods. The red dashed line in panel a is a fit, whose only free parameter is the spinon gap ∆	=

18	µeV, while in panel b we impose the spinon gap ∆	= 16.6	µeV which is the value predicted by the gauge mean-field 

theory for the exchange parameters obtained from the corresponding fit. 
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Methods  

Sample preparation 

The sample used during this work is a large polycrystalline sample of Ce2Sn2O7, which was also used in previous 

studies11–12. The solid-state synthesis product results from an oxido-reductive reaction where metallic tin is 

employed to reduce cerium to the trivalent state. The sample was thoroughly investigated using diffraction 

techniques as well as thermogravimetry, confirming the high purity of the sample and its stoichiometry 

Ce2Sn2O7.00±0.01, which indicates that all cerium ions are magnetic and experience the same crystal-electric field 

environment. Fits of neutron pair distribution function data further indicate the absence of disorder or local 

distortions of the crystal structure12. 

Neutron scattering experiments 

The time-of-flight inelastic neutron scattering experiment was performed with the IN5 time-of-flight spectrometer at 

the Institut Laue-Langevin, Grenoble, France48. The Ce2Sn2O7 powder was pressed into pellets and inserted inside 

a copper can (10 mm diameter, filled on a height of ~5 cm), which was then sealed, pressurized using 10 bars of 

helium gas at room temperature, and mounted below the mixing chamber of a dilution refrigerator. The helium 

overpressure was required in order to maximize cooling efficiency. An incident wavelength of 10 Å was used, 

providing an energy resolution of about 11 eV at the elastic line. The cooling of the sample was monitored by 

following the evolution of the inelastic contribution to the signal. The temperature of the sample was estimated by 

fitting the spectrum using a phenomenological background function, a Gaussian centered at zero energy transfer 

and two gapped Lorentzian multiplied by 1/(1 − exp (−
𝐸

𝑘𝐵𝑇
)) to account for temperature effects. The datasets were 

recorded in such a way to obtain similar statistics at each temperature. Calibration scans (vanadium and empty 
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copper can) were used to properly reduce the data using Mantid49 routines, resulting in six pre-processed datafiles 

containing the ‖𝑄⃗ ‖-integrated spectra (0.3 Å-1<‖𝑄⃗ ‖<1.1 Å-1). 

Neutron backscattering spectroscopy was performed on IN16B at the Institut Laue-Langevin36,50. The sample and 

sample preparation were identical to the IN5 experiment described above. In a first step, we used the BATS mode 

available at IN16B (ref. 36) in order to cover the full bandwidth of excitations in Ce2Sn2O7. Two instrument 

configurations, denoted as lr4 and lr6, were used and correspond to low repetition rates with 8° and 11° slits in the 

pulse choppers, providing a resolution of 4 eV and 6 eV respectively. The lr6 allowed to efficiently measure 

spectra at intermediate temperatures, benefiting from a more intense beam at the expense of a slightly coarser 

resolution with respect to lr4. The thermalization of the sample was monitored as described for the IN5 experiment. 

Spectra were recorded at 0.17 K, 0.8 K and 5 K using both lr4 and lr6, with additional measurements at 0.4 K and 

1.2 K with the lr6 set-up. Data for a vanadium standard, empty copper can and empty dilution were also recorded 

and used in the reduction routines using Mantid49. The spectra were integrated over the same ‖𝑄⃗ ‖ window ranging 

from 0.4 Å-1 to 1.7 Å-1. The resulting data can be seen in Fig. 3b and Fig. S1a, for lr4 and lr6 respectively. The 

imaginary part of the dynamical spin susceptibility was computed following the same method as described above 

and the results are shown in Fig. 3c (as well as Fig. 4a and 4b) and Fig. S1b, for lr4 and lr6, respectively. 

A second experiment was carried out on IN16B, in order to better investigate the lower part of the energy spectrum. 

The High-Resolution (HR) mode of the instrument was used, which has a lower flux compared to the previously 

mentioned BATS mode, and a resolution at the elastic line of about 0.7 eV. We have used a specialized high 

signal-to-noise ratio setup of the IN16B spectrometer previously reported50. The same powder sample was again 

used but this time was loaded in a copper can with annular geometry (outer 15 mm, inner 10 mm). The reason for 

such a choice was the reduction of the neutron absorption by the sample, which in this geometry, plays a more 

important role. The sample was cooled down to an estimated base temperature of approximatively 0.17 K. Data 

were recorded at three different temperatures, 0.17 K, 0.8 K and 5 K with similar statistics, allowing to track the 

signal’s behavior and a direct comparison with previous experiments. The data were reduced via Mantid49 routines, 

using carefully measured calibration scans (vanadium sheets, empty annular copper can and empty dilution 

refrigerator). The resulting spectra were then integrated over a ‖𝑄⃗ ‖ window ranging from 0.4 Å-1 to 1.7 Å-1. The 

final spectra can be seen in Fig. 3b. The imaginary part of the dynamical spin susceptibility was computed following 

the same method as described above and is plotted in Fig. 3c as well as in Fig. 4a and 4b. In order to get a 

meaningful comparison of the BATS and HR data, the lr4 HR spectra were subject to a minor rescaling, based on 

the relative intensities at the elastic line, thus compensating for any discrepancies between the two instrument 

modes. 

Fitting of the experimental data to model calculations 

We consider a Hamiltonian where the transverse exchange parameter 𝐽± introduces quantum fluctuations to a 

classical spin ice manifold obtained from a dominant nearest-neighbor ferromagnetic interaction 𝐽∥: 

ℋ𝑄𝑆𝐼 = ℋ𝐶𝑆𝐼 + ℋ𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 =  ∑ 𝐽∥(𝑖,𝑗) 𝑆𝑖
𝑦
𝑆𝑗

𝑦
− 𝐽±(𝑆𝑖

+𝑆𝑗
− + 𝑆𝑖

−𝑆𝑗
+) . Here 𝑆𝑦 corresponds to the octupolar component of 

the ‘dipole-octupole’ pseudo-spin40, stabilizing an octupole ice manifold in Ce2Sn2O7 (ref. 12). 
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We first used the results of Udagawa and Moessner14 to compare with our data. They found that the two-spinon 

density of state (DOS) can be well approximated by the following exact result 𝜌HC
(2)

(𝜔) = ∫  d𝜖𝜌HC
(1)

(𝜔 − 𝜖) × 𝜌HC
(1)(𝜖) 

where 𝜌HC
(1)

(𝜖) =
3

2𝜋

1

6−𝜖
√

5−𝜖

3+𝜖
 is the single spinon DOS with 𝜖 = (𝜔 − 𝐽∥)  ) in arbitrary units. We compare 𝜌HC

(2)
(𝜔) 

directly with our experimental data. We vary an overall scale factor and the parameters 𝐽∥ and 𝐽± (after converting 

them into the meV units), to minimize the least-mean square difference between the theory and all the experimental 

data (BATS Ir4, BATS Ir6 and HR): 𝐶1 = ∑  𝜔 in exp. (𝐼exp(𝜔) − 𝑎 × 𝜌HC
(2)

(𝜔))
2
. Here, the parameters 𝐽∥,  𝐽± are inside 

the definition of 𝜌HC
(2)

(𝜔) but we did not write them out explicitly to lighten the notation. 𝐽∥  is used in defining                

𝜖 = 𝜔 − 𝐽∥  in the single spinon DOS, and 𝐽±  is determined when converting the unit of 𝜖  to meV. Here, the 

parameter 𝑎 is the overall scaling factor that we also fit. We found that the square sum is minimized by the following 

parameters 𝐽∥ = 48 μeV, 𝐽± = −5.2 μeV  and 𝐽ring ≡
12𝐽±

3

𝐽∥
2 = 0.73 μeV. 

Second, we fit the experimental 𝜒′′(𝐸) data to the gauge mean-field theory results of Desrochers, Chern and Kim16-

17. We used the positions identified from the data as starting values for the centers of the three peaks expected for 

the 𝜋-flux phase of quantum spin ice. The goodness of fit measures are defined as 

𝜒𝐷𝑖𝑟𝑒𝑐𝑡
2 = ∑

(𝐼𝐸𝑥𝑝.(𝐸𝑛) − 𝐼𝑇ℎ𝑒𝑜.(𝐸𝑛))
2

(∆𝐼𝐸𝑥𝑝.(𝐸𝑛))2

𝑛

 

and  

𝜒𝑃𝑒𝑎𝑘
2 = √∑ (𝐸𝑖

𝑇ℎ𝑒𝑜. − 𝐸𝑖
𝐸𝑥𝑝.)2/𝐸𝑖

𝐸𝑥𝑝.3
𝑖=1 . 

We normalize both 𝜒𝐷𝑖𝑟𝑒𝑐𝑡
2  and 𝜒𝑃𝑒𝑎𝑘

2  before taking the weighted sum. The final goodness of fit is 𝜒2 = 𝛼 𝜒𝐷𝑖𝑟𝑒𝑐𝑡
2 +

(1 − 𝛼) 𝜒𝑃𝑒𝑎𝑘
2  with 𝛼 = 0.6 . We found that 𝜒2 is minimized using  𝐽∥ = 69 μeV, 𝐽± = −17 μeV  and 𝐽ring ≡

12𝐽±
3

𝐽∥
2 =

12.4 μeV. 

Finally, we used the above extracted exchange parameters from both the analytical model of Udagawa and 

Moessner14 and the extended gauge mean-field theory of Desrochers, Chern and Kim16-17, and applied these to 

the analytical model of Morampudi, Wilczek & Laumann15, which determined neutron scattering as 

 𝑆(𝑞, 𝜔, Δ) =
𝑚3/2√2𝜋𝑅

1−exp (−√
2𝜋𝑅

𝜔−2Δ−𝑞2/4𝑚
)
𝜃(𝜔 − 2Δ − 𝑞2/4𝑚), where 𝑅 =

1

4
𝑚𝑐2𝛼2 (1 −

𝑞2

4𝑚2𝑐2)
2

. 

Most parameters in this model are determined by the spin exchange parameters: the 

loop flipping term coefficient 𝑔 = 12
𝐽±
3

𝐽∥
2 , the spinon mass  𝑚 =

1

4𝐽±𝑎0
2,  and the speed of light 𝑐 = 𝜉𝑔𝑎0.  In addition, 

there are three constants independent of the value of 𝐽∥, 𝐽±, which are either known experimentally – the lattice 

constant 𝑎0 = 10.6 × 10−10 m, or taken from numerical estimates19 – the emergent fine-structure constant 𝛼 = 0.08 

and the O(1) constant 𝜉 = 0.51. Therefore, a fit to experimental data using this QED model has only two free 

parameters. The first free parameter is the overall scale of the DOS, while the second one is the spinon gap Δ. 

Although Morampudi et al.15 take the gap to be Δ ∼ 𝐽∥/2 − 12𝐽±, this value turns out to be negative from our fitting 
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result. We hence take  to be a free parameter when fitting the experimental neutron intensity to the theory. Since 

the work of Morampudi et al.15 is applicable in the long wavelength limit and does not consider the short wavelength 

effects of the pyrochlore lattice, it can only be used to compare with the low-energy end of the neutron scattering. 

In order to compare the model with the experimental data, we integrated over 𝑞 to obtain the (local) density of 

states distribution 𝑆̃(𝜔, Δ) = ∫  d𝑞𝑆(𝑞, 𝜔, Δ)  and minimized the following quantity: 𝐶2 = ∑  𝜔 in exp. (𝐼exp(𝜔) − 𝑎 ×

𝑆̃(𝜔, Δ))
2
. Here, 𝑎  is the overall scaling factor and we use the low-energy HR dataset, which covers energy 

transfers up to 26.5 eV. The best fit we found results in Δ = 18 eV using the exchange parameters deduced from 

the analytical model of Udagawa and Moessner14. In order to calculate the low-energy response using the 

exchange parameters deduced from the extended gauge mean-field theory of Desrochers, Chern and Kim16-17, we 

have used the spinon gap value predicted by the same theory, Δ = 16.6 eV. 

Data availability 

The data that support the plots within this paper and other findings of this study are available from the corresponding 

authors upon reasonable request. The datasets for the time-of-flight neutron spectroscopy experiments on IN5 and 

for the backscattering neutron spectroscopy experiments on IN16B are available from the Institute Laue-Langevin 

data portal51–53. 
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Extended data Fig. 1 | Goodness of fit for the adjustment of the exchange parameters of the gauge mean field 
theory to the 𝝌!!(𝑬) data. The color maps show the goodness of fit defined in the Methods section, as a function of the 

dominant and transverse exchange parameters, for different values of the phenomenological peak broadening 

𝜎	 (standard deviation). Here, 𝐽𝓎𝓎  is an octupolar exchange interaction designating the dominant nearest-neighbor 

interaction 𝐽∥. The fitting procedure is described in the Methods section and the final fit is presented in Fig. 4b (black 

curve).  
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