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ABSTRACT

In many machine learning problems, one has to work with data of
different types, including continuous, discrete, and categorical data.
Further, it is often the case that many of these data are missing from
the database. This paper proposes a Gaussian process framework
that efficiently captures the information from mixed numerical and
categorical data that effectively incorporates missing variables. First,
we propose a generative model for the mixed-type data. The gen-
erative model exploits Gaussian processes with kernels constructed
from the latent vectors. We also propose a method for inference of
the unknowns, and in its implementation, we rely on a sparse spec-
trum approximation of the Gaussian processes and variational infer-
ence. We demonstrate the performance of the method for both super-
vised and unsupervised tasks. First, we investigate the imputation of
missing variables in an unsupervised setting, and then we show the
results of joint imputation and classification on IBM employee data.

Index Terms— Gaussian process, incomplete data, heteroge-
neous data

1. INTRODUCTION

Real-world datasets are often heterogeneous and incomplete, mean-
ing they contain different types of data that range from continuous to
ordinal and categorical, with missing values at random locations. For
example, electronic health records of hospitals might contain differ-
ent clinical measurements, diagnoses, and demographic information
about their patients [1]. They do not only contain different numer-
ical lab values but also variables like race and blood type that are
categorical. Moreover, the two types are often with missing values
for various reasons.

Gaussian processes (GPs) are Bayesian models that offer dis-
tributions over functions. They are robust to over-fitting and they
provide a principled way to tune hyper-parameters and uncertainty
bounds over the outputs [2]. These properties are critical for tasks
including non-linear function regression and density estimation [3].
The GP latent variable model [4] made it possible for GPs to be used
in unsupervised cases for latent structure discovery. They have been
recently proven to be expressive unsupervised methods, able to cap-
ture latent structures of complex high-dimensional data [5, 6]. How-
ever, their performance in the case of heterogenous data is poorly
explored.

Naively applying GPs to mixed-type data can lead to mislead-
ing results. This is because when dealing with heterogeneous data,
we need to use different types of likelihoods. For example, Gaus-
sian likelihood for real-valued variables and Bernoulli likelihood for
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binary variables is required, respectively [7]. In this case, each like-
lihood contributes to the training objective in different ways leading
to some data dimensions being poorly modeled in favor of other di-
mensions [8].

Building and modifying GPs that can accurately capture the in-
formation, and therefore the underlying latent structure, of mixed
and incomplete datasets, may allow us to understand the data better,
estimate missing values, and make predictions on unseen attributes
more accurately. There have been few attempts to study mixed data
with GPs [9]. More recently, [10] extends the use of supervised
multi-output GPs, assuming that each output has its own likelihood
function. By contrast, in this paper, we present a GP framework
that efficiently extracts information from mixed data and effectively
incorporates incomplete data.

Our contributions are as follows: we propose

• GP latent variable models that can handle mixed numerical
and categorical data;

• missing data imputation using a trained GP latent variable
model;

• joint classification and missing variables imputation in in-
complete heterogeneous data.

The resulting model can be used both in unsupervised and supervised
settings, including density estimation, missing data imputation, and
classification of incomplete data.

2. PROBLEM STATEMENT

We consider a generative model for data represented by a matrix Y.
The rows of this matrix, y⊤

n , n = 1 : N , are vectors composed of
elements of two types, and n is an index that refers to a particular
subject/object. The first Dc elements of yn, yn,d, d = 1 : Dc, are
categorical variables, and they have assigned indices from 1 to K,
whereas the last Dq elements yn,d, d = Dc+1 : Dc+Dq , are nu-
merical with support on the real line. Below, we present a generative
model that allows us to treat various types of problems based on this
type of mixed data in a unified way.

Similar to [11, 12], we assume that each categorical variable is
drawn from a corresponding probability mass function (pmf) with
masses fn,d,k = Fd,k (xn) , d = 1, 2, . . . , Dc, k = 1, 2, . . . ,K,
where xn ∈ RQ is an input latent variable whose prior is a zero mean
Gaussian probability density function (pdf) with a given covariance
matrix Σ. Further, we assume that Fd,k is a function whose prior is
a GP.

Similarly, each numerical variable is assumed to be a function
of the input xn. More specifically, yn,d is Gaussian distributed
with mean fn,d and variance σ2

q . The mean fn,d = Fd (xn), d =
Dc+1 : Dc+Dq , is a function of xn too. Again, we assume that the
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Fig. 1. Generative model, where every dimension in the observation
vector yn = [yn1, . . . , ynD] corresponds to an either numerical or
categorical variable.

functions Fd have GP priors. Figure 1 depicts the observation vector
yn and the latent variable xn.

The generative model can be summarized as follows:

xn
iid∼ N (0,Σ) , n = 1 : N, (1)

Fd,k
iid∼ GP (0,Kd) , d = 1 : Dc, k = 1 : K, (2)

fn,d,k = Fd,k (xn) , d = 1 : Dc, (3)

Fd
iid∼ GP (0,Kd) , d = Dc+1 : Dc+Dq, (4)

fn,d = Fd (xn) , d = Dc+1 : Dc+Dq, (5)

p(yn,d = k) =
exp (fn,d,k)∑K

k′=1 exp (fn,d,k′)
, d = 1 : Dc, (6)

p(yn,d) = N (fn,d, σ
2
q), d = Dc+1 : Dc+Dq. (7)

In words, (1) suggests that the latent vectors xn ∈ RQ, n =
1, 2, . . . , N , are independently generated from a multivariate zero
mean Gaussian pdf with a covariance matrix Σ. The Dc ×K func-
tions Fd,k, d = 1 : Dc, k = 1 : K have as priors zero mean GPs
(denoted by GP) and where for each dimension, the GPs may have
different covariance matrices Kd (cf. (2)). The values of the weights
are obtained via (3), where the weight that corresponds to the dth cat-
egorical variable of the nth subject/object and its kth value is a func-
tion of xn. The notation Fd,k

iid∼ GP (0,Kd) means that any finite
collection of variables fn,d,k for given d and k are jointly Gaussian.
with mean zero and covariance cov(f(xn)f(xn′))). Similarly, as
in (2), the Dq functions Fd, d = Dc + 1 : Dc + Dd have pri-
ors from the same zero mean GPs with a covariance matrix Kd (cf.
(4)). The means of the Gaussians used for generating the numerical
values yn,d, fn,d, are obtained by (5), and clearly, they depend on
xn. The probability masses of the categorical variables are obtained
by the softmax function (6), and the pdf of the numerical variable
yn,d is Gaussian as shown by (7). In summary, first we generate N
vectors xn, where n = 1, 2, . . . , N . Given all the xns, for each d
we construct a covariance matrix Kd ∈ RN×N that will be used for
generating the vectors fn,d,k ∈ RN×1, d = 1 : Dc and fd ∈ RN×1,
d = Dc + 1, Dc +Dq , using zero mean Gaussian pdfs with respec-
tive covariance matrices Kd. From the obtained fn,d,k, we com-
pute the pmfs of the categorical variables for each n by (6), and
then draw the yn,d categorical variables (d = 1 : Dc) from the re-
spectively obtained pmfs. We generate the numerical variables yn,d

(d = Dc + 1 : Dc +Dq) from the Gaussians in (7).
In our inference, we will rely on the marginal log-likelihood of

the data. Finding the marginal log-likelihood is intractable because

of 1) the covariance function of the GP and 2) the softmax likeli-
hood. To tackle these two challenges, we use sparse spectrum ap-
proximation of GPs to deal with their inverse kernel matrices and
variational inference. Before we present our proposed solution, we
provide some background on sparse spectrum approximation of GPs
and variational inference. We also discuss the reasons why we adopt
them in our proposed approach.

3. BACKGROUND

3.1. Sparse Spectrum Approximation of Gaussian Processes

We use Bochner’s theorem to reformulate the covariance function in
terms of its frequencies [13]. Our covariance function K(x,x′) is
stationary, and thus, it can be represented as K(x−x′) for all x,x′ ∈
RQ. According to the theorem, K(x − x′) can be represented as
the Fourier transform of some finite measure σ2p(ω) where p(ω) is
proportional to the power spectral density of the kernel, i.e.,

K(x− x′) =

∫
RQ

σ2p(ω)e−2πiωT (x−x′)dω

=

∫
RQ

σ2p(ω) cos
(
2πωT (x− x′)

)
dω, (8)

where i =
√
−1. The second equality holds because the covariance

function is real-valued. The above integration can be approximately
computed by the Monte Carlo method as a finite sum with J terms
according to

K(x− x′) ≈ σ2

J

J∑
j=1

cos
(
2πωT

j

(
(x− zj)−

(
x′ − zj

)))
(9)

with ωj ∼ p(ω) and zj being Q dimensional vectors for j = 1 : J ,
and where they act as inducing inputs. We rewrite the above terms
for every j as

cos
(
2πωT

j

(
(x− zj)−

(
x′ − zj

)))
=

∫ 2π

0

1

2π

√
2 cos

(
2πωT

j (x− zj) + φ
)

×
√
2 cos

(
2πωT

j

(
x′ − zj

)
+ φ

)
dφ. (10)

This integral can again be approximated as a finite sum using Monte
Carlo integration. To keep the computations low, we approximate
the integral with a single sample for every j. Then we write,

K(x− x′) ≈σ2

J

J∑
j=1

√
2 cos

(
2πωT

j (x− zj) + φj

)
×
√
2 cos

(
2πωT

k

(
x′ − zj

)
+ φj

)
=K̂(x− x′), (11)

where φj ∼ Unif[0, 2π]. In summary, with (11) we define our ap-
proximation of the covariance function K̂.

We refer to (ωj)
J
j=1 as inducing frequencies and to (φj)

J
j=1

as phases, and we denote w = (ωj , φj)
J
j=1. If we use K̂ as the

covariance function of the GP, we obtain the following generative
model:

ωj ∼ p(ω), φj ∼ Unif[0, 2π], j = 1 : J, (12)

w = (ωj , φj)
J
j=1 . (13)



Clearly, we can condition this model on the finite set of random vari-
ables w. With our modeling assumption, the model depends on these
variables alone, making them sufficient statistics for the model.

3.2. Variational Inference

The predictive distribution for a new test point x∗ is given by

p (y∗|x∗,X,Y) =

∫
p (y∗|x∗,w) p(w|X,Y)dw, (14)

where y∗ ∈ RD . The distribution p(w|X,Y) cannot be usually
evaluated analytically. Instead, an approximating variational distri-
bution q(w) whose structure is easy to evaluate is defined. We want
our approximation distribution to be close to the posterior distribu-
tion. We, therefore, minimize the Kullback-Leibler (KL) divergence,
a measure of similarity between two distributions:

KL(q(w)∥p(w|X,Y)) (15)

resulting in the approximate predictive distribution

q (y∗|x∗) =

∫
p (y∗|x∗,w) q(w)dw. (16)

Minimizing the KL divergence is equivalent to maximizing the log
evidence lower bound (ELBO)

LVI :=

∫
q(w) log p(Y|X,w)dw −KL(q(w)∥p(w)) (17)

with respect to the variational parameters that define q(w). We note
that the KL divergence in the last equation is between the approxi-
mate posterior and the true posterior over w. Maximizing this ob-
jective will result in a variational distribution q(w) that explains the
data well while still being close to the prior and preventing the model
from over-fitting.

4. PROPOSED SOLUTION

Let On be the index set of observed and Mn the index set of missing
attributes of the nth vector yn. Also, let yo

n be a vector of observed
values (the indices of its elements come from On), and ym

n the vec-
tor of missing values (the indices of its elements come from Mn).
For the joint distribution of yn and xn we write

p (yn,xn) = p (xn)
∏
d

p (ynd|xn) . (18)

The above factorization of the likelihood of the unknowns allows us
to separate the contributions of the observed data yo

n from those of
the missing data ym

n . We have

p (yn|xn) =
∏

d∈On

p (yn,d|xn)
∏

d∈Mn

p (ynd|xn) . (19)

The ELBO of the marginal likelihood of observed data, Yo, can
be written as

log p(Yo) = log

∫
p(X)p(W)p(F|X,U)p(Yo|F)dXdFdW

≥ −KL(q(X)∥p(X))−KL(q(W)∥p(W))

+
∑
n

∑
d∈On

∫
q (xn) q (Wd) p (fnd|xn,Wd)

× log p (yo
nd|fnd) dxn dfnd dWd,

(20)

where for the categorical variables, we write

p (fn,d|xn,Wd) =

K∏
k=1

p (fn,d,k|wdk) , (21)

and for the numerical variables,

p (fn,d|xn,Wd) = p (fn,d|wd) . (22)

The KL divergence terms in (20) penalize any deviation of the
posterior from the prior of X and W, respectively. Importantly,
the KL divergence can be computed in a closed form under certain
conditions [14]. The last term of the ELBO contributes to the recon-
struction term of the observed data Yo. In order to compute the KL
divergences, we consider Gaussian distributions

q(W) =

Dc∏
d=1

K∏
k=1

N (wdk|µdk,Kd)

Dc+Dq∏
d′=Dc+1

N (wd′ |µd′ ,Kd′) ,

(23)

q(X) =

N∏
n=1

Q∏
q=1

N
(
xnq|mnq, σ

2
nq

)
. (24)

The parameters we need to optimize include µdk, Kd, µd′ , Kd′ ,
mnq , and σ2

nq . In order to obtain a Monte Carlo estimate of the
gradients with low variance, a useful trick introduced in [11] is to
transform the random variables that need to be sampled so that their
randomness does not depend on the parameters with which the gra-
dients are computed.

For transforming X, wd,k (wd), and fn,d, we write

xni = mnq + snqε
(x)
nq , ε(x)nq ∼ N (0, 1), (25)

wd,k = µd,k + Ldε
(w)
dk , ε

(w)
dk ∼ N (0, IJ) (26)

where LdL
T
d = Kd is the Cholesky decomposition of Kd.

The problem of optimizing the ELBO becomes complex due to
the presence of heterogeneous data. This leads to a problem with
many local optima. These local optima capture the correlations be-
tween a subset of attributes while treating the rest as independent.
However, the global optimum captures all the dependency among
the attributes [8].

5. EXPERIMENTS AND RESULTS

In this section, we first evaluate the performance of our model in im-
puting the missing data with mixed numerical and categorical data,
and we compare it to other imputation methods in the literature. We
also study the classification task, where we evaluate the classification
accuracy due to performing the imputation of the missing data in su-
pervised scenarios. Note that our method does not require missing
data imputation before the downstream task. Instead, the lower rep-
resentation is obtained by integrating the missing data. We compare
it with mean/mode imputation and one-hot encoding of categorical
variables that are imputed using iterative imputation.

As a metric for performance comparison of the above models,
we use the average imputation error computed as

AvgErr = 1/D
∑
d

err(d), (27)



where we use error metrics that are defined for the specific type of
variables. More specifically, we adopt the accuracy error for cate-
gorical variables and the normalized root mean square error for nu-
merical variables, defined by,

err(d) =
1

n

∑
n

I (ynd ̸= ŷnd) , d = 1 : Dc, (28)

err(d) =

√
1/n

∑
n (ynd − ŷnd)

2

max (yd)−min (yd)
, d = Dc + 1 : Dc +Dq.

(29)

5.1. Unsupervised (Missing Imputation)

We used the employee attrition dataset from IBM Watson Analysis.
The data include 1470 samples that contain 33 features, including
employees’ age, gender, salary, job role, satisfaction, and their rela-
tionship to attrition. It has Dc = 11 categorical and Dq = 22 nu-
merical variables. Table 1 summarizes the average imputation error
as we vary the fraction of missing data. We compared against iter-
ative imputation on one-hot encoded data and heterogeneous multi-
output GP (HetMOGP). We observe that since mean imputation as-
sumes all the features to be independent, any missing data impu-
tation method that are based on statistical dependencies in the data
will perform better than the mean imputation. The results show the
ability of our method (we refer to it in the table as Heterogeneous
Incomplete GP (HI-GP)) to exploit underlying correlations among
the set of heterogeneous attributes.

Table 1. Average imputation error for different missing percentages

10% 30% 50%

Mean Imputation 0.16 ± 0.02 0.16 ±0.02 0.20 ± 0.05
HetMOGP 0.15±0.03 0.15 ± 0.00 0.18 ± 0.02

One-hot/Iterative 0.15 ±0.01 0.15 ± 0.00 0.18 ± 0.01
HI-GP 0.13 ± 0.00 0.14 ± 0.00 0.17 ± 0.00

5.2. Supervised (Binary Classification)

Although the introduced generative model is fully unsupervised, we
evaluate its performance in a binary classification problem. In this
experiment, we again used the employee dataset. The idea behind
this experiment is to treat the classes as missing values and try to
predict/impute the class values. For example, if we use 60% of the
data for training and 40% for testing, this means that we remove
40% of the labels in the target attribute and treat them as missing
values. We compared the results against GP classification when the
data are first imputed (IterGPC). The results for different percentages
of missing values are summarized in Table 1. We observe that HI-GP
provides better performance than that of Iter-GPC. They show that
fully generative models like HI-GP are preferable over a supervised
model with imputed data.

6. CONCLUSION

In this paper, we proposed a generative model for mixed categorical
and numerical data using GPs. We note that this mixed-type problem
combined with the presence of missing data has various challenges.
In HI-GP, we derive a lower bound on the data marginal likelihood.

Table 2. Classification accuracy for different missing percentages

Missing % Model CA F1 Precision Recall

0% HI-GP 0.711 0.710 0.713 0.711
Iter-GPC 0.684 0.684 0.684 0.684

10% HI-GP 0.705 0.704 0.706 0.705
Iter-GPC 0.665 0.664 0.665 0.665

30% HI-GP 0.650 0.649 0.650 0.650
Iter-GPC 0.593 0.577 0.609 0.593

The ELBO depends only on observed data. Also, we study impu-
tation in dealing with missing values. Our experiments showed that
our proposed HI-GP outperformed its competitors on the missing
data imputation task. Similarly, HI-GP provided better classification
accuracy with supervised methods when compared to methods that
cannot handle missing values in data, and therefore, require impu-
tation of the missing inputs in the preprocessing stage. Future work
includes the extension to more complex architectures of the genera-
tive model such as deep GPs or Bayesian neural networks.
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