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Abstract—One of the most important problems in science is un-
derstanding causation. This problem is particularly challenging
when causation has to be inferred from observational data only.
A further challenge of this problem is if the observed data were
generated in the presence of latent confounders. In this paper,
we propose a method for detecting confounders in multivariate
time series using a recently introduced concept referred to as
differential causal effect (DCE). The solution is based on feature-
based Gaussian processes that are not only used for estimating the
DCE of the observed time series but also for estimating the latent
confounders. We demonstrate the performance of the proposed
method with several examples. They show that the proposed
approach can detect confounders and can accurately estimate
causal strengths.

I. INTRODUCTION

In many science and engineering problems, it is of fun-
damental importance to infer causal relationships from data
— fields as diverse as medicine [7], economics [1], social
sciences [10], and machine learning [22] have an interest in
causal inference. While some notions of causality are indeed
statistical, such as Granger causality [5], much of modern
causal inference relies on interventional and counterfactual
notions [21]. These notions carry strictly more information
than observational data and therefore require randomized
experiments. However, these experiments are often too time-
consuming, expensive, or unethical to conduct, necessitating
the use of observational or quasi-experimental data.

Unfortunately, inferring causal relationships from observa-
tional data is generally ill-posed, meaning further assumptions
are necessary [22, pp. 135]. One particularly common assump-
tion, which often fails to hold in practice, is causal sufficiency;
this assumption states that any variable which directly affects
at least two other variables is observed [25, pp. 22]. If causal
sufficiency is assumed but does not hold, i.e., there exists latent
confounders, incorrect causal conclusions are often made. To
add further to the challenges of inference, causal sufficiency is
difficult to test for, and it generally requires domain knowledge
to establish [25, p.123].

A wide variety of methods have been developed to address
the possibility of confounders, either through their detection or
by learning causal models which indicate possible confound-
edness. While this current work aims at addressing the former
problem, we note that much work has been conducted on the
latter one. These include constraint-based methods such as fast
causal inference [25, pg. 144], score-based methods [4], hybrid

methods [20], or asymmetry-based methods [8] — see [26] for
a recent survey of such methods. A number of these methods
have been adapted or extended to the special case of time
series such as ANLTSM [3]and VAR-LiNGAM [9].

The problem of detecting confounders is comparatively
much less explored. One line of work into confounder de-
tection involves deriving estimators of the “structural strength
of confounding” v, where v = 0 corresponds to the un-
confounded case and v = 1 corresponds to the entirely
confounded case. For linear Gaussian-additive noise models
(LinGAMs) with a scalar confounder, the authors in [13]
develop an estimate of «y using spectral techniques in high
dimensions. Detection using the first moment of such a spec-
tral measure showed superior performance in [17]. The case
of LinGAMs with multivariate confounders was addressed in
[14] using techniques from independent component analysis;
a correction term to make the estimator consistent is provided
in [24].

Another approach to the detection of confounders lies on
the postulate of the algorithmic Markov condition, introduced
in [12]. Under this interpretation of causality, the true causal
factorization is the one which minimizes the Kolmogorov
complexity of the factorized joint distribution. In [15], the
minimum description length (MDL) is used as an approxi-
mation of Kolmogorov complexity, comparing the MDL of
an unconfounded model to the MDL of a latent variable
model (LVM) to detect confoundedness. To our knowledge, no
confounder detection methods have been developed explicitly
for time series.

Finally, if one is interested in a specific causal effect,
some methods have employed LVMs to estimate the av-
erage causal/treatment effect, with the idea that proxies of
confounders can be estimated from observed variables. For
example, [19] uses variational autoencoders to estimate the av-
erage effect of a binary treatment. Meanwhile, using a slightly
different set of assumptions more common to the potential
outcomes framework of causality, [27] creates a framework
for using factor models in estimating average causal effects.

In this paper, we propose a novel method for confounder
detection in time series with additive Gaussian noise. To
achieve this, we extend an existing notion of causal strength
[2] to time series, and estimate the strength of any potential
confounders using random feature-based Gaussian processes
(GPs). We organize the rest of the paper as follows: in



Section II, we give background for causal models, GPs, and
causal effect estimation. In Sections III and IV, we outline
our proposed model and solution. Results for a variety of
numerical experiments on simulated data are presented in
Section V, before concluding in Section VI.

II. BACKGROUND
A. Structure Causal Model and Latent Confounder

Consider a set of observed data {y1,...,yn}, with an
underlying cause and effect relationship. We can represent the
relationship between each variable by a set of functions, which
is called a structural causal model (SCM). Mathematically, we
have,

vi = fi(Pa(y:)) + €, (1)

where ¢ = 1,2,---, N, Pa(-) is the parent set of a given
node and ¢; is independent noise or error of the model. We
use the notion of parent set because we can represent the
causal structure with a directed acyclic graph (DAG), with
edges pointing from parents to children. The variable index
is the same as the node index. By evaluating the functions f,
we can get the causal structure and represent it via a DAG,
with the cause-effect being edges pointing from the cause to
the effect.

If a latent confounder z exists and causes a difference in
the causal structure, then with the confounder z, the observed
data y; are not only a function of its parent set Pa(y;) of
variables but also a function of the confounder, that is, we
have y; = fi(Pa(yi), z) + €.

B. Causal Strength

There are several possible ways to quantify the strength
of a causal interaction [11], but in this work we will take an
approach based on differential calculus. Since the derivative of
a function can measure the sensitivity of the function’s output
to changes in the input, a natural measure of causal strength
is to consider differentiation of functions in SCMs. Let y,
be an N dimensional multivariate time series. For simplicity,
we focus on one of the observed time series, which we will
simply symbolize by y; and will denote its observed and
unobserved parents by x;_; and z;_;, respectively. We note
that all the parents take their values before y; takes its own
value, which is indicated by the indices of x and z. In summary,
Pa(y:) = {y;_1,X¢t_1,2¢_1}, where the vector y,_; contains
all the parents of y, that represent some of the past values of
y;, and X,_; and z,_; are parents that are past values of other
observed and unobserved time series, respectively. If for y,
we write y; = f(¥,_1,X¢—1,Z¢—1), we define the differential
causal effect (DCE) of a single parent, e.g., of x;_;; on y; to
be the partial derivative of the function with respect to z;_; ;
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where x;_; ; corresponds to the ith time series of the remaining
N —1 time series and [ is the lag of that time series, with 7 and
[ fully defining the parent. We refer to this notion of causal
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strength as the direct DCE, since it assumes that z;_; ; directly
causes changes to y;. More generally, x;_;; might not effect
y, directly, but through a chain of causal mechanisms it exerts
an influence on ;. In this case, it is more appropriate to use
the chain rule to decompose the total effect as the product of
the effects along the chain. Hence, the total DCE z;_;; on g,
is defined to be the causal effect yielded by the composition
of multiple mechanisms, i.e.

_ df OPa(y)
Te 1Yt 3Pg(yt) aIt—I,i ‘

To compute the total DCE for any given interaction, we
repeatedly apply (3) to derive the correct expression.

When a latent process z; exerts an influence on another
process y;, the DCE dy; /0z;_;; will be nonzero for some lag
L. Otherwise, the function f is effectively constant with respect
to changes in z;_;;, and we cannot say that y; depends on
z¢—1,; meaningfully. Since a reconstruction of a latent process
is not unique, the magnitude of the causal strength of z;_; on
¢ is not generally meaningful. However, since zeroness of the
causal strength does not depend on the choice of coordinates,
ie., if Z;_; and 2;_; are two equivalent latent states, and the
causal strength of Z;_; is zero, then the chain rule states that

Oyt Oy, 0z —0x 0%Z;_i -0
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Thus, in principle we can use the causal strength to decide
that z;_; does not effect y;. In the multivariate setting, we
assert that z;_; does not effect y, when all partial derivatives
are zero.

(Total) DCE 3)

C. Gaussian processes

Gaussian processes (GPs) are a class of stochastic processes
that are used in machine learning for modeling functions
[23]. More specifically, let (x¢,3:), t = 1,2,...,T, be T
input-output values, where y = [y1 %a2...y7r]', and y =
f(X), with f € RT*! and X € RT*% being a matrix
whose rows represent the inputs to the function f, that is,
X = [xi,..ox7]T y = £(X) = [F(x]),..., fxg)]".
The idea behind GPs is that function samples are jointly
drawn from a Gaussian distribution. Mathematically, we have
f ~ GP (m(X),Kg(X)), where m(X) is the mean function,
Kp(X) is the covariance (kernel) function of the process, and
0, is a vector of hyperparameters of the GP.

1) Random feature-based GPs: The biggest drawback of
GPs is their poor scaling, that is, GPs do not scale up well
computationally with the number of input-output pairs, T'. We
can address this problem by resorting to an approximation by
way of exploiting the concept of sparsity. One approach is
based on constructing GPs with features that come from a
feature space [16]. A GP with a shift-invariant kernel can be
approximated using a feature space where matrix decomposi-
tions will not be required. The vector of basis functions of the
feature space is comprised of trigonometric functions that are
defined by

1
¢,(x) = —=[sinx ' v; cosx'v; --- sinx' v; cosx ' v,]',
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where V = [vq, ..., V] are random features sampled from the
power spectral density of the kernel of the GP. Then the kernel
function k(x,x’) can be approximated by ¢, (x)¢,(x') if the
kernel is shift-invariant. The GP approximation is then

Fx) = ¢y ()6 = [cos(xV),sin(xTV)]O/VI, )

where 8 € R27*! is a vector of parameters of the approx-
imating model. The derivatives of the random feature-based
function with respect to x is

9f(x)

o = 0" [diag (—sin VTX) , diag (cos VTX)]VT/\/E.
(3)

III. PROBLEM FORMULATION

Let x, € RV*! represent a vector of signals collected from
a directed graph G from all its nodes at time t, where x; ;
denotes the graph signal of node : at time ¢. The directed graph
G’s structure represents the causal relationship between each
variable corresponding with the nodes in the graph. Further,
we assume that the signal z;; is a function of the previous
data generated from all its parents. Since we investigate the
injection effect from all other nodes to one specific node, then
node by node, we represent the target variable =, ; at time ¢ as
yr and keep its other parents Pa(z;);) as x for clarification
purposes. If there is an underlying not observed process,
i.e., confounding process, we represent it by z;. Specifically,
consider the data model:

2t = f(Ze—t0— 1, Xt—lopit—1, Yt—1oy:0—1) + Ug, (6)
Xe = M Bt 15 Xe—logit—15 Yt—lgy:t—1) + Vi, (7
Yt = G(Ze—1yot—1, Xe—1ygt—1, Ye—1y,:t—1) + €1, (3

where I, [, etc. are the maximum lags of past samples
effecting values of the caused variables, and u;, v¢, and e;
are errors modeled as zero-mean Gaussians, and w;.; for w =
z,y,z denotes w;, wiy1, ..., w;.

The functions f(-,...,-), h(-,...,-), and g(-,...,-) are un-
known and we assume the functions are drawn from Gaussian
processes. The objective is to determine the causal strengths
of given nodes to a node of interest. As a metric for causal
strength we use DCE defined by

A 39(.1 . )
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where x;_; ; represents the causing time series and its lag.

IV. PROPOSED SOLUTION

We investigate the nodes one by one, and without loss
of generality, we focus on the scalar target node y; in the
remaining part of the paper. We write (6) and (8) using the
form of random features as

(10)
(1D

where ¢, represents random vectors with V. = {V,,V,},
H = [n[l],r,l[z], .. ,ﬂ[d“]], and @ are parameter variables. We

-
2o =H &y(Ze 1.1, Xt 1.1, Yt 1oy:e-1) + Uy,

T
Y =0 &y (Zi—ty,:t—15 Xe—lypit—15 Ye—1yy:0—1) + €s,

assume that the parameter variables are all independent, i.e.,
the columns of H are independent of the other columns. The
independence assumption about the parameter variables im-
plies that the dimensions of z; are conditionally independent.
To do the sequential inference on the distribution of H, 8, and
Z;, we assign prior distributions p(H), p(8), and p(zp) to them
and adopt the Bayesian paradigm [18].

The method for finding causal strengths in the possible
presence of confounders is based on running particle filtering
and Bayesian update. There are two groups of Kalman filters,
and they track H;, and 6, respectively. Both Kalman filters
use the estimated values of the confounder Z,. The particle
filter for tracking z;, on the other hand, uses the estimated
matrices ﬁt and @t to estimate the confounder time series.
The Kalman filter that estimates 8; will produce the mean of
the estimate, 8., and its covariance matrix, 3, which are then
used to determine the mean and variance of the desired partial
derivative of y; in terms of eq. (5). The detailed procedures
and related codes can be found in [18].

V. NUMERICAL RESULTS

In the experiments, we considered two different cases. The
first case has constant causal strength, while the second one
has time-varying causal strength of the confounder. To validate
that our model can detect the absence of a confounder, we
added an unrelated dimension to the confounder in Synthetic
Case 2 below. Both cases have only one time unit lag for the
sake of easy understanding.

Ny

A. Synthetic Case 1

Fig. 1. Diagram for Case 1. The symbol z; 1 is the hidden confounder while
x: and y¢ are observed.

The latent state z; contributes to both x; and y;, while x;
and y; are not connected. We generated 8,000 samples by

1

_ 12
7 1+ exp {15sm(¢/20)} (12)
Iy = —0.82.';_]_ + 0.5:{.';_] + €¢, (]3)
yg = 0.5z;_1 — 0.8y:_1 + v, (14)

where e; ~ N (0, 1), and v; ~ N(0,0.01). The first Tp =1,000
samples are pre-trained, and the remaining 7,000 samples are
used for real-time learning. Figure 2 presents the DCEs of y;
to the previous observations and confounder, which are
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Fig. 2. Case 1: The actual and estimated DCEs of the parent nodes
Yt 1, Tt 1,and 2¢ 1 to Y.

To make the lines smoother and more stable, we use moving
averages of the estimated DCEs, i.e., the means of estimated
DCEs among the rolling window with a fixed width. In
this paper, we set the width as 100 time units. From Fig.
2, the estimated derivatives dy;/0y;_1 and Oy;/0x; 1 are
both around the actual derivatives. Note that the x; and y;
have no connection. Our results show that the estimated DCE
Oy¢/Ox¢_1 is around zero, which implies that there is no
causal strength from the observed processes z; to y;. The
estimated latent states are not unique due to the unknown f
and g, but are identifiable up to scales, rotation, and mirroring
on account of the properties of random feature-based GPs
[6]. Consequently, we might not detect the real value of
casual strengths. However, from the cyan lines in Fig. 2, the
estimated DCEs of y; to the confounder z;_; are around -0.5
while the actual DCE 8y, /dz;_1 is 0.5. Although we cannot
determine whether the causation is positive or negative, the
results suggest that we are not far from the absolute value of
the DCEs.

B. Synthetic Case 2

Fig. 4. Diagram for case 2. z; is a two dimensional hidden process while x;
and y; are observed.

In this experiment, we studied a case where one of the
causal strengths is time-varying. The latent states z, effects
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Fig. 3. Case 2: The actual and estimated DCEs of the parent nodes
z: 1 and x; 1 to yi.

x, and both z; and x; effect y;, where x; and y; are known
while z; is unknown. We generated 10,000 samples by

2 =092, +05sin(2)) +ul, (15)
2 = 0.5sin(zY)) + 0.9z, +ul?, (16)
ze = 1.2z, —0.821%, +0.82,_1 +e, (17)
v = 042", +0.6z,_y + v, whent <2500, (18)
vy = 0.6z¢_1 + vy, when t > 2500, (19)

where ul), ul? ~ N(0,1072), and e, v, are both distributed
according to N (0,107%). The first Tp =1,000 samples were
pre-trained, and the remaining 9,000 samples were learned
online. Figure 3 shows the DCEs of y; to z;_; and z;_5. From
the figure, the estimated DCEs of dy;/dx;_; and dy; /8z3[2_]2
are around the actual values of the DCEs and are equal to 0.6
and 0, respectively. It is noteworthy that zt[g_]z is the second
dimension of the latent confounder with no effect to either
Iy—1 Or Yi.

Our results show that only one of the latent dimensions
effects the observations. The results suggest that our proposed
model can identify the dimensions of the latent confounder.
Moreover, Fig. 3 provides evidence that our method can also
estimate time-varying causal strengths. The actual DCE of
Aye /0=, should be 0.4 before ¢ < 2500, while it falls
to zero due to the sudden disappearance of causation, as
shown by (19). The cyan line in Fig. 3, representing the
estimated DCEs of Byt/aztl_]l, is significantly non-zero before
t = 2500 while converging to zero after the change point. The
estimated DCE cannot behave like the actual DCE that drops
to zero suddenly because the Bayesian structure stores past
information. One can expand our proposed Bayesian model
by [28] so that the learning rate or the forgetting rate can
be adjusted. The estimated latent states are identifiable up
to linear transformations, which causes the estimated DCEs
Byt/azﬁl_]l are also linearly transformed. In this case, the

actual DCE of dy, /921", is 0.4 before t = 2500, while our
estimated DCEs are around -0.4. We cannot guarantee that the



sign of causation is positive or negative, but the absolute value
of the DCE is estimated closely.

VI. SUMMARY

In this paper, we address the problem of detecting latent
confounders from observed multivariate time series. We apply
random feature-based Gaussian processes to (a) estimate the
unknown functions that describe the relationships between
the time series and (b) track the latent confounders in the
hypothesized system of time series. For estimating causal
strengths, we use the concept of differential causal effect. We
provide simulation examples that demonstrate the ability of
our approach to detect confounders.
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