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Abstract

Kernel methods provide an elegant framework for developing nonlinear learning algorithms
from simple linear methods. Though these methods have superior empirical performance in
several real data applications, their usefulness is inhibited by the significant computational
burden incurred in large sample situations. Various approximation schemes have been
proposed in the literature to alleviate these computational issues, and the approximate
kernel machines are shown to retain the empirical performance. However, the theoretical
properties of these approximate kernel machines are less well understood. In this work,
we theoretically study the trade-off between computational complexity and statistical ac-
curacy in Nystrom approximate kernel principal component analysis (KPCA), wherein we
show that the Nystrom approximate KPCA matches the statistical performance of (non-
approximate) KPCA while remaining computationally beneficial. Additionally, we show
that Nystrom approximate KPCA outperforms the statistical behavior of another popular
approximation scheme, the random feature approximation, when applied to KPCA.
Keywords: Principal component analysis, kernel PCA, Nystrom approximation, repro-
ducing kernel Hilbert space, covariance operator, U-statistics

1. Introduction

Principal component analysis (PCA) (Jolliffe, 1986) is an unsupervised learning technique
in which a random variable X taking values in R? is projected onto the direction a € R¢
such that Var[a' X] is maximized. Further, for some ¢ < d, PCA may be used to find
an ¢-dimensional subspace retaining the maximum possible variance of X, making PCA a
popular methodology for dimension reduction and feature extraction. This low-dimensional
subspace is the f-eigenspace, i.e., the span of the eigenvectors associated with the top /¢
eigenvalues of the covariance matrix EXX " — EXEX . The respective eigenvectors are
referred to as the principal components of the data, and a lower-dimensional representation
of the input data may be computed by projecting onto the principal components.

The principal components outputted by PCA are linearly related to the original co-
ordinates; however, in many cases a non-linear component provides a better description
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of the data. Kernel PCA (KPCA) (Scholkopf et al., 1998) is a non-linear extension of
PCA which maps the original data into a reproducing kernel Hilbert space (RKHS) (Aron-
szajn, 1950) where PCA is performed, resulting in principal components which are non-
linearly related to the original data. Specifically, for an RKHS H with reproducing ker-
nel £ : X x X = R, KPCA solves sup{Var[f(X)] : ||f|]l;, = 1}. Analogous to linear
PCA, the principal components in KPCA are the eigenfunctions of the covariance operator
Y = E[®(X) @y ¢(X)] — E®(X) @y E®(X), where ®(X) = k(-,X) is the feature map
and ®7; denotes the tensor product on H, defined as (f1 @y f2)g = (f2,9)4 f1 for any
f1, fo,,g € H. Similarly, an ¢/-dimensional representation of X is obtained by projecting
onto the f-eigenspace of Y. Kernel PCA has been employed successfully in tasks such as
image denoising (Mika et al., 1999; Jade et al., 2003; Teixeira et al., 2008; Phophalia and
Mitra, 2017), image/systems modeling (Kim et al., 2005; Li et al., 2015), novelty/fault de-
tection (Hoffmann, 2007; Samuel and Cao, 2016; de Moura and de Seixas, 2017), feature
extraction (Chang and Wu, 2015), and computer vision (Lampert, 2009; Peter et al., 2019).

Empirically, given X1,..., X, s P, the eigenfunctions of ¥ are estimated by those of

the empirical covariance operator

n

D (B(X0) — ©(X))) O (B(X:) — ©(X;)), (1)
i)

s__ 1
2n(n — 1)
yielding empirical KPCA (EKPCA). Though this may require solving an infinite dimen-
sional system, it can be shown (see Proposition 1) that the eigenfunctions of 5 can be
obtained by solving an n-dimensional eigenvalue problem, which has a computational re-
quirement of O(n?) and a memory requirement of O(n?). This means, EKPCA scales
quite poorly with large sample sizes, a behavior shared by many kernel methods. This has
lead to much research activity in constructing approximation methods which relieve the
computational burden. Nystréom method (Reinhardt, 1985; Williams, 1998) is a popular
approximation scheme, which uses a subsample of the original data to construct a low-rank
approximation to the Gram matrix K = [k(X;, X;)]; j, which in turn is closely related to 5.
More precisely, the Gram matrix K is approximated by K = K, K ! K|  where K,
is the matrix formed by randomly selecting m columns of K and K,,,, is the intersection
of those m columns and m rows of K. The approximate Gram matrix can be used in sub-
sequent learning tasks, resulting in computational saving for m < n. In the case of KPCA,
the computational complexity is reduced from O(n3) to O(nm?). Of course, the question
of interest is whether this computational saving comes at the cost of statistical accuracy.
In this work we establish the consistency of Nystrom KPCA (NY-EKPCA), and study the
relationship between statistical behavior and computational complexity.

1.1 Contributions
The contributions of the paper are as follows:

(i) In Section 3.2, we propose Nystrom empirical KPCA (NY-EKPCA), and demonstrate its
computational complexity. In Section 4, we compare the performance of empirical KPCA
(EKPCA) with that of NY-EKPCA in terms of the reconstruction error of the /-eigenspaces
in H. We show that NY-EKPCA matches the statistical performance of EKPCA with
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less computational complexity, provided the number of subsamples, m, is large enough,
and the number of eigenfunctions used in the reconstruction, i.e., ¢, is not too large. We
note that a similar analysis has been performed working with the uncentered covariance
operator (Sterge et al., 2020), that is, Y is defined as a V-statistic estimator where the
mean element is assumed to be zero (Ex.pk(-,X) = 0), ie., & = LS k(LX) @n
k(-, X;). This assumption of Ex.pk(-, X) = 0 is highly restrictive, as it is not satisfied by
virtually all common kernels, e.g., Gaussian, Matérn, inverse multiquadric, that induce an
infinite dimensional RKHS. However, if this assumption is relaxed, the resulting V-statistic
estimator, i.e.,

— k(. X;) Qu k(-, X;) — | — k(X)) | @y | — k(-, X;

LS ut ) - (23w e (13w )

is no longer unbiased. Since unbiasedness is crucial for a tighter analysis, we consider a
U-statistic estimator of ¥ as shown in (1) and develop the analysis based on a Bernstein-
type inequality for operator valued U-statistics, which we proposed in our earlier work
(Sriperumbudur and Sterge, 2022). Thus, the current work provides a non-trivial extension
to our previous results (note that the previous results in Sterge et al., 2020 deal with sums
of independent H-valued random variables unlike U-statistics that appear in this work) by
relaxing a significant assumption of Ex . pk(:, X) = 0.

(7) In Section 4.2, to foster a comparison with random Fourier features (RFF) approxima-
tion (Rahimi and Recht, 2008a; Sriperumbudur and Sterge, 2022), we study the performance
of NY-EKPCA in terms of the reconstruction error of the f-eigenspace in L?(PP). Compar-
ing NY-EKPCA with EKPCA and random feature approximate EKPCA (RF-EKPCA),
we show that NY-EKPCA again recovers the statistical performance of EKPCA with less
computational complexity. However, unlike in H where the number of eigenfunctions, /¢
used in the reconstruction cannot be too large, the result in L2(P) holds regardless of the
number of eigenfunctions, ¢, used in the reconstruction. Additionally, we show the Nystrom
approximation to be superior to that of the random features approximation by showing that
NY-EKPCA outperforms RF-EKPCA in terms of the reconstruction error while enjoying
better computational complexity—similar observation was already made in the context of
kernel ridge regression (Rudi et al., 2015; Rudi and Rosasco, 2017).

1.2 Related Work

The statistical behavior of EKPCA has been well studied. The statistical consistency of
EKPCA is established by Shawe-Taylor et al. (2005), where the reconstruction error of the
empirical f-eigenspace is shown to converge at the rate \/% Blanchard et al. (2007) and
Rudi et al. (2013) obtain improved rates for uncentered KPCA by considering the decay
rate of the eigenvalues of the covariance operator. Additionally, Blanchard et al. (2007)
shows m—rate for the excess reconstruction error of EKPCA with empirical recentering.
In Corollary 5, we show that EKPCA with empirical recentering based on U-statistics has
the same statistical convergence behavior to that of uncentered EKPCA as considered in
Rudi et al. (2013). On the other hand, the setting of our paper is different from that of
Blanchard et al. (2007), wherein ours deals with growing ¢ while the latter deals with fixed
f as n — oo.
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Outside of the Nystrom method, several other approximation strategies have been pro-
posed in the kernel methods literature. These include incomplete Cholesky (Fine and
Scheinberg, 2001; Bach and Jordan, 2005), random features (Rahimi and Recht, 2008a),
sketching (Yang et al., 2017), and sparse greedy approximation (Smola and Schoélkopf,
2000). These methods, including Nystrom, offer significant reductions in computational
complexity, and, empirically, have been shown to provide performance competitive to their
more expensive counterparts without approximation (Rahimi and Recht, 2008b; Kumar
et al., 2009; Yang et al., 2012). The theoretical analysis of the Nystréom method has primar-
ily concerned the distance between the Gram matrix, K, and its low-rank approximation
(Drineas and Mahoney, 2005; Gittens and Mahoney, 2013; Jin et al., 2013). Recent research
has focused on the impact of Nystrom approximation in specific learning tasks, allowing
one to observe the trade-off between statistical accuracy and computational complexity.
The supervised setting has been studied heavily (Bach, 2013; Alaoui and Mahoney, 2015;
Rudi et al., 2015), where it has been shown that Nystrém approximation can achieve best
possible statistical performance with better computational complexity. Significantly less is
known in the unsupervised setting; however, approximate KPCA has been studied (Lopez-
Paz et al., 2014; Ullah et al., 2018; Sriperumbudur and Sterge, 2022) using the random
feature approximation (Rahimi and Recht, 2008a).

Lopez-Paz et al. (2014) approximated the Gram matrix by a random feature based
Gram matrix and showed the operator norm of their difference to converge to zero at the
rate ny/(logn)/m as m,n — oo, with m being the number of random features. This rate is
too loose as m has to grow faster than n to achieve convergence to zero, which defeats the
purpose of approximation. Ullah et al. (2018) compared the ¢-eigenspaces (with ¢ fixed) of
EKPCA and its random feature version (call it RF-EKPCA) by comparing certain inner
product of the uncentered covariance operator with the difference between the projection
operators associated with f-eigenspaces of KPCA and EKPCA (resp. RF-EKPCA), after
embedding them all as Hilbert-Schmidt operators on L?(PP). Through upper bounds on these
differences of inner products, they argued that m = y/n random features are sufficient for
RF-EKPCA to have similar statistical behavior to that of EKPCA, thereby guaranteeing
better computational complexity at no statistical loss. However, the work lacks on two
fronts: (i) The comparison is made using only upper bounds on the performance criterion
(i.e., difference of inner products) and no matching lower bounds are provided to establish
their sharpness, which means the sufficiency of y/n random features is inconclusive, and
(ii) the criterion used for comparison has no clear interpretation. Using the reconstruction
error as a criterion, recently, Sriperumbudur and Sterge (2022) developed a comprehensive
analysis and showed RF-KPCA to have better computational complexity than EKPCA
with no loss in statistical performance. Similar type of results are shown by Sterge et al.
(2020) for Nystrom approximate KPCA, that it can yield computational benefit without
statistical loss; however, as mentioned in Section 1.1, this result hinges on the highly-
restrictive assumption that Ex.pk(-, X) = 0. As is the case in the present paper, Hallgren
(2021) also generalized NY-EKPCA of (Sterge et al., 2020) by relaxing the assumption of
Ex~pk(-, X) = 0, and provided excess-error bounds in the style of Blanchard et al. (2007)
in the fixed ¢ setting with a convergence rate of n=1/2. However, (Hallgren, 2021) does not
provide any details about the requirement on the number of Nystréom subsamples to achieve
this convergence rate and no discussion is provided on the optimality of this rate as well.
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2. Definitions and Notation

For a := (ay,...,aq) € R? and b := (by,...,by) € R% define ||a]js := \/Zle a? and
(a,b)y := Z?:l a;b;. a®yb:=ab' denotes the tensor product of a and b. I,, denotes an
n x n identity matrix and 1,, = (1,.7., 1)T. We define C,, = 1,, — %17112 and H,, = nC,,.
For a matrix A € R"*™ AT € R™*" denotes the Moore-Penrose generalized inverse of A.
a A'b:=min(a,b) and a V b := max(a,b). Define [n] := {1,...,n} for n € N. For sequences
ap and b, indexed by n € N, a,, < b, (resp. a, 2 b,) denotes that there exists a positive
constant ¢ (resp. ') independent of n such that a,, < cb, (resp. a, > 'b,). For a random
variable A with law P and a constant b, A <), b denotes that for any § > 0, there exists a
positive constant cs < oo such that P(A < ¢sb) > 6.

For z,y € H, a Hilbert space, x ® iy y is an element of the tensor product space H ® H,
and can also be seen as an operator from H to H since (z®pgy)z = x(y, z) g for any z € H.
a € R is called an eigenvalue of a bounded self-adjoint operator S if there exists an x #£ 0
such that Sx = ax and such an z is called the eigenvector/eigenfunction of S and a. An
eigenvalue is said to be simple if it has multiplicity one. For an operator S : H — H,
ISz mys 151 z2(ay and [|S]|goo sy denote the trace, Hilbert-Schmidt and operator norms
of S, respectively. R(S) and N(S) denote the range space and null space of an operator
S. L"(X,u) denotes the Banach space of r-power (r > 1) p-integrable functions. For

FeL™(X,m), |fllerg = ([ ]f\”du)l/r denotes the L"-norm of f for 1 <r < oo.

3. Kernel PCA and its Variations

We first start with an assumption that will be used throughout the paper.

Assumption 1 (X, B) is a completely separable space endowed with Borel o-algebra B. H
is an RKHS of R-valued functions on X with bounded continuous strictly positive definite
kernel satisfying sup,cy k(z,z) = k < 00.

The assumption that X is completely separable, also called second countable, ensures that
L™(X, ) is separable for any o-finite measure p on B and r € [1,00) (Cohn, 2013, Propo-
sition 3.4.5). Also, the second-countability of X along with the continuity of k£ guarantees
that H is separable (Steinwart and Christmann, 2008, Lemma 4.33), which in turn com-
bined with the bounded of k ensures k(-,z) : X — H is Bochner-measurable for all z € X
(Dinculeanu, 2000, Theorem 8 on p.5).

3.1 Kernel PCA in the population and sample

Kernel PCA (Scholkopf et al., 1998) is an unsupervised learning method in which classi-
cal PCA is performed on data which has been mapped to a reproducing kernel Hilbert
space. That is, kernel PCA (KPCA) finds f € A with unit norm such that Var[f(X)] =
E[f(X) — E[f(X)]]? is maximized. Using the reproducing property, we have Var[f(X)] =
E[(f, k(-, X))5, — (f, mp)y,]* with mp € H being the unique mean element of P in H, defined
for all f € H by

(fymp)yy = ELF(X)] = E[(f, k(- X)) = <f, [ e x)dP<x>>H , (@)
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where the last equality of (2) holds via Riesz representation theorem (Reed and Simon,
1980) and the boundedness of k, which jointly ensure Bochner P-integrability (Diestel and
Uhl, 1977) of k(-, X). Therefore, we may write Var[f(X)] = (f, 3 f),,, where

Y= / k(- z) @y k(-, z)dP(z) — mp @y mp (3)
X

is the covariance operator on H associated with P. Thus, the KPCA problem may be
expressed as

sup{(f, Xf )y : [ € M, || fll3 =1}, (4)

bearing a strong resemblance to classical PCA. In fact, KPCA can be seen as a generalization
of classical linear PCA, as taking H = R¢ with k(z,y) = 2"y yields classical PCA with
covariance matrix ¥ = E[XX ] — E[X]E[X]". The boundedness of k in Assumption 1
ensures that ¥ is trace class and thus compact. Since X is also positive and self-adjoint,
the spectral theorem (Reed and Simon, 1980) gives

= Z i@ @ bi,
el
where (\;);ier C RT and (¢;);es are the eigenvalues and eigenfunctions, respectively, of X.
(¢i)ier form an orthonormal system spanning R(X), where the index set I is either finite or
countable, in which case A\; — 0 as i — 0o. The solution to (4) is simply the eigenfunction
of ¥ corresponding to its largest eigenvalue. We make the following simplifying assumption
for ease of presentation.

Assumption 2 The eigenvalues (\;)icr of ¥ are simple, positive, and w.l.o.g. satisfy a
decreasing rearrangement, i.e., A\ > Ag > ...

Based on Assumption 2, the orthogonal projection operator onto the ¢-eigenspace of 3, i.e.,
span{(¢;)¢_,} can be written as

¢
PYS) = ¢i @ i (5)
i=1

The discussion so far corresponds to the population version of KPCA, i.e., when the
data-generating distribution P is known. In practice, the knowledge of P is available only
through a sample {X;}" , v, Therefore, performing KPCA in practice requires one to
replace ¥ in (3) with an estimate. In the vast majority of the literature (e.g., Schélkopf et al.
1998; Shawe-Taylor et al. 2005), the assumption mp = 0 is made and the corresponding
V-statistic estimator of X, i.e., % Yoy k(- Xi) @ k(+, X;) is used. However, the assumption
mp = 0 is quite restrictive as many popular kernels, such as the Gaussian, do not satisfy
this condition. Therefore, to make the setting and results more general, we make no such
assumption on mp; however, this relaxation causes the resultant V-statistic estimator to be
biased. To mediate the technical difficulties arising from a biased estimator, we consider
the following U-statistic estimator,

n

Z(k(7XZ) - k("Xj)) @n (k(-, Xi) — k('vXj))a
i#j

1

.1
2n(n —1)
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conceived from the following alternate representation of X:

S= g [ (k) = k) S (b)) dP(0) ().
XXX
Using the reproducing property, it is easy to verify that
— 1 n N
Var[f(X)] = mn—1) Z (f(X0) = f(X))" = <2f7 f>H
i#]

Therefore, substituting for 3 in (4) yields the objective of empirical KPCA (EKPCA):
sup {{£,S ) f €H, | fllp =1} (6)

Of course 3 is self-adjoint and positive. Also, the assumption of strict positive definiteness

of k (see Assumption 1) yields that rank(X) = n — 1 P-a.s. (therefore compact). Thus the
spectral theorem (Reed and Simon, 1980) yields

S=S N On b, (7)

where (/)\\i)?;f C RT and (qgi)?;ll C H are the eigenvalues and eigenfunctions of ¥. We
make the following simplifying assumption regarding the spectrum of 3.
Assumption 3 The eigenvalues of (Xi)fz_ll ofi are simple P-a.s., positive and w.l.0.g. sat-

18fy a decreasing rearrangement, i.e., Ay > Ao > ... P-a.s.

We would like to mention that the simplicity of the eigenvalues of S is not really required
for the results of this paper to hold. However, this assumption simplifies the notation
and proofs, and therefore for the sake of simplicity and clarity, we resort to the above
assumption. For any ¢ < n — 1, since (qu)le forms an orthonormal coordinate system in
H, it yields the following low-dimensional Euclidean representation of k(-, z):

2, d1) o (k) de) ) = (i), dlw)
H H

for any x € X. Moreover, following Assumption 3, the orthogonal projector onto span{ggi :
i=1,...,0} is given by

¢
PYE) = Zd)i Qn Gi. (8)
i=1
Though S is finite rank, its eigenfunctions are solution to a possibly infinite dimensional

linear system. The following result, quoted from Sriperumbudur and Sterge (2022), shows
that the eigenvalues of ¥ can computed by solving an n-dimensional system.
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Proposition 1 (Sriperumbudur and Sterge 2022, Proposition 1) Let (Xl,&)z be the
eigensystem of X1. Define K = [k(X;, X;); jein). Then

~ 1 &
bi = iZ%‘,jk(jo),

1 j=1

where v; = (Yig, -, Yin) = ﬁHnal with a; ¢ N(Hy,), and (/):Z, Q;); are the eigenval-
ues and eigenvectors of ﬁKHn

Since the eigensystem of S} can be obtained by solving an n x n system, finding (XZ, @)le
for £ < n has a space complexity of O(n?) and a time complexity of O(n?¢)-e.g., by partial
SVD methods such as Krylov subspace method (see Halko et al. 2011, Sections 3.3.2 &
3.3.3).

3.2 Approximate kernel PCA using the Nystrom method

For large sample sizes, performing EKPCA amounts to a significant computational burden,
motivating many approximation schemes. We explore the popular Nystrom approxima-
tion (Reinhardt, 1985; Williams and Seeger, 2001; Drineas and Mahoney, 2005) to speed
up EKPCA and study the trade-offs between computational gains and statistical accu-
racy. The general idea in Nystrom method is to obtain a low-rank approximation to the
Gram matrix K, and replace K by this approximation in kernel algorithms, resulting in
computational speedup. Since the eigenspace of KH,, is related to that of S (as noted in
Proposition 1), Nystrém method also yields a low rank approximation to i\], which is what
we exploit in developing Nystrom approximate KPCA. It follows from Proposition 1 that
the eigenfunctions of S lie in

Hy = fGH’f:Z nai—Zaj k(X)) :a=(ag,...,a,) €R
i=1 j=1

Thus, we could instead express the objective in (6) as an optimization over H,,, or equiva-
lently, over o € R™. Define a random subspace

7'_[7” = fG/H‘f:]z; <m,Bj _ZZ;/BI> k(')X’I‘j) :ﬁ: (ﬂl)"'aﬂm) CR

of H, where m < n indices {ry,...,r,} are sampled uniformly without replacement from
[n], yielding the subsample { X, }7.;. Nystrom KPCA (NY-EKPCA) optimizes the EKPCA
objective in (6) over H,,, that is, NY-EKPCA is the solution to the following problem:

sup {(£.5F), + 1€ Hums Il =1} ©)

The following result, whose proof is presented in Section 6.1, shows that the solution to (9)
is obtained by solving a finite dimensional linear system, which has better computational
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complexity than that of EKPCA, provided m < n. To this end, we first introduce some
notation before stating the result,

Km= [k(XTﬁXTz)}j,lE[m] € R™ ™, Ky, = [k<Xi7X7"j)]i€[n],j€[m] e R™™,
and K,,, = Kgm.

Proposition 2 Define the m x m matric M = K;%QKmanKan;%Q. The solution to
(9) is given by .

é1 = Sp K 2y,

m mm
where up = (u11,...,U1m) is the unit eigenvector of ﬁM corresponding to its largest
eigenvalue, denoted Ay and g:n R > H, B— ZTZl Bik (-, Xr;)-

The complexity of computing M and its eigendecomposition is O(m?¢ +nm? 4+ m3)—e.g.,
by partial SVD methods. Therefore, for m < v/nf (i.e., m = o(v/nf) as n,{ — o), the
complexity of solving (9) scales as O(nm?), which is a reduction from the O(n?¢) complexity
of solving EKPCA. It is worth noting the connection between our Nystrom approximation
to KPCA and the traditional Nystrom approximation of Williams and Seeger (2001) to the
Gram matrix, given by )

K = K., K, Kpn.

Observing
Mu = K /2K, H, K, K- /20 = n(n — 1)Au
— KH, K, K;!/?u=n(n—1)2K,,, K/ u,

it is clear that KH,, will have the same eigenvalues as M. All eigenvalues of KH,, and M
will be positive as

u' Mu <K;1%2KmanKan;L%2u, u>2

m=Tmm

=n(n—1) <i§* K_l/Qu, g:nK;n%2u>H > 0.

We will make the following simplifying assumption on KH,, and its eigenvalues:

Assumption 4 The eigenvalues (5\1)?;_11 0 nl(ili’i) are simple P-a.s., positive, and w.l.o0.g. sat-

isfy a decreasing rearrangement, i.e., \y > Ag > ... P-a.s.

As shown in the proof of Proposition 2 (see Section 6.1), (gZ;Z)ZN form an orthonormal system.
Thus, for some ¢ < m, the orthogonal projector onto span{(¢;)‘_,} is given by

¢
=1

One may ask if ¢~)1 is the eigenfunction of some operator. Denoting P,, as the orthogonal

projector onto H,,, since Sy, : H — R™, f = (f(Xp), F(Xrp),- .-, f( X)) T, it can be
shown (see Section 6.2) that

Pm = ~;an_Im(HmI<mmHm)+Hmgm7 (11)
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and that (&Z)z are the orthonormal eigenfunctions of Pmipm with corresponding eigenvalues
()\1)27 that iS, L o
PnXPndi = Nidi. (12)

Therefore, we may think of pmflpm as a low-rank approximation to 5.

4. Computational vs. Statistical Trade-off

In this section, we explore whether the computational saving achieved by NY-EKPCA is
obtained at the expense of statistical performance. We measure the statistical performance
of KPCA, EKPCA, and NY-EKPCA in terms of the reconstruction error, which is detailed
below.

4.1 Reconstruction error in H-norm

In linear PCA, the reconstruction error defined as

2

2
Ex~p

V4
(X =) =D (X = i)y

=1

= Exp (X = 1) = PO)(X - )
2

27

is the error involved in reconstructing a centered random variable X by projecting it onto the
(-eigenspace (i.e., span of the top-¢ eigenvectors) associated with its covariance matrix, 3 =
E[XXT] -E[X]E[X]T through the orthogonal projection operator P*(X) := Zle b; Q2 O;.
Clearly, the error is zero when £ = d. The analogs of the reconstruction error in KPCA,
EKPCA and NY-EKPCA, can be similarly stated in terms of their projection operators,
(5), (8), and (10) as follows:

R(S) = Bxep |, X) = me) = PUSY(KC, X) = me) |
R(S) = Exp (5 X) = me) = PG, X) — )| (13)
Ru(5) = Exp [[ (5, X) — mp) = B )k, X) — 7). (14)

In (13) and (14), we center with fp := 2 3" | k(-, X;) to ensure that the low-dimensional
representation of the reconstructed random variable is computable in practice, as the mean
element mp is likely unknown. Throughout the rest of the analysis we will drop the X ~ P
subscript, and assume expectations are with respect to X ~ P unless otherwise noted. The
following theorem, proved in Section 6.3, provides a finite-sample bound on the reconstruc-
tion error associated with NY-EKPCA, under uniform sampling, as well as a new result for
centered EKPCA, from which convergence rates may be obtained.

Theorem 3 Suppose Assumptions 1-4 hold. For anyt > 0, define Nx(t) = tr(S(X+¢I)71)
and N¢ oo (t) = sup,ex (k(-, 2), (C + tI)_lk‘(',a:)%{, where C = [ k(-, x) @y k(-, z)dP(z) is
the uncentered covariance operator. Then the following hold:
(1)
RY(Z) =D\

>0

10
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(ii) For any 0 <8 <% n>2log2 and 1495 ]og 165n < ¢ < 12 2oo (20

_27

~ 32k log 2
P {Z A < RUS) < 3N () (har +1) + “gé} > 1 56,

n

(iii) For any 0 < § <

32k log 2
{ZA <R (S <6N2()(Ag+1+9t)+“;g5} >1— 116,
>0

provided the following conditions are satisfied:

1. (M0 1og 16mn \ 95 g 1) < f < 120 oo 20y A NCl oo (309

2. (67\/ 5NC,0o (1)) log 22 v 105 160 &
3. 2log 2 5

Remark 4 Since X is trace-class and Ny — 0 as { — oo, it follows that RY(X) — 0 as
{ — oco. The rate of this convergence may be analyzed after making assumptions on the
decay rate of (A;)i, which will be presented in the upcoming corollaries. The behavior of the
empirical versions (of KPCA) depends significantly on t and Nx(t). Nx(t) is referred to as
the effective dimension or degrees of freedom (Caponnetto and Vito, 2007), which measures
the capacity of H. Upon making assumptions regarding the decay rate of (\;);, the size of
N (t) can be quantified and convergence rates for RY(S) and Rflys(A) can be obtained. The
upper bounds for Re(A) and Rf;ys(A) are equivalent up to constants; however, the conditions
imposed on m and t in (iii) will dictate whether this behavior of Rnys(i) may be achieved
with a reduced computational complezity (m < n). We also would like to highlight that the
results presented in Theorem 3, which are obtained for the U-statistic estimator ) of the
centered covariance operator, 3, matches up to constants, the results in Theorem 2 of Sterge

et al. (2020), which were derived for the uncentered covariance operator, C.

The following corollaries derive convergence rates from the bounds in Theorem 3 under
the polynomial and exponential decay assumption on the eigenvalues of .

Corollary 5 Suppose Ai=* < \; < Ai™® for some o > 1 and 0 < A < A < oo. Let
= ng, where 0 < 8 < a. Then

(1)
_H(I—é) 5 RZ(E) 5 n—e(l—é).
There exists an N € N such that for all n > N, the following hold:
(i) 1
n 03 h<i1
1-1 ;
<logn) o 7 0>1

n

n- (1fl)<R( ) <pn

11
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(iii)

1
11 .o n=00-3), 6 <1, m>n’logn
n- (=) 5 Rnys(2> ’S]Pm logn 1_é > _n n
(T) , 021,m2 enlog gy

Remark 6 (i) Of course, a > 1 is required to ensure that X is trace class. Observing (ii)
and (iii) of Corollary 5, we see that the convergence rates of R(X) and Rﬁys(E) rely heavily

on the growth of ¢ through 6. Comparing Rz(i) to RY(X), EKPCA will match the conver-
gence rate of KPCA provided ¢ does not grow faster than n*/®. We note that 0 < 0 < 1
1s the only sensible regime both computationally and statistically, as 0 > 1 increases the

1
computational complezity while the rate plateaus at (log n/n)l_a.

(ii)) When 6 < 1, the convergence rate of Rﬁys(i) is equal to that of RY(X) and R'(S),
provided m > n’logn, i.e., if £ grows to infinity not faster than n'/® and the number of
subsamples m grows sufficiently fast, then NY-EKPCA and EKPCA enjoy the same statis-
tical behavior. From a computational perspective, the computational complexity of EKPCA
is O(n2+%), while the complexity of NY-EKPCA is O(nm? + m?2¢) = O(nm?). Thus, NY-
EKPCA will offer a computational advantage with no loss in statistical performance, if
0 < % + %, i.e., 0 < 52%5. This means NY-EKPCA has better computational complexity
and same statistical rates for 6 < 5% while it loses the computational edge with no loss
in the statistical behavior when 5> < 6 < 1. Note that the first few principal components
are often the greatest interest in practice; thus, the case 8 < 1 may be more relevant in

applications.

Corollary 7 (Exponential decay of eigenvalues) Suppose Be™™ < \; < Be ™ for
>0 and B,B € (0,00). Let { = Llogn? for 6 > 0. Then

(1)
n~? <RYZ) <n7f.

There exists an N € N such that for all n > N, the following hold:

(ii)
n~%logn, 0 <1
n~1(logn)?, 0>1

)

n~? < RYE) <pn {

(iii)
n’ SR n
logn

/ (i) < n~logn, <1, m>n’logn
nysi &) ¥ n~1(logn)?, 0>1,m2 5 log

Corollary 7 shares similar behavior to that Corollary 5 as discussed in Remark 6 but yields
faster rates than in Corollary 5 because of the faster decay rate of eigenvalues. We do not
include the proof of Corollary 7 in Section 6 as it is very similar to that (Sterge et al., 2020,
Corollary 4.3).

12
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4.2 Reconstruction error in L?(P)-norm

While defining the reconstruction error of NY-KPCA in H is the most natural construction,
we additionally study the reconstruction error of NY-KPCA in L?(P) to allow for comparison
with another popular approximation based on random features. Random feature approxi-
mation (Rahimi and Recht, 2008a) computes a random low-dimensional approximation of
the kernel, which is then used in place of k in learning methodologies to achieve reduced
computational complexity. To elaborate, suppose

K(z,y) = /@ (. 0)(y, B)AA(6),

where ¢(z,-) € L*(©,A) for all x € X and A is a probability measure (w.l.o.g.) on a mea-
surable space, ©. For a random sample (6;)" o A, the random feature approximation
to k is constructed as

1
m

k(2 9) = — > 0(2,0,)¢(y, 6:) = (D (), P (y))5
=1

where ®,,(z) = ﬁ (go(x,@l),...,w(x,em)))T is the approximate feature map, i.e., an ap-

proximation to the canonical feature map, ®(z) := k(-,x). It can be shown (Sriperumbudur
and Sterge, 2022, Section 3.3) that k,, is the reproducing kernel of an m-dimensional RKHS,
denoted H,,, which is isometrically isomorphic to R™. Random feature KPCA (RF-KPCA)
involves solving

argsup { (f,Smf)y,, : € Hon I flla, =1}

where

= /ka(-,x) D, Fom (- 2)dP() — </X km(.,a;)dp(x)> D, (/X km(-,x)dJP’(x)) ,

is the approximate covariance operator on H,, induced by k,,. Note that RF-KPCA is
exactly KPCA but with ¥ and H being replaced by their approximate counterparts, i.e.,
Ym and H,,, respectively. This means, the solution to RF-KPCA is the eigenfunction
that corresponds to the maximum eigenvalue of ¥,,. The empirical version of RF-KPCA,
referred to as RF-EKPCA, involves solving RF-KPCA with X replaced by its U-statistic
estimator

1 n

Sm = m(n—1) D (B, Xi) = k(- X5)) @3, (i (-, Xi) = k(- X5)) -
i#£]

Note that the computation of top-£ eigenfunctions, (q@m,i)le C Hum, of &, by RE-EKPCA
has a computational complexity O(m?2¢ 4+ m?n), an improvement upon EKPCA provided
m < vVnl, i.e., m = o(v/nl) as n,{ — oo. The orthogonal projection operator

¢
Pip(En) =) bmi @iy b
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may then be used to compute a low-dimensional representation of X; € X (see Sriperum-
budur and Sterge, 2022, Section 3 for details). We emphasize that in Nystrom approxima-
tion, m is the number of subsampled indices, while in random features, m is the number of
random features sampled.

Unlike NY-EKPCA, where the eigenfunctions reside in H, the eigenfunctions ((Eml)Z
lie in H,,. Therefore, the reconstruction error of RF-EKPCA in H-norm is ill-defined. To
remedy this issue, Sriperumbudur and Sterge (2022) proposed a reconstruction error named
Reconstruct and Embed (R-E), in which elements in H and H,, are mapped to a common
space, L(PP) through the inclusion and approximation operators,

J:H - L*P), f— f— fe,

and

A:Hy — LA(P), f= ZBMHZ@ i —pip) = f — fe,

where ;p == [ pi(z) dP(z), ¢; := ¢(-,6;) and fp = [, f(x)dP(z). As the name suggests,
the functions are first reconstructed in ‘H based on principal components and then embedded
into L?(P). Formally, the reconstruction error for KPCA in L?(P) is defined as

T/(8) = B [3(h(, X) — me) ~ 3P (D)(k(-, X) — me) |

L2(P)

We refer the reader to (Sriperumbudur and Sterge, 2022, Sections 4.1 and 4.2) for details
about the properties of R-E. In the following, we analyze the behavior of NY-EKPCA
w.r.t. R-E and compare it to that of RF-EKPCA. To this end, the R-E reconstruction
errors for EKPCA, RF-EKPCA and NY-EKPCA are defined as

7'(8) = E [3(k( X) — mz) ~ 3P/ S)(k(, X) — g

L2(p)’
R R 2
T74(Em) = E|[3(k(-, X) — mp) — AP (Em) (ki (-, X) — mp’m)‘ L2(p)’
- R 2
¢ _wll~ ¢ m
Th,0(£) = B[00, X) = me) = TP (E)k(.X) = s)
respectively, where mp ,, = %Z? 1 km(+, Xi). Of course, || ||L2 is weaker than |-, so

naturally we can expect better error behavior of nyS(A) when Compared with RnyS(A)
However, a more interesting comparison is between TgyS(A) and Tff( ). To facilitate this,
we first present the following result, which gives finite sample bounds on T¢(X%), Tg(i) and
T/ (Sm).

rf

Theorem 8 (Sriperumbudur and Sterge 2022, Theorem 6) Suppose Assumptions 1-
4 hold. For anyt > 0, define Nx(t) = tr(3(Z + t1)~1). Then the following hold:

(i)
=> A

>0

14
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(ii) For any 6 > 0 with n > QIOg% and %logm% <t < HZHLOO(/H)

64r2 log 2
m ST S TUS) < ONs(t) eys + 1) + ———28 % > 1 - 35,

n
>l

(iii) Suppose m random features are sampled i.i.d. from a probability measure A. For any

2 1024 2 14 1 1
0 >0,n2>2logs, m > (2\/ Z(;;\ZQ)logg and %bg%\/%ﬁ“log% <t <
121 oo (24

3 , with probability at least 1 — 120 over the joint measure P™ x A™:

640k log % N 256r7% log %
3n m ’

1 ~
1 D A S TH(Sm) < 16241 () (Megr + ) +

>0

2
where A (t) :== Nx(t) + 16’123 5 SHNzt(Ttrz log 2 :

We must note that unlike (7)-(7i), the probability statement in (4i) is with respect to a joint
measure, as it must consider the randomness introduced by the random features. In light

of the previously presented result, we now present an analogous result for NY-EKPCA in
L?(P)-norm.

Theorem 9 Under the same assumptions as in Theorem 3,

32k%log 2
{E A2 <TL(S) < 36N () (A1 + 9 + W} > 1119,
n
>0

provided the following conditions are satisfied:

1 (B2 log 57 v S log §) <t < |8 oo gzgy ANIC oo

2. m > (67V 5Ncoo(t))log 35 v 1405 Jog B
3. n2210g%.

Remark 10 (i) Comparing Theorem 9 with Theorem 8(ii), we note that the bounds for
EKPCA and NY-EKPCA are identical up to constants, similar to the case in Theorem 3.
Compared to their counterparts in Theorem 3, Tg( ) and Tf;ys( ) have similar dependence
on the effective dimension, but a squared dependence on Ap+1 and t—in contrast to a linear
dependence in Theorem 3. This is a byproduct of working with the L*(P)-norm, which is
weaker than the RKHS norm, and therefore will result in faster convergence rates, as will be
evident in Corollary 11. Additionally, T*(X) will decay as £ — 0o more rapidly than RY (%),
as it depends on the sum of squared eigenvalues. The error in estimating the mean element
is mot improved in the move to L?(P)-norm; it is bounded as n~! in all of the empirical
varieties regardless of norm.

(ii) An immediate difference between NY-EKPCA and RF-EKPCA is the dependence on m.
This difference can be seen in both the upper bounds of Tff(Em) and T, (2), as well as the

nys

15



STERGE AND SRIPERUMBUDUR

size requirements on m. This is primarily due to the approximation error incurred by RF-
EKPCA, which approzimates H with an m-dimensional RKHS. Of course, this dependence
on m is crucial in analyzing the computational vs. statistical trade-off between the two
methods.

The following corollaries specialize Theorems 8 and 9 under the polynomial and exponential
decay assumption on the eigenvalues of X.

Corollary 11 Suppose Ai~® < \; < Ai™® for some o > 1 and 0 < A < A < oo. Let
6
f=n«, where 0 < 0 < a. Then

(i 1

n729(17i) SJ TE(E) SJ n720(17%).
There exists an N € N such that for alln > N, the following hold:

(i)

(iii)

—20(1— 5L 0
W) ST (S) g {0 O <mepmRatlen
~ Tnys ~ %’ QZﬁ,man*l Iogn )
(iv)
—20(1—L Y
=200 2 ]l{n,>9(2 Lyl §Trf(2m) N

_op(1— L
n~200-35) 729(2_5)79<2aa_1
_ 1
n=7, Y<1A0(2-2)

where m =n" for 0 <y < 1.

Remark 12 (i), (ii), and (iv) of Corollary 11 are quoted from Sriperumbudur and Sterge
(2022, Corollary 7).

(i) We first highlight the difference between the L*(P) and H norms through the comparison
of Corollaries 5 and 11. T*(X) decays at a rate ofn_%(l_i%), which is faster than that of its
analogue in H-norm, i.e., RY(X). While R*(X) and Rflys(E) recover the optimal convergence
rate (compared to KPCA) in the range 6 < 1, TY(Z) and Tﬁys(i\]) are only able to recover
the optimal rate for 0 < 5. The % term, which arises due to the empirical recentering,

is never dominant in RY(S) and Rﬁys(i); however, it can dominate in T*(S) and Tf;ys(f‘,)

depending on the range of 0.

(ii) Observing Te(fl) and Tf;ys(f}) we see that, as in Corollary 5, NY-EKPCA and EKPCA
have similar convergence behavior, provided m is large enough. Therefore, it follows from
Remark 6, that in both H and L*(P), NY-EKPCA will provide less computational cost with
no loss in statistical performance compared to EKPCA. However in L*(P), unlike in H,

16
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NY-EKPCA is computationally advantageous than EKPCA regardless of the size of 0.
(iii) When 0 < 5%, both RF-EKPCA and NY-EKPCA achieve the optimal convergence

rate of n_29(1_i), but with NY-EKPCA being more computationally efficient than RF-
EKPCA. This is because, in this regime, RF-EKPCA scales as O(n'T27) and NY-EKPCA
as O(n'*20) with v > 6(2 — é) > 0. In the range 0 > 5%, NY-EKPCA achicves faster
convergence rate of %, while RF-EKPCA converges as n~" with v < 1. Further, in this
range of 0, NY-EKPCA will offer less computational cost for v > %=, as RF-EKPCA

20—17
2a
scales as O(n'*t27) and NY-EKPCA as O(n'"2a-1). However, we would like to warn that
these comparisons are made based on only lower bounds on m and it is not clear whether
these bounds are sharp.

Corollary 13 Suppose Be™™ < \; < Be™ ™ for 7 > 0 and B, B € (0,00). Let { = %10g n?
for 0 > 0. Then

(i)

n729 S TE(Z) SJ n720'

There exists n € N such that for all n > n, the following hold:

(it)
- —20 <
n—?@ S TZ(Z) SJ]P’" {Tll IOg n, Z >~
= >

n’

DO — D=

(iii)

- 1
n 2 STE(E) Sen #logn, 0 <3, m2n’logn
~ tnys ~ 10gn’ 9>%,mz\/ﬁlogn

n

(iv) For 0 <~ <1 and m=mn?,

n~*logn, ~v>26,0<
n7, ¥<20,7<1

N |—

”_20]1{@29} Sam Trgf(im) Sprxam {

5. Discussion

We have studied the trade-off between statistical accuracy and computational complexity
in Nystrom-based approximate kernel PCA. While it is clear that Nystrém kernel PCA is
computationally advantageous to EKPCA for Nystrom subsamples m < n, we have showed
the error in reconstructing k(-, X) in H using ¢-eigenfunctions in Nystrom kernel PCA to
be statistically optimal, provided m is large enough, and ¢ small enough. Additionally, the
size of m depends on the number of eigenfunctions ¢; larger ¢ requires more subsamples to
achieve the best possible statistical behavior. Unlike several existing theoretical works on
kernel PCA, we derived these results by not assuming the mean element of k to be zero.
Further, we adapted our notion of reconstruction error to the L?(P) setting in order to
compare Nystrém kernel PCA with random feature-based kernel PCA. In L?(P), we showed
Nystrom kernel PCA to achieve the best possible statistical behavior, while maintaining its

17
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computational edge regardless of the number of eigenfunctions, ¢. In comparison to random
features, we showed Nystrom KPCA to require fewer Nystrom samples than the number of
random features for RF-EKPCA in order to achieve optimal statistical rates. However, we
express caution that this observation is based only on lower bounds on m and the sharpness
of these bounds have to be established. Further comparison to random features could be
explored by considering alternative definitions of reconstruction error in L?(P) as proposed
in Sriperumbudur and Sterge (2022).

While this work considers only plain Nystrom, that is, choosing subsamples uniformly,
it is possible to choose these subsamples with probabilities proportional to their individual
leverage scores, defined as the diagonal entries of the matrix (K + ntI,) K. Considera-
tion of Nystrom subsampling according to the leverage scores has yielded success in kernel
ridge regression (Rudi et al., 2015; Alaoui and Mahoney, 2015), where it has led to relaxed
requirements on the size of m necessary to achieve best possible statistical behavior. Thus,
the computational benefit provided by Nystrom is more pronounced when points are sam-
pled according to the leverage score distribution. Though leverage score sampling has been
studied successfully in uncentered Nystrom KPCA (Sterge et al., 2020), the U-statistic esti-
mator considered in this work introduces significant technical challenges, and so is relegated
to future work.

6. Proofs

In this section, we present the proofs of the results of the paper.

6.1 Proof of Proposition 2

Note that any f € H,, can be written as S;Hma for some v € R™. Then the objective in
(9) can be written as

O Gk S G _ 1 Gk * Gk
(r Ef>H = (S Hna, ESmHma>H = oD (SnHna, SanSnSmHma>H
1 . . o
= T (S5 Hnar, H,SnSHna) = ——— 1) (Ko Honer H K B,
1
= —— (K Hn Ky Hy, aHm )

where we have used Lemma A.7 in several steps. Similarly, the constraint in (9) can be
written as

Hng_[ = HS”;HmaHi = <§;Hma, S’:;Hma>H = <§m5’;Hma,Hma>2

2
= (KpmHpo, Hpa), = HK%E,LHmaHQ

which also follows from Lemma A.7. Thus, we may express (9) as

sup (KmnnHp Ky Hpo, Hyp o),

ackm  n(n—1
1/2 _
it -

18
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Let u = K}n/%Hma, and the above problem may be written as

1 1
Sup 1) <KmanKan;%2u7 K%%2u> = sup ————u"Mu,
ueR (K2 H,,) n(n—1) weR(KY2ZH,) n(n —1)
u'u=1 uTu=1

where M := K;%QKmanKanfn%Q. The solution to the above problem is the unit
eigenvector of ﬁM corresponding to its largest eigenvalue; denote this eigenvector as

u; with eigenvalue 5\1. We then have H,,,at; = Kfn}ful yielding the function in #,,,

—-1/2

solving (9). Subsequent eigenfunctions éz may be computed in a similar manner from the
eigenvectors of Tl )M and the orthonormality of the {d)z}l follows from the orthonor-
mality of the {u;};, i.e.,

<¢27¢]> < me}n/zQuza S;kn m%2u]>2 <K 1/21<mm]E<_ /2 uz,u]>2 == 5z]
6.2 Proofs of (11) and (12)
(11) is immediate because H,, = R(S;,H,,) and
H,,5,5 H,, = H, K, Hyp,.

To verify (12), because ¢; € H,, for all i € [m], we have

o~ - ~ ~ 1
PnSPndi = PuEi = s P HaSh S Kt
1
= 8} Hy (H K Fl ) T Hp S, S H S, S K 2
n(n—1)""
1
_ S Hoy (L K Ho) T H K Hy K K 20
n(n—1)""
1

- mé;ﬂm(HmemHmﬁHmK},{;Mui
which follows from Lemma A.7, thereby completing the proof.

6.3 Proof of Theorem 3

For notational convenience, we define k(-, X) := k(-, X) — mp.

(7) From Lemma A.6, we have

R(%) = ||(7 - PA(2)st?)

;(H) = tr ((I ~ PYE)(I - P‘(z))) =3 .

>/
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(ii) Upper Bound: We write
R(E) =B | (k- X) = mp) ~ PAE) k(- X) = e)||
_EH (I — P EDk(, X Hj{+ ‘)Pf(i)(mp—mp)Hi
2B ((I — P"(E))k(, X), P'(E)(mp - p) )
_ H - P'S) 21/2H +HP@(§)(mp—ﬁw)Hi, (15)

®

where the last equality holds because E[k(-, X)] = 0 and we have employed Lemma A.6.
For any t > 0 we have

—~ —~ ~ 2
= (I = PEENE + tDY2(E +tD) Y2 + tDY2 (2 1 t1)"1/201/2
L2(H)

< H(E + tI)—1/221/2H;(H) H(i F D)2 (s 4 tI)I/QHZOO(H
x| - PUENE + tz)l/QH;(H

) ~ 2 ~
< Nx(t) H(Z ) Y(E 4 tI)l/QHLOO(”H) (Mog1 + 1), (16)
where we have used

H )" 1/221/2H — tr (21/2(2+t1)—121/2) = Nx(t),

L2(H)

which holds via invariance of trace under cyclic permutations, in (f). The result follows
from applying Lemma A.1 to (16) and Lemma A.3 to (B), noticing that

®<|re),

—~ 2 ~ 2
mp — m < |lmp —m .
. )H p — mpllz < [lmp — me|ly,

Lower Bound: It is clear from (15) that RZ ) > (A). We will show that

- gt oo

L2(H)
where Py = Zle Y; @34 1; and

= {0ty CH s (i) = 0. Vij € (A}
which in turn implies that (o) > R*(Z). We have

W>am”ﬂ&(:“PWU—&MLﬂmvﬂ:ww—mMH

= A= (Puts D) gy - (17)

1>1
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Clearly the Lh.s. of (17) is minimized if and only if <P¢7E’E>L2(H) is maximized over Q,
which occurs only when 1; = ¢;, yielding (Py ¢, ) - ) = Zle i

(ii7) Upper Bound: We first establish notation for the uncentered covariance operator,

C = /k ) @ k(- 2)dP(),

and its empirical estimate

Zk‘ ®?—Lk )

which will be necessary for our upcoming analysis. We decompose the reconstruction error
as
2

~

R}, (8) = E | (6, X) = me) = Plyo(£)(k(- X) — )|

H
2

=& (1 = BL.ENEC X + [P S me — )|

© ©®

2B (I = Plyo(S)k(, X), Plyy(S)(mp - mie)) . (18)

H

Now E[k(-, X)] = 0 implies the third term in (18) is 0. (D) can be bound by writing

®<| P

and applying Lemma A.3, yields

2

)|, Ime = wpl, < lme - wpl
M g (m) B

{®32/€10g6}>1_d (19)

Regarding (C), for any ¢ > 0, we have

= - PﬁyS(i))Ew‘;(m
= ||({ - Pﬁys(i))@ﬂ[)m(i+t[)—1/221/2‘;(H)
< |- Pﬁys(i))(i—i—tl)l/QHQ H S 4 tl)” 1/221/2’62( .
L Pfy@”@*”)”\\;m)H@+tf>—1/2<z+u>”2H;<m
x H(z + tI)—1/221/2’ 2::2(%)
D onu(t H [ PL(S) (EHI)UQHL(H)’ 0
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where we have used Lemma A.6 in (x) and Lemma A.1 in (f). For convenience, we now let
3 = ¥ 4+ tI. Observing the last term, we have

- s e
< (=Pl L + P - PEIE >

- S o] (o)

L£o0(H)

nys

£ (H)
e N iy e RV
©
ZQC)+2MI.%w@DRﬁj3U Pays(S ‘Lw
<2E)+ 2|1 = Py E)PaSPall = Pyu(®)| .
+2t‘(I Pl (2)Pr(I — Pﬁys(i))ch(H)
< 2(C)+2 (5\@“ + t) : .

~

where we have used R(P., (X)) C R(P,,) in (21), and (22) holds because P’ (£) projects

nys nys

onto the (-cigenspace of P,,SP,,. Lemmas A.5 and A1 (iit) give

P" {@ < St} > 1 - 46. (23)

Continuing, we have

- - ~ ~ (1) 1 - ~
Nwt 1< [Npag — A ) t<7H(K—K) Nes1 4t (24
1< A = A F A+ < noi=1) foogmy T T (24)

where () uses the Hoffman-Wielandt inequality (Bhatia and Elsner, 1994) because Mgt
(resp. )\g+1) is an eigenvalue of KH,, (resp. KH,). Letting P, to be the orthogonal
projector onto span{k(-, X,;)|j € [m]}, it is easy to verify that P, = S KL S, (Rudi
et al., 2015, Lemma 1). Using SHS’;I = Ky, which follows from Lemma A.7(ii), we have
the expression

K=K, K ! K, =55 K.\ 5, 5 =8,P,S".

mmm

Thus, we may write,

. p o
[(K-r)m, <R Tl iy = ST = P8 o
—n||([ Pn)SpSn(l _Pm)HLOO(H)
= n?||(I = Pn)Cn(I — Pm)||£°°(7—[)= (25)
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where we have used Lemma A.7(iv) in (25). Proceeding,
(25) = n2||CY2(I - B,y) 01/2H
L£2(H)

<n? C}L/Q(C'*'U)_I/QH H (C+en) (1 =P )H[,OO(H)

<n?|ci2c, + tI)—l/QHEOO(H) H(C” D)V (C + tI)—l/QHmo(

x||(c+ery 2 - Pm)H;(H)

§n2H(Cn+tI)1/2(C’+tI)_1/2H2 Hc+u)1/2(z P)HLOO(H). (26)

Applying Lemmas A.2 and A.4 to (26) and Lemma A.1(iv) in (24) gives

Int 3

{)\f—H +t < m + 5()\@4_1 + t)} >1—44. (27)

Combining (27) with (23) in (22) gives
H (I—P. () +tI)1/2H2 <27t 4+ 31 b > 1 — 83 (28)
sl L£o(H) ~ - ’
where we note that 25 < 2 for n > 2. The result follows by combining (28), (20), and

(19) in (18).
Lower Bound: Using (18) we have

A 2
B =@+ @ = | (7= Pr) 2

L2H)

Since we have shown in (4i) that

I

R{(SZ) = inf H(I Pw)zm‘c?(ﬂ)

{¥i}i€Q

the lower bound follows immediately.

6.4 Proof of Corollary 5
(i) From Theorem 3 (i) we have

“Yns Yo g / roda S 0% = n 00D,

(4 >4

Similarly,

D R S B T

i>e i>0 £+l
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(77) Theorem 3(ii) and (Sriperumbudur and Sterge, 2022, Lemma B.9) yield
a 1
RS on 7200 4 ) + 2,
n

for lo% <t <1 where we have used \y <07 =n"% Nowif 0 < 1

inf{t_l/“( S UL PP 1} <po0-2) 4 1
n n
and for 6 > 1
a—1
1 1 1 a1
inf{t—l/a( R ogn <t§1} < < ogn> WL
n n n n

yielding the result.
(ii1) Theorem 3(74i) and (Sriperumbudur and Sterge, 2022, Lemma B.9) yield
_ _ 1
Rey Soe 70000 4 0) 4 L
with 10% St<landm 2 (2 VNeoo(t)) log 3. Since Nooo(t) < 1, we have m 2 log 1,
and the result follows as in (7).

6.5 Proof of Theorem 9

Upper Bound: We have
2

74,0 (5) = & |95 X) - 3P ) ) - o)
—E[a(r - Pﬁys@))%(-,X)H N e §><mﬂ»—mp>\;(m
® ®
2B (31 — Pl (EDRC X). 9P E)me ~ ), (29

The third term of (29) is 0, because E[k(-, X)] = 0. Using ¥ = J*J (Sriperumbudur and
Sterge, 2022, Proposition C.2 (iii)) we write

®=EH T = PlyuENFC X, ) = (S = Pl EDECX), (= Pl (EDRC. X)),
L2 - Pﬁys@))zlﬂ\wm, (30)

where (1) follows from Lemma A.6. Now (30) is similar to (C) in the proof of Theorem
3(iéi), and the proof will proceed similarly. Using a similar argument to that in (20), and
the idempotency of I — nys(E), we have

nys

Hzl/zl pt @))21/2‘2

L2(H)
< Na(t) "2—1/221/2“Lw (H) HEl/Q = ngs Hcoo(H)
< Nalt Hz—l/Q UQHﬁw (H) H = P’l;yS(A 1/2H/;°°(H) ’ (31)
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The last term in (31) is simply the square of the last term of (20); therefore, we simply
apply the result from (28), yielding

1/2 ¢ st 2
Hz (I P”W@»Hgoom) <9+ Apsp)? b > 186, (32)

Continuing,

nys nys

/\ 2
_ Hzl/QPZ mp — mP)H’H < ||E”%oo(7_[) ‘

Pl®|[.. llmp— el
£5°(H) H

32k log %

< K [lmp — mp|l3; < (33)

n

where last inequality holds with probability at least 1 — § from Lemma A.3. The result
follows by applying Lemma A.1(4i) to the middle term in (31) and combining with (32) and
(33).

Lower Bound: The proof of (Sriperumbudur and Sterge, 2022, Theorem 6(i7)) gives

D SR

£2(M)

The result therefore follows by noticing that

T, (8) > ® = 52 (1 - 2. ) =

£2(m)

6.6 Proof of Corollary 11

(i), (i), (iv) are provided in (Sriperumbudur and Sterge, 2022, Corollary 7).
(i4i) The lower bound follows immediately from previous results. For the upper bound,
Theorem 9 and the proof of Corollary 5 (4) yield

~ 1
T8,,(8) S ¢Vt 402 4 (39
for lo% St<Sland m 2 (3 VNeeo(t)) log 7. Now

Neoo(t) = 81612 (k(-,2),(C+ tI)_lk(-,x»H <

H\H

thus, m > Llogt +- Larger values of ¢ correspond to smaller requirement on m; thus, to
optimize the performance of NY- EKPCA we select the largest value of t such that the
behavior of (34) matches that of T(X). Setting ¢ = n~? when 6 < sarg and t =n" a1

when 6 > 52~ yields the result.
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Appendix A. Technical Results

The following are a collection of technical results that are needed to prove the main results
of this paper.

Lemma A.1 (Sriperumbudur and Sterge, 2022, Lemma B.2) Let H be a separable
Hilbert space and X a separable topological space. Define

¢ ; /X @) () @ ()~ vly)) AP(r,)

where v : X — H is Bochner measurable with sup,cx ||v(x)|| = k. For {X;}I_; B powith
r > 2, define
~ 1 "
C= > (X)) — v(X)) @ (W(X,) — v(X;)).
2r(r —1) &~
i#]
Then the following hold for any 0 < § < % and % log lfiTm <t< ||€||£oo(H):

(i) P {H(@HI)—W(E— ¢)(¢+t1)—1/2H£OO(H) < ;} > 1 - 25;
(ii) P {ﬁ < H(“”)W(E*”V”QHMH) < \/i} > 1 - 25;

(iii) P {H(um1/2(€+t1)1/2H£w(H) < @} > 1 26;

29



STERGE AND SRIPERUMBUDUR

(iv) P {Ak(é) +1 < 3((@) +t)} >1-26 forallk > 1;
(v) PT {)\k(C) 1< 20(9) +t)} >1- 28 for all k > 1.
Lemma A.2 (Sterge et al., 2020, Lemma A.1) Suppose Assumption 1 holds and
Ik n
o log = <t < IO oo 30

for any 0 < 9§ < 1. Then

p" {H(C” FDY2(C + tl)—l/QHMH) < \/g} >1-4,
i.3.d.

where C = [ k(-,z) @y k(-,x) dP(x), Cp = =31 k(-, X;) @u k(-, Xi) and (Xi)jep =~ P.

T n

Lemma A.3 (Sriperumbudur and Sterge, 2022, Lemma B.5(%)) Suppose Assump-
tion 1 holds and n > QIOg% for any 0 <6 < 1. Then

32k log 2
P {HWP—%PH?{ < g(;} >1-34,
n

where mp = [ k(-,2) dP(z) and mp = 2377 k(- X;).

Lemma A.4 (Rudi et al. 2015, Lemma 6) Suppose Assumption 1 holds, and for some
m < n, the set of indices {i1,- - ,im} is drawn uniformly without replacement from [n]. For
some t > 0, define No,oo(t) = sup,cy (k(-, z), (C + tI)~ k(. x)>H, where C = [, k(-,x) @y
k(-,x)dP(x) is the uncentered covariance operator. Then, for any 6 > 0 and m > (67 V
5NC,oo(t)) log 3£, we have

2
P"{H(I—Pm)(c+t1)1/2H §3t} >1-4,
L>(H)
where Py, is the orthogonal projector onto span{k(-, X;,)|j € [m]}.
The following is an adaption of Rudi et al. (2015, Lemma 6) for U-statistics.

Lemma A.5 Suppose Assumption 1 holds, and for some m < n, the set of indices {Z]};n:l 18
drawn uniformly from the set of all partitions of size m of {1,2,....,n}. Then, for0<§ < I,
0 <t <|[|Zgoo(pgy and m = 1405 16g & we have

_ 2
P”{H(I—Pm)(EthI)l/QH §2t} >1-25,
L2(H)
where Py, is the orthogonal projector onto H,, as defined in Section 3.2.
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Proof Define

m

S = o 3 (k( X)) — k(- X3,)) @ (K, Xy,) — (-, X3),
2m(m — 1) 4
J#l
which means
) —;S* S —;S*CQS =77
" 2m(m—1)"" mm_z(m—l)mmm_ ’

where Z* = 2( 1)S* C,n. Note that Z* has range H,,, and so R(P,,) = R(Z*). There-
fore, by Proposition 3 of Rudi et al. (2015), we have

H(I — Pp)(Z+ ﬂ)l/QHZoo(m =t H(im )T t)l/QHZw(H)

The proof is completed by applying Lemma A.1. |

Lemma A.6 For any orthogonal projector P : H — H, the following holds:

Exer (I~ P)(k(. X) —me)]3 = ||(7 = P2

£2(H)

Proof By denoting k(-, X) := k(-, X) — mp, we have

E|[( = P)K( X)|[3, = E((I = P)R(, X). (I = P)R(, X))y,

—E((I - Pk(-, X), k(- >H—E<I P k(- X) @3 k(X)) 200

where we used (I — P)? = (I — P). Since k is bounded, and thus Bochner integrable, it
follows that

E(I — P k(-, X) ®u k(, >£2 = (I - P,Ek(-, X) ®xn E(-,X)]>£2(%) = (I = P,%) 23
—tr((I - P)%) = tr (21/2(1 - P)221/2) . (35)

The proof is completed by using H I —P)x!/? =tr (21/2(1 — P)QZI/Q) in (35). W

20 =
The following is a collection of results regarding the sampling operator S, and its approxi-

mate version, S,,, which are quoted from Sriperumbudur and Sterge (2022) and Rudi et al.
(2015).

Lemma A.7 The sampling operator,
Sn: M= R [ (f(X0), f(Xa), oo F(Xa))
and approximate sampling operator,
S H = R™, f o (f(Xn), f(Xr), oo, f(X))

have the following properties:
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(i) Sy R" = H, aw— > ak(-, X5);
(i1) =gy SeHnSn = =
(iii) SnS: =K and SpmSt, = Ky
(iv) %S:‘LSn = %Z?:l k(- X;) @y k(+, X;) = Cp;
(v) Knm = Sn Sy,
Proof We refer the reader to Sriperumbudur and Sterge (2022, Proposition C.1) for the

proofs of (i), (ii), and (ii). The proofs of (iv) and (v) are provided in Rudi et al. (2015,
Section B). ]
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