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Reconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the
pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify
asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide sero-
surveys for the U.S. CDC. They employed three assays, with different sensitivities and specificities,
potentially introducing biases in seroprevalence estimates. Using models, we show that accounting
for assays explains some of the observed state-to-state variation in seroprevalence, and when in-
tegrating case and death surveillance data, we show that when using the Abbott assay, estimates
of proportions infected can differ substantially from seroprevalence estimates. We also found that
states with higher proportions infected (before or after vaccination) had lower vaccination coverages,
a pattern corroborated using a separate dataset. Finally, to understand vaccination rates relative to
the increase in cases, we estimated the proportions of the population that received a vaccine prior
to infection.

INTRODUCTION15

Estimating the cumulative proportion of the population infected with SARS-CoV-2 is central to understanding16

the current state of the pandemic, assessing the susceptibility of the population, and to planning and targeting17

public health responses. Epidemiological models and other statistical approaches can be used to estimate cumulative18

infections using reported positive SARS-CoV-2 PCR tests, COVID-19 deaths, and other surveillance data [1–7]. Such19

studies revealed large underreporting of cases detected through case surveillance due to asymptomatic infections and20

limited laboratory testing. Seroprevalence studies based on a random sample of the population may be the gold21

standard for assessing the proportion infected but are expensive and logistically complicated to perform.22

Since July 2020, commercial laboratories have conducted regular nationwide serosurveys for the CDC [8, 9].23

These surveys and other convenience and representative seroprevalence studies ([8, 10–21]; also see https://24

covid19serohub.nih.gov) have provided estimates of the cumulative proportion of the population with a history of25

at least one infection with SARS-CoV-2 in the United States at the national and local level. Modeling approaches26

have also used seroprevalence studies to improve estimates of critical parameters (e.g., the infection fatality rate) or27

to compare to model outputs [3, 4, 22].28

However, serosurveys can produce biased estimates of the proportion infected based on the samples and methods29

used. Convenience samples, samples collected from individuals in the provision of healthcare for testing unrelated to30

SARS-CoV-2, may not be representative of the general population. Seroprevalence studies focusing on individuals31

seeking care for reasons unrelated to COVID-19, such as those conducted by the CDC, can underestimate the extent32

of mild infections due to tests being evaluated and calibrated mostly on patients with symptoms [23, 24]. Moreover,33

waning of antibodies to undetectable levels following infection has been observed [25, 26]. Estimated waning varies34

substantially between assays due to differences in their formats (e.g., whether the assays use direct or indirect de-35

tection formats; [27]) and resulting variation in their sensitivities and specificities [28–32]. For example, when using36

manufacturer-recommended cutoff points to determine seropositivity, Peluso et al. [28] and Stone et al. [32] found lower37

sensitivities using ARCHITECT SARS-CoV-2 IgG immunoassay targeting the nucleocapsid protein (“Abbott”) than38
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with Ortho-Clinical Diagnostics VITROS SARS-CoV-2 Total Ig and IgG (the latter only in Peluso et al.) immunoas-39

say targeting the spike protein (“Ortho”) or Roche Elecsys Anti-SARS-CoV-2 pan-immunoglobulin immunoassay that40

targets the nucleocapsid protein (“Roche”). However, sensitivities to recent infections in Peluso et al. [28] were similar41

across all three assays. Both studies also estimated systematically faster waning using the Abbott assay while they42

found no evidence of waning for the Roche assay. As a result, all else remaining equal, antibody waning means that43

seroprevalence estimates will constitute an underestimate of the proportion infected. That the Abbott assay exhibited44

faster waning may also imply that the assay immunoglobulin type (IgG in the Abbott, pan-Ig in the Roche) is also45

important.46

In this study, we use CDC’s commercial laboratory nationwide serosurvey data and multiple other data sources47

to explain the observed spatio-temporal patterns in seroprevalence in the United States, with a particular focus on48

the role played by the different assays used, waning of antibodies, and the implications for estimating the proportion49

infected. We explore the impact of waning antibodies using a simple model, where we adjust seroprevalence to50

reconstruct the proportion infected across the United States. Finally, to gain insight into the composition of sources51

of immunity, we compare the spatial patterns in estimated proportion infected with vaccination coverage across states52

over time.53

RESULTS54

We used data from CDC’s nationwide antibody serosurveys from commercial laboratories, which measures infection-55

induced seroprevalence. This study included both anti-nucleocapsid (anti-N) and anti-spike (anti-S) antibody assays56

prior to widespread vaccination campaigns, after which it included only anti-N assays. Anti-N assay seropositivity57

is reflective of prior infection with SARS-CoV-2 and not of vaccination with vaccines available in the United States,58

which contain only the spike protein; seroprevalence is also not a quantitative measure of current immunity status.59

We will henceforth refer to infection-induced seroprevalence as “seroprevalence”. Serosurveys started in July 202060

(round 1), and as of January 2022 (round 29), seroprevalence ranged from 18% in Vermont to 56% in Wisconsin. By61

then, the proportions of state populations reported as confirmed COVID-19 cases ranged from 10% in Hawaii to 25%62

in Rhode Island, and the proportions for confirmed deaths ranged from 0.1% in Vermont to 0.4% in Mississippi, with63

marked heterogeneity across states by round (e.g., Supplementary Fig. 1). Rank order of states by seroprevalence at64

a point in time differed quite markedly from that by proportion of the population reported as a case (Fig. 1). To65

explain spatio-temporal variation in seroprevalence across states, we fit two sets of models. The first model (“reference66

model”) includes cumulative proportions of populations reported as cases and deaths as explanatory variables while67

accounting for a range of other factors including the assays used in each survey. The second set of models (“waning68

models”) explicitly incorporates the temporal effect of different waning rates (depending on the assay being used)69

on seroprevalence estimates (see Methods). Comparison of the waning models with the reference model enables70

assessment of the proposed model of waning in measured antibodies and its relative ability to explain observed71

patterns.72

Variation in infection-induced seroprevalence associated with the use of different assays73

Seroprevalence varied systematically as a function of the specific assays used in the surveys (Abbott, Ortho, or74

Roche). In the reference model, higher proportions of use of the Abbott assay were associated with lower seroprevalence75

while use of the Roche assay was associated with higher seroprevalence (Supplementary Table 1 and Supplementary76

Fig. 2; the Ortho assay was included in the model as the comparison group). As a result, some of the spatial variation77

observed in the nationwide serosurveys was attributable to the spatially heterogeneous use of assays (Supplementary78

Figs. 3–6 in SI). Using the reference model, we estimated the seroprevalence that would have resulted had all states79

exclusively used one of the three assays alone. We estimated that if the serosurveys had exclusively used the Roche80

assay (highest seroprevalence), estimated seroprevalence country-wide could have been 20 percentage points higher in81

January 2022 than if only the Abbott assay (lowest seroprevalence) was to have been used (Supplementary Fig. 7).82

There was substantial state-to-state variation in the change in expected seroprevalence had the Roche assay been83

exclusive used; for example, seroprevalence would have been over 27 percentage points higher in Iowa in May 202184

(round 21) had they exclusively used the Roche assay, relative to the actual survey estimates (Supplementary Fig. 7).85
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FIG. 1. States ranked by different metrics. Ranked (A) cumulative percentage of the population reported as a COVID-19
case, (B) seroprevalence from the CDC nationwide serosurveys, (C) cumulative percentage of the population reported as a
COVID-19 death, and (D) vaccination (with a full series) coverage for July 2021 (round 24, the last round before the Roche
assay started being used exclusively). Gray shading in A and B show serosurveys that at that point in time exclusively used
the Abbott assay.

Accounting for waning helps explain variation in infection-induced seroprevalence86

Accounting for waning detection of antibodies over time improved model fit over the reference model across various87

metrics (Fig. 2 and Supplementary Fig. 8; Table I). Results support a faster waning rate for the Abbott assay, while88

there was no clear evidence of waning in the Roche assay (the best five percentile models by every metric included the89

maximum 97 weeks considered here; Fig. 2). Because the Ortho assay was only used up to January 2021 (except in90

Puerto Rico, not included in this study), we could only explore up to a maximum of 49 weeks of time to seroreversion.91

Time to seroreversion (the time for antibodies to fall below a detection threshold) in the Ortho assay depended on92

the metric used (no evidence of waning up to 49 weeks in by Akaike information criterion (AIC) and root-mean-93

square error (RMSE), but only 10 weeks for LOO median RMSE), but its use was limited (Supplementary Fig. 1).94

The best fitting models by RMSE and median leave-one-out (LOO) RMSE had RMSEs and median LOO RMSEs95

approximately 0.91 and 0.90 times that of the reference model without waning, respectively. The best model by LOO96

median RMSE had a mean time of seroreversion of 19 weeks for the Abbott assay, 10 weeks for the Ortho assay, and97

91 weeks for the Roche assay (although here, there was no statistical evidence of seroreversion over the time period98

studied of 97 weeks), with cases seroconverting one week prior to being reported as a case (-1 week detection delay;99

Table I). Note, however, that there was uncertainty around these parameter estimates (Fig. 2). The best models by100

AIC and RMSE were similar, with estimated Abbott assay time to seroreversion of 31 weeks, and no clear evidence101

of waning in the Ortho assay (with a time to seroreversion ≥ 49 weeks; Table I). After accounting for waning, the102

negative and positive associations between proportion of Abbott and Roche assays with seroprevalence remained,103

albeit with smaller effect sizes (Supplementary Table 1), potentially implying lower sensitivity of the Abbott assay104

for detecting recent infections relative to the other two.105

Next, we used the best waning model to estimate the proportion infected by correcting the seroprevalence for106

assay use and seroreversion (see Methods) and compared it to reported seroprevalence. The difference between107
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FI G. 2. R a ti o n al e b e hi n d t h e m o d el s, a n d c o m p a ri s o n of w a ni n g m o d el s wi t h t h e r ef e r e n c e m o d el a c r o s s t w o
m e t ri c s . I n cl u si o n of w a ni n g h el p s e x pl ai n p a t t e r n s i n s e r o p r e v al e n c e b e t t e r. L ef t p a n el s e x pl ai n h o w w e m e c h a ni s ti c all y
i n c o r p o r a t e w a ni n g i nt o t h e m o d el s. A c a s e i s e x p e c t e d t o t e s t p o si ti v e i n a s u r v e y f o r a li mi t e d a m o u nt of ti m e b ef o r e s e r o r e-
v e r ti n g ( t o p l ef t ), l e a di n g t o di ff e r e nt w a ni n g p a t t e r n s t h a t d e p e n d o n t h e ti m e t o s e r o r e v e r si o n ( b o t t o m l ef t; s e e S u p pl e m e nt a r y
Fi g. 1 4 ). I n o u r m o d el s w e u s e t h r e e di ff e r e nt ti m e s t o s e r o r e v e r si o n, o n e f o r e a c h a s s a y. Wi t hi n e a c h til e p a n el, e a c h pi x el
c o r r e s p o n d s t o a si n gl e m o d el, w h e r e c a s e s h a v e b e e n a dj u s t e d a s s u mi n g t h r e e di ff e r e nt ti m e s t o s e r o r e v e r si o n, o n e f o r e a c h
a s s a y. T h e b e s t m o d el s h a d a c a s e s e r o c o n v e r t i n t h e s a m e w e e k ( b y AI C ) o r o n e w e e k b ef o r e b ei n g r e p o r t e d ( b y l e a v e- o n e- o u t
m e di a n R M S E; T a bl e I ). Til e pl o t s a s s u m e t h e b e s t m o d el’ s ti m e t o s e r o r e v e r si o n f o r t h e O r t h o a s s a y ( 4 9 w e e k s b y AI C, 1 0
w e e k s b y L O O m e di a n R M S E ), a n d s h o w m o d el p e rf o r m a n c e f o r t h e r e m ai ni n g t w o v a ri a bl e s, t h e ti m e s t o s e r o r e v e r si o n f o r
R o c h e ( x- a x e s ) a n d A b b o t t ( y- a x e s ) a s s a y s. T h e t w o til e pl o t s s h o w r e s ul t s f o r t w o di ff e r e nt m o d el m e t ri c s: AI C, a n d L O O
m e di a n R M S E. M e t ri c s a r e e x p r e s s e d r el a ti v e t o t h e m e t ri c f o r t h e r ef e r e n c e m o d el ( t h a t d o e s n o t a c c o u nt f o r w a ni n g ); bl u e s
( r e s p e c ti v el y r e d s ) i n di c a t e w a ni n g m o d el s t h a t a r e b e t t e r ( r e s p e c ti v el y w o r s e ), p e r t h a t m e t ri c, r el a ti v e t o t h e m o d el wi t h o u t
w a ni n g. C o nt o u r li n e s i n t h e til e pl o t s e n cl o s e t h e b e s t fi v e p e r c e ntil e m o d el s f o r e a c h m e t ri c. G r e e n p oi nt s i n di c a t e t h e
b e s t m o d el b y e a c h m e t ri c, a n d c o nt o u r li n e s e n cl o s e t h e b e s t fi v e p e r c e ntil e m o d el s a s p e r e a c h m e t ri c. S e e T a bl e I f o r t h e
c o r r e s p o n di n g b e s t w a ni n g m o d el b y e a c h m e t ri c, a n d S u p pl e m e nt a r y Fi g. 8 f o r m o r e c o m pl e t e r e s ul t s.

e sti m at e d pr o p orti o n s i nf e ct e d a n d s er o pr e v al e n c e i s gr e at e st i n st at e s a n d ti m e p oi nt s i n w hi c h t h e A b b ott a s s a y w a s1 0 8

pr e d o mi n a ntl y u s e d ( e. g., Fi g. 3 a n d S u p pl e m e nt ar y Fi g s. 4 – 6). T h e e sti m at e d pr o p orti o n i nf e ct e d w a s at l e a st 1 01 0 9

p er c e nt a g e p oi nt s hi g h er t h a n t h e s er o pr e v al e n c e i n si x st at e s i n J a n u ar y 2 0 2 1, a n d i n 1 7 st at e s i n J ul y 2 0 2 1, alt h o u g h1 1 0

w h e n a v er a g e d a cr o s s t h e c o u ntr y ( u si n g st at e p o p ul ati o n s a s w ei g ht s), t h e di ff er e n c e w a s at m o st fi v e p er c e nt a g e1 1 1

p oi nt s ( Fi g. 3). O ur r e s ult s al s o s h o w t h at t h e d e cr e a si n g s er o pr e v al e n c e o v er ti m e o b s er v e d i n s o m e st at e s w a s at1 1 2

l e a st i n p a rt attri b ut a bl e t o t h e a s s a y s u s e d a n d c orr e s p o n di n g w a ni n g r at e s ( e. g., m o st of t h e st at e s s h o w n i n Fi g. 3).1 1 3

T h e r e s ult a nt ti m e s eri e s of pr o p orti o n i nf e ct e d di ff er e d n ot o nl y q u a ntit ati v el y b ut i n s o m e c a s e s al s o q u alit ati v el y1 1 4

fr o m t h e s er o pr e v al e n c e e sti m at e s ( Fi g. 3 a n d S u p pl e m e nt ar y Fi g. 9).1 1 5

T o hi g hli g ht t h e i n fl u e n c e of c h oi c e of a s s a y s o n s er o pr e v al e n c e e sti m at e s, w e c o m p ar e t h e s er o pr e v al e n c e e sti m at e d1 1 6

i n N e w Y or k a n d N e w J er s e y. B ot h st at e s e x p eri e n c e d q u alit ati v el y si mil ar o ut br e a k d y n a mi c s a c c or di n g t o r e p ort e d1 1 7

c a s e s a n d d e at h s, y et t h e s ur v e y s pr o d u c e d v er y di ff er e nt s er o pr e v al e n c e e sti m at e s ( b ot h i n t h eir a b s ol ut e v al u e s, a n d1 1 8

i n p arti c ul ar t h eir e v ol uti o n o v er ti m e; s e e Fi g. 3). T h e m a xi m u m di ff er e n c e i n t h eir s er o pr e v al e n c e w a s 1 9 p er c e nt a g e1 1 9

p oi nt s ( 1 3 % i n N e w Y or k, 3 2 % i n N e w J er s e y i n M a y 2 0 2 1). S er o pr e v al e n c e i n N e w Y or k e x hi bit e d a c o n s pi c u o u s1 2 0

dr o p b et w e e n O ct o b er a n d N o v e m b er, a dr o p t h at w a s n ot o b s er v e d i n n ei g h b ori n g N e w J er s e y. O ur r e s ult s s h o w1 2 1

t h at t h e dr o p i n N e w Y or k c a n at l e a st i n p art b e e x pl ai n e d b y a s wit c h fr o m u si n g t h e R o c h e a s s a y t o a mi x of t h e1 2 2

Ort h o a n d A b b ott a s s a y s i n O ct o b er 2 0 2 0 t o e x cl u si v el y u si n g t h e A b b ott a s s a y b y J a n u ar y 2 0 2 1 t o pr o d u c e t h e N e w1 2 3

Y or k s er o pr e v al e n c e e sti m at e s. H o w e v e r, s a m pli n g f or t h e st u d y w a s al s o c h a n g e d i n N o v e m b er 2 0 2 0 t o i n cl u d e a1 2 4

l ar g er pr o p orti o n of s p e ci m e n s fr o m o ut si d e t h e N e w Y or k Cit y m etr o p olit a n ar e a, w hi c h h a d e x p eri e n c e d t h e l ar g e st1 2 5

s pi k e i n e arl y c a s e s. E sti m at e s f or N e w J er s e y w er e o bt ai n e d e x cl u si v el y u si n g t h e R o c h e a s s a y. A c c o u nti n g f or t hi s1 2 6

di ff er e n c e pr o d u c e s e sti m at e s of pr o p orti o n i nf e ct e d t h at ar e m or e si mil ar i n m a g nit u d e a n d i n tr e n d a cr o s s t h e t w o1 2 7

st at e s. F or i n st a n c e, t h e m a xi m u m di ff er e n c e b et w e e n t h e t w o st at e s aft er a dj u sti n g f or a s s a y u s e i s l e s s t h a n si x1 2 8

p er c e nt a g e p oi nt s, i n li n e wit h t h e m a xi m u m di ff er e n c e r e p ort e d i n s er o pr e v al e n c e aft er J ul y 2 0 2 1 ( w h e n b ot h u s e d1 2 9

t h e R o c h e a s s a y) of j u st u n d er f o ur p er c e nt a g e p oi nt s.1 3 0
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FIG. 3. Time series of survey seroprevalence and estimated proportions infected for seven example states and
U.S.-wide. Example time series of survey seroprevalence, fitted seroprevalence and estimated proportion infected, for states
for which seroprevalence was estimated primarily using the Abbott assay prior to September 2021 (see Supplementary Figs. 1
and 3), except for New Jersey, for which the Roche assay was exclusively used, and U.S.-wide estimates (bottom right). The
proportion infected was estimated using the best waning logistic regression by LOO median RMSE (Fig. 2; Table I). U.S.-wide
estimates were obtained by taking mean values per round weighted by population, and each round was plotted taking the
mean week for that round across all states. Uncertainty envelopes around fits and estimated proportions infected include model
uncertainty and uncertainty around the selection of times to seroreversion and lead or lag between seroprevalence and reported
cases. The U.S.-wide ribbon does not include model uncertainty. Vertical dotted lines indicate the start of the vaccination
campaigns. See Supplementary Fig. 9 for time series for all states included in the model.

Spatial heterogeneity in infection-induced seroprevalence, estimated proportion infected, and vaccination131

coverage132

Some of the observed spatial heterogeneity in seroprevalence (Fig. 4A) was a result of the use of different assays133

and their associated waning rates (Supplementary Figs. 3–6). For example, by July 2021 (round 24, the last round134

prior to the Roche assay being used exclusively), the standard deviation in percentage seroprevalence across states135

was 10% (Fig. 4A), while after correcting for assay use and waning (Fig. 4B), it was 7.2% (also see Supplementary136

Fig. 10). We also found that as vaccine distribution increased in 2021, states with higher vaccine coverage were137

associated with lower estimates of the proportion infected (Fig. 4E). We combined the estimates of the proportion138

infected from our best waning model with the vaccination coverage (thus including seropositives from both natural139

infection and/or vaccination, which we henceforth refer to as the estimated proportion infected and/or vaccinated, or140

EPIV), by assuming that the probabilities of being infected and vaccinated with a complete series are independent.141

The differences between states were further reduced when considering EPIV (Fig. 4, comparing maps B and D;142

Supplementary Fig. 10); in July 2021, the standard deviation in the EPIV was 5.6% (Supplementary Fig. 10). A143

comparison of time series in individual states (Fig. 4F) illustrates the relationship between vaccine coverage and the144

estimated proportion infected over time. Of note, Washington, a state with low estimated proportion infected pre-145

vaccination and higher vaccination coverage maintained a low proportion infected post-vaccination, while Alabama146

had high estimated proportion infected pre-vaccination and achieved lower vaccine coverage.147

Pre-infection vaccine coverage148

The greatest public health benefit of vaccines is likely achieved when administered to individuals prior to infection.149

Maximizing the vaccine coverage of individuals pre-infection would have required both limiting, to the extent possible,150

transmission (e.g., by implementing non-pharmaceutical interventions), and an effective vaccination campaign. Our151

reconstructions of the proportion infected show that the degree to which transmission was constrained in the United152

States varied across states and over time (Fig. 3 and Supplementary Fig. 9), by more accurately showing when the153

cumulative proportion infected remained flat. Furthermore, although vaccination campaigns started almost simulta-154

neously across the country, differences across states in vaccination rates and coverage quickly emerged (Supplementary155
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FIG. 4. Spatial patterns and correlations. Spatial variation in July 2021 (round 24) in (A) CDC nationwide serosurvey
seroprevalence, (B) estimated proportion infected, (C) proportion of the population with a complete series of a vaccine, (D)
estimated proportion infected and/or vaccinated (EPIV; assuming independent probabilities of having had a natural infection
and being vaccinated), (E) round-by-round Pearson correlation between the proportion of the population vaccinated and the
estimated proportion infected (shaded areas show the 95% uncertainty intervals for a two-sided test), and (F) example time
series of seroprevalence estimates (black points), estimated proportion infected (blue lines; shaded areas show the uncertainty
intervals), and proportion of the population vaccinated with a full series (red lines) for two states. Panels A–D show maps for
July 2021 (round 24); its point in time is shown in panel F as vertical gray dashed lines. In panel E, a negative correlation
means that states with a higher vaccination coverage tended to be those with lower proportion infected. See Supplementary
Fig. 9 for time series like those in panel F for all states.

Figs. 5 and 6). To give insight on the coverage and speed of the vaccination campaign relative to the speed at which156

cases increased, we estimated the proportion of the total population that was vaccinated with a complete series of157

doses before being infected, assuming that vaccinations were distributed independently of prior infection status. The158

proportion of the whole population who were vaccinated and not previously infected ranged from 6% in Utah to 15%159

in Alaska in mid-March 2021, before widespread availability of vaccination to individuals over ages 65 years, and from160

21% in Idaho to 42% in Vermont by mid-January 2022 (Supplementary Fig. 11).161

Comparison with an independent dataset162

Finally, we compared estimates produced by our models with an independent dataset, the nationwide blood donor163

serosurvey [19]. Infection-induced seroprevalence estimates from the two sets of surveys are clearly correlated (Pearson164

and Spearman correlations of 0.85), albeit with substantial variation (Supplementary Fig. 12), while our estimated165

proportion infected was also highly correlated to the blood donor serosurvey estimates (Pearson and Spearman166

correlations of 0.94 and 0.93, respectively), although our estimates tended to be higher.167

The blood donor surveys included both anti-N and anti-S assays, allowing estimates of seropositivity from both168

natural infection and vaccination, respectively [19]. Our EPIV values were substantially lower than the anti-S sero-169

prevalence estimated in the blood donor survey (Fig. 5), especially after vaccinations started. Including individuals170
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FIG. 5. Comparison of our estimates of proportions infected and/or vaccinated with the blood donors anti-
S seroprevalence estimates. Comparing estimated proportions infected and/or vaccinated (EPIV) with estimated anti-S
seroprevalence from blood donor samples. The seroprevalence from the blood donor samples includes both infected and
vaccinated individuals, and the EPIV combines estimated proportion infected (adjusting for assay use and waning) with the
proportion vaccinated. Lines are LOESS fits to the data points shown, and vertical lines show uncertainty in EPIV values due
to that around our estimated proportions infected. The blue line and points assume that the probability of infection and being
vaccinated (with two doses) are independent (equation 1), red lines and points use the proportion vaccinated with at least one
dose (equation 1), while the green line and points use the proportion vaccinated with at least one dose, and assume a perfect
negative correlation between vaccination coverage and estimated proportion infected (equation 2). See Supplementary Fig. 13
for comparisons of time series of these quantities per state.

with at least one vaccine dose in the EPIV brought our values closer to the blood donor survey estimates. When171

assuming a perfect negative correlation between having one or more doses of a vaccine and having ever tested positive172

due to an infection (adding the two proportions, thus constituting an upper limit), our EPIV were comparable to173

those of the blood donor surveys. It is, however, also important to note that differences between our EPIV estimates174

and the blood donor surveys could also be attributable in part to the uncertainty around the time to seroreversion175

of, particularly, the Roche assay (Figs. 2 and 5).176

DISCUSSION177

Our results show that heterogeneous spatio-temporal patterns in seroprevalence are in part explained by which178

assays were used in the surveys: seroprevalence was lower in states that made greater use of the Abbott assay,179

underlining variation in the ability to detect infection and waning rates across assays, and possibly indicative of the180

different detection thresholds that define seropositivity used by each assay. The times to seroreversion were found to be181

likely distinctly lower in the Abbott assay than in the Ortho or Roche assays; differences supported by other literature182

(e.g., [28]) and likely related to characteristics of the assay target. Accounting for the assays used reduces differences183

across states in seroprevalence and suggests a more homogeneous impact of the pandemic across the United States184

than would otherwise be surmised based on the surveys alone. The estimated proportions infected were negatively185
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correlated with vaccination rates across states.186

Longitudinal studies quantifying within-individual antibody kinetics have also previously shown (albeit with rela-187

tively small sample sizes) how antibody levels and waning rates can markedly vary depending on the assay used and188

on disease severity ([28, 32], but also see [33]). Peluso et al. [28] found similar mean times to seroreversion for the189

Abbott assay (23 and 33 weeks for non-hospitalized and hospitalized individuals, respectively), compared to 19 weeks190

in our best waning model, and 39 and 79 weeks for the Ortho assay compared to 10 weeks in our results (although by191

AIC and RMSE there was no evidence of waning; note that the Ortho assay was phased out by January 2021), while192

they found no evidence of waning for the Roche assay, and neither did we (although our point estimate was 91 weeks),193

albeit with significant uncertainty around our estimate. Stone et al. [32] also reported distinctly faster waning rates194

in the Abbott assay. Moreover, even after accounting for differential waning between assays, Abbott assay use was195

associated with lower seroprevalence, possibly suggesting lower sensitivity to recent infections, although this finding196

was not consistent with Peluso et al. [28], who found similar sensitivities to recent infections across all three assays.197

Previous studies have also leveraged individual-level immune dynamics to produce corrected seroprevalence es-198

timates. For instance, using time series of reported cases, deaths, or hospitalizations, Takahashi et al. [31] used199

time-varying assay sensitivities (and their variation with disease severity, estimated in individual-level data) to pro-200

duce adjusted estimates of seroprevalence across five locations. Where they incorporated individual-level data into201

their methodology, we recovered individual-level patterns across a large population.202

The spatial heterogeneity observed in the nationwide serosurveys was to an extent attributable to assays used203

and waning; variation across states in the estimated proportion infected was distinctly lower. Nevertheless, the204

vaccination campaign started at a point in time when the estimated proportion infected still differed by > 36 percentage205

points across states, and this maximum range grew to > 39 percentage points by January 2022. This means that206

vaccination campaigns started on a relatively heterogeneous landscape of immunity and that heterogeneity increased207

with vaccinations and subsequent infections. Uptake of vaccines also varied across states, with the proportions of208

the population vaccinated differing across states by as much as 30 percentage points by January 2022. Vaccination209

coverage was negatively correlated with the estimated proportion infected, a finding corroborated in a comparison210

with an independent dataset, the nationwide blood donor serosurvey. This negative correlation implies that differences211

among states in the proportions of state populations that have experienced an immune response (whether by infection212

or vaccination) is lower than expected based on vaccination coverage or the proportion infected alone. However, the213

negative correlation also suggests that the composition of the source of immunity (from either infection or vaccination)214

is likely heterogeneous across states. Consequently, were immune protection from infections and vaccines found to215

differ systematically (and there are indications that this may indeed be the case, e.g., [34, 35]), the result of future216

waves of the pandemic may also be expected to be spatially heterogeneous. We also presented a metric meant to217

capture the rates at which states delivered vaccines in relation to the rate at which cases accrued. Reconstruction of218

the dynamics of cumulative infections allows for greater investigation of heterogeneity between locales that might be219

used to guide future public health responses.220

The differences in our estimates of the proportion infected and estimated proportion infected and/or vaccinated221

(estimates without and with vaccination, while accounting for assay use and waning) with the blood donors surveys222

could in part be attributed to likely differences in the biases in the sampling inherent to the two surveys. The223

nationwide serosurveys that form the basis of our estimates use samples from individuals seeking medical care for224

reasons unrelated to COVID-19. On the other hand, people who donate blood may differ from the overall population225

in important ways; for instance, blood donors are more likely to be healthy, non-pregnant adults, certain groups (e.g.,226

younger age categories) may be systematically underrepresented, and for example, their vaccination uptake might227

be systematically higher (e.g., [36]). The assays used were also not the same across the two sets of serosurveys.228

Nonetheless, the comparison supports the negative correlation between proportion infected and vaccination coverage.229

A number of caveats should be taken into consideration when interpreting our results. As noted above, our results230

are based on serosurveys using a convenience sample of individuals that sought health care for reasons other than231

COVID-19; this sample could deviate from the wider population in important ways and not be representative. For232

example, this group may have experienced different rates of severe illness upon infection with SARS-CoV-2, an233

important determinant of immune response, than the general population [24, 28, 31] and may have systematically234

different healthcare seeking behavior. Furthermore, biases in the sampling could also vary over time and across235

states, for instance as a function of the numbers of cases and underlying demographics. Rates of seroconversion and236

reversion might also be different pre- and post-vaccination (e.g., [34, 35, 37]). We use numbers of tests that were237

positive and negative in the models, meaning that we do not make explicit adjustments for race, ethnicity, age, or sex,238

although these factors are, to an extent, captured in the model with state-specific intercepts. Finally, to calculate the239

estimated proportion infected and/or vaccinated, we assumed that the probabilities of being infected and vaccinated240

were independent. However, vaccination may be associated with prior infection and the comparison to blood donor241

seroprevalence suggests that vaccination may be negatively correlated with the probability of prior infection.242

The lags between seroconversion and a case being reported were, a priori, an important parameter to consider243
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in accounting for potential systematic shifts in the time series of seroprevalence and reporting of cases and deaths.244

However, this parameter should be interpreted with caution. Serosurveys were conducted roughly every two to four245

weeks, and they reported time windows (that can be two to four weeks long) over which the surveys were performed;246

we here use the midpoints of the windows. Reporting delays might also be expected to vary over time. Nevertheless,247

our results do not provide strong evidence for a specific lead or lag, and this is reflected in the uncertainty estimates248

we provide.249

Our model assumes a constant relationship between infections and reported cases over time. This assumption will250

be increasingly challenged as the pandemic progresses, particularly beyond the time-frame considered here. The rising251

probability of reinfections and breakthrough cases, as well as the increasing reliance on at-home testing, would likely252

introduce biases into our estimates of numbers of infections. For example, if increasing numbers of cases reported253

were to be reinfections, then our approach would overestimate the estimated numbers of infections. Conversely, if254

fewer cases were to be reported due to at-home testing, then our model would produce underestimates. Furthermore,255

waning rates, which in our model are assumed to be constant over time, might vary as a result of prior infections256

and/or vaccinations. All these factors act concurrently, and understanding what the overall bias introduced would be257

and disentangling their effect on our estimates is a challenge that would require a change to our approach.258

Serosurveys will continue to be critical tools to understand determinants and predictors of infection, reinfection,259

duration of protection, antigen-specific protection to SARS-CoV-2 variants, and the underlying determinants of burden260

(e.g., the infection fatality ratio). Given the changing relationship between reported cases and infections due to261

reinfections and breakthrough cases and the increasing availability of at-home testing, statistical and mechanistic262

approaches to analyzing serosurvey data will become more important. Our results identifying signals of waning and263

the correlation between vaccination and prior infection suggest that large scale, aggregate datasets like the U.S.264

serosurveys may yield useful inferences on the relationships between serological responses, protection, and reinfection.265

However, further work will be needed to interpret serology as seropositivity saturates in the population and more266

individuals experience multiple immunizing events (i.e., re-infection, vaccine boosts).267

METHODS268

In this study we aimed to explain spatio-temporal variation in seroprevalence using logistic regressions. We included269

as covariates the variable use of different assays across time and space and assessed the evidence to support differential270

waning of seropositivity across assays. The correlations between the covariates used in the models are shown in271

Supplementary Fig. 14.272

Data273

The serosurveys, conducted by the CDC and commercial laboratories, included samples obtained for reasons un-274

related to COVID-19. Nationwide seroprevalence studies using available serum specimens (henceforth referred to as275

“nationwide serosurveys”) were conducted from July 2020, with the aim of estimating seroprevalence from infection276

per state approximately every two to four weeks (Bajema et al. 2021). The surveys are ongoing, but we here analyze277

surveys up to January 2022 (round 29). Three immunoassays were used: the Roche Elecsys Anti-SARS-CoV-2 pan-278

immunoglobulin immunoassay that targets the nucleocapsid protein (henceforth referred to as “Roche”), the Abbott279

ARCHITECT SARS-CoV-2 IgG immunoassay targeting the nucleocapsid protein (henceforth referred to as “Abbott”,280

and Ortho-Clinical Diagnostics VITROS SARS-CoV-2 IgG immunoassay targeting the spike protein (henceforth re-281

ferred to as “Ortho”). Further details about the laboratory methods, including the sensitivity, specificity, can be282

found in Section “Laboratory methods” in SI. As all vaccines available in the United States generate antibodies to283

the spike protein only (anti-S), serosurveys conducted following the widespread availability of vaccines used exclu-284

sively assays measuring anti-N IgG. The Ortho assay measured anti-S antibodies, but their use was phased out in285

the states analyzed here by the end of January 2021, prior to the start of widespread vaccination campaigns. The286

nationwide serosurvey data were downloaded from the CDC (https://data.cdc.gov/Laboratory-Surveillance/287

Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv). We assumed the surveys for each round288

took place on the middle date of the range given. We then used the number of positive and negative tests produced289

in each survey as our outcome variable. Because there were few completed survey rounds for North Dakota, it was290

excluded from analyses.291

County-level daily laboratory-confirmed COVID-19 cases and deaths in the counties of the United States were292

downloaded from USAFacts (https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/) on293

March 2, 2022. After aggregating the numbers of cases and deaths per state, and differencing the cumulative curves294

to obtain numbers of cases and deaths per day, we found negative values of both reported deaths and cases. If the295

https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv
https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv
https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
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negative value was immediately followed by the same (positive) value, those counts were canceled out. Otherwise,296

the negative total was discounted from previous days’ totals. We then aggregated numbers by week, recalculated297

cumulative numbers, and divided them by the respective state populations to produce cumulative percentages of the298

population that were reported as COVID-19 cases and deaths, for each nationwide serosurvey round. These data did299

not include Puerto Rico, so Puerto Rico is not included in our analyses.300

Excess deaths data for each state were downloaded from the CDC (https://www.cdc.gov/nchs/nvss/vsrr/301

covid19/excess_deaths.htm). We kept the weighted data only (which attempts to correct for reporting delays). To302

estimate the number of (excess) deaths not attributable to COVID-19, we took the difference between excess deaths303

and reported deaths. We then calculated this number as a percentage of the state population.304

Laboratory testing (PCR) time series per state were downloaded from HealthData.gov (https://healthdata.gov/305

dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb), and from these we estimated the306

cumulative number of tests performed relative to each state’s population up to each serosurvey round.307

We used data on the distribution of assays used in each serosurvey round [38]. The information provided included the308

number of tests, for each survey round, that were performed with each of three different assays (Abbott ARCHITECT309

IgG anti-N, Ortho VITROS IgG anti-S, and Roche Elecsys Total Ig anti-N). From September 2021 (round 25) onwards,310

states switched to exclusively using the Roche Elecsys assay.311

COVID-19 vaccination data were downloaded from the CDC (https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/312

unsk-b7fc). We produced percentages of the populations that had been vaccinated with at least one dose of a vaccine,313

or with a complete series of the vaccine (individuals with a second dose of a two-dose vaccine or one dose of a single-314

dose vaccine) at each point in time per state. For a couple of states (e.g., Kentucky and West Virginia), vaccination315

coverage is not a monotonically increasing function of time. However, it is unclear from the data documentation what316

the reason for this pattern may be.317

We downloaded data on COVID-19 hospitalizations from HealthData.gov (https://healthdata.gov/Hospital/318

COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh). We calculated the cumulative total num-319

ber of confirmed adult hospital admissions, and then obtained the percentage of the cumulative number of cases that320

had been hospitalized, per state.321

The proportion of COVID-19 cases reported in different age categories was estimated using the CDC restricted access322

case surveillance line-list data (https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/323

mbd7-r32t). The reporting times in the CDC line list data are not expected to match those from USAFacts.gov.324

We assumed that the proportions of total cases being reported in each of the age categories was unlikely to undergo325

very rapid changes over time, so we estimated these proportions based on five-week rolling means of the cumulative326

number of total cases and cases reported in each age category.327

We compared our estimates of proportions infected with a separate serosurvey conducted by the CDC: the nation-328

wide blood donor serosurvey (https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence).329

The survey estimates the proportion of the population with antibodies against SARS-CoV-2 (both anti-N and anti-S330

Ig), for which they used the Roche Elecsys Total Ig and Ortho VITROS Total Ig assays. Multiple estimates were331

provided for different parts of some states; we took the mean seroprevalence weighted by the number of tests to get332

a single estimate by state. Surveys were not necessarily performed in the same weeks as the nationwide serosurveys.333

To maximize the data used when comparing the two datasets, if surveys in the two datasets were performed one week334

before or after the other, the two values were still matched.335

We square-root-transformed the cumulative percentages of the populations reported as cases and deaths, and the336

percentages of the populations hospitalized, because their distributions were heavily skewed and are expected to be the337

result of a multiplicative process. For similar reasons, we natural-log-transformed the percentage of state populations338

that were PCR tested. Models with these transformations performed better across model metrics used in this study339

than models without transformations.340

The data used to fit the models is provided in Supplementary Dataset S1.341

Models342

We fit logistic regressions using function ‘svyglm’ in package ‘survey’ v4.1.1. In all models, the number of positives343

out of the total number of tests were the response variable. The “reference model” included an interaction between344

week and state (which aimed to capture changes in the percentages of COVID-19 infections reported as cases over time345

and across states); the square-root-transformed cumulative percentages of the state populations reported as a case346

and as a death, the percentage of the population reported as excess (unaccounted for) deaths, natural-log-transformed347

percentage of the population that had been tested (PCR), the cumulative percentage of the population that had been348

vaccinated, the square-root-transformed cumulative percentage of cases that had been hospitalized, the percentage349

of survey tests that utilized the Abbott and Roche assays (as two separate variables; we did not include a covariate350

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb
https://healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb
https://healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence
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for Ortho use because its inclusion would have been redundant, given percentages across the three assays always351

equal 100), and the percentage of cases being reported for different age categories (we did not include ages > 70352

years category as the inclusion would have been redundant given percentages across age categories add to 100). Of353

a priori primary concern were the cumulative numbers of reported cases and deaths (as they would likely play an354

important part in explaining patterns in seroprevalence), but we added the other variables as we assumed they might355

be important to control for. We weighted the model to account for the different proportions of the state populations356

that were tested in the nationwide serosurveys by using the inverse of the sampling proportion.357

While accounting for the seroprevalence associated with the use of different assays, the reference model above does358

not explicitly account for the waning in antibodies over time as quantified by each of the assays. As a point of359

comparison, we separately fit a suite of logistic regressions (henceforth, “waning models”) based on the reference360

model above, but which assumed a range of different antibody waning rates per assay. We proceed with the following361

strategy. The time series of the numbers of cases in a location is a (monotonically) increasing function of time, while362

the time series for seroprevalence need not be (if, for instance, antibodies did wane below detectability). We therefore363

“adjust” the reported cases to incorporate waning following a series of assumptions.364

To adjust cases, we multiply each reported case by a step function produced using two parameters: (i) a lead or lag365

between a case seroconverting and it being reported; and (ii) a limited time during which that case would test positive366

before seroreverting (Supplementary Fig. 14). This produces an alternative “adjusted” time series of reported cases.367

Furthermore, we could hypothesize that different assays have potentially different times to seroreversion, and thus368

use multiple step functions to produce these adjusted time series of cases, one for each assay. We produce adjusted369

numbers of reported cases based on the proportions of each assay used to produce each seroprevalence estimate. We370

then fit different logistic regressions for all combinations of the three step functions (or waning rates). An improvement371

in model fit over the reference model provides evidence for the input waning rates. In this way, the impact assays have372

on seroprevalence is split into two components: the temporal waning rate, and the average seroprevalence associated373

with each assay, after accounting for waning, which can be interpreted as a proxy for assay sensitivity for recent374

infections. Note that while the Roche assay has been used through all survey rounds, the Abbott assay was used until375

July 2021 (round 24), and the Ortho assay was used until January 2021 (round 13). This means the maximum times376

to seroreversion we can explore for the Abbott and Ortho assays are 70 and 49 weeks, respectively, relative to the377

start of the pandemic.378

We evaluated models using the Akaike Information Criterion (AIC), root-mean-squared-error (RMSE), and a leave-379

one-out (LOO) median RMSE. RMSE values were estimated by comparing model predictions on the response scale380

with nationwide serosurvey estimates. For the LOO RMSE, each round of the surveys was left out in turn, the model381

fit to the remaining rounds and used to predict the round left out. We then estimated the median RMSE from the382

predictions of the rounds left out. We estimate the proportion infected by taking the best waning model, and replacing383

the adjusted numbers of cases (with which the model was originally fit) with the original cumulative numbers of cases,384

and assuming only the Roche Elecsys assay (associated with the highest seroprevalence estimates) is used.385

Uncertainty around our estimated proportions infected can come from both the model fit, and from the search for386

times to seroreversion and lead or lag between seroprevalence and reported cases. To characterize the uncertainty, we387

used an ad-hoc approach in which we took the best (bottom) five percentile LOO median RMSEs across parameter388

combinations (times to seroreversion and lead or lag), estimated the proportion infected for the corresponding subset389

of models to include the 95% uncertainty intervals (UIs) around each model fit, and extracted the range of estimates390

for each point in time and state (including the 95% UIs). U.S.-wide uncertainty estimates do not include model391

uncertainty (which in any case was significantly smaller than that from selection of times to seroreversion and lead392

or lag), and were estimated by producing a mean seroprevalence and estimated proportion infected weighted by state393

populations, for each of the models in the best five percentile models, and then taking the range of values at each394

point in time.395

Estimates of the proportions of state populations infected as per the best waning model by LOO median RMSE,396

and the corresponding uncertainty intervals, are provided, by state and week, in Supplementary Dataset S2.397

We combine the estimated proportion infected with vaccination coverage (what we refer to in the text as the398

“estimated proportion infected and/or vaccinated”, or EPIV) by making assumptions on the correlation between the399

two. We show results assuming an independent probability, such that the probability of being vaccinated has no400

bearing on the probability of having been infected, i.e.,401

P(vacc) + P(inf)− P(vacc)× P(inf), (1)

where “vacc” can either represent individuals with at least a single dose of a vaccine, or individuals with a complete402

series of the vaccine. We also show results assuming a perfect negative correlation, i.e.,403

P(vacc) + P(inf). (2)
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To understand variation in the extent to which naive (not yet infected or vaccinated) individuals had been prioritized404

by vaccination campaigns, we defined the following metric,405

T∑
t

(v(t)− v(t− 1)) (1− s(t)), (3)

where s(t) is the EPIV (combined proportion infected and vaccination; see above) at time t, and v(t) is the vaccination406

coverage at time t. This metric estimates the proportion of the population that was vaccinated before being infected,407

assuming vaccinations were distributed independently of prior infection status.408

We also repeated analyses allowing covariates to have non-parametrically nonlinear relationships with seroprevalence409

by using splines. Predicted seroprevalence values from the logistic regressions using splines were very similar to those410

predicted without the splines (see Section “Accounting for non-linear relationships” in SI).411

R v4.2 [39] was used in all analyses.412

DATA AVAILABILITY413

Data used to fit the logistic regressions (see Section “Data” in Methods in the main text) and estimates of proportions414

of state populations infected by week are available at https://github.com/UF-IDD/US_seroprevalence. Estimates415

are produced using the best waning model by leave-one-out median RMSE (see Table I and Fig. 2, and Supplementary416

Fig. 7). See Section “Models” in Methods in the main text for how the lower and upper bounds we provide for these417

estimates are calculated.418

CODE AVAILABILITY419

The code used to run the models and produce the figures in the main text and the Supplementary Information are420

available at https://github.com/UF-IDD/US_seroprevalence.421
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TABLES568

TABLE I. Best waning models across three metrics, compared to the reference model. Metrics for the best models
by Akaike information criterion (AIC), root-mean-square error (RMSE), and leave-one-out (LOO) median RMSE, compared to
metrics for the reference model (with no waning). For example, the column “AIC” indicates the best waning model chosen by
AIC (see Fig. 2). AIC values for waning models account for the added parameters being selected (times to seroreversion and
detection lead or lag). ∆AIC values in the table are relative to the lowest AIC in the models shown (the best fitting waning
model by AIC).

Best fitting waning model, by each metric Reference model

AIC RMSE LOO median RMSE

Detection lead or lag (weeks) −1 −1 −1 −
Abbott time to seroreversion (weeks) 31 31 19 −
Ortho time to seroreversion (weeks) 49∗ 49∗ 10 −
Roche time to seroreversion (weeks) 67 96 91 −

∆AIC 0 42 553 634
RMSE 0.0201 0.0200 0.0210 0.0221
LOO median RMSE 0.0209 0.0213 0.0205 0.0227
Observations 1398 1398 1398 1398
Residual degrees of freedom 1285 1285 1285 1285

∗ These are lower bounds because they are the maximum number of weeks for which these assays could be evaluated. The
Ortho assay was only used, to a limited extent, in the first 13 rounds of the nationwide serosurveys (until January 2021),
while the Abbott assay was used in the first 24 rounds (until July 2021; see Methods and Supplementary Figs. 1 and 3).
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