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Reconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the
pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify
asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide sero-
surveys for the U.S. CDC. They employed three assays, with different sensitivities and specificities,
potentially introducing biases in seroprevalence estimates. Using models, we show that accounting
for assays explains some of the observed state-to-state variation in seroprevalence, and when in-
tegrating case and death surveillance data, we show that when using the Abbott assay, estimates
of proportions infected can differ substantially from seroprevalence estimates. We also found that
states with higher proportions infected (before or after vaccination) had lower vaccination coverages,
a pattern corroborated using a separate dataset. Finally, to understand vaccination rates relative to
the increase in cases, we estimated the proportions of the population that received a vaccine prior
to infection.

INTRODUCTION

Estimating the cumulative proportion of the population infected with SARS-CoV-2 is central to understanding
the current state of the pandemic, assessing the susceptibility of the population, and to planning and targeting
public health responses. Epidemiological models and other statistical approaches can be used to estimate cumulative
infections using reported positive SARS-CoV-2 PCR tests, COVID-19 deaths, and other surveillance data [1-7]. Such
studies revealed large underreporting of cases detected through case surveillance due to asymptomatic infections and
limited laboratory testing. Seroprevalence studies based on a random sample of the population may be the gold
standard for assessing the proportion infected but are expensive and logistically complicated to perform.

Since July 2020, commercial laboratories have conducted regular nationwide serosurveys for the CDC [8, 9].
These surveys and other convenience and representative seroprevalence studies ([8, 10-21]; also see https://
covidl9serohub.nih.gov) have provided estimates of the cumulative proportion of the population with a history of
at least one infection with SARS-CoV-2 in the United States at the national and local level. Modeling approaches
have also used seroprevalence studies to improve estimates of critical parameters (e.g., the infection fatality rate) or
to compare to model outputs [3, 4, 22].

However, serosurveys can produce biased estimates of the proportion infected based on the samples and methods
used. Convenience samples, samples collected from individuals in the provision of healthcare for testing unrelated to
SARS-CoV-2, may not be representative of the general population. Seroprevalence studies focusing on individuals
seeking care for reasons unrelated to COVID-19, such as those conducted by the CDC, can underestimate the extent
of mild infections due to tests being evaluated and calibrated mostly on patients with symptoms [23, 24]. Moreover,
waning of antibodies to undetectable levels following infection has been observed [25, 26]. Estimated waning varies
substantially between assays due to differences in their formats (e.g., whether the assays use direct or indirect de-
tection formats; [27]) and resulting variation in their sensitivities and specificities [28-32]. For example, when using
manufacturer-recommended cutoff points to determine seropositivity, Peluso et al. [28] and Stone et al. [32] found lower
sensitivities using ARCHITECT SARS-CoV-2 IgG immunoassay targeting the nucleocapsid protein (“Abbott”) than
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with Ortho-Clinical Diagnostics VITROS SARS-CoV-2 Total Ig and IgG (the latter only in Peluso et al.) immunoas-
say targeting the spike protein (“Ortho”) or Roche Elecsys Anti-SARS-CoV-2 pan-immunoglobulin immunoassay that
targets the nucleocapsid protein (“Roche”). However, sensitivities to recent infections in Peluso et al. [28] were similar
across all three assays. Both studies also estimated systematically faster waning using the Abbott assay while they
found no evidence of waning for the Roche assay. As a result, all else remaining equal, antibody waning means that
seroprevalence estimates will constitute an underestimate of the proportion infected. That the Abbott assay exhibited
faster waning may also imply that the assay immunoglobulin type (IgG in the Abbott, pan-Ig in the Roche) is also
important.

In this study, we use CDC’s commercial laboratory nationwide serosurvey data and multiple other data sources
to explain the observed spatio-temporal patterns in seroprevalence in the United States, with a particular focus on
the role played by the different assays used, waning of antibodies, and the implications for estimating the proportion
infected. We explore the impact of waning antibodies using a simple model, where we adjust seroprevalence to
reconstruct the proportion infected across the United States. Finally, to gain insight into the composition of sources
of immunity, we compare the spatial patterns in estimated proportion infected with vaccination coverage across states
over time.

RESULTS

We used data from CDC’s nationwide antibody serosurveys from commercial laboratories, which measures infection-
induced seroprevalence. This study included both anti-nucleocapsid (anti-N) and anti-spike (anti-S) antibody assays
prior to widespread vaccination campaigns, after which it included only anti-N assays. Anti-N assay seropositivity
is reflective of prior infection with SARS-CoV-2 and not of vaccination with vaccines available in the United States,
which contain only the spike protein; seroprevalence is also not a quantitative measure of current immunity status.
We will henceforth refer to infection-induced seroprevalence as “seroprevalence”. Serosurveys started in July 2020
(round 1), and as of January 2022 (round 29), seroprevalence ranged from 18% in Vermont to 56% in Wisconsin. By
then, the proportions of state populations reported as confirmed COVID-19 cases ranged from 10% in Hawaii to 26%
in Rhode Island, and the proportions for confirmed deaths ranged from 0.1% in Vermont to 0.4% in Mississippi, with
marked heterogeneity across states by round (e.g., Supplementary Fig. 1). Rank order of states by seroprevalence at
a point in time differed quite markedly from that by proportion of the population reported as a case (Fig. 1). To
explain spatio-temporal variation in seroprevalence across states, we fit two sets of models. The first model (“reference
model”) includes cumulative proportions of populations reported as cases and deaths as explanatory variables while
accounting for a range of other factors including the assays used in each survey. The second set of models (“waning
models”) explicitly incorporates the temporal effect of different waning rates (depending on the assay being used)
on seroprevalence estimates (see Methods). Comparison of the waning models with the reference model enables
assessment of the proposed model of waning in measured antibodies and its relative ability to explain observed
patterns.

Variation in infection-induced seroprevalence associated with the use of different assays

Seroprevalence varied systematically as a function of the specific assays used in the surveys (Abbott, Ortho, or
Roche). In the reference model, higher proportions of use of the Abbott assay were associated with lower seroprevalence
while use of the Roche assay was associated with higher seroprevalence (Supplementary Table 1 and Supplementary
Fig. 2; the Ortho assay was included in the model as the comparison group). As a result, some of the spatial variation
observed in the nationwide serosurveys was attributable to the spatially heterogeneous use of assays (Supplementary
Figs. 3-6 in SI). Using the reference model, we estimated the seroprevalence that would have resulted had all states
exclusively used one of the three assays alone. We estimated that if the serosurveys had exclusively used the Roche
assay (highest seroprevalence), estimated seroprevalence country-wide could have been 20 percentage points higher in
January 2022 than if only the Abbott assay (lowest seroprevalence) was to have been used (Supplementary Fig. 7).
There was substantial state-to-state variation in the change in expected seroprevalence had the Roche assay been
exclusive used; for example, seroprevalence would have been over 27 percentage points higher in Iowa in May 2021
(round 21) had they exclusively used the Roche assay, relative to the actual survey estimates (Supplementary Fig. 7).
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FIG. 1. States ranked by different metrics. Ranked (A) cumulative percentage of the population reported as a COVID-19
case, (B) seroprevalence from the CDC nationwide serosurveys, (C) cumulative percentage of the population reported as a
COVID-19 death, and (D) vaccination (with a full series) coverage for July 2021 (round 24, the last round before the Roche
assay started being used exclusively). Gray shading in A and B show serosurveys that at that point in time exclusively used
the Abbott assay.

Accounting for waning helps explain variation in infection-induced seroprevalence

Accounting for waning detection of antibodies over time improved model fit over the reference model across various
metrics (Fig. 2 and Supplementary Fig. 8; Table I). Results support a faster waning rate for the Abbott assay, while
there was no clear evidence of waning in the Roche assay (the best five percentile models by every metric included the
maximum 97 weeks considered here; Fig. 2). Because the Ortho assay was only used up to January 2021 (except in
Puerto Rico, not included in this study), we could only explore up to a maximum of 49 weeks of time to seroreversion.
Time to seroreversion (the time for antibodies to fall below a detection threshold) in the Ortho assay depended on
the metric used (no evidence of waning up to 49 weeks in by Akaike information criterion (AIC) and root-mean-
square error (RMSE), but only 10 weeks for LOO median RMSE), but its use was limited (Supplementary Fig. 1).
The best fitting models by RMSE and median leave-one-out (LOO) RMSE had RMSEs and median LOO RMSEs
approximately 0.91 and 0.90 times that of the reference model without waning, respectively. The best model by LOO
median RMSE had a mean time of seroreversion of 19 weeks for the Abbott assay, 10 weeks for the Ortho assay, and
91 weeks for the Roche assay (although here, there was no statistical evidence of seroreversion over the time period
studied of 97 weeks), with cases seroconverting one week prior to being reported as a case (-1 week detection delay;
Table I). Note, however, that there was uncertainty around these parameter estimates (Fig. 2). The best models by
AIC and RMSE were similar, with estimated Abbott assay time to seroreversion of 31 weeks, and no clear evidence
of waning in the Ortho assay (with a time to seroreversion > 49 weeks; Table I). After accounting for waning, the
negative and positive associations between proportion of Abbott and Roche assays with seroprevalence remained,
albeit with smaller effect sizes (Supplementary Table 1), potentially implying lower sensitivity of the Abbott assay
for detecting recent infections relative to the other two.

Next, we used the best waning model to estimate the proportion infected by correcting the seroprevalence for
assay use and seroreversion (see Methods) and compared it to reported seroprevalence. The difference between
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FIG. 2. Rationale behind the models, and comparison of waning models with the reference model across two
metrics. Inclusion of waning helps explain patterns in seroprevalence better. Left panels explain how we mechanistically
incorporate waning into the models. A case is expected to test positive in a survey for a limited amount of time before serore-
verting (top left), leading to different waning patterns that depend on the time to seroreversion (bottom left; see Supplementary
Fig. 14). In our models we use three different times to seroreversion, one for each assay. Within each tile panel, each pixel
corresponds to a single model, where cases have been adjusted assuming three different times to seroreversion, one for each
assay. The best models had a case seroconvert in the same week (by AIC) or one week before being reported (by leave-one-out
median RMSE; Table I). Tile plots assume the best model’s time to seroreversion for the Ortho assay (49 weeks by AIC, 10
weeks by LOO median RMSE), and show model performance for the remaining two variables, the times to seroreversion for
Roche (x-axes) and Abbott (y-axes) assays. The two tile plots show results for two different model metrics: AIC, and LOO
median RMSE. Metrics are expressed relative to the metric for the reference model (that does not account for waning); blues
(respectively reds) indicate waning models that are better (respectively worse), per that metric, relative to the model without
waning. Contour lines in the tile plots enclose the best five percentile models for each metric. Green points indicate the
best model by each metric, and contour lines enclose the best five percentile models as per each metric. See Table I for the
corresponding best waning model by each metric, and Supplementary Fig. 8 for more complete results.

s estimated proportions infected and seroprevalence is greatest in states and time points in which the Abbott assay was
e predominantly used (e.g., Fig. 3 and Supplementary Figs. 4-6). The estimated proportion infected was at least 10
o percentage points higher than the seroprevalence in six states in January 2021, and in 17 states in July 2021, although
m when averaged across the country (using state populations as weights), the difference was at most five percentage
2 points (Fig. 3). Our results also show that the decreasing seroprevalence over time observed in some states was at
us least in part attributable to the assays used and corresponding waning rates (e.g., most of the states shown in Fig. 3).
1: The resultant time series of proportion infected differed not only quantitatively but in some cases also qualitatively
us from the seroprevalence estimates (Fig. 3 and Supplementary Fig. 9).

us  To highlight the influence of choice of assays on seroprevalence estimates, we compare the seroprevalence estimated
w in New York and New Jersey. Both states experienced qualitatively similar outbreak dynamics according to reported
us cases and deaths, yet the surveys produced very different seroprevalence estimates (both in their absolute values, and
e in particular their evolution over time; see Fig. 3). The maximum difference in their seroprevalence was 19 percentage
120 points (13% in New York, 32% in New Jersey in May 2021). Seroprevalence in New York exhibited a conspicuous
11 drop between October and November, a drop that was not observed in neighboring New Jersey. Our results show
12 that the drop in New York can at least in part be explained by a switch from using the Roche assay to a mix of the
122 Ortho and Abbott assays in October 2020 to exclusively using the Abbott assay by January 2021 to produce the New
122 York seroprevalence estimates. However, sampling for the study was also changed in November 2020 to include a
125 larger proportion of specimens from outside the New York City metropolitan area, which had experienced the largest
125 spike in early cases. Estimates for New Jersey were obtained exclusively using the Roche assay. Accounting for this
127 difference produces estimates of proportion infected that are more similar in magnitude and in trend across the two
12 states. For instance, the maximum difference between the two states after adjusting for assay use is less than six
120 percentage points, in line with the maximum difference reported in seroprevalence after July 2021 (when both used
10 the Roche assay) of just under four percentage points.
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FIG. 3. Time series of survey seroprevalence and estimated proportions infected for seven example states and
U.S.-wide. Example time series of survey seroprevalence, fitted seroprevalence and estimated proportion infected, for states
for which seroprevalence was estimated primarily using the Abbott assay prior to September 2021 (see Supplementary Figs. 1
and 3), except for New Jersey, for which the Roche assay was exclusively used, and U.S.-wide estimates (bottom right). The
proportion infected was estimated using the best waning logistic regression by LOO median RMSE (Fig. 2; Table I). U.S.-wide
estimates were obtained by taking mean values per round weighted by population, and each round was plotted taking the
mean week for that round across all states. Uncertainty envelopes around fits and estimated proportions infected include model
uncertainty and uncertainty around the selection of times to seroreversion and lead or lag between seroprevalence and reported
cases. The U.S.-wide ribbon does not include model uncertainty. Vertical dotted lines indicate the start of the vaccination
campaigns. See Supplementary Fig. 9 for time series for all states included in the model.

Spatial heterogeneity in infection-induced seroprevalence, estimated proportion infected, and vaccination
coverage

Some of the observed spatial heterogeneity in seroprevalence (Fig. 4A) was a result of the use of different assays
and their associated waning rates (Supplementary Figs. 3-6). For example, by July 2021 (round 24, the last round
prior to the Roche assay being used exclusively), the standard deviation in percentage seroprevalence across states
was 10% (Fig. 4A), while after correcting for assay use and waning (Fig. 4B), it was 7.2% (also see Supplementary
Fig. 10). We also found that as vaccine distribution increased in 2021, states with higher vaccine coverage were
associated with lower estimates of the proportion infected (Fig. 4E). We combined the estimates of the proportion
infected from our best waning model with the vaccination coverage (thus including seropositives from both natural
infection and/or vaccination, which we henceforth refer to as the estimated proportion infected and/or vaccinated, or
EPIV), by assuming that the probabilities of being infected and vaccinated with a complete series are independent.
The differences between states were further reduced when considering EPIV (Fig. 4, comparing maps B and D;
Supplementary Fig. 10); in July 2021, the standard deviation in the EPIV was 5.6% (Supplementary Fig. 10). A
comparison of time series in individual states (Fig. 4F) illustrates the relationship between vaccine coverage and the
estimated proportion infected over time. Of note, Washington, a state with low estimated proportion infected pre-
vaccination and higher vaccination coverage maintained a low proportion infected post-vaccination, while Alabama
had high estimated proportion infected pre-vaccination and achieved lower vaccine coverage.

Pre-infection vaccine coverage

The greatest public health benefit of vaccines is likely achieved when administered to individuals prior to infection.
Maximizing the vaccine coverage of individuals pre-infection would have required both limiting, to the extent possible,
transmission (e.g., by implementing non-pharmaceutical interventions), and an effective vaccination campaign. Our
reconstructions of the proportion infected show that the degree to which transmission was constrained in the United
States varied across states and over time (Fig. 3 and Supplementary Fig. 9), by more accurately showing when the
cumulative proportion infected remained flat. Furthermore, although vaccination campaigns started almost simulta-
neously across the country, differences across states in vaccination rates and coverage quickly emerged (Supplementary
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FIG. 4. Spatial patterns and correlations. Spatial variation in July 2021 (round 24) in (A) CDC nationwide serosurvey
seroprevalence, (B) estimated proportion infected, (C) proportion of the population with a complete series of a vaccine, (D)
estimated proportion infected and/or vaccinated (EPIV; assuming independent probabilities of having had a natural infection
and being vaccinated), (E) round-by-round Pearson correlation between the proportion of the population vaccinated and the
estimated proportion infected (shaded areas show the 95% uncertainty intervals for a two-sided test), and (F) example time
series of seroprevalence estimates (black points), estimated proportion infected (blue lines; shaded areas show the uncertainty
intervals), and proportion of the population vaccinated with a full series (red lines) for two states. Panels A-D show maps for
July 2021 (round 24); its point in time is shown in panel F as vertical gray dashed lines. In panel E, a negative correlation
means that states with a higher vaccination coverage tended to be those with lower proportion infected. See Supplementary
Fig. 9 for time series like those in panel F for all states.

Figs. 5 and 6). To give insight on the coverage and speed of the vaccination campaign relative to the speed at which
cases increased, we estimated the proportion of the total population that was vaccinated with a complete series of
doses before being infected, assuming that vaccinations were distributed independently of prior infection status. The
proportion of the whole population who were vaccinated and not previously infected ranged from 6% in Utah to 15%
in Alaska in mid-March 2021, before widespread availability of vaccination to individuals over ages 65 years, and from
21% in Idaho to 42% in Vermont by mid-January 2022 (Supplementary Fig. 11).

Comparison with an independent dataset

Finally, we compared estimates produced by our models with an independent dataset, the nationwide blood donor
serosurvey [19]. Infection-induced seroprevalence estimates from the two sets of surveys are clearly correlated (Pearson
and Spearman correlations of 0.85), albeit with substantial variation (Supplementary Fig. 12), while our estimated
proportion infected was also highly correlated to the blood donor serosurvey estimates (Pearson and Spearman
correlations of 0.94 and 0.93, respectively), although our estimates tended to be higher.

The blood donor surveys included both anti-N and anti-S assays, allowing estimates of seropositivity from both
natural infection and vaccination, respectively [19]. Our EPIV values were substantially lower than the anti-S sero-
prevalence estimated in the blood donor survey (Fig. 5), especially after vaccinations started. Including individuals
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dose (equation 1), while the green line and points use the proportion vaccinated with at least one dose, and assume a perfect
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for comparisons of time series of these quantities per state.

w1 with at least one vaccine dose in the EPIV brought our values closer to the blood donor survey estimates. When
172 assuming a perfect negative correlation between having one or more doses of a vaccine and having ever tested positive
3 due to an infection (adding the two proportions, thus constituting an upper limit), our EPIV were comparable to
174 those of the blood donor surveys. It is, however, also important to note that differences between our EPIV estimates
175 and the blood donor surveys could also be attributable in part to the uncertainty around the time to seroreversion
we of, particularly, the Roche assay (Figs. 2 and 5).

177 DISCUSSION

ws  Our results show that heterogeneous spatio-temporal patterns in seroprevalence are in part explained by which
179 assays were used in the surveys: seroprevalence was lower in states that made greater use of the Abbott assay,
10 underlining variation in the ability to detect infection and waning rates across assays, and possibly indicative of the
w1 different detection thresholds that define seropositivity used by each assay. The times to seroreversion were found to be
182 likely distinctly lower in the Abbott assay than in the Ortho or Roche assays; differences supported by other literature
3 (e.g., [28]) and likely related to characteristics of the assay target. Accounting for the assays used reduces differences
184 across states in seroprevalence and suggests a more homogeneous impact of the pandemic across the United States
15 than would otherwise be surmised based on the surveys alone. The estimated proportions infected were negatively
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correlated with vaccination rates across states.

Longitudinal studies quantifying within-individual antibody kinetics have also previously shown (albeit with rela-
tively small sample sizes) how antibody levels and waning rates can markedly vary depending on the assay used and
on disease severity ([28, 32], but also see [33]). Peluso et al. [28] found similar mean times to seroreversion for the
Abbott assay (23 and 33 weeks for non-hospitalized and hospitalized individuals, respectively), compared to 19 weeks
in our best waning model, and 39 and 79 weeks for the Ortho assay compared to 10 weeks in our results (although by
AIC and RMSE there was no evidence of waning; note that the Ortho assay was phased out by January 2021), while
they found no evidence of waning for the Roche assay, and neither did we (although our point estimate was 91 weeks),
albeit with significant uncertainty around our estimate. Stone et al. [32] also reported distinctly faster waning rates
in the Abbott assay. Moreover, even after accounting for differential waning between assays, Abbott assay use was
associated with lower seroprevalence, possibly suggesting lower sensitivity to recent infections, although this finding
was not consistent with Peluso et al. [28], who found similar sensitivities to recent infections across all three assays.

Previous studies have also leveraged individual-level immune dynamics to produce corrected seroprevalence es-
timates. For instance, using time series of reported cases, deaths, or hospitalizations, Takahashi et al. [31] used
time-varying assay sensitivities (and their variation with disease severity, estimated in individual-level data) to pro-
duce adjusted estimates of seroprevalence across five locations. Where they incorporated individual-level data into
their methodology, we recovered individual-level patterns across a large population.

The spatial heterogeneity observed in the nationwide serosurveys was to an extent attributable to assays used
and waning; variation across states in the estimated proportion infected was distinctly lower. Nevertheless, the
vaccination campaign started at a point in time when the estimated proportion infected still differed by > 36 percentage
points across states, and this maximum range grew to > 39 percentage points by January 2022. This means that
vaccination campaigns started on a relatively heterogeneous landscape of immunity and that heterogeneity increased
with vaccinations and subsequent infections. Uptake of vaccines also varied across states, with the proportions of
the population vaccinated differing across states by as much as 30 percentage points by January 2022. Vaccination
coverage was negatively correlated with the estimated proportion infected, a finding corroborated in a comparison
with an independent dataset, the nationwide blood donor serosurvey. This negative correlation implies that differences
among states in the proportions of state populations that have experienced an immune response (whether by infection
or vaccination) is lower than expected based on vaccination coverage or the proportion infected alone. However, the
negative correlation also suggests that the composition of the source of immunity (from either infection or vaccination)
is likely heterogeneous across states. Consequently, were immune protection from infections and vaccines found to
differ systematically (and there are indications that this may indeed be the case, e.g., [34, 35]), the result of future
waves of the pandemic may also be expected to be spatially heterogeneous. We also presented a metric meant to
capture the rates at which states delivered vaccines in relation to the rate at which cases accrued. Reconstruction of
the dynamics of cumulative infections allows for greater investigation of heterogeneity between locales that might be
used to guide future public health responses.

The differences in our estimates of the proportion infected and estimated proportion infected and/or vaccinated
(estimates without and with vaccination, while accounting for assay use and waning) with the blood donors surveys
could in part be attributed to likely differences in the biases in the sampling inherent to the two surveys. The
nationwide serosurveys that form the basis of our estimates use samples from individuals seeking medical care for
reasons unrelated to COVID-19. On the other hand, people who donate blood may differ from the overall population
in important ways; for instance, blood donors are more likely to be healthy, non-pregnant adults, certain groups (e.g.,
younger age categories) may be systematically underrepresented, and for example, their vaccination uptake might
be systematically higher (e.g., [36]). The assays used were also not the same across the two sets of serosurveys.
Nonetheless, the comparison supports the negative correlation between proportion infected and vaccination coverage.

A number of caveats should be taken into consideration when interpreting our results. As noted above, our results
are based on serosurveys using a convenience sample of individuals that sought health care for reasons other than
COVID-19; this sample could deviate from the wider population in important ways and not be representative. For
example, this group may have experienced different rates of severe illness upon infection with SARS-CoV-2, an
important determinant of immune response, than the general population [24, 28, 31] and may have systematically
different healthcare seeking behavior. Furthermore, biases in the sampling could also vary over time and across
states, for instance as a function of the numbers of cases and underlying demographics. Rates of seroconversion and
reversion might also be different pre- and post-vaccination (e.g., [34, 35, 37]). We use numbers of tests that were
positive and negative in the models, meaning that we do not make explicit adjustments for race, ethnicity, age, or sex,
although these factors are, to an extent, captured in the model with state-specific intercepts. Finally, to calculate the
estimated proportion infected and/or vaccinated, we assumed that the probabilities of being infected and vaccinated
were independent. However, vaccination may be associated with prior infection and the comparison to blood donor
seroprevalence suggests that vaccination may be negatively correlated with the probability of prior infection.

The lags between seroconversion and a case being reported were, a priori, an important parameter to consider
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in accounting for potential systematic shifts in the time series of seroprevalence and reporting of cases and deaths.
However, this parameter should be interpreted with caution. Serosurveys were conducted roughly every two to four
weeks, and they reported time windows (that can be two to four weeks long) over which the surveys were performed;
we here use the midpoints of the windows. Reporting delays might also be expected to vary over time. Nevertheless,
our results do not provide strong evidence for a specific lead or lag, and this is reflected in the uncertainty estimates
we provide.

Our model assumes a constant relationship between infections and reported cases over time. This assumption will
be increasingly challenged as the pandemic progresses, particularly beyond the time-frame considered here. The rising
probability of reinfections and breakthrough cases, as well as the increasing reliance on at-home testing, would likely
introduce biases into our estimates of numbers of infections. For example, if increasing numbers of cases reported
were to be reinfections, then our approach would overestimate the estimated numbers of infections. Conversely, if
fewer cases were to be reported due to at-home testing, then our model would produce underestimates. Furthermore,
waning rates, which in our model are assumed to be constant over time, might vary as a result of prior infections
and /or vaccinations. All these factors act concurrently, and understanding what the overall bias introduced would be
and disentangling their effect on our estimates is a challenge that would require a change to our approach.

Serosurveys will continue to be critical tools to understand determinants and predictors of infection, reinfection,
duration of protection, antigen-specific protection to SARS-CoV-2 variants, and the underlying determinants of burden
(e.g., the infection fatality ratio). Given the changing relationship between reported cases and infections due to
reinfections and breakthrough cases and the increasing availability of at-home testing, statistical and mechanistic
approaches to analyzing serosurvey data will become more important. Our results identifying signals of waning and
the correlation between vaccination and prior infection suggest that large scale, aggregate datasets like the U.S.
serosurveys may yield useful inferences on the relationships between serological responses, protection, and reinfection.
However, further work will be needed to interpret serology as seropositivity saturates in the population and more
individuals experience multiple immunizing events (i.e., re-infection, vaccine boosts).

METHODS

In this study we aimed to explain spatio-temporal variation in seroprevalence using logistic regressions. We included
as covariates the variable use of different assays across time and space and assessed the evidence to support differential
waning of seropositivity across assays. The correlations between the covariates used in the models are shown in
Supplementary Fig. 14.

Data

The serosurveys, conducted by the CDC and commercial laboratories, included samples obtained for reasons un-
related to COVID-19. Nationwide seroprevalence studies using available serum specimens (henceforth referred to as
“nationwide serosurveys”) were conducted from July 2020, with the aim of estimating seroprevalence from infection
per state approximately every two to four weeks (Bajema et al. 2021). The surveys are ongoing, but we here analyze
surveys up to January 2022 (round 29). Three immunoassays were used: the Roche Elecsys Anti-SARS-CoV-2 pan-
immunoglobulin immunoassay that targets the nucleocapsid protein (henceforth referred to as “Roche”), the Abbott
ARCHITECT SARS-CoV-2 IgG immunoassay targeting the nucleocapsid protein (henceforth referred to as “Abbott”,
and Ortho-Clinical Diagnostics VITROS SARS-CoV-2 IgG immunoassay targeting the spike protein (henceforth re-
ferred to as “Ortho”). Further details about the laboratory methods, including the sensitivity, specificity, can be
found in Section “Laboratory methods” in SI. As all vaccines available in the United States generate antibodies to
the spike protein only (anti-S), serosurveys conducted following the widespread availability of vaccines used exclu-
sively assays measuring anti-N IgG. The Ortho assay measured anti-S antibodies, but their use was phased out in
the states analyzed here by the end of January 2021, prior to the start of widespread vaccination campaigns. The
nationwide serosurvey data were downloaded from the CDC (https://data.cdc.gov/Laboratory-Surveillance/
Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv). We assumed the surveys for each round
took place on the middle date of the range given. We then used the number of positive and negative tests produced
in each survey as our outcome variable. Because there were few completed survey rounds for North Dakota, it was
excluded from analyses.

County-level daily laboratory-confirmed COVID-19 cases and deaths in the counties of the United States were
downloaded from USAFacts (https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/) on
March 2, 2022. After aggregating the numbers of cases and deaths per state, and differencing the cumulative curves
to obtain numbers of cases and deaths per day, we found negative values of both reported deaths and cases. If the


https://data.cdc.gov/Laboratory-Surveillance/Nationwide-Commercial-Laboratory-Seroprevalence-Su/d2tw-32xv
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206 negative value was immediately followed by the same (positive) value, those counts were canceled out. Otherwise,
207 the negative total was discounted from previous days’ totals. We then aggregated numbers by week, recalculated
2s cumulative numbers, and divided them by the respective state populations to produce cumulative percentages of the
200 population that were reported as COVID-19 cases and deaths, for each nationwide serosurvey round. These data did
30 not include Puerto Rico, so Puerto Rico is not included in our analyses.

sn Excess deaths data for each state were downloaded from the CDC (https://www.cdc.gov/nchs/nvss/vsrr/
32 covidl9/excess_deaths.htm). We kept the weighted data only (which attempts to correct for reporting delays). To
estimate the number of (excess) deaths not attributable to COVID-19, we took the difference between excess deaths
s and reported deaths. We then calculated this number as a percentage of the state population.

w5 Laboratory testing (PCR) time series per state were downloaded from HealthData.gov (https://healthdata.gov/
ws dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb), and from these we estimated the
a7 cumulative number of tests performed relative to each state’s population up to each serosurvey round.

s We used data on the distribution of assays used in each serosurvey round [38]. The information provided included the
300 number of tests, for each survey round, that were performed with each of three different assays (Abbott ARCHITECT
a0 IgG anti-N, Ortho VITROS IgG anti-S, and Roche Elecsys Total Ig anti-N). From September 2021 (round 25) onwards,
an states switched to exclusively using the Roche Elecsys assay.

sz COVID-19 vaccination data were downloaded from the CDC (https://data.cdc.gov/Vaccinations/COVID-19-Vaccination
a3 unsk-b7fc). We produced percentages of the populations that had been vaccinated with at least one dose of a vaccine,
a1s or with a complete series of the vaccine (individuals with a second dose of a two-dose vaccine or one dose of a single-
as dose vaccine) at each point in time per state. For a couple of states (e.g., Kentucky and West Virginia), vaccination
316 coverage is not a monotonically increasing function of time. However, it is unclear from the data documentation what
a7 the reason for this pattern may be.

as  We downloaded data on COVID-19 hospitalizations from HealthData.gov (https://healthdata.gov/Hospital/
3190 COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh). We calculated the cumulative total num-
a0 ber of confirmed adult hospital admissions, and then obtained the percentage of the cumulative number of cases that
sn had been hospitalized, per state.

322 The proportion of COVID-19 cases reported in different age categories was estimated using the CDC restricted access
23 case surveillance line-list data (https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Acce
2¢ mbd7-r32t). The reporting times in the CDC line list data are not expected to match those from USAFacts.gov.
s We assumed that the proportions of total cases being reported in each of the age categories was unlikely to undergo
36 very rapid changes over time, so we estimated these proportions based on five-week rolling means of the cumulative
37 number of total cases and cases reported in each age category.

28 We compared our estimates of proportions infected with a separate serosurvey conducted by the CDC: the nation-
20 wide blood donor serosurvey (https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence).
130 The survey estimates the proportion of the population with antibodies against SARS-CoV-2 (both anti-N and anti-S
an Ig), for which they used the Roche Elecsys Total Ig and Ortho VITROS Total Ig assays. Multiple estimates were
32 provided for different parts of some states; we took the mean seroprevalence weighted by the number of tests to get
33 a single estimate by state. Surveys were not necessarily performed in the same weeks as the nationwide serosurveys.
3 'To maximize the data used when comparing the two datasets, if surveys in the two datasets were performed one week
35 before or after the other, the two values were still matched.

s We square-root-transformed the cumulative percentages of the populations reported as cases and deaths, and the
337 percentages of the populations hospitalized, because their distributions were heavily skewed and are expected to be the
ass result of a multiplicative process. For similar reasons, we natural-log-transformed the percentage of state populations
39 that were PCR tested. Models with these transformations performed better across model metrics used in this study
uo than models without transformations.

s The data used to fit the models is provided in Supplementary Dataset S1.

30:

&

342 Models

us  We fit logistic regressions using function ‘svyglm’ in package ‘survey’ v4.1.1. In all models, the number of positives
sa out of the total number of tests were the response variable. The “reference model” included an interaction between
week and state (which aimed to capture changes in the percentages of COVID-19 infections reported as cases over time
s and across states); the square-root-transformed cumulative percentages of the state populations reported as a case
s and as a death, the percentage of the population reported as excess (unaccounted for) deaths, natural-log-transformed
percentage of the population that had been tested (PCR), the cumulative percentage of the population that had been
vaccinated, the square-root-transformed cumulative percentage of cases that had been hospitalized, the percentage
of survey tests that utilized the Abbott and Roche assays (as two separate variables; we did not include a covariate
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s for Ortho use because its inclusion would have been redundant, given percentages across the three assays always
32 equal 100), and the percentage of cases being reported for different age categories (we did not include ages > 70
353 years category as the inclusion would have been redundant given percentages across age categories add to 100). Of
3¢ a priori primary concern were the cumulative numbers of reported cases and deaths (as they would likely play an
35 important part in explaining patterns in seroprevalence), but we added the other variables as we assumed they might
36 be important to control for. We weighted the model to account for the different proportions of the state populations
37 that were tested in the nationwide serosurveys by using the inverse of the sampling proportion.

s While accounting for the seroprevalence associated with the use of different assays, the reference model above does
39 not explicitly account for the waning in antibodies over time as quantified by each of the assays. As a point of
w0 comparison, we separately fit a suite of logistic regressions (henceforth, “waning models”) based on the reference
s model above, but which assumed a range of different antibody waning rates per assay. We proceed with the following
strategy. The time series of the numbers of cases in a location is a (monotonically) increasing function of time, while
363 the time series for seroprevalence need not be (if, for instance, antibodies did wane below detectability). We therefore
360 “adjust” the reported cases to incorporate waning following a series of assumptions.

s To adjust cases, we multiply each reported case by a step function produced using two parameters: (i) a lead or lag
36 between a case seroconverting and it being reported; and (ii) a limited time during which that case would test positive
w7 before seroreverting (Supplementary Fig. 14). This produces an alternative “adjusted” time series of reported cases.
s Furthermore, we could hypothesize that different assays have potentially different times to seroreversion, and thus
39 use multiple step functions to produce these adjusted time series of cases, one for each assay. We produce adjusted
s numbers of reported cases based on the proportions of each assay used to produce each seroprevalence estimate. We
sn then fit different logistic regressions for all combinations of the three step functions (or waning rates). An improvement
sz in model fit over the reference model provides evidence for the input waning rates. In this way, the impact assays have
a3 on seroprevalence is split into two components: the temporal waning rate, and the average seroprevalence associated
s with each assay, after accounting for waning, which can be interpreted as a proxy for assay sensitivity for recent
infections. Note that while the Roche assay has been used through all survey rounds, the Abbott assay was used until
w6 July 2021 (round 24), and the Ortho assay was used until January 2021 (round 13). This means the maximum times
a7 to seroreversion we can explore for the Abbott and Ortho assays are 70 and 49 weeks, respectively, relative to the
38 start of the pandemic.

s We evaluated models using the Akaike Information Criterion (AIC), root-mean-squared-error (RMSE), and a leave-
380 one-out (LOO) median RMSE. RMSE values were estimated by comparing model predictions on the response scale
s with nationwide serosurvey estimates. For the LOO RMSE, each round of the surveys was left out in turn, the model
s fit to the remaining rounds and used to predict the round left out. We then estimated the median RMSE from the
33 predictions of the rounds left out. We estimate the proportion infected by taking the best waning model, and replacing
s8¢ the adjusted numbers of cases (with which the model was originally fit) with the original cumulative numbers of cases,
ss and assuming only the Roche Elecsys assay (associated with the highest seroprevalence estimates) is used.

s Uncertainty around our estimated proportions infected can come from both the model fit, and from the search for
37 times to seroreversion and lead or lag between seroprevalence and reported cases. To characterize the uncertainty, we
388 used an ad-hoc approach in which we took the best (bottom) five percentile LOO median RMSEs across parameter
389 combinations (times to seroreversion and lead or lag), estimated the proportion infected for the corresponding subset
00 of models to include the 95% uncertainty intervals (Uls) around each model fit, and extracted the range of estimates
sn for each point in time and state (including the 95% Uls). U.S.-wide uncertainty estimates do not include model
uncertainty (which in any case was significantly smaller than that from selection of times to seroreversion and lead
303 or lag), and were estimated by producing a mean seroprevalence and estimated proportion infected weighted by state
s populations, for each of the models in the best five percentile models, and then taking the range of values at each
305 point in time.

s  Hstimates of the proportions of state populations infected as per the best waning model by LOO median RMSE,
37 and the corresponding uncertainty intervals, are provided, by state and week, in Supplementary Dataset S2.

s We combine the estimated proportion infected with vaccination coverage (what we refer to in the text as the
30 “estimated proportion infected and/or vaccinated”, or EPIV) by making assumptions on the correlation between the
w0 two. We show results assuming an independent probability, such that the probability of being vaccinated has no
w01 bearing on the probability of having been infected, i.e.,
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P(vacc) 4+ P(inf) — P(vacc) x P(inf), (1)

w2 where “vacc” can either represent individuals with at least a single dose of a vaccine, or individuals with a complete

w03 series of the vaccine. We also show results assuming a perfect negative correlation, i.e.,

P(vacc) + P(inf). (2)
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To understand variation in the extent to which naive (not yet infected or vaccinated) individuals had been prioritized
by vaccination campaigns, we defined the following metric,

T

> (W) —o(t = 1)) (1 - s(t), 3)

t

where s(t) is the EPIV (combined proportion infected and vaccination; see above) at time ¢, and v(t) is the vaccination
coverage at time ¢. This metric estimates the proportion of the population that was vaccinated before being infected,
assuming vaccinations were distributed independently of prior infection status.

We also repeated analyses allowing covariates to have non-parametrically nonlinear relationships with seroprevalence
by using splines. Predicted seroprevalence values from the logistic regressions using splines were very similar to those
predicted without the splines (see Section “Accounting for non-linear relationships” in SI).

R v4.2 [39] was used in all analyses.

DATA AVAILABILITY

Data used to fit the logistic regressions (see Section “Data” in Methods in the main text) and estimates of proportions
of state populations infected by week are available at https://github.com/UF-IDD/US_seroprevalence. Estimates
are produced using the best waning model by leave-one-out median RMSE (see Table I and Fig. 2, and Supplementary
Fig. 7). See Section “Models” in Methods in the main text for how the lower and upper bounds we provide for these
estimates are calculated.

CODE AVAILABILITY

The code used to run the models and produce the figures in the main text and the Supplementary Information are
available at https://github.com/UF-IDD/US_seroprevalence.
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TABLES

TABLE 1. Best waning models across three metrics, compared to the reference model. Metrics for the best models
by Akaike information criterion (AIC), root-mean-square error (RMSE), and leave-one-out (LOO) median RMSE, compared to
metrics for the reference model (with no waning). For example, the column “AIC” indicates the best waning model chosen by
AIC (see Fig. 2). AIC values for waning models account for the added parameters being selected (times to seroreversion and
detection lead or lag). AAIC values in the table are relative to the lowest AIC in the models shown (the best fitting waning
model by AIC).

Best fitting waning model, by each metric Reference model
AIC RMSE LOO median RMSE
Detection lead or lag (weeks) -1 -1 -1 —
Abbott time to seroreversion (weeks) 31 31 19 —
Ortho time to seroreversion (weeks) 49* 49* 10 —
Roche time to seroreversion (weeks) 67 96 91 —
AAIC 0 42 553 634
RMSE 0.0201 0.0200 0.0210 0.0221
LOO median RMSE 0.0209 0.0213 0.0205 0.0227
Observations 1398 1398 1398 1398
Residual degrees of freedom 1285 1285 1285 1285

* These are lower bounds because they are the maximum number of weeks for which these assays could be evaluated. The
Ortho assay was only used, to a limited extent, in the first 13 rounds of the nationwide serosurveys (until January 2021),
while the Abbott assay was used in the first 24 rounds (until July 2021; see Methods and Supplementary Figs. 1 and 3).
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