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Abstract 

  

Distributional Semantics Models (DSMs) are a primary method for distilling semantic 

information from corpora. However, a key question remains: What types of semantic relations 

among words do DSMs detect? Prior work typically has addressed this question using limited 

human data that are restricted to semantic similarity and/or general semantic relatedness. We 

tested eight DSMs that are popular in current cognitive and psycholinguistic research (PPMI; 

GloVe; and three variations each of Skip-gram and CBOW using word, context, and mean 

embeddings) on a theoretically-motivated, rich set of semantic relations involving words from 

multiple syntactic classes and spanning the abstract-concrete continuum (19 sets of ratings). We 

found that, overall, the DSMs are best at capturing overall semantic similarity, but also can 

capture verb-noun thematic role relations and noun-noun event-based relations that play 

important roles in sentence comprehension. Interestingly, Skip-gram and CBOW performed the 

best in terms of capturing similarity, whereas GloVe dominated on thematic role and event-

based relations. We discuss theoretical and practical implications of our results, make 

recommendations for users of these models, and demonstrate significant differences in model 

performance on event-based relations. 
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1.      Introduction 

A great deal of theoretical, empirical, and computational research in cognitive science 

has been conducted to gain a better understanding of the nature of human semantic knowledge, 

and word meaning in particular. A particularly challenging prerequisite to studying words 

experimentally or computationally concerns how to characterize their meanings. The two most 

frequently used methods for constructing distributed semantic representations involve collecting 

data from human participants, or analyses of text corpora. For example, semantic representations 

for words referring to living things (cow), nonliving things (tractor), and action verbs and nouns 

(to walk, a walk) have been constructed using data collected from humans, such as semantic 

feature production norms (Buchanan, Valentine, & Maxwell, 2019; McRae, Cree, Seidenberg, & 

McNorgan, 2005; Vinson & Vigliocco, 2008). Such norms have been used with substantial 

success as the basis for human experiments (Mirman & Magnuson, 2008; Papies, 2013; Pexman, 

Hargreaves, Siakaluk, Bodner, & Pope, 2008), connectionist models (Andrews, Vinson, & 

Vigliocco, 2009; Rabovsky & McRae, 2014; Rogers et al., 2004) and network science models 

(Hills, Maouene, Maouene, Sheya, & Smith, 2009; Stella, Beckage, & Brede, 2017). A marked 

disadvantage however, of collecting empirical data from humans using methods such as feature 

norming is that such methods involve collecting huge amounts of data and entail exceedingly 

labor-intensive coding of those data. Furthermore, methods such as feature norming do not 

extend readily to abstract nouns such as equity, abstract verbs such as racialize, adjectives such 

as awkward, and adverbs such as quickly. 

Representations of word meaning can also be constructed using corpus-based 

Distributional Semantic Models (DSMs), and these models have also played a significant role in 

research on semantic memory. DSMs provide representations for all content words that occur in 
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samples (documents, sentences) of usable text or transcribed speech. There are now many types 

of DSMs, and this area of research has been vibrant, varied, and prominent (for an excellent 

recent review, see Lenci, 2018). One class of DSMs is count-based and relies on counting word-

word or word-document co-occurrences. This class yields semantic representations either 

directly from co-occurrence counts, as in HAL (Lund & Burgess, 1996), or transformed counts 

(e.g., using global matrix factorization), as in Positive Pointwise Mutual Information (PPMI; 

Bullinaria & Levy 2007), Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), and 

Global Vectors (GloVe; Pennington et al., 2014). A second class consists of passive co-

occurrence models that use the accumulation of random vectors as a mechanism for semantic 

abstraction (BEAGLE; Jones, Kintsch, & Mewhort, 2006). A third class includes retrieval-based 

models in which semantic memory consists of an episodic word-by-context matrix (Dennis, 

2005; Kwantes, 2005). A fourth class of DSM is prediction-based and relies on feedforward 

connectionist networks in either of two training modes (word2vec, Mikolov et al., 2013). One 

mode (Skip-gram) involves using a target word as input to predict its set of surrounding context 

words as output, and the other (CBOW: Continuous Bag of Words) is trained using a target 

word’s set of surrounding context words as input to predict the target word as output. When 

comparing Skip-gram and CBOW to human performance, given that the input words are 

represented as one-hot (localist) vectors, researchers typically use the vectors of input-to-hidden 

unit weights ("word embeddings") as semantic representations.  

A primary goal of all of these DSMs is to construct vector representations that 

approximate word meaning. These representations can then be used to investigate people’s 

knowledge of semantic relatedness and to provide the foundation for constructing experimental 
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items, models of semantic processing (Andrews et al., 2009; Rotaru, Vigliocco, & Frank, 2018), 

and network science models of lexical knowledge (Utsumi, 2015).  

The goal of the present article is to investigate the degree to which four of the currently 

best-performing DSMs—the count-based PPMI and GloVe models and the prediction-based 

Skip-gram and CBOW models—are able to capture a broad range of semantic relations and to 

provide insights into human language processing. Our testbed consists of 19 sets of human 

ratings, which includes ratings of semantic similarity, general relatedness, verb-noun thematic 

role relations that are central to sentence processing, and noun-noun event-based relations. The 

primary innovation of our research is to investigate the extent to which eight DSMs, PPMI, 

GloVe, and three variations each of Skip-gram and CBOW1, can account for a broad, 

theoretically central, and well-defined range of word-word relations. 

1.1.   Semantic Similarity and DSMs 

  In general, in the human semantic memory literature, semantic similarity is discussed 

and operationalized in terms of shared features (cars and trucks are both made of metal, have 

wheels, are used for transportation, are found on roads, are driven by humans, and so on) and/or 

belonging to the same category (taxonomic relations; cars and trucks are similar because both 

are vehicles). 

In its strongest form, the distributional semantics hypothesis states that when considering 

words, this kind of semantic similarity can be captured using distributional co-occurrences (and 

transformations of them) that are inherent to linguistic input. That is, similarity is reflected in the 

degree to which words co-occur with the same sets of words (and/or in the same documents or 

 
1 The three variations of Skip-gram and CBOW are defined by their use of word embeddings, context embeddings 

(vectors of hidden-to-output unit weights), or the mean of these two embeddings. 

 

 



6 

conversational topics) in spoken and written human language. The output of DSMs are vector 

representations that typically are operationalized as word meanings. The cosine between a pair 

of word vectors typically is used to estimate similarity between the two words’ meanings. 

Overall, DSMs have been successful in capturing similarity among word meanings (Baroni et 

al., 2014; Levy, Goldberg, & Dagan, 2015; Mandera et al., 2017). There are a large number of 

articles in which DSMs have been tested on their ability to capture human semantic judgments, 

and in some cases, decision latency data (e.g., semantic priming tasks). Studies of the degree to 

which DSMs can capture people’s intuitions about similarity have played a major role in 

evaluating, contrasting, and refining multiple types of DSMs. Overall, the fields of 

computational linguistics, psycholinguistics, and human cognition have learned a great deal 

about the extent to which human conceptual knowledge can be captured in co-occurrence 

statistics that are present in language (see Kumar, 2021; Kumar, Steyvers, & Balota, 2021; 

Lenci, 2018, for recent reviews). 

1.2.   Other Semantic Relations and DSMs 

There is no doubt that similarity plays a major role in human conceptual processing in 

general, and in language comprehension and production in particular. However, semantic 

similarity is far from the sole important type of semantic relation. In this article, we use 

“semantic relation” as a superordinate term. Thus, semantic similarity is a type of semantic 

relation. Furthermore, we discuss multiple other types of semantic relations below, including a 

number of thematic role and event-based relations (Carlson & Tanenhaus, 1988; Estes, Golonka, 

& Jones, 2011). 

In some studies, DSMs have also been tested on their ability to account for what typically 

is called associative relatedness (Griffiths, Steyvers, & Tenenbaum, 2007; Rapp, 2002; 
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Sahlgren, 2006). Associative relatedness is measured using word association norms in which 

participants produce a word (or sometimes a chain of words) in response to a cue word (Nelson, 

McEvoy, & Schreiber, 1998; De Deyne, Navarro, & Storms, 2013). For example, given mop as 

a cue in Nelson et al. 24% of participants produced the thematically-related floor. It is important 

to note that the operationalization of associative relatedness is, essentially, its definition; that is, 

two words are associated if participants produce a response word given a cue word (McNamara, 

2005; McRae, Khalkhali, & Hare, 2012). A key issue with association norms, however, is that 

participants’ responses constitute a mixed set of semantic relations that include, for example, 

similar concepts (fox-wolf), antonyms (light-dark), features of the cue such as a part of an object 

(tricycle-pedals), function relations (drill-carpentry), and other thematic role (verb-agent: 

arrest-police; verb-patient: arrest-criminal) and event-based relations (election-candidate). 

Therefore, when testing whether DSMs can account for human associative relatedness as 

operationalized by word association norms, it is unclear what semantic relations actually are, or 

are not, being captured by the models. We therefore tested DSMs’ ability to capture specific 

types of relatedness that are important for word and sentence processing, although one set of 

general relatedness ratings was included because it is part of a dataset that has been used 

extensively by computational linguistics to compare models. 

In addition to word association, several researchers have investigated DSMs’ ability to 

capture thematic relations. Asr, Zinkov, and Jones (2018) and Kacmajor and Kelleher (2020) 

used Jouravlev and McRae’s (2016) thematic production norms as a test bed. These norms 

consist of data collected from participants who were given concrete noun cues such as dog and 

were asked to produce the names of other living or nonliving things that interact in situations 

involving the cue concept, such as leash. Responses that clearly did not constitute a thematic 
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relation (e.g., dog-animal is a subordinate-superordinate relation) were removed because 

participants were not following the instructions, although this occurred rarely. Kacmajor and 

Kelleher tested twelve models on their ability to capture these thematic relations (the proportion 

of participants who produced a valid response), as well as the associative relations found in 

Nelson et al.’s (1998) word association data, and the noun- and verb-pair human semantic 

similarity ratings from SimLex (see Section 2.1). None of the models performed extremely well 

(maximum correlation of 0.42 when evaluated against the similarity ratings from SimLex), and 

in general, the DSMs they tested were better at capturing similarity relations than thematic 

relations. Their knowledge-based models (i.e., those based on WordNet) also performed better 

on similarity than thematic relations, but the difference was starker – they performed better than 

DSMs on similarity and much worse on thematic relations.  

Asr et al. (2018) used Skip-gram to simulate Jouravlev and McRae’s (2016) thematic 

production data, SimLex999 similarity ratings, and the similar and related pairs from 

WordSim353 (a set of human relatedness ratings for which the pairs have been divided post hoc 

by similarity vs. other semantic relations; see Section 2.1). They also used Skip-gram to predict 

these ratings using combinations of word embeddings (the weights from the input layer to the 

hidden layer) and context embeddings (the hidden to output layer weights). They found that 

cosine similarity using the mean of word and context embeddings was the “winner” when they 

considered all of the datasets that they used. Wingfield and Connell (2022) also found that Skip-

gram and CBOW performed reasonably well on these same three datasets, and that larger 

windows increased performance for the related pairs and for the thematic production data. For 

these reasons, we tested both Skip-gram and CBOW on a number of types of semantic relations 

using word, context, and mean embeddings. 
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1.3.   The Current Study 

From both a computational and psychological perspective, the studies outlined in Section 

1.2 have broadened our understanding of semantic and thematic relations, and how they might 

be learned. For example, psychologically, they have provided insights into how much can be 

learned about these types of relations from language alone, as well as the limitations of this type 

of learning. These studies have made researchers think more deeply about the roles of language 

in learning concepts, the types and amounts of linguistic input that people experience over their 

lifetimes (and the consequences of such input), the plausibility of multiple types of learning 

mechanisms, and the ways in which learning from language and learning from other perceptual 

input and action might reinforce one another. The goal of the current research was to expand 

these lines of investigation (e.g., Asr et al., 2018 Kacmajor & Kelleher, 2020; Wingfield & 

Connell, 2022; and Lapesa and Evert, 2013 & 2014; see Section 2.6) in multiple ways, including 

the set of DSMs tested, the use of word, context, and mean embeddings for Skip-gram and 

CBOW, and the breadth and specificity of the semantic relationships examined. 

Broadening the types and specificity of semantic relationships under investigation is of 

particular interest because a large number of semantic and thematic role relations play key roles 

in language processing. These include, but are not limited to, relations such as: the degree of 

similarity (chair - sofa), how things are used (function: couch-[used for] sitting or broom-[used 

for sweeping a] floor), where people or things typically are found (location: airport-pilot, barn-

hay), the types of actions typically performed by people or animals (agent-action: artist - 

sketch), and the types of things or people on which an action typically is performed (action-

patient: serve-customer, strum-guitar). People’s knowledge of these relations is key to language 

usage and to understanding the world in general. For example, semantic similarity has played an 
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important role in theories of the organization of semantic memory going back to Collins and 

Quillian (1969) and progressing through to representational similarity analyses of neural data 

(Mur et al., 2013). Object and entity properties such as its shape, its color, how it is used, and 

where it typically is found have been central to theories of conceptual processing and word 

meaning in the mind and brain for a long time (Martin, 2007). Relations between verbs and 

agents, patients, instruments, and locations are key to theories of how humans understand 

sentences (Carlson & Tanenhaus, 1988; Rabs et al., 2022). Finally, relations among components 

of events play central roles in schema theories of human knowledge (Ghosh & Gilboa, 2014), 

and in theories of event cognition (Zacks, 2020). 

In the present study, we examined whether eight DSMs are able to capture a broad range 

of human ratings covering multiple semantic relations. That is, our goal was to understand the 

degree to which DSMs encode a number of relations that are important for understanding words 

and sentences. Our primary aim was to test the degree to which it might be possible to use a 

DSM as a viable representational basis of a processing model of word and sentence 

comprehension. Although we tested a number of the currently best-performing type-based (what 

Kacmajor & Kelleher, 2020, call “vanilla”) DSMs, and systematically manipulated some of their 

parameters, our main purpose was to understand whether it is possible to use the distance 

between word vectors obtained from these DSMs to approximate human knowledge of a wide 

array of semantic relations. By type-based DSMs, we mean non-contextual models that employ 

relatively standard methods such as using counts to obtain a single vector for each word and 

using cosine similarity between those vectors as a measure of semantic relatedness. Skip-gram 

and CBOW are included in this category because they create one representation for each 

vocabulary word. 
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1.4 Transformer Models 

In our study, we exclude a newer generation of substantially more powerful and complex 

models, particularly transformer-based models (Vaswani et al, 2017) like BERT (Devlin et al., 

2019). These models, by virtue of their complex architecture, are able to form rich, context-

sensitive representations (“token-based”) and perform well on many natural language processing 

tasks. Transformer models generate multiple vectors for each word in their vocabulary, and they 

can be tuned to simulate specific tasks. For example, BERT decomposes sentence-level input 

into token, segment, and position embeddings. BERT learns some syntactic information (Tenney 

et al., 2019; Liu et al., 2019) and semantic roles (Ettinger, 2019; Tenney et al., 2019); however, 

this knowledge has been revealed using either cloze tasks (Taylor, 1953) or by learned 

classification using BERT’s representations. 

We exclude discussion of these models for a few reasons. For one, despite the recent 

appearance of these newer models, many psycholinguistic practitioners who use representations 

from DSMs as tools in their research continue to use models such as PPMI, GloVe, Skip-gram, 

and CBOW a great deal. There continues to be a great deal of research in cognitive psychology, 

cognitive neuroscience, and psycholinguistics on the recognition of isolated 'wordforms' 

(phonological or orthographic) and accessing the meanings of single words when they are not 

presented in sentential or discourse contexts. Isolated spoken word recognition continues to be a 

major area of research, with development of large performance databases (Goh, Yap, & Chee, 

2020), and work focused on isolated spoken words is critical in current research on language 

development and disorders (Apfelbaum et al., 2023; Giovannone & Theodore, 2021; McMurray 

et al., 2022), language and cognitive decline in aging (Nitsan, Banai, & Ben-David, 2022), and 

unlocking the organization of bilingual lexical knowledge and processing (Desroches et al., 



12 

2022). While many questions remain to be answered about form recognition, there is also active 

research on semantic processing in isolated words (Nenadić et al., 2022). Similar questions are 

addressed in the domain of isolated visual word recognition, including basic processes of form 

recognition (Wang et al., 2021) and how word meaning influences those processes (Connell & 

Lynott, 2014; Pexman et al., 2017), how word meaning is represented in the human brain 

(Fernandino et al., 2022; Poeppel & Idsardi, 2022), and how words are related to one another, 

such as research on associative relations (De Deyne et al., 2019), and semantic priming 

(Hutchison et al., 2013). Type-based DSMs mesh well in terms of the information that might 

influence human processing in these cases. For example, out of the total citation count for 

Mikolov’s original Skip-gram papers (Mikholov et al., 2013a; Mikolov et al., 2013b), 24% of 

these citations have come in the last year and a half. Moreover, the data we use here to compare 

DSMs involve limited to no contexts; typically, participants are presented with a pair of words 

and are asked to rate various types of relations. Given this kind of input, it is unclear if a 

transformer-type model would outperform the type-based DSMs we consider here given the lack 

of explicit context. However, we note that some recent work in constructing type-based 

representations from these models suggests that they could be used to investigate this issue 

(Chronis & Erk, 2020; Bommasani, et al., 2020; Ethayarajh, 2019; but see also Lenci, et al., 

2022). In summary, we tested an important class of DSMs that figure prominently in the field. 

We understand that new models will continue to emerge in the future–transformers are one class 

but others are likely to emerge as well. In addition to investigating DSMs, our hope is that the 

present study provides a template for how to investigate the characteristics of other (including 

not yet developed) models. 
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2.      The Testbed: Relations and Ratings 

We used 19 ratings datasets (13 of which were archival; see the Appendix for a 

description of the other 6) to investigate a rich and varied set of semantic relations that involve 

words from multiple major syntactic classes and have meanings that span the abstract-concrete 

continuum. See Table 1 for information about the datasets. Table 1 shows, for each semantic 

relation, (1) the type of semantic relation, (2) the total number of word pairs in the dataset, (3) 

the number of pairs in which both words appear in the WikiOS corpus, (4) corpus coverage, 

which is (3) divided by (2) expressed as a percentage, and examples of (5) related and (6) 

unrelated pairs. We correlated cosines from PPMI, GloVe, Skip-gram, and CBOW with human 

ratings for pairs of words. The ratings datasets that we used are described below [numbered in 

square brackets]. Note that although we use word pairs that are related strongly to illustrate each 

relation, the datasets for all relations include pairs that span the continuum for the specific 

relation from strongly related to unrelated. 

2.1.   Semantic Similarity 

SimLex-999 is a large database of semantic similarity ratings with item pairs that span 

the concrete-abstract continuum (Hill, Reichart, & Korhonen, 2015). Hill et al. used instructions 

designed to focus participants on similarity rather than on other types of semantic relatedness 

(e.g., participants were told that cup-mug and frog-toad are similar, whereas car-tire and car-

crash are related but not similar). Their instructions were successful in that, for example, quick 

and rapid were rated as highly similar, whereas meat and sandwich were not (even though meat 

is often a part of a sandwich). Hill et al. removed pairs that included a word with lower than a 

75% tendency for belonging to a specific part of speech to reduce part-of-speech and semantic 

ambiguity. They also explicitly instructed participants to give antonyms low ratings, so that, for 
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example, the mean rating for tiny-huge was extremely low. We therefore manually removed all 

antonym pairs from the verb-pair subset of SimLex-999 that we call SimLex-222-V in Table 1. 

(We consider the issue of DSMs and participant instructions of this type in the Discussion.) We 

tested model performance on all 999 word pairs [1; not shown separately in Table 1), the 666 

noun pairs [2; SimLex-666-N in Table 1), 222 verb pairs [3; SimLex-222-V), and 111 adjective 

pairs [4; SimLex-111-A).  

 

Table 1: Size, relation type, corpus coverage, and example item pairs for the semantic relations 

used in this study. 

 

SimVerb-3500 [5] is a set of similarity ratings for a diverse set of 3,500 verb pairs. Gerz, 

Vulic, Hill, Reichart, and Korhonen (2016) selected the verbs from Nelson et al.’s (1998) 

association norms using Nelson et al.’s part-of-speech statistics. Gerz et al. signaled to their 
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participants that the items were verbs by using the infinitival forms, as in to reply-to respond. As 

in SimLex-999, they focused human raters on similarity by instructing them to distinguish 

between similarity and other types of relatedness, and to provide low ratings to antonyms. Thus, 

as with SimLex-222-V, we manually removed antonym pairs from SimVerb-3500 for all 

subsequent analyses. 

Finkelstein et al. (2002) developed WordSim-353. Participants rated 353 word pairs on 

the degree to which they were semantically related in any manner. The pairs consisted primarily 

of nouns. Thus, similar pairs such as journey-voyage and pairs that shared other semantic 

relations such as closet-clothes (a closet is a place where clothes are kept) were given high 

ratings. Agirre et al. (2009) used their intuition to manually divide the 353 word pairs into two 

categories: 203 similar pairs such as journey-voyage and street-avenue, versus all other types of 

semantic relations that were present in Finkelstein et al.’s remaining items, such as closet-

clothes and treatment-recovery. For investigating semantic similarity, we used the WordSim-

353 set of 203 similar word pairs, which we refer to as WordSim-Sim [6]. 

2.2.   Similarity Rated on Specific Dimensions 

We used four sets of noun-pair similarity ratings, each focused on a different aspect of 

similarity. The first set focused on similarity in terms of general function (i.e., purpose of use) of 

the items, as in “How similar are the typical uses of glue and tape?” [7] (Function in Table 1). 

These pairs were designed to be similar in function, shape, both, or neither. Thus, many of the 

pairs that were rated as highly similar in function also had similar shapes, and as a consequence 

were also manipulated similarly2, such as bed-cot (Yee, Drucker & Thompson-Schill, 2010).  

 
2 Although the fact that these functionally related pairs were also similar in shape and manipulation meant that 

function could not be isolated, trying to isolate function would have resulted in very few pairs (and pairs for which 

function similarity was not particularly high). Fortunately, the second and third sets (described below) of items were 

similar in shape or manipulation, but not function, allowing us to detect the contribution of function.  
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The second and third sets come from shape and manipulation similarity ratings from a 

common set of nouns collected by Musz, Yee, and Thompson-Schill (2012). The second set 

consists of the items rated on shape similarity. Participants were given word pairs such as 

softball-grapefruit and key-screwdriver and asked to “Picture the things that the words refer to 

and rate them according to how similar their shapes are” [8]. The third set focused on 

manipulation similarity. Musz et al. asked different participants to “Consider the typical 

movements that you make when you use these objects and rate how similar the movements are” 

[9]. Importantly, the pairs for the second and third sets were designed such that (a) when they 

were similar in shape, they were dissimilar in manipulation, (b) when they were similar in 

manipulation, they were dissimilar in shape, and (c) they were all dissimilar in function. These 

careful controls make these ratings useful for evaluating shape or manipulation sensitivity in the 

absence of similarity on the other two features. 

The fourth set of ratings focused on color similarity. Participants were presented with 

word pairs such as basketball-tiger and cherry-banana and were asked to “Picture the objects 

that the words refer to and rate them according to how likely they are to be the same color” [10]. 

These pairs were assembled using the stimuli from several studies (Yee, Ahmed & Thompson-

Schill, 2012; Yee, Huffstetler & Thompson-Schill 2011; Musz, Yee & Thompson-Schill, 2012). 

One particular strength of the items from these studies is that, due to the selection criteria, pairs 

that were rated as highly similar in terms of color were unlikely to be similar in terms of 

function, shape, or manipulation. 

Note that the function, manipulation, shape, and color word pairs used in the present 

study, as well as the verb-agent/patient, verb-instrument, verb-location, and the six event-based 

noun-noun relations, included a much larger set of pairs than were used in the on-line eye-
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tracking, priming, or sentence comprehension studies in the original articles. The items used in 

those on-line studies consisted of the most strongly related pairs, plus unrelated control pairs that 

typically were formed by re-pairing the strongly related words. Word pair selection for the on-

line studies was influenced by other factors as well, such as making sure that no participant 

experienced any word in the experiment more than once. In all cases, the items for those on-line 

studies were chosen based on ratings of much larger sets of items. In the present study, we were 

able to use the larger sets of rated items to create more of a continuum of similarity or 

relatedness, and because factors such as making sure that no word was used more than once 

were irrelevant to the present simulations.  

2.3.   General Relatedness 

We used one set of word pairs that included a number of types of semantic relations 

involving primarily nouns. These were the 252 pairs from WordSim-353 that were classified by 

Agirre et al. (2009) as being related in some way other than semantic similarity [11; WordSim-

Rel]. This dataset includes pairs that are semantically related in various ways, such as money-

deposit (depositing is something that you do with money), tennis-racket (you use a racket to 

play tennis, and the two words form a collocation as well), closet-clothes (you keep clothes in a 

closet), lawyer-evidence (lawyers present evidence), and cup-liquid (you use a cup to contain 

and drink liquids, and you pour liquids into cups). Note that the 252 related pairs plus the 203 

similar pairs adds up to 455 pairs rather than 353. Agirre et al. included a number of pairs as 

unrelated items in both sets that were neither similar nor related in any other manner, such as 

king-cabbage. 
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2.4.   Verb-Noun Thematic Role Relations 

Relations between verbs and nouns that play the roles of agent, patient, instrument, and 

location have played a major role in theories of how people understand language for many years 

(Dresang, Dickey, & Warren, 2019), as well as theories of event knowledge and memory 

(Zacks, 2020). These items were collected for sentence comprehension experiments because 

they reflect people’s conceptually-based thematic role knowledge (often termed “thematic fit”; 

Ferretti, McRae, & Hatherell, 2001; McRae, Spivey-Knowlton, & Tanenhaus, 1998). The first 

dataset includes verb-agent relations as in arrest-cop and serve-waitress and verb-patient 

relations as in arrest-criminal and serve-customer [12; Verb-Agent/Patient]. Note that all 

potential agents and patients were rated in both conditions, so that the data include agenthood 

and patienthood ratings for all verb-noun combinations. For agenthood, participants provided 

ratings for questions such as “How common is it for each of the following to chase 

someone/something?” For patienthood, participants rated, for example, “How common is it for 

each of the following to be arrested by someone?” For the present analyses, because the DSMs 

that we investigated are not able to distinguish agents from patients, we combined the agenthood 

and patienthood ratings by choosing the highest of the two ratings for each verb-noun pair. 

 We also used verb-instrument thematic fit ratings from Ferretti et al. (2001). Ferretti et 

al. asked participants to rate, for example, “How common is it for each of the following to be 

used for the action of stirring?”, with the items including words such as spoon, straw, fork, 

scissors, and stick [13; Verb-Instrument]. The final verb-noun thematic role relation involved 

locations [14; Verb-Location]. Participants provided ratings for sets of verb-noun pairs 

regarding the likelihood of an action taking place in various locations, as in “How common is it 
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for someone to sleep in each of these locations?”, with the items including bedroom, chair, 

bathtub, tent, and car. 

2.5       Noun-Noun Event-based Relations 

Hare, Jones, Thomson, Kelly, and McRae (2009) collected production norms for multiple 

noun-noun event-based relations. These included: event nouns and the types of people (robbery-

burglar) and things (surgery-scalpel) that might be part of those events; instruments and the 

types of people who use them (knife-chef), and things on which they are used (scissors-hair); 

and locations and the types of people or animals (barn-cow) and things (farm-tractor) that tend 

to be found at those locations. Because Hare et al. had participants generate responses rather 

than provide ratings, to create methodologically comparable data sets, we collected ratings for 

the present project (see the Appendix for details). We tested the DSMs on each relation 

separately: event nouns and the types of people (robbery-burglar) [15; Event-Person], and 

things that take part in those events (surgery-scalpel) [16; Event-Thing]; instruments and the 

types of people (knife-chef) who use them [17; Instrument-Person], and things on which they are 

used (scissors-hair) [18; Instrument-Thing]; and locations and the types of people or animals 

(airport-pilot, barn-cow) [19; Location-Animate] and things (farm-tractor) [20; Location-Thing] 

that tend to be found at those locations. 

2.6. Previous Research using Thematic role and Event-based Relations 

Thematic role and event-based relations have been investigated by Lapesa and Evert 

(2013). They used count-based DSMs to simulate human semantic priming data from Ferretti et 

al. (2001; verbs priming agents, patients, instruments, and locations), McRae et al. (2005; 

agents, patients, instruments, and locations priming verbs), and Hare et al. (2009; event-based 

noun-noun priming). Lapesa and Evert compared tens of thousands of models by varying 
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parameters such as dimensionality reduction, corpus, window size, presence versus absence of 

part of speech tags, and the measure used to calculate distance between the resulting vectors 

(including neighbor rank). Many of the tested models distinguished related prime-target pairs 

(e.g., arresting-cop) from unrelated pairs (e.g., dining-cop) with quite high accuracy (e.g., cosine 

was higher for the related than for the unrelated pair). A joint corpus (a concatenation of the 

corpora that they used) provided the best performance, as did their longest window (15 words), 

and no dimension reduction. Lapesa and Evert also found that most of their models performed 

rather poorly when predicting human latency priming effects (in ms), although some models did 

predict a moderate proportion of variance. 

Lapesa, Evert, and Schulte im Walde (2014) tested the ability of a large number of count-

based DSMs to differentiate related versus unrelated pairs that were formed on the basis of 

multiple semantic relations. They used data from the Semantic Priming Project (Hutchison et al., 

2013) and distinguished among synonyms (frigid-cold), antonyms (hot-cold), category 

coordinates (table-chair), forward phrasal associates (help-wanted), and backward phrasal 

associates (wanted-help). Lapesa et al. also amalgamated the prime-target pairs from Ferretti et 

al. (2001), Hare et al. (2009), and McRae et al. (2005) into a set that they called generalized 

event knowledge pairs. Their models distinguished between related and unrelated prime-target 

pairs with high accuracy across the types of relations. Lapesa et al. concluded that the size of the 

context window and dimensionality reduction are important for DSM performance across the 

similarity-based and other relations that they tested. 

 The investigations of Lapesa and Evert (2013) and Lapesa et al. (2014) are important 

because they show that count-based bag-of-words DSMs can account for both similarity and 

other semantic relations (for related work, see also Wingfield & Connell, 2022). The present 
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research differed from their studies in four primary ways. First, Lapesa and Evert used the 

prime-target pairs that appeared in the priming studies of Ferretti et al. (2001), Hare et al. 

(2009), and McRae et al. (2005), whereas we used ratings for the pools of items that served as 

the bases for selecting the smaller pools of items for the actual priming studies. Our approach 

provided us with much larger sets of items, allowing us to report results separately for each 

relation. Second, we simulated human ratings rather than testing whether the models can 

differentiate between related and unrelated pairs or can predict decision latency differences in 

priming studies. Third, we used a larger set of similarity-based relations and datasets. Fourth, 

GloVe, CBOW, and Skip-gram were not evaluated in their studies. 

Finally, given the importance of thematic role information in language comprehension, a 

number of studies have used syntax-based distributional models constructed from grammatically 

parsed, part-of-speech tagged, or semantic role labeled corpora to simulate judgments and 

influences of verb-noun thematic relations (i.e., verb-noun thematic fit or selectional 

preferences; Baroni & Lenci, 2010; Erk et al., 2010; Sayeed et al., 2016; Santus et al., 2017; Tilk 

et al., 2016). Generally, these models construct a prototype vector for a thematic role of a verb 

(e.g., the patient role of cut) by averaging the dependency-based vectors of its most typical role 

fillers (i.e., the words that appear as the patient of cut in a corpus). The similarity of a noun with 

the thematic role prototype is used as the estimate of its plausibility as a filler for that role (e.g., 

things that can be cut). This approach has been successful in capturing ratings of verb-noun 

thematic relations, particularly with respect to verb-agent and verb-patient argument relations. 

Our corpora were not parsed, tagged, or labeled, allowing us to assess whether metrics based on 

the distributional statistics alone can reflect thematic relations. 
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3.      The Corpora 

We created two English corpora, Wiki2018 and EngOS, and two versions of each corpus: 

one at a document level (used to train GloVe and PPMI) and one at a sentence level (for 

Word2Vec). For Wiki2018, we extracted a document-level November 2018 dump of English 

Wikipedia into JSON format, and the sentence-level corpus was constructed by splitting each 

document into sentences. For consistency, we refer to a Wikipedia article/page as a “document.” 

In Wikipedia, because the final sentence of every document is generally index terms/redirects 

(an index term captures the essence of the topic of a document, whereas a redirect is a link that 

automatically sends visitors to another page), we removed the final sentence from each 

document. For EngOS, we downloaded a recent version of the English Open Subtitles database 

from OPUS (https://opus.nlpl.eu). The OPUS version has improved sentence alignment and 

better language checking compared to what exists on opensubtitles.org and is broken into 

sentences. To make a document-level (“chunked”) version of EngOS, we grouped sets of 356 

tokens together (the mean document length in the Wiki2018 document corpus). 

 All corpora had punctuation removed, with the exception of hyphens, which were 

replaced by a space (e.g., ‘self-governed’ became ‘self governed’ rather than ‘selfgoverned’). 

We converted all words to lowercase and removed all stop words and words that occurred fewer 

than 100 times. Sentences that consisted of fewer than three words were dropped. For the 

Wiki2018 document corpus, any documents with fewer than three tokens were removed; these 

typically are stubs (a document deemed too short to provide encyclopedic coverage of a subject) 

and redirects. All corpora were lemmatized using spaCy (https://spacy.io).3 

 
3 In our two sentence-level corpora, we found a roughly power-law tail leading to very infrequent, but unreasonably 

long, sentences. There were 53K (0.06% of 90M) sentences of length greater than 100 tokens in Wiki2018, and 307 

(0.0002% of 176M) in EngOS. In EngOS, the vast majority of these are (i) strings of hundreds to thousands of 

integers presumably having to do with video display, (ii) unicode gibberish, or (iii) song lyrics rendered with no 

https://spacy.io/
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Finally, the documents or sentences in all four corpora (Wiki2018/EngOS X 

document/sentence) were shuffled randomly. We then created our final corpora, which we call 

WikiOS, by randomly interleaving Wiki2018-sent and EngOS-sent and, separately, Wiki2018-

document and EngOS-document. The WikiOS corpus consists of roughly 1.9 billion tokens; 

other studies have used similarly blended corpora (e.g., Baroni & Lenci, 2010). 

4.      The DSMs 

We tested the extent to which the vector representations from each of the eight selected 

DSMs are sensitive to the 19 sets of relation ratings. The DSMs were PPMI, GloVe, Skip-gram 

and CBOW word embeddings for both words in each pair, Skip-gram and CBOW context 

embeddings for both words, and Skip-gram and CBOW using the mean of the word and context 

embeddings for both words. We also investigated a number of parameter settings for each 

measure. Each model took roughly 4 hours to train on a multi-core Mac workstation. 

Researchers have suggested that Skip-gram and CBOW use parameterizations that are 

optimized for discovering similarity relations (Asr et al., 2018; Levy et al., 2015). Furthermore, 

researchers have almost always used word embeddings (input to hidden weights) and discarded 

the context embeddings (hidden to output weights). However, Levy et al. and Asr et al. have 

argued (and tested to some extent) that although word embeddings may best capture similarity, it 

is possible that context embeddings (hidden to output weights) may best capture other semantic 

relations. Therefore, we used word embeddings, context embeddings, and the mean of the two. 

 
sentence punctuation. In Wiki2018, most of the extremely long sentences are either improperly rendered tables or 

long quotes containing no periods. For example, among the longest Wiki2018 sentences are a run-on quote from 

Meher Baba, tables of Gaelic Football results, awards in an Australian national music competition won by Lyneham 

High School in Canberra, and a list of matches played by the English rugby player John Holmes. We therefore 

removed all sentences from both corpora longer than 42 tokens (Adams, 1979). 
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Based on prior results (Lapesa and Evert, 2013; Lapesa et al. 2014; Troyer and Kutas, 

2020), we hypothesized that longer windows might be advantageous for capturing thematic and 

event-based relations, whereas capturing similarity relations might generally be insensitive to 

window size. Our intuition was that event-based relations often are expressed in language via 

more distal lexical co-occurrences, at least sufficiently frequently that model performance might 

be influenced by window size. Therefore, we included short (2 words on each side), medium (7 

words) and long (13) windows for each model. Rather than varying all possible 

hyperparameters, we focused on those that seemed most likely to matter (like window size), or 

have been shown to impact performance in previous studies. We tested a total of 96 models.  

4.1       CBOW/Skip-gram hyperparameters 

 All CBOW and Skip-gram models used 300-dimensional embeddings (i.e., the networks 

had hidden layers of size 300). In addition to testing short (S), medium (M), and long (L) 

windows, respectively, we varied (1) the threshold for random downsampling of high-frequency 

words (Y: threshold = 0.001; N: do not downsample) and (2) using negative sampling (Y) or 

simply using hierarchical softmax (N). With negative sampling, 10 randomly sampled noise 

words were drawn. In all cases, we trained for five epochs with an initial learning rate of 0.025. 

The shape parameter for the negative sampling distribution was 0.75. These combinations 

produced 12 models for each of the three types of embedding (i.e., 3 window sizes, 2 

downsampling possibilities, and 2 negative sampling possibilities). Using the Python gensim 

library implementation of Word2Vec (Rehurek & Sojka, 2011), we thus generated 36 CBOW 

and 36 Skip-gram models. 
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4.2    PPMI Hyperparameters 

         PPMI models used the same window sizes (S = 2, M = 7, L = 13) as in our CBOW and 

Skip-gram models. We varied two other hyperparameters: (1) smoothing the context distribution 

when computing mutual information (Y: smooth with an exponent of 0.75; N: no smoothing) 

and (2) shifting PPMI values. Shifting is used to “zero out” small mutual information values, 

and is controlled by a shift parameter 𝑘. The final mutual information values are 𝑃𝑖𝑗̂ =max(𝑃𝑖𝑗, log 𝑘). We chose either 𝑘 = 5 (Y) or do not shift (N: 𝑘 = 1). All words in the window 

were uniformly weighted when computing co-occurrences. We initially explored other 

weighting schemes but this manipulation made no discernible difference to performance in an 

initial set of analyses. We used our own Python package for PPMI to generate the 12 PPMI 

models – this package is available at https://github.com/thelahunginjeet/pyppmi. 

4.3       GloVe Hyperparameters 

            GloVe models used 300-dimensional embeddings and the same window sizes. We varied 

two parameters related to GloVe’s factorization of the co-occurrence matrix: (1) the weighting 

function parameter alpha (S = 0.75, L = 1.0) and (2) the weighting function cutoff 𝑥𝑚𝑎𝑥 (S = 10, 

L = 100; see Equation 9 and Figure 1 in Pennington, Socher, & Manning, 2014). The 

hyperparameters that we did not vary were the number of passes in the decomposition (25) and 

the initial learning rate (0.05). Using C code available from the original authors 

(https://nlp.stanford.edu/projects/glove/), we generated 12 GloVe models. 

            Table 2 is a guide to our notation for models and hyperparameters. For example, a 

CBOW model using mean embeddings, with long windows, no downsampling of frequent 

words, and training with negative sampling is denoted as CBOW(m)-LNY. A GloVe model with 

short windows, a weighting function alpha of 1.0, and a weighting function cutoff of 10 is 

https://nlp.stanford.edu/projects/glove/
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denoted as GLoVe-SLS. A link containing sample python scripts and data relevant to this 

project is provided at https://osf.io/86dxs/. 

Table 2: Guide to hyperparameters and shorthand notation for DSMs. 

  

5.      Results & Discussion 

5.1 Corpus Coverage and Context Embeddings 

Table 1 indicates that we have excellent corpus coverage, usually exceeding 99%. The only 

notable exceptions are the shape and manipulation relations for which lower coverage is due to 

multi-word phrases that were used in the human rating studies (e.g., baby carriage and 

badminton racket). Note that there are fewer than 222 and 3,500 pairs in SimLex-222-V and 

SimVerb-3500, respectively, because we manually removed all antonym pairs, as discussed 
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above. We retained the names SimLex-222-V and SimVerb-3500 to remain consistent with the 

original rating studies. 

             We begin with one result that is independent of relation type. All of the six Skip-gram 

and six CBOW models using only context embeddings that were trained without negative 

sampling failed to account for any of the ratings (all correlations were close to zero). This was 

not true of word embeddings or mean embeddings trained without negative sampling but was 

specific to context embeddings. Other work has demonstrated that the success of negative 

sampling in word2vec models relies on the underlying distributional structure of the 

language/corpus, and not the prediction mechanism in the model (Johns, et al. 2019).  However, 

there is no difference in the corpus we used for the three embeddings so this does not seem to be 

the explanation here. In any case, we refrain from further discussion of these 12 models, and 

focus only on the remaining 84. In all cases, we scored the models as follows. For a given pair 

of words rated for a particular semantic relation, we computed a cosine between the two word 

vectors of each model. We did this for all pairs for that relation, and then we calculated the 

Spearman correlation between model cosines and human ratings.  

5.2 Similarity  

         5.2.1. SimLex. Figure 1 shows the results for SimLex-999, divided into nouns (SimLex-

666-N), verbs (SimLex-222-V), and adjectives (SimLex-111-A). Because we show many 

comparisons of this type, we describe Figure 1 in detail. For each set of ratings, we show a 

color-coded barplot. CBOW models are on an orange spectrum, with word/context/mean 

embeddings having successively darker colors. SG models are similar, but on a purple spectrum. 

GloVe models are in yellow, and PPMI in black. In each bar plot: (1) the height of the bar 

corresponds to the median Spearman correlation over all sets of hyperparameters for that type of 
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model; (2) the plus sign on top of the bar signifies the single best hyperparameter combination 

within a model class, and (3) dotted lines are drawn at the minimum correlation that would be 

significant at p = .05 with df = number of item pairs minus two. 

         Figure 1 shows that model performance on nouns is quite good, consistent with previous 

work and with our WordSim-Sim results in Section 5.1.2. Substitutional similarity of nouns 

seems to be encoded across models (i.e., is well-captured by all of the DSMs), and there are no 

major differences among the types of models. Interestingly, the models do almost as well on 

adjectives, with CBOW and Skip-gram performing somewhat better than GloVe and PPMI. 

Capturing verb similarity is substantially worse, with correlations dropping by factors of two or 

more, with the exception of CBOW using context embeddings (medium orange bar; see 5.1.4 for 

further discussion of verb similarity). Although CBOW(c) is particularly good at capturing verb 

similarity, and comparable with the best performing models for nouns and adjectives, it will 

become apparent that it performs poorly on many other relations. On the contrary, the median 

correlations for GloVe and PPMI are below the significance level for verb similarity, but as we 

will see, GloVe’s performance on thematic and event-based relations is strong. 
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Figure 1. Summary of Spearman correlations between model-derived similarities and human 

ratings for SimLex (666 noun pairs, 192 verb pairs, 111 adjective pairs). For each of the eight 

model types (model + embedding), the bar height is the median correlation across the 

hyperparameter sets and the plus symbol denotes the maximum correlation obtained across 

the set. Dotted lines illustrate the size of the minimum p = .05 significant correlation given the 

number of pairs in the rating set (see Table 1 for number of pairs). For CBOW(c) and SG(c), 

models that did not use negative sampling performed consistently poorly and they are 

excluded. 

         5.2.2. Nouns and WordSim-Sim. Figure 2 shows noun similarity correlations for SimLex-

666-N (repeated from Figure 1 to facilitate comparison) and WordSim-Sim. All models other 

than CBOW(c) capture WordSim-Sim ratings extremely well. In this study and others (Levy, 

Goldberg, & Dagan, 2015; Baroni et al., 2014), these relations are well-captured by a variety of 

DSMs, and show generally low hyperparameter sensitivity, as evidenced by the small difference 

between the median correlation over all sets of hyperparameters and the single best 

hyperparameter combination [the + sign].  

 

Figure 2. Model correlations with noun similarity relations (SimLex-666-N and WordSim-Sim); 

all annotations and symbols are as in Figure 1. 
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5.2.3 Similarity on Specific Dimensions. Figure 3 shows performance on similarity ratings 

that focus on four dimensions: function, shape, manipulation, and color. All DSMs capture 

concrete objects’ similarity of function, which likely can be primarily attributed to the overlap 

between function and overall similarity in concrete objects in the real world, and the fact that 

things with similar functions are somewhat substitutional in language. Table 1 shows that one of 

the highest rated pairs in this set is apple-peach, both of which people eat (function). In addition, 

apples and peaches also share other types of features (e.g., round, grown on trees, sold in 

supermarkets), and this similarity presumably is reflected in shared linguistic contexts. In 

contrast, you have to go down to a pair tied for 57th in rating to find two words with similar 

function that are dissimilar on other dimensions (birdcage-doghouse), and which seem unlikely 

to participate in shared linguistic contexts. 

 

Figure 3. Model correlations with noun-noun similarity rated on specific dimensions (Function, 

Shape, Color, and Manipulation); all annotations and symbols are as in Figure 1. 
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Manipulation is analogous to some degree in that the linguistic contexts of the highest 

scoring pairs are likely to share some words (e.g., “wear” for helmet and crown, and “keys” for 

piano and typewriter). More surprisingly, most models pick up on shared color (significantly, 

albeit weakly), in which little else appears to discriminate high and low scoring pairs (e.g., puck-

spider, peas-frog). This sensitivity to color similarity may be due to color words appearing in 

linguistic contexts (e.g., black appearing with both puck and spider). Unexpectedly, many of the 

models also produce significant correlations with shape ratings (although these correlations are 

weaker than those with color), with the best PPMI and GloVe models approaching a Spearman 

correlation of .25 or .20. Note that all of the function, shape, manipulation, and color relation 

pairs consist entirely of object nouns. Recently, “Multimodal DSMs” have been created by 

combining the standard textual input with images (Lazaridou, Pham, & Baroni, 2015). It would 

be interesting to test the degree to which multimodal models better capture color and shape 

relations. 

         5.2.4. Verb Similarity. None of the DSMs capture verb similarity particularly well (Figure 

4, with SimLex-222-V repeated from Figure 1 to facilitate comparison with SimVerb-3500) as 

compared to overall noun, function, and manipulation similarity. The models perform somewhat 

better on SimVerb-3500. This occurs even though 170 pairs are in both SimLex-222-V and 

SimVerb-3500, with the Spearman correlation for human ratings of those pairs equal to 0.91. An 

interesting exception is CBOW with context embeddings. For SimLex-222-V, the median 

CBOW(c) model is better than the best model of any other type (even though CBOW(c) was 

anomalously poor at WordSim-Sim, though not SimLex-666-N). 
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Figure 4. Model correlations with verb similarity relations (SimLex-222-V and SimVerb-3500); 

all annotations and symbols are as in Figure 1. 

         The DSMs may perform poorly on verb similarity ratings because verbs tend to have a 

greater number of meanings and senses. Because verb meaning is more malleable, they occur in 

more disparate linguistic contexts than do nouns, in particular concrete nouns (Gentner & 

Boroditsky, 2001; Kersten & Earles, 2004). Note that all of the DSMs used herein compute a 

single vector for a word, regardless of multiple senses and/or meanings. Furthermore, for verbs 

there may be additional variability in the human ratings because individuals may differ with 

respect to the verb meaning or sense that they consider when rating similarity.  

We investigated a representative model (SG(m)-SYY, the best overall performing DSM; 

see Figure 9) by considering items that participants rated as highly similar but the DSMs rated as 

low. A number of these pairs include a verb that is often considered as a light verb (e.g., do, get, 

give, have, make, take). Light verbs are used frequently in constructions in which they seem to 

have little meaning, such as “I’ll get better”, “She made a comment”, or “She gave a talk”. DSM 

representations will be influenced by the frequent light verb usages, whereas when humans rate, 

for example, the similarity of make and build, make in the context of build presumably allows 
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people to ignore the frequent light verb occurrences of make. We investigated this using SG(m)-

SYY by removing all verb pairs that included do, get, give, have, make, and take from SimLex-

222-V (23 pairs) and SimVerb-3500 (130 pairs). Removing these items modestly increased the 

Spearman correlation from .30 to .39 for SimLex-222-V, and from .35 to .37 for SimVerb-3500. 

Thus, this type of ambiguous verb is challenging to some degree for DSMs. 

         5.2.5. Adjectives. Similarity between pairs of adjectives is captured almost as well as noun 

similarity by the majority of the DSMs (see Figure 1). GloVe is slightly below the CBOW and 

Skip-gram models, and PPMI performs the most poorly.  

5.3 General Relatedness 

Figure 5 shows model correlations with WordSim-Rel (general relatedness word pairs and 

instructions). Two observations are notable. First, CBOW(c) performs poorly relative to the 

other models. Second, the correlations with human ratings are quite strong and comparable for 

all other DSMs, although the models do not capture general relatedness as well as they capture 

WordSim-Sim similarity (see Figure 2). 
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Figure 5. Model correlations with general relatedness (WordSim-Rel); all annotations and 

symbols are as in Figure 1. 

5.4 Verb-Noun Relations  

Figure 6 shows model performance for verb-agent/patient, verb-instrument, and verb-location 

relations. Interestingly, GloVe and PPMI in particular capture these thematic relations much 

more strongly than they do verb similarity (see Figure 4). This may occur because a verb is 

paired with a concrete noun in each item (although locations tend to be rated as somewhat less 

concrete than are types of things and people; Brysbaert, Warriner, & Kuperman, 2014).  

 

Figure 6. Model correlations with verb-noun thematic role relations (Verb-Agent/Patient, Verb-

Instrument, Verb-Location); all annotations and symbols are as in Figure 1. 

Although the verbs themselves may occur in quite variable contexts, the agent, patient, 

instrument, and location nouns tend to be less ambiguous than verbs, which might make 

capturing the verb-noun ratings easier. Furthermore, the related verb-noun combinations tend to 

occur together in language (and the world), whereas verb-verb similarity is more strongly tied to 

substitution in context. Also note that the human ratings differ substantially in that participants 
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rated the similarity between pairs of verbs for SimVerb-3500 and SimLex-222-V, whereas the 

verb-noun relation ratings involved judging, for example, how common it is for an action to be 

performed by someone, or how common it is for an action to occur at a certain location. Overall, 

the DSMs account reasonably well for these thematic role relations. In fact, GloVe and PPMI, 

and to a slightly lesser extent, CBOW with mean or word embeddings, and Skip-gram with word 

embeddings, perform as well on the verb-noun relation ratings as they do on SimLex-666-N 

(noun pair similarity). 

                  A final potentially important factor underlying the DSMs’ better performance on 

verb-noun than verb-verb relations follows from the fact that the verb-noun pairs were chosen as 

candidates for word-word priming studies. That is, because the experimenters (who include the 

final author on the present article) were testing whether it is possible for these verbs and nouns 

to prime one another outside of any other context, they selected verb-noun pairs with verb sense 

(as well as noun sense) in mind. Therefore, they chose verb-noun pairs in which the dominant 

sense of the verb matched the most strongly related nouns that followed. In contrast, the 

SimLex-222-V and SimVerb-3500 pairs were not selected with these constraints in mind. 

5.5 Event-Based Relations 

Figure 7 shows model performance on the six noun-noun event-based relations. One surprising 

feature of these results is that the models perform quite well on relations that involve people and 

animals, but they perform poorly on relations that include things (inanimate objects). Looking 

more carefully into model performance at the pair level provides a couple of potential 

explanations for the discrepancy between people/animals and things. 
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Figure 7. Model correlations with noun-noun event-based relations (Event-Person, Event-Thing, 

Instrument-Person, Instrument-Thing, Location-Animate, Location-Thing). All annotations and 

symbols are as in Figure 1. 

         Figure 8 shows scatterplots of the model pair similarities against the human ratings, for a 

representative DSM, SG(m)-SYY. There are a few differences among the relations. In terms of 

the human ratings themselves, Figure 8 shows that they are reasonably evenly distributed across 

the one to seven scale for all of the relations except event-thing and location-thing. In both of 

these cases, the ratings are skewed toward the high end, so that event-thing and location-thing 

ratings will be difficult for any DSM to predict. The red boxes in the event-thing and location-

thing scatterplots are meant to draw the reader’s attention to the fact that in these data, pairs of 

concepts that are deemed highly related by humans have a huge spread in model similarities, 

from completely unrelated to highly related. When we look at the event-thing and location-thing 

model ratings for pairs that have human ratings of 6.75 or above, we find what we call a 

birthday-food problem.  
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food at a birthday party. For a rating task such as this, participants apparently ignore the low 

conditional probability of a birthday party given the presence of food. That is, the fact that 

people eat food in many other instances other than birthday parties did not strongly influence 

people’s ratings. In other cases, the thing that was used in the rating task refers to an object that 

occurs in only one or a few locations, or at one or a few types of events, such as gravestone, 

ballot, or runway. Because those words were paired in the rating task with the strongly related 

event or location, the model cosines and human ratings tended to be much more concordant.  

         In the event-people and location-animate relations, there is less variability in model scores 

for the most highly human-rated items. This occurs generally because the words used to refer to 

types of people in these rating tasks tended to be more situationally specific, as in waiter, 

teacher, cashier, lawyer, and bride, as opposed to say, child, grandparent, person, and woman.  

For the event-people pairs that have mean human ratings greater than or equal to 6.75, SG(m)-

SYY appropriately produced high scores to wedding-bride, olympic-athlete, and trial-defendant 

(situationally specific people), although it did produce lower scores to cruise-captain, baptism-

baby, and sale-shopper (more situationally diverse people). An important point, however, is that 

the people and animate items were dominated by the former type, thus resulting in higher 

correlations for those relations. 

 These issues are not specific to SG(m)-SYY. As one can see in Figure 7, all classes of 

models perform worse on event-based relations involving inanimates (e.g., event-thing) than on 

the corresponding set involving animates (e.g., event-person). We therefore investigated model 

behavior on items with high participant ratings (> 6.75) and low scores in three additional 

models: CBOW(m)-LNY, GloVe-SSL, and PPMI-SYN. These were chosen because they are the 

best performing models of their class overall (as discussed in section 5.5). All of the models 
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tended to generate relatively low similarity scores for pairs in which conditional probabilities are 

highly asymmetric. In addition to birthday-food, other pairs characterized by this pattern include 

forest-stick, restaurant-chair, tavern-glass, anniversary-food, party-music, and store-sign. 

The item-level analyses on the event relations and verb similarity data yield an important 

point (but perhaps an obvious one) that is often overlooked in investigations of DSMs (or 

simulations of human data in general, regardless of the type of modeling or computational 

analyses involved). Model performance can be strongly influenced by the manner in which 

items are chosen for a study, and by the instructions that are given to participants. These aspects 

of human studies can have a larger effect and be a more critical factor in understanding model 

quality (or lack thereof), than the specific model or set of hyperparameters chosen for a given 

model.  Another very different recent approach using “socially-based” models (Johns, 2021) 

demonstrated that making encodings that are aware of how words are communicated across 

people and discourses might also provide representations that lean toward encoding non-

similarity relations. 

 

5.6 Overall Performance 

We used a rank aggregation method to investigate and summarize overall model performance. 

(Rank aggregation code is available at https://github.com/thelahunginjeet/pyrankagg.) We 

treated the 19 ratings instruments as raters and the 84 models as the objects to be ranked. For a 

given rating type (e.g., WordSim-Sim), the model with the highest correlation was given rank 1, 

and the one with lowest correlation was ranked 84. We used a Robust Rank Aggregation method 

(Kolde et al., 2012) to produce scores. Although these scores can be used to produce 

voted/aggregate model ranks, we considered the scores directly because they allow us to see not 

only which models are best, but how close they are to each other.  

https://github.com/thelahunginjeet/pyrankagg
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         Figures 9-11 show model scores from the ranking algorithm considering all 19 relations 

(we excluded SimLex-999 while including each part-of-speech based SimLex component; 

Figure 9), similarity relations only (Figure 10, 9 ratings; SimLex-666-N, SimLex-222-V, 

SimLex-111-A, WordSim-Sim, Function, Shape, Manipulation, Color, SimVerb-3500), and (3) 

relatedness, thematic, and event-based relations only (Figure 11, 10 ratings; WordSim-REL, 

Verb-Agent/Patient, Verb-Instrument, Verb-Location, and the six noun event-based relations).  

 

Figure 9. Ranking of 84 models using their performance over the entire set of relations 

considered in this study. The bar height is the sorted robust rank aggregation score, which is 

used to determine rank ordering. Skip-gram models with both word and mean embeddings and 

GloVe cluster near the top. Note that we have used all-lowercase shorthand for the model 

abbreviations, for better legibility.  

One observation is that the rankings are crowded at the top. Although it is possible to crown a 

“best” model in each class, in many cases that best model is very close to multiple runners-up. In 

Figure 9, one must extend to at least the 40th best model to see a noticeable decrease. This 
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flatness is encouraging because it means, for example, that although GloVe models with a large 

weighting function cutoff (“GloVe-xxL” models) are overall the best, there are Skip-gram, 

CBOW, and a small number of PPMI models that, given appropriate hyperparameter choices, 

perform nearly as well. We use the word “encouraging” because if, for example, a cognitive 

psychologist, cognitive neuroscientist, or psycholinguist previously had used one of these 

models to control for a semantic variable in their stimuli in an experiment, there is no need for 

them to second-guess their model choice because a number of models with slightly different 

hyperparameters would also have worked reasonably well. 

A second observation is that there is a striking difference in the kinds of models that are 

best at capturing similarity (Figure 10) versus those that are best at capturing other types of 

semantic relatedness (Figure 11). Relatedness is dominated by GloVe; the top 10 models are all 

GloVe (with the eleventh best model a PPMI model, another co-occurrence model). This is 

consistent with Pennington, Socher, and Manning’s (2014) claims that GloVe was developed 

with the goal of learning longer-range semantic information. Moreover, GloVe does this over a 

range of hyperparameter combinations, although Figure 11 shows that medium and long 

windows are generally better for capturing thematic relations. Following the GloVe models are a 

mixture of PPMI models and SG(w) models with medium and long windows. Conversely, for 

similarity, SG(w) and SG(m) models with short and medium window sizes are the best 

performing. 
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Figure 10. Ranking of 84 models using their performance over the similarity relations (SimLex, 

WordSim-Sim, Function, Shape, Manipulation, Color, SimVerb-3500). The bar height is the 

sorted robust rank aggregation score, which is used to determine rank ordering. Skip-gram 

models, particularly those using word embeddings, are the best performing models. Note that 

we have used all-lowercase shorthand for the model abbreviations, for better legibility. 
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Figure 11. Ranking of 84 models using their performance over the relatedness, thematic, and 

event-based relations (WordSim-Rel, Verb-Agent/Patient, Verb-Instrument, Verb-Location, 

Event-Person, Event-Thing, Instrument-Person, Instrument-Thing, Location-Animate, Location-

Thing). The bar height is the sorted robust rank aggregation score, which is used to determine 

rank ordering. GloVe models perform best here, followed by Skip-gram. Note that we have 

used all-lowercase shorthand for the model abbreviations, for better legibility.  

            One of the primary conclusions from these analyses is that model class is generally more 

important for achieving good overall performance than are specific hyperparameter values. For 

example, in Figure 11, our original hypothesis that long windows will perform better in 

capturing thematic relations is not borne out by the results. GloVe models of all window sizes 

are better than other models with long windows, and the best non-GloVe model (PPMI-SYN) 

has short windows. Furthermore, many models with long windows are among the worst 

performing. As another example, the best performing embedding type is similarly mixed 

between word and mean embeddings.  
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 Are there any obvious differences in model architecture that would explain these broad 

patterns of differential model performance, specifically GloVe’s superior performance on 

thematic relations, and Skip-gram’s on similarity relations? For GloVe, a useful comparison can 

be made with PPMI. PPMI and GloVe are reasonably similar models, and certainly more similar 

to each other than to either of the word2vec models. Both models begin with co-occurrence 

matrices, and GloVe’s word vectors are produced from a factorization of the PPMI matrix. This 

factorization, while not an orthogonal decomposition, may act in a similar manner to 

decompositions like those used in principal components analysis. In PCA, an 

eigendecomposition of the covariance matrix is able to find new, effective degrees of freedom 

that can be complex combinations of the original ones (coordinate axes, in this case). In a 

similar manner, GloVe’s matrix decomposition may be able to produce combinations of local 

co-occurrence patterns to produce word vectors that can be similar in direction despite not 

consistently occurring in close proximity in text.  

The default implementation of GloVe (Pennington et al, 2014) uses as its representations 

a combination of “word” and “context” vectors; the factorization it performs decomposes the 

log-count matrix into the product of two matrices (plus bias terms) and rows/columns of both 

matrices are combined to form GloVe’s type-level representation of a word. Figure 7 shows that 

mean embeddings for both CBOW and Skip-gram perform better on thematic relations across 

the board; the best performing mean embedding CBOW and Skip-gram models (plus signs in 

Figure 7) are much closer to GloVe than word or context embeddings alone.  Levy et al. (2015) 

point out that the effect of adding context to word vectors converts the cosine similarity function 

into a weighted sum of two terms: one (first order similarity) that is high when one word appears 

in the context of another, and another (second order similarity) that is high when the two words 
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are replaceable. The addition of context vectors adds first order similarity, and since thematic 

relations are about shared context and not substitutability, models that incorporate both (whether 

GloVe or Skip-gram/CBOW) perform better on those relations.  

Conversely, notice in Figure 10 that the best models on similarity relations are 

predominantly Skip-gram and CBOW, and they overwhelmingly use word embeddings alone. 

Since similarity relations are more dominated by substitutability, it makes sense that letting 

second order similarity dominate (as is the case when context embeddings are omitted) would 

lead to better performance on these relations. Finally, we have no obvious answer as to why 

simply including context embeddings in Skip-gram and CBOW’s representations is insufficient 

to obtain performance on thematic relations comparable to GloVe. However, we do note that 

Levy et al. (2015) point out that the bias parameters in GloVe are learned during training, giving 

GloVe additional degrees of freedom when compared to Skip-gram and CBOW, which could 

also contribute to better performance in the tasks we consider. 

5.7. Clustering in Model and Relations Space 

Finally, we present an additional analysis of overall model performance. Figure 12 shows a 

heatmap of the Spearman correlations of each of the 84 models for each of the 19 relations. The 

matrix has been hierarchically clustered in both model and relations space using unweighted 

average linkage (Sokal and Michener, 1958) and Euclidean distance, with cluster numbers being 

determined using the Gap* statistic (Mohajer, Englmeier, & Schmid, 2010). Relations are 

clustered on the x-axis, with the three major clusters indicated by the background color (green, 

magenta, or gray) of the x-axis labels. The y-axis is organized by model similarity, with the 6 

major clusters of models indicated by the background color (brown, gray, orange, green, blue, or 

cyan) of the y-axis labels.  
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Figure 12.  Clustering in model and relations space. Shown here is the (clustered) matrix of 

Spearman correlations of all 84 models we tested against all 19 relations. Hierarchical 

clustering with unweighted average linkage was performed on both relations (columns) and 

models (rows). Each dendrogram was cut to obtain clusters using the Gap* statistic (see text). 

Cluster identity is denoted by the colored boxes on the axis labels; there is no correspondence 

between coloring for model (row) and relation (column) clusters. Guides to the membership of 

the model clusters (the row clusters) are given in corresponding colored text at the right side of 

the plot. Note that we have used all-lowercase shorthand for the model abbreviations, for better 

legibility. 
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 On the x- and y-axes we have used colored boxes to highlight discrete clusters of both 

relations (x-axis, 3 clusters) and models (y-axis, 6 clusters).The three relations clusters have 

green, gray, and magenta boxes, and the six model clusters use orange, brown, gray, green, blue, 

and cyan coloring. 

           When looking at the grouping by relation, one can see that the models do particularly 

well on noun similarity relations (green box, x-axis; WordSim-Sim, WordSim-Rel and Function) 

and poorly on verb similarity (gray box, x-axis; SimVerb-3500 and SimLex-222-V), thematic 

relations involving inanimate objects (gray box, x-axis; Location-Thing, Instrument-Thing, 

Event-Thing), and Color and Shape ratings (gray box, x-axis). This is consistent with the bar 

graphs shown previously. Performance on thematic relations involving animals and people 

(magenta box, x axis; Event-Person, Instrument-Person, Location-Animate) is substantially 

better than on thematic relations involving inanimate objects (gray box, x axis), which was 

discussed above as the “birthday/food” problem. Finally, it is clear that the models are better at 

capturing verb-noun relations (magenta box, x axis; Verb-Instrument, Verb-Location, Verb-

Agent/Patient) than verb similarity relations (gray box, x axis; SimVerb-3500 and SimLex-222-

V). This difference was discussed in Section 5.3. We also note that this performance hierarchy is 

generally preserved across models and hyperparameters, with the exception of some SG models 

that do not use negative sampling (blue box, y axis) and CBOW using context embeddings 

(green box, y axis). 

            Clustering by model shows little mixing of the types of DSMs in the clusters; co-

occurrence models (GloVe and PPMI) occupy a single cluster (orange box, y axis) . None of the 

six clusters mix word2vec and co-occurrence based models. In contrast, models with different 

hyperparameters generally do cluster together so long as they are the same DSM type. 
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Irrespective of hyperparameters, all of the GloVe and PPMI models are in a single cluster 

(orange box, y axis). The vast majority of CBOW and SG models are also in a single cluster 

(gray box, y axis). An exception to this pattern is that any SG or CBOW models with mean or 

context embeddings that do not use negative sampling are in separate clusters (short window 

SG(m) models in the blue box, y axis, medium/long window SG models in the cyan box, y axis, 

and CBOW(c) models in the green box, y axis). This is consistent with our observations that 

negative sampling improves performance of SG and CBOW models that use context 

embeddings, and that CBOW(c) models are generally poor. Looking across the columns, one 

can see this clear drop in correlation for the blue, green, and cyan groups (all on the y axis) when 

compared to the orange and gray groups (both on the y axis). In particular, SG(m) models that 

use negative sampling separate from those that do not; the former are in the gray box, y axis,  

and the latter in the blue and cyan boxes, y axis. 

6.     General Discussion 

The goal of the present article was to investigate the degree to which a sample of 

currently best-performing count and predict DSMs capture a range of semantic relations that are 

important for language processing. The primary novel contribution lies in testing DSMs on 

semantic relations that were divided into 19 datasets based on semantic relations and part of 

speech. These included similarity for nouns, verbs, and adjectives, as well as function, shape, 

manipulation, and color similarity for nouns. We also tested verb-based thematic relations, 

noun-noun event-based relations, and a dataset that includes multiple semantic relations. Finally, 

we investigated CBOW and Skip-gram context embeddings, and the average of the word and 

context embeddings, which has rarely been done. 
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Note that our theoretical approach and expectations contrast with those of Lake and 

Murphy (2021). As part of their studies, they judged DSMs in terms of their ability to capture 

exclusively semantic similarity. Lake and Murphy were interested in the degree to which DSMs 

capture superordinate category membership; they considered cases in which DSMs captured 

other semantic relations to be a failure. In contrast, because our interest was spurred by a desire 

to use DSMs as a basis for networks that might be used to simulate semantic and language 

processing more generally, we view DSM sensitivity to multiple types of semantic relations as a 

feature, rather than a bug. 

Noun similarity, echoing other studies, is clearly the easiest kind of relation for these 

models to encode. To a great extent, the models were constructed to capture this relation. 

Correlations with human ratings approach 0.75 for both WordSim-Sim and word pairs sharing a 

functional relationship, and approach 0.5 for SimLex-666-N. Surprisingly, we found weak but 

significant correlations for perceptually similar items (manipulation, shape and color, see Lewis 

et al, 2019 for a similar result for shape and color). In general, the models are better at verb-noun 

relations than verb similarity, although some of this difference is almost certainly due to specific 

instructions given to SimLex and SimVerb study participants that would be difficult to emulate 

with these models (i.e., to ignore antonyms, although they clearly are related). Some models, 

GloVe in particular, do almost as well on verb/noun relations that are important components of 

sentence comprehension as they do on noun similarity. Finally, all models to some degree match 

human ratings on the event-based relations, performing better on sets involving people and 

animals than those involving things, an issue we discussed in detail above and revisit 

subsequently. 
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In terms of differentiating among models, there are two main takeaways: (1) there is no 

winner-take-all model, and (2) model class/type is generally more important than 

hyperparameter values. With respect to (1), when looking at overall rankings, in terms of 

similarity ratings, Skip-gram and CBOW models dominate (Figure 12), so if a researcher’s goal 

is to construct vectors that are sensitive to similarity, Skip-gram, and to a lesser extent CBOW, 

appears to be the best choice. For the conglomeration of thematic and event-based relations, the 

top 10 models are all GloVe, with 8 of those using medium (15 word) or long (27 word) 

windows (Figure 13). Therefore, if a researcher’s goal is to construct vectors that are sensitive to 

these other relations, especially those that play key roles in sentence processing or event 

cognition, GloVe appears to be the best choice. When we ranked the models based on their 

performance on all of the relations we examined, both GloVe and the word2vec models (CBOW 

and Skip-gram) appear near the top (Figure 11). Moreover, all rankings we produced (Figures 

11-13) are crowded at the top; the difference between the best model and the 10th-best model 

can be in the third or fourth decimal place (in terms of score). 

Returning to (2) above, the relative importance of model class over hyperparameter 

settings, even parameters that one would think should have a strong influence - for example, 

needing longer windows to capture thematic relations - are less important than model type. 

GloVe is dominant on non-similarity semantic relations, despite using a mix of medium (15 

word), long (27 word), and short (5 word) windows. Conversely, word2vec models with 

medium-length windows are competitive with short windows near the top of the similarity 

rankings. Finally, even negative sampling, while generally favored, is not absolutely required for 

good model behavior (except in the case of using solely the context embeddings from Skip-gram 

and CBOW), as there are two CBOW models (CBOW(w)-LYN and CBOW(m)-LYN) and one 
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Skip-gram model (SG(w)-SYN) without negative sampling in the top 10 for similarity relations, 

and two models (SG(w)-MNN and SG(w)-MYN) in the top 10 overall. 

Finally, the item-level analysis we conducted to explain model performance on SimLex-

222-V and SimVerb-3500 and the noun-noun event-based ratings suggest two additional 

lessons. The verb similarity results indicate that there can be important subtleties to consider 

when comparing DSMs to human data; model performance may reflect the inability of a 

particular model to capture a certain kind of relation, but it may also have to do with specific 

instructions given to the human participants that the models either are not, or cannot, be exposed 

to. Regarding the event-based relations, our analysis points toward features of human event 

knowledge that none of the DSMs we tested can capture. In looking at items with low DSM 

scores but high participant ratings, a pattern emerges: they are pairs in which the conditional 

probabilities of the two items are highly asymmetric. For example, returning to the birthday/food 

example, given that you are at a birthday, the likelihood of encountering food is quite high. 

However, solely given that you are eating food, the likelihood that you are at a birthday is 

extremely low. In our rating study, the human participants were given the event name (birthday) 

and asked to rate the likelihood that a set of things would be found there, which led them to 

indicate that food is highly related to birthday. Because all of the DSMs we considered align 

words in vector space when they co-occur in highly similar contexts, the DSMs tend to score 

words as highly related only when both of the items are highly likely to imply the other. For 

example, given that you are in a cemetery, it is highly probable you will see gravestones, and 

given you are looking at gravestones, it is also highly likely you are in a cemetery. 

Cemetery/bench, on the other hand, is more akin to birthday/food. 



52 

What, then, can we say about the relation between DSMs and human semantic 

knowledge? This is a complex question that, in our view, consists of at least three parts, not 

necessarily independent: (1) do DSMs learn word representations that show some functional 

equivalence to what humans learn, (2) do they acquire that knowledge in a way that is similar to 

the way in which humans acquire it, and (3) can they be queried for that knowledge in the way 

we can query a human? Based on our findings and those cited in the Introduction, it would be 

unwise to claim that DSMs are complete models of human semantic knowledge. Lake and 

Murphy (2021) detail many ways in which DSMs (including models like BERT and GPT) fall 

short of humans, among which are: they have no grounding in, or influence from, perception; 

they acquire no actual knowledge about the world; they have difficulty with conceptual 

combinations (“butter knife”); and they cannot respond to instructions. To that, we would add 

that our own findings on event relations suggest the models also have serious difficulty in 

understanding relations with highly asymmetric conditional probabilities (what we called the 

birthday/food problem) and in relations involving words (like light verbs) that can occur in 

many, drastically different contexts. The issue of instructions (our (3) above) is clearly relevant 

to what we found as well; all the models perform suboptimally on color and shape similarity, 

likely because objects similar to each other only in one of these two dimensions are highly 

unlikely to occur in consistent contexts. However, if you asked human participants “how similar 

are puck and spider?” instead of “how similar in color are puck and spider,” you would get a 

dramatically different answer. The fact that 1) these DSMs (and many other NLPs) cannot be 

given these kinds of instructions and 2) we cannot unpack their latent variables to separate 

different types of semantic relations often means that it can be hard to determine if the problem 
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is the representation they form or the inability to instruct them to focus on a particular aspect of 

that representation.   

What about the good? If talking specifically about the models we consider here, they 

clearly do learn some word representations that are functionally similar to human 

representations, at least as far as relations between concepts are concerned. All of the models we 

consider perform well on noun and function similarity. As far as how they learn, there is at least 

one way in which this is realistic: the huge statistical learning literature has made it clear that 

humans can learn from regularities in the environment, even when those regularities are weak 

and the environment is relatively impoverished. The classic experiment of Saffran, Aslin, and 

Newport (1996) showed that young babies can differentiate “words” from “nonwords” when 

trained on a continuous stream of syllables in which the conditional probabilities have been 

manipulated to make certain syllabic patterns more frequent. This occurs without any acoustic 

markers of word or phrasal boundaries, or anything like grammar, in the input stream. DSMs do 

something very much like this; they learn from regularities of word patterns. We note that one of 

the weaknesses of the type-based DSMs, not shared by BERT or GPT, is that input is not 

structured; sentences are decomposed into bags of words in which order is arbitrary. It is thus 

clear why type-based DSMs cannot discriminate between agent-verb and verb-patient relations 

(and our analyses did not require them to do so).   

As to whether this structure is learned in the same way as humans do (our (2) above), the 

models are weaker in that regard. DSMs are not necessarily a functional account of semantic 

knowledge, but there may be some overlap. An important aspect of learning language appears to 

be learning co-occurrences. When people rate various semantic relations, knowledge of co-

occurrences derived from language input likely influences their ratings to some degree. This 
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may be particularly important for types of information that are not present in people’s physical 

real world environment. On the other hand, it is unclear that the human mechanism for doing 

this would be direct (as in a DSM), rather than being an emergent property of some other system 

(for example, next word prediction). A similar tension between neurobiological and algorithmic 

accounts has recently been discussed in a different context (network models versus DSMs; 

Kumar et al, 2021), in which the authors recognized the power of learning co-occurrences but 

were similarly wary of claiming that DSMs are good models for human cognition. Rather than 

hope that any one of these models is actually a complete model of human semantic knowledge, 

researchers should instead use them pragmatically depending on what kinds of materials and 

relations they wish to consider. 

Despite these drawbacks, in the absence of a method to empirically generate the basis for 

human semantic relation judgments at large scales, DSMs of various stripes remain the best 

current way to predict or fit human semantic knowledge at a large scale. Even if no single DSM 

provides a general account, the fact that DSM performance is somewhat relation-specific gives 

us two things. First, this yields an automated way of predicting human judgements for a variety 

of relations, which can be useful for experimental control in a variety of settings. Second, it 

gives researchers a set of levers to try to unpack aspects of relational knowledge. For example, if 

the algorithm and parameters of one particular DSM provide the best fit to shape similarity, 

whereas those of another DSM provide the best fit to manipulation similarity, what hypotheses 

can be generated about the basis for human ratings on these dimensions? 

7.         Conclusions 

 Quantifying human semantic knowledge is a long-standing and multifaceted challenge. 

The ability to translate theories of human semantic knowledge into numbers that specify the 
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relation between any arbitrary pair of words, no matter how concrete or abstract they are, has 

been a holy grail in this area. This ability would provide researchers with the means to compare 

theories (do the values that follow from one theory account for more variance in human 

performance than those of another?) and to control experimental item selection, as well as many 

other applications. 

DSMs have a long history of use in cognitive science (Landauer & Dumais, 1997; Lund 

& Burgess, 1996), have increased in use as technological innovations have produced more 

sophisticated models (e.g., Mikolov et al., 2013), and appear to provide surprisingly robust 

characterizations of semantic relatedness. DSMs produce quantified representations that provide 

a measure of distance between any pair of concepts, they can be applied to any word (not just 

concrete words), and they can be derived automatically from large text corpora. 

But to what degree do DSMs capture different, specific aspects of semantic relations that 

we can measure in experiments with human subjects? Our goal in this article was to compare 

currently best-performing DSMs on a broad range of semantic relations. Despite the large 

amount of research that has been done with DSMs to date, we believe that the comparisons of 

DSMs and the range of human performance data presented here will provide a unique resource 

for researchers who are interested in using DSMs as a basis for constructing models of language 

comprehension.  
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Appendix 

Events, Locations, and Instruments Ratings Methods and Descriptive Results 

Methods 

Participants 

One-hundred, forty-one students (mean age = 19, range = [17-24]) participated for partial 

course credit. Approximately 80% of participants identified as female; 19% identified as male; 

and 1% identified as non-binary. All participants gave informed consent under the approval of the 

institutional review board at the University of Connecticut. The number of participants who 

completed each list differed somewhat by cue-target type (see Materials & Procedures), which 

included events-people (N = 41), events-things (N = 20), locations-animate (N = 20), locations-

things (N = 20), instruments-animate (N = 20), and instruments-things (N = 20). The number of 

participants for the events-people ratings was approximately double that of the other cue-response 

types due to experimenter error (we ran the condition twice), and we elected to include all data. 
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Materials & Procedures 

The items were taken from Hare, Jones, Thomson, Kelly, and McRae (2009). In that study, 

participants were given cue words and produced up to five responses of a certain type, according 

to six different sets of instructions: 

1. Events-people: Participants were presented with 45 event nouns such as sale and were 

asked to provide types of people that typically are found at those events (e.g., clerk, 

shopper). 

2. Events-things: Participants were presented with 53 event nouns such as banquet and 

were asked to provide things that typically are found at those events (e.g., wine, flowers). 

3. Locations-people and animals: Participants were presented with 31 nouns describing 

locations (e.g., barn) and were asked to provide people and/or animals that typically are 

found at those locations (e.g., farmer, cow). 

4. Locations-things: Participants were presented with 61 location nouns (e.g., bathroom) 

and were asked to provide things that are typically found at those locations (e.g., 

toothbrush, toilet). 

5. Instruments-people: Participants were presented with 45 nouns describing instruments 

(e.g., wrench) and were asked to respond with people that typically use the instrument 

(e.g., plumber, carpenter). 

6. Instruments-things: Participants were presented with 43 instrument nouns (e.g., 

scissors) and were asked to respond with the things that people typically act upon with 

each (e.g., hair, paper). 

Hare et al.’s resulting data contained 5854 unique cue-response pairs. For the present 

purposes, we selected a subset of these data subject to several constraints. A weighted score for 
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each response was computed based on the number of participants who provided each response in 

first, second, third, fourth, or fifth position in Hare et al. (with first position given five times the 

weight as the fifth, and so forth). First, we excluded all cue-target pairs with a weighted score of 

less than 3. Second, we excluded all cues with fewer than seven unique responses across Hare et 

al.’s participants. Finally, two authors used intuition to select approximately half of the remaining 

cue-response pairs to use for the present study. This included eliminating pairs with generic 

responses (e.g., “woman,” “man”). This resulted in 2,717 pairs: events-people: 538; events-things: 

592; locations-people and animals: 504; locations-thingss: 356; instruments-people: 287; 

instruments-things: 440). 

A separate list was created for each of the 6 cue-response types. A separate group of 

participants responded to each list. Within each list, each cue word was presented on a separate 

screen along with all of its responses (mean = 12.5; range = 6-20) on the same screen. Participants 

rated the event-based relations on a scale of 1 (Not at all likely) to 7 (Extremely likely). They were 

informed that “In this study, you will be presented with a list of events [or locations or 

instruments]. For each, we would like you to imagine situations that could take place during that 

event” [or location or instrument].” Specific instructions varied according to each cue-response 

type: 

1. Events-people: How likely is each type of person to be found in this situation? 

2. Events-things: How likely is each type of thing to be found in this situation? 

3. Locations-people-animals: How likely is each type of person/animal to be found at this 

location? 

4. Locations-things: How likely is each type of thing to be found at this location? 

5. Instruments-people: How likely is each type of person to use the instrument?  
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6. Instruments-things: How likely is the instrument to be used on each type of thing? 

Results 

Overall, ratings were relatively high, collapsing across all six list types (M = 5.73, SD = 0.47, 

range = 1-7). Ratings varied somewhat across the six conditions: events-people (M = 5.73, SD = 

0.76, range = 1-7), events-things (M = 6.15, SD = 0.71, range = 1-7), locations-people and animals 

(M = 5.78, SD = 1.07, range = 1-7), locations-things (M = 6.30, SD = 0.64, range = 1-7), 

instruments-people (M = 5.41, SD = 1.12, range = 1-7), and instruments-things (M = 5.01, SD= 

1.02, range = 1-7). Histograms for each list are provided in Supplemental Figure 1. 

 

Supplemental Figure 1. Histograms of mean ratings (by item) for each set.  Abbreviations are as 

follows: Events-Things, E-T; Events-People, E-P; Instruments-Things, I-T; Instruments-People, 

I-P; Locations-Things, L-T; Locations-Animals-People, L-A. 


