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Abstract

Distributional Semantics Models (DSMs) are a primary method for distilling semantic
information from corpora. However, a key question remains: What types of semantic relations
among words do DSMs detect? Prior work typically has addressed this question using limited
human data that are restricted to semantic similarity and/or general semantic relatedness. We
tested eight DSMs that are popular in current cognitive and psycholinguistic research (PPMI,;
GloVe; and three variations each of Skip-gram and CBOW using word, context, and mean
embeddings) on a theoretically-motivated, rich set of semantic relations involving words from
multiple syntactic classes and spanning the abstract-concrete continuum (19 sets of ratings). We
found that, overall, the DSMs are best at capturing overall semantic similarity, but also can
capture verb-noun thematic role relations and noun-noun event-based relations that play
important roles in sentence comprehension. Interestingly, Skip-gram and CBOW performed the
best in terms of capturing similarity, whereas GloVe dominated on thematic role and event-
based relations. We discuss theoretical and practical implications of our results, make
recommendations for users of these models, and demonstrate significant differences in model

performance on event-based relations.



1. Introduction

A great deal of theoretical, empirical, and computational research in cognitive science
has been conducted to gain a better understanding of the nature of human semantic knowledge,
and word meaning in particular. A particularly challenging prerequisite to studying words
experimentally or computationally concerns how to characterize their meanings. The two most
frequently used methods for constructing distributed semantic representations involve collecting
data from human participants, or analyses of text corpora. For example, semantic representations
for words referring to living things (cow), nonliving things (tractor), and action verbs and nouns
(to walk, a walk) have been constructed using data collected from humans, such as semantic
feature production norms (Buchanan, Valentine, & Maxwell, 2019; McRae, Cree, Seidenberg, &
McNorgan, 2005; Vinson & Vigliocco, 2008). Such norms have been used with substantial
success as the basis for human experiments (Mirman & Magnuson, 2008; Papies, 2013; Pexman,
Hargreaves, Siakaluk, Bodner, & Pope, 2008), connectionist models (Andrews, Vinson, &
Vigliocco, 2009; Rabovsky & McRae, 2014; Rogers et al., 2004) and network science models
(Hills, Maouene, Maouene, Sheya, & Smith, 2009; Stella, Beckage, & Brede, 2017). A marked
disadvantage however, of collecting empirical data from humans using methods such as feature
norming is that such methods involve collecting huge amounts of data and entail exceedingly
labor-intensive coding of those data. Furthermore, methods such as feature norming do not
extend readily to abstract nouns such as equity, abstract verbs such as racialize, adjectives such
as awkward, and adverbs such as quickly.

Representations of word meaning can also be constructed using corpus-based
Distributional Semantic Models (DSMs), and these models have also played a significant role in

research on semantic memory. DSMs provide representations for all content words that occur in



samples (documents, sentences) of usable text or transcribed speech. There are now many types
of DSMs, and this area of research has been vibrant, varied, and prominent (for an excellent
recent review, see Lenci, 2018). One class of DSMs is count-based and relies on counting word-
word or word-document co-occurrences. This class yields semantic representations either
directly from co-occurrence counts, as in HAL (Lund & Burgess, 1996), or transformed counts
(e.g., using global matrix factorization), as in Positive Pointwise Mutual Information (PPMI;
Bullinaria & Levy 2007), Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), and
Global Vectors (GloVe; Pennington et al., 2014). A second class consists of passive co-
occurrence models that use the accumulation of random vectors as a mechanism for semantic
abstraction (BEAGLE; Jones, Kintsch, & Mewhort, 2006). A third class includes retrieval-based
models in which semantic memory consists of an episodic word-by-context matrix (Dennis,
2005; Kwantes, 2005). A fourth class of DSM is prediction-based and relies on feedforward
connectionist networks in either of two training modes (word2vec, Mikolov et al., 2013). One
mode (Skip-gram) involves using a target word as input to predict its set of surrounding context
words as output, and the other (CBOW: Continuous Bag of Words) is trained using a target
word’s set of surrounding context words as input to predict the target word as output. When
comparing Skip-gram and CBOW to human performance, given that the input words are
represented as one-hot (localist) vectors, researchers typically use the vectors of input-to-hidden
unit weights ("word embeddings") as semantic representations.

A primary goal of all of these DSMs is to construct vector representations that
approximate word meaning. These representations can then be used to investigate people’s

knowledge of semantic relatedness and to provide the foundation for constructing experimental



items, models of semantic processing (Andrews et al., 2009; Rotaru, Vigliocco, & Frank, 2018),
and network science models of lexical knowledge (Utsumi, 2015).

The goal of the present article is to investigate the degree to which four of the currently
best-performing DSMs—the count-based PPMI and GloVe models and the prediction-based
Skip-gram and CBOW models—are able to capture a broad range of semantic relations and to
provide insights into human language processing. Our testbed consists of 19 sets of human
ratings, which includes ratings of semantic similarity, general relatedness, verb-noun thematic
role relations that are central to sentence processing, and noun-noun event-based relations. The
primary innovation of our research is to investigate the extent to which eight DSMs, PPMI,
GloVe, and three variations each of Skip-gram and CBOW!, can account for a broad,
theoretically central, and well-defined range of word-word relations.

1.1. Semantic Similarity and DSMs

In general, in the human semantic memory literature, semantic similarity is discussed
and operationalized in terms of shared features (cars and trucks are both made of metal, have
wheels, are used for transportation, are found on roads, are driven by humans, and so on) and/or
belonging to the same category (taxonomic relations; cars and trucks are similar because both
are vehicles).

In its strongest form, the distributional semantics hypothesis states that when considering
words, this kind of semantic similarity can be captured using distributional co-occurrences (and
transformations of them) that are inherent to linguistic input. That is, similarity is reflected in the

degree to which words co-occur with the same sets of words (and/or in the same documents or

' The three variations of Skip-gram and CBOW are defined by their use of word embeddings, context embeddings
(vectors of hidden-to-output unit weights), or the mean of these two embeddings.



conversational topics) in spoken and written human language. The output of DSMs are vector
representations that typically are operationalized as word meanings. The cosine between a pair
of word vectors typically is used to estimate similarity between the two words’ meanings.
Overall, DSMs have been successful in capturing similarity among word meanings (Baroni et
al., 2014; Levy, Goldberg, & Dagan, 2015; Mandera et al., 2017). There are a large number of
articles in which DSMs have been tested on their ability to capture human semantic judgments,
and in some cases, decision latency data (e.g., semantic priming tasks). Studies of the degree to
which DSMs can capture people’s intuitions about similarity have played a major role in
evaluating, contrasting, and refining multiple types of DSMs. Overall, the fields of
computational linguistics, psycholinguistics, and human cognition have learned a great deal
about the extent to which human conceptual knowledge can be captured in co-occurrence
statistics that are present in language (see Kumar, 2021; Kumar, Steyvers, & Balota, 2021;
Lenci, 2018, for recent reviews).
1.2.  Other Semantic Relations and DSMs

There is no doubt that similarity plays a major role in human conceptual processing in
general, and in language comprehension and production in particular. However, semantic
similarity is far from the sole important type of semantic relation. In this article, we use
“semantic relation” as a superordinate term. Thus, semantic similarity is a type of semantic
relation. Furthermore, we discuss multiple other types of semantic relations below, including a
number of thematic role and event-based relations (Carlson & Tanenhaus, 1988; Estes, Golonka,
& Jones, 2011).

In some studies, DSMs have also been tested on their ability to account for what typically
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Sahlgren, 2006). Associative relatedness is measured using word association norms in which
participants produce a word (or sometimes a chain of words) in response to a cue word (Nelson,
McEvoy, & Schreiber, 1998; De Deyne, Navarro, & Storms, 2013). For example, given mop as
a cue in Nelson et al. 24% of participants produced the thematically-related floor. It is important
to note that the operationalization of associative relatedness is, essentially, its definition; that is,
two words are associated if participants produce a response word given a cue word (McNamara,
2005; McRae, Khalkhali, & Hare, 2012). A key issue with association norms, however, is that
participants’ responses constitute a mixed set of semantic relations that include, for example,
similar concepts (fox-wolf), antonyms (light-dark), features of the cue such as a part of an object
(tricycle-pedals), function relations (drill-carpentry), and other thematic role (verb-agent:
arrest-police; verb-patient: arrest-criminal) and event-based relations (election-candidate).
Therefore, when testing whether DSMs can account for human associative relatedness as
operationalized by word association norms, it is unclear what semantic relations actually are, or
are not, being captured by the models. We therefore tested DSMs’ ability to capture specific
types of relatedness that are important for word and sentence processing, although one set of
general relatedness ratings was included because it is part of a dataset that has been used
extensively by computational linguistics to compare models.

In addition to word association, several researchers have investigated DSMs’ ability to
capture thematic relations. Asr, Zinkov, and Jones (2018) and Kacmajor and Kelleher (2020)
used Jouravlev and McRae’s (2016) thematic production norms as a test bed. These norms
consist of data collected from participants who were given concrete noun cues such as dog and
were asked to produce the names of other living or nonliving things that interact in situations

involving the cue concept, such as leash. Responses that clearly did not constitute a thematic



relation (e.g., dog-animal is a subordinate-superordinate relation) were removed because
participants were not following the instructions, although this occurred rarely. Kacmajor and
Kelleher tested twelve models on their ability to capture these thematic relations (the proportion
of participants who produced a valid response), as well as the associative relations found in
Nelson et al.’s (1998) word association data, and the noun- and verb-pair human semantic
similarity ratings from SimLex (see Section 2.1). None of the models performed extremely well
(maximum correlation of 0.42 when evaluated against the similarity ratings from SimLex), and
in general, the DSMs they tested were better at capturing similarity relations than thematic
relations. Their knowledge-based models (i.e., those based on WordNet) also performed better
on similarity than thematic relations, but the difference was starker — they performed better than
DSMs on similarity and much worse on thematic relations.

Asr et al. (2018) used Skip-gram to simulate Jouravlev and McRae’s (2016) thematic
production data, SimLex999 similarity ratings, and the similar and related pairs from
WordSim353 (a set of human relatedness ratings for which the pairs have been divided post hoc
by similarity vs. other semantic relations; see Section 2.1). They also used Skip-gram to predict
these ratings using combinations of word embeddings (the weights from the input layer to the
hidden layer) and context embeddings (the hidden to output layer weights). They found that
cosine similarity using the mean of word and context embeddings was the “winner” when they
considered all of the datasets that they used. Wingfield and Connell (2022) also found that Skip-
gram and CBOW performed reasonably well on these same three datasets, and that larger
windows increased performance for the related pairs and for the thematic production data. For
these reasons, we tested both Skip-gram and CBOW on a number of types of semantic relations

using word, context, and mean embeddings.



1.3. The Current Study

From both a computational and psychological perspective, the studies outlined in Section
1.2 have broadened our understanding of semantic and thematic relations, and how they might
be learned. For example, psychologically, they have provided insights into how much can be
learned about these types of relations from language alone, as well as the limitations of this type
of learning. These studies have made researchers think more deeply about the roles of language
in learning concepts, the types and amounts of linguistic input that people experience over their
lifetimes (and the consequences of such input), the plausibility of multiple types of learning
mechanisms, and the ways in which learning from language and learning from other perceptual
input and action might reinforce one another. The goal of the current research was to expand
these lines of investigation (e.g., Asr et al., 2018 Kacmajor & Kelleher, 2020; Wingfield &
Connell, 2022; and Lapesa and Evert, 2013 & 2014; see Section 2.6) in multiple ways, including
the set of DSMs tested, the use of word, context, and mean embeddings for Skip-gram and
CBOW, and the breadth and specificity of the semantic relationships examined.

Broadening the types and specificity of semantic relationships under investigation is of
particular interest because a large number of semantic and thematic role relations play key roles
in language processing. These include, but are not limited to, relations such as: the degree of
similarity (chair - sofa), how things are used (function: couch-[used for] sitting or broom-[used
for sweeping a] floor), where people or things typically are found (location: airport-pilot, barn-
hay), the types of actions typically performed by people or animals (agent-action: artist -
sketch), and the types of things or people on which an action typically is performed (action-
patient: serve-customer, strum-guitar). People’s knowledge of these relations is key to language

usage and to understanding the world in general. For example, semantic similarity has played an



important role in theories of the organization of semantic memory going back to Collins and
Quillian (1969) and progressing through to representational similarity analyses of neural data
(Mur et al., 2013). Object and entity properties such as its shape, its color, how it is used, and
where it typically is found have been central to theories of conceptual processing and word
meaning in the mind and brain for a long time (Martin, 2007). Relations between verbs and
agents, patients, instruments, and locations are key to theories of how humans understand
sentences (Carlson & Tanenhaus, 1988; Rabs et al., 2022). Finally, relations among components
of events play central roles in schema theories of human knowledge (Ghosh & Gilboa, 2014),
and in theories of event cognition (Zacks, 2020).

In the present study, we examined whether eight DSMs are able to capture a broad range
of human ratings covering multiple semantic relations. That is, our goal was to understand the
degree to which DSMs encode a number of relations that are important for understanding words
and sentences. Our primary aim was to test the degree to which it might be possible to use a
DSM as a viable representational basis of a processing model of word and sentence
comprehension. Although we tested a number of the currently best-performing type-based (what
Kacmajor & Kelleher, 2020, call “vanilla”) DSMs, and systematically manipulated some of their
parameters, our main purpose was to understand whether it is possible to use the distance
between word vectors obtained from these DSMs to approximate human knowledge of a wide
array of semantic relations. By type-based DSMs, we mean non-contextual models that employ
relatively standard methods such as using counts to obtain a single vector for each word and
using cosine similarity between those vectors as a measure of semantic relatedness. Skip-gram
and CBOW are included in this category because they create one representation for each

vocabulary word.
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1.4 Transformer Models

In our study, we exclude a newer generation of substantially more powerful and complex
models, particularly transformer-based models (Vaswani et al, 2017) like BERT (Devlin et al.,
2019). These models, by virtue of their complex architecture, are able to form rich, context-
sensitive representations (“token-based”) and perform well on many natural language processing
tasks. Transformer models generate multiple vectors for each word in their vocabulary, and they
can be tuned to simulate specific tasks. For example, BERT decomposes sentence-level input
into token, segment, and position embeddings. BERT learns some syntactic information (Tenney
etal., 2019; Liu et al., 2019) and semantic roles (Ettinger, 2019; Tenney et al., 2019); however,
this knowledge has been revealed using either cloze tasks (Taylor, 1953) or by learned
classification using BERT’s representations.

We exclude discussion of these models for a few reasons. For one, despite the recent
appearance of these newer models, many psycholinguistic practitioners who use representations
from DSMs as tools in their research continue to use models such as PPMI, GloVe, Skip-gram,
and CBOW a great deal. There continues to be a great deal of research in cognitive psychology,
cognitive neuroscience, and psycholinguistics on the recognition of isolated 'wordforms'
(phonological or orthographic) and accessing the meanings of single words when they are not
presented in sentential or discourse contexts. Isolated spoken word recognition continues to be a
major area of research, with development of large performance databases (Goh, Yap, & Chee,
2020), and work focused on isolated spoken words is critical in current research on language
development and disorders (Apfelbaum et al., 2023; Giovannone & Theodore, 2021; McMurray
et al., 2022), language and cognitive decline in aging (Nitsan, Banai, & Ben-David, 2022), and

unlocking the organization of bilingual lexical knowledge and processing (Desroches et al.,
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2022). While many questions remain to be answered about form recognition, there is also active
research on semantic processing in isolated words (Nenadi¢ et al., 2022). Similar questions are
addressed in the domain of isolated visual word recognition, including basic processes of form
recognition (Wang et al., 2021) and how word meaning influences those processes (Connell &
Lynott, 2014; Pexman et al., 2017), how word meaning is represented in the human brain
(Fernandino et al., 2022; Poeppel & Idsardi, 2022), and how words are related to one another,
such as research on associative relations (De Deyne et al., 2019), and semantic priming
(Hutchison et al., 2013). Type-based DSMs mesh well in terms of the information that might
influence human processing in these cases. For example, out of the total citation count for
Mikolov’s original Skip-gram papers (Mikholov et al., 2013a; Mikolov et al., 2013b), 24% of
these citations have come in the last year and a half. Moreover, the data we use here to compare
DSMs involve limited to no contexts; typically, participants are presented with a pair of words
and are asked to rate various types of relations. Given this kind of input, it is unclear if a
transformer-type model would outperform the type-based DSMs we consider here given the lack
of explicit context. However, we note that some recent work in constructing type-based
representations from these models suggests that they could be used to investigate this issue
(Chronis & Erk, 2020; Bommasani, et al., 2020; Ethayarajh, 2019; but see also Lenci, et al.,
2022). In summary, we tested an important class of DSMs that figure prominently in the field.
We understand that new models will continue to emerge in the future—transformers are one class
but others are likely to emerge as well. In addition to investigating DSMs, our hope is that the
present study provides a template for how to investigate the characteristics of other (including

not yet developed) models.
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2. The Testbed: Relations and Ratings

We used 19 ratings datasets (13 of which were archival; see the Appendix for a
description of the other 6) to investigate a rich and varied set of semantic relations that involve
words from multiple major syntactic classes and have meanings that span the abstract-concrete
continuum. See Table 1 for information about the datasets. Table 1 shows, for each semantic
relation, (1) the type of semantic relation, (2) the total number of word pairs in the dataset, (3)
the number of pairs in which both words appear in the WikiOS corpus, (4) corpus coverage,
which is (3) divided by (2) expressed as a percentage, and examples of (5) related and (6)
unrelated pairs. We correlated cosines from PPMI, GloVe, Skip-gram, and CBOW with human
ratings for pairs of words. The ratings datasets that we used are described below [numbered in
square brackets]. Note that although we use word pairs that are related strongly to illustrate each
relation, the datasets for all relations include pairs that span the continuum for the specific
relation from strongly related to unrelated.
2.1. Semantic Similarity

SimLex-999 is a large database of semantic similarity ratings with item pairs that span
the concrete-abstract continuum (Hill, Reichart, & Korhonen, 2015). Hill et al. used instructions
designed to focus participants on similarity rather than on other types of semantic relatedness
(e.g., participants were told that cup-mug and frog-toad are similar, whereas car-tire and car-
crash are related but not similar). Their instructions were successful in that, for example, quick
and rapid were rated as highly similar, whereas meat and sandwich were not (even though meat
is often a part of a sandwich). Hill et al. removed pairs that included a word with lower than a
75% tendency for belonging to a specific part of speech to reduce part-of-speech and semantic

ambiguity. They also explicitly instructed participants to give antonyms low ratings, so that, for
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example, the mean rating for tiny-huge was extremely low. We therefore manually removed all

antonym pairs from the verb-pair subset of SimLex-999 that we call SimLex-222-V in Table 1.

(We consider the issue of DSMs and participant instructions of this type in the Discussion.) We

tested model performance on all 999 word pairs [1; not shown separately in Table 1), the 666

noun pairs [2; SimLex-666-N in Table 1), 222 verb pairs [3; SimLex-222-V), and 111 adjective

pairs [4; SimLex-111-A).

Table 1: Size, relation type, corpus coverage, and example item pairs for the semantic relations
used in this study.

rating set description number of pairs : pairs in corpus ; coverage (%) highest-scoring lowest-scoring
SimLex-666-N noun similarity 666 666 100 creator, maker (9.62) container, mouse (0.3)
WordSim-Sim similarity 203 202 99.5 journey, voyage (9.29) king, cabbage (0.23)
Function similarity in usage 159 159 100 apple, peach (7) teapot, wheel (1)
Shape similarity in shape 222 128 57.7 headphones, earmuffs (5.5) | axe, baby carriage (0.1)
: : similarity in motions made when piano, badminton racket
Manipulation uting objacts 222 128 57.7 helmet, crown (5.5) o)

Color objects of similar color 393 393 100 puck, spider (7) grasshopper, lipstick (1)
SimVerb-3500 verb similarity 3281 3279 99.9 repair, fix (9.96) create, dive (0)
SimLex-222-V verb similarity 192 192 100 vanish, disappear (9.8) ignore, explore (0.4)
SimLex-111-A adjective similarity 111 111 100 quick, rapid (9.7) new, ancient (0.23)
WordSim-Rel genera:é;qg;ffntzrsegtiated) 252 250 99.2 environment, ecology (8.81) | king, cabbage (0.23)

Verb/Agent/Patient; 2sent/verb and verb/patient 720 720 100 marry, bride (7) execute, nun (1.3)
actions and the objects used to :
Verb/Instrument perform them 248 248 100 sweep, broom (7) eat, plier (1)

; actions and places where those - )
Verb/Location actions are performed 277 276 99.6 wait, lineup (7) fish, puddle (1)
Event-Person events a?itnzea};i?:;:f people 538 535 994 execution, executioner (6.9) !  recess, parent (2.8)

Event-Thing events a"dw‘i’tﬁfﬁfmass"da'ed 592 591 99.8 blizzard, snow (7.0) accident, train (3.0)
Instrument-Person § Mstruments and the people who 504 503 99.8 mirror, barber (6.9) lantern, shopper (1.95)
= R instruments and the types of ;
Instrument-Thing things on which they are used 356 356 100 freezer, ice (6.7) saucepan, coffee (1.85)

N H locations and the kinds of living f "

Location-Animate things found thers 288 285 99.0 university, student (6.95) desert, gangster (1.75)
Location-Thin locations and the kinds of 440 438 99.5 hotel, baggage (7.0) alley, blood (3.5)
g

nonliving things found there

SimVerb-3500 [5] is a set of similarity ratings for a diverse set of 3,500 verb pairs. Gerz,

Vulic, Hill, Reichart, and Korhonen (2016) selected the verbs from Nelson et al.’s (1998)

association norms using Nelson et al.’s part-of-speech statistics. Gerz et al. signaled to their

14



participants that the items were verbs by using the infinitival forms, as in to reply-to respond. As
in SimLex-999, they focused human raters on similarity by instructing them to distinguish
between similarity and other types of relatedness, and to provide low ratings to antonyms. Thus,
as with SimLex-222-V, we manually removed antonym pairs from SimVerb-3500 for all
subsequent analyses.

Finkelstein et al. (2002) developed WordSim-353. Participants rated 353 word pairs on
the degree to which they were semantically related in any manner. The pairs consisted primarily
of nouns. Thus, similar pairs such as journey-voyage and pairs that shared other semantic
relations such as closet-clothes (a closet is a place where clothes are kept) were given high
ratings. Agirre et al. (2009) used their intuition to manually divide the 353 word pairs into two
categories: 203 similar pairs such as journey-voyage and street-avenue, versus all other types of
semantic relations that were present in Finkelstein et al.’s remaining items, such as closet-
clothes and treatment-recovery. For investigating semantic similarity, we used the WordSim-
353 set of 203 similar word pairs, which we refer to as WordSim-Sim [6].

2.2. Similarity Rated on Specific Dimensions

We used four sets of noun-pair similarity ratings, each focused on a different aspect of
similarity. The first set focused on similarity in terms of general function (i.e., purpose of use) of
the items, as in “How similar are the typical uses of glue and fape?” [7] (Function in Table 1).
These pairs were designed to be similar in function, shape, both, or neither. Thus, many of the
pairs that were rated as highly similar in function also had similar shapes, and as a consequence

were also manipulated similarly?, such as bed-cot (Yee, Drucker & Thompson-Schill, 2010).

2 Although the fact that these functionally related pairs were also similar in shape and manipulation meant that
function could not be isolated, trying to isolate function would have resulted in very few pairs (and pairs for which
function similarity was not particularly high). Fortunately, the second and third sets (described below) of items were
similar in shape or manipulation, but not function, allowing us to detect the contribution of function.
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The second and third sets come from shape and manipulation similarity ratings from a

common set of nouns collected by Musz, Yee, and Thompson-Schill (2012). The second set

consists of the items rated on shape similarity. Participants were given word pairs such as
softball-grapefruit and key-screwdriver and asked to “Picture the things that the words refer to
and rate them according to how similar their shapes are” [8]. The third set focused on
manipulation similarity. Musz et al. asked different participants to “Consider the typical
movements that you make when you use these objects and rate how similar the movements are”
[9]. Importantly, the pairs for the second and third sets were designed such that (a) when they
were similar in shape, they were dissimilar in manipulation, (b) when they were similar in
manipulation, they were dissimilar in shape, and (c) they were all dissimilar in function. These
careful controls make these ratings useful for evaluating shape or manipulation sensitivity in the
absence of similarity on the other two features.

The fourth set of ratings focused on color similarity. Participants were presented with
word pairs such as basketball-tiger and cherry-banana and were asked to “Picture the objects
that the words refer to and rate them according to how likely they are to be the same color” [10].
These pairs were assembled using the stimuli from several studies (Yee, Ahmed & Thompson-
Schill, 2012; Yee, Huffstetler & Thompson-Schill 2011; Musz, Yee & Thompson-Schill, 2012).
One particular strength of the items from these studies is that, due to the selection criteria, pairs
that were rated as highly similar in terms of color were unlikely to be similar in terms of
function, shape, or manipulation.

Note that the function, manipulation, shape, and color word pairs used in the present
study, as well as the verb-agent/patient, verb-instrument, verb-location, and the six event-based

noun-noun relations, included a much larger set of pairs than were used in the on-line eye-
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tracking, priming, or sentence comprehension studies in the original articles. The items used in
those on-line studies consisted of the most strongly related pairs, plus unrelated control pairs that
typically were formed by re-pairing the strongly related words. Word pair selection for the on-
line studies was influenced by other factors as well, such as making sure that no participant
experienced any word in the experiment more than once. In all cases, the items for those on-line
studies were chosen based on ratings of much larger sets of items. In the present study, we were
able to use the larger sets of rated items to create more of a continuum of similarity or
relatedness, and because factors such as making sure that no word was used more than once
were irrelevant to the present simulations.
2.3. General Relatedness

We used one set of word pairs that included a number of types of semantic relations
involving primarily nouns. These were the 252 pairs from WordSim-353 that were classified by
Agirre et al. (2009) as being related in some way other than semantic similarity [11; WordSim-
Rel]. This dataset includes pairs that are semantically related in various ways, such as money-
deposit (depositing is something that you do with money), fennis-racket (you use a racket to
play tennis, and the two words form a collocation as well), closet-clothes (you keep clothes in a
closet), lawyer-evidence (lawyers present evidence), and cup-liquid (you use a cup to contain
and drink liquids, and you pour liquids into cups). Note that the 252 related pairs plus the 203
similar pairs adds up to 455 pairs rather than 353. Agirre et al. included a number of pairs as
unrelated items in both sets that were neither similar nor related in any other manner, such as

king-cabbage.
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2.4. Verb-Noun Thematic Role Relations

Relations between verbs and nouns that play the roles of agent, patient, instrument, and
location have played a major role in theories of how people understand language for many years
(Dresang, Dickey, & Warren, 2019), as well as theories of event knowledge and memory
(Zacks, 2020). These items were collected for sentence comprehension experiments because
they reflect people’s conceptually-based thematic role knowledge (often termed “thematic fit”;
Ferretti, McRae, & Hatherell, 2001; McRae, Spivey-Knowlton, & Tanenhaus, 1998). The first
dataset includes verb-agent relations as in arrest-cop and serve-waitress and verb-patient
relations as in arrest-criminal and serve-customer [12; Verb-Agent/Patient]. Note that all
potential agents and patients were rated in both conditions, so that the data include agenthood
and patienthood ratings for all verb-noun combinations. For agenthood, participants provided
ratings for questions such as “How common is it for each of the following to chase
someone/something?” For patienthood, participants rated, for example, “How common is it for
each of the following to be arrested by someone?” For the present analyses, because the DSMs
that we investigated are not able to distinguish agents from patients, we combined the agenthood
and patienthood ratings by choosing the highest of the two ratings for each verb-noun pair.

We also used verb-instrument thematic fit ratings from Ferretti et al. (2001). Ferretti et
al. asked participants to rate, for example, “How common is it for each of the following to be
used for the action of stirring?”, with the items including words such as spoon, straw, fork,
scissors, and stick [13; Verb-Instrument]. The final verb-noun thematic role relation involved
locations [14; Verb-Location]. Participants provided ratings for sets of verb-noun pairs

regarding the likelihood of an action taking place in various locations, as in “How common is it
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for someone to sleep in each of these locations?”, with the items including bedroom, chair,
bathtub, tent, and car.
2.5  Noun-Noun Event-based Relations

Hare, Jones, Thomson, Kelly, and McRae (2009) collected production norms for multiple
noun-noun event-based relations. These included: event nouns and the types of people (robbery-
burglar) and things (surgery-scalpel) that might be part of those events; instruments and the
types of people who use them (knife-chef), and things on which they are used (scissors-hair);
and locations and the types of people or animals (barn-cow) and things (farm-tractor) that tend
to be found at those locations. Because Hare et al. had participants generate responses rather
than provide ratings, to create methodologically comparable data sets, we collected ratings for
the present project (see the Appendix for details). We tested the DSMs on each relation
separately: event nouns and the types of people (robbery-burglar) [15; Event-Person], and
things that take part in those events (surgery-scalpel) [16; Event-Thing]; instruments and the
types of people (knife-chef) who use them [17; Instrument-Person], and things on which they are
used (scissors-hair) [18; Instrument-Thing]; and locations and the types of people or animals
(airport-pilot, barn-cow) [19; Location-Animate] and things (farm-tractor) [20; Location-Thing]
that tend to be found at those locations.
2.6. Previous Research using Thematic role and Event-based Relations

Thematic role and event-based relations have been investigated by Lapesa and Evert
(2013). They used count-based DSMs to simulate human semantic priming data from Ferretti et
al. (2001; verbs priming agents, patients, instruments, and locations), McRae et al. (2005;
agents, patients, instruments, and locations priming verbs), and Hare et al. (2009; event-based

noun-noun priming). Lapesa and Evert compared tens of thousands of models by varying
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parameters such as dimensionality reduction, corpus, window size, presence versus absence of
part of speech tags, and the measure used to calculate distance between the resulting vectors
(including neighbor rank). Many of the tested models distinguished related prime-target pairs
(e.g., arresting-cop) from unrelated pairs (e.g., dining-cop) with quite high accuracy (e.g., cosine
was higher for the related than for the unrelated pair). A joint corpus (a concatenation of the
corpora that they used) provided the best performance, as did their longest window (15 words),
and no dimension reduction. Lapesa and Evert also found that most of their models performed
rather poorly when predicting human latency priming effects (in ms), although some models did
predict a moderate proportion of variance.

Lapesa, Evert, and Schulte im Walde (2014) tested the ability of a large number of count-
based DSMs to differentiate related versus unrelated pairs that were formed on the basis of
multiple semantic relations. They used data from the Semantic Priming Project (Hutchison et al.,
2013) and distinguished among synonyms (frigid-cold), antonyms (hot-cold), category
coordinates (table-chair), forward phrasal associates (help-wanted), and backward phrasal
associates (wanted-help). Lapesa et al. also amalgamated the prime-target pairs from Ferretti et
al. (2001), Hare et al. (2009), and McRae et al. (2005) into a set that they called generalized
event knowledge pairs. Their models distinguished between related and unrelated prime-target
pairs with high accuracy across the types of relations. Lapesa et al. concluded that the size of the
context window and dimensionality reduction are important for DSM performance across the
similarity-based and other relations that they tested.

The investigations of Lapesa and Evert (2013) and Lapesa et al. (2014) are important
because they show that count-based bag-of-words DSMs can account for both similarity and

other semantic relations (for related work, see also Wingfield & Connell, 2022). The present

20



research differed from their studies in four primary ways. First, Lapesa and Evert used the
prime-target pairs that appeared in the priming studies of Ferretti et al. (2001), Hare et al.
(2009), and McRae et al. (2005), whereas we used ratings for the pools of items that served as
the bases for selecting the smaller pools of items for the actual priming studies. Our approach
provided us with much larger sets of items, allowing us to report results separately for each
relation. Second, we simulated human ratings rather than testing whether the models can
differentiate between related and unrelated pairs or can predict decision latency differences in
priming studies. Third, we used a larger set of similarity-based relations and datasets. Fourth,
GloVe, CBOW, and Skip-gram were not evaluated in their studies.

Finally, given the importance of thematic role information in language comprehension, a
number of studies have used syntax-based distributional models constructed from grammatically
parsed, part-of-speech tagged, or semantic role labeled corpora to simulate judgments and
influences of verb-noun thematic relations (i.e., verb-noun thematic fit or selectional
preferences; Baroni & Lenci, 2010; Erk et al., 2010; Sayeed et al., 2016; Santus et al., 2017; Tilk
et al., 2016). Generally, these models construct a prototype vector for a thematic role of a verb
(e.g., the patient role of cut) by averaging the dependency-based vectors of its most typical role
fillers (i.e., the words that appear as the patient of cuf in a corpus). The similarity of a noun with
the thematic role prototype is used as the estimate of its plausibility as a filler for that role (e.g.,
things that can be cut). This approach has been successful in capturing ratings of verb-noun
thematic relations, particularly with respect to verb-agent and verb-patient argument relations.
Our corpora were not parsed, tagged, or labeled, allowing us to assess whether metrics based on

the distributional statistics alone can reflect thematic relations.
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3. The Corpora

We created two English corpora, Wiki2018 and EngOS, and two versions of each corpus:
one at a document level (used to train GloVe and PPMI) and one at a sentence level (for
Word2Vec). For Wiki2018, we extracted a document-level November 2018 dump of English
Wikipedia into JSON format, and the sentence-level corpus was constructed by splitting each
document into sentences. For consistency, we refer to a Wikipedia article/page as a “document.”
In Wikipedia, because the final sentence of every document is generally index terms/redirects
(an index term captures the essence of the topic of a document, whereas a redirect is a link that
automatically sends visitors to another page), we removed the final sentence from each
document. For EngOS, we downloaded a recent version of the English Open Subtitles database
from OPUS (https://opus.nlpl.eu). The OPUS version has improved sentence alignment and
better language checking compared to what exists on opensubtitles.org and is broken into
sentences. To make a document-level (“chunked”) version of EngOS, we grouped sets of 356
tokens together (the mean document length in the Wiki2018 document corpus).

All corpora had punctuation removed, with the exception of hyphens, which were
replaced by a space (e.g., ‘self-governed’ became ‘self governed’ rather than ‘selfgoverned’).
We converted all words to lowercase and removed all stop words and words that occurred fewer
than 100 times. Sentences that consisted of fewer than three words were dropped. For the
Wiki2018 document corpus, any documents with fewer than three tokens were removed; these
typically are stubs (a document deemed too short to provide encyclopedic coverage of a subject)

and redirects. All corpora were lemmatized using spaCy (https://spacy.io).

3 In our two sentence-level corpora, we found a roughly power-law tail leading to very infrequent, but unreasonably
long, sentences. There were 53K (0.06% of 90M) sentences of length greater than 100 tokens in Wiki2018, and 307
(0.0002% of 176M) in EngOS. In EngOS, the vast majority of these are (i) strings of hundreds to thousands of
integers presumably having to do with video display, (ii) unicode gibberish, or (iii) song lyrics rendered with no
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Finally, the documents or sentences in all four corpora (Wiki2018/EngOS X
document/sentence) were shuffled randomly. We then created our final corpora, which we call
WikiOS, by randomly interleaving Wiki2018-sent and EngOS-sent and, separately, Wiki2018-
document and EngOS-document. The WikiOS corpus consists of roughly 1.9 billion tokens;
other studies have used similarly blended corpora (e.g., Baroni & Lenci, 2010).

4. The DSMs

We tested the extent to which the vector representations from each of the eight selected
DSMs are sensitive to the 19 sets of relation ratings. The DSMs were PPMI, GloVe, Skip-gram
and CBOW word embeddings for both words in each pair, Skip-gram and CBOW context
embeddings for both words, and Skip-gram and CBOW using the mean of the word and context
embeddings for both words. We also investigated a number of parameter settings for each
measure. Each model took roughly 4 hours to train on a multi-core Mac workstation.

Researchers have suggested that Skip-gram and CBOW use parameterizations that are
optimized for discovering similarity relations (Asr et al., 2018; Levy et al., 2015). Furthermore,
researchers have almost always used word embeddings (input to hidden weights) and discarded
the context embeddings (hidden to output weights). However, Levy et al. and Asr et al. have
argued (and tested to some extent) that although word embeddings may best capture similarity, it
is possible that context embeddings (hidden to output weights) may best capture other semantic

relations. Therefore, we used word embeddings, context embeddings, and the mean of the two.

sentence punctuation. In Wiki2018, most of the extremely long sentences are either improperly rendered tables or
long quotes containing no periods. For example, among the longest Wiki2018 sentences are a run-on quote from
Meher Baba, tables of Gaelic Football results, awards in an Australian national music competition won by Lyneham
High School in Canberra, and a list of matches played by the English rugby player John Holmes. We therefore
removed all sentences from both corpora longer than 42 tokens (Adams, 1979).
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Based on prior results (Lapesa and Evert, 2013; Lapesa et al. 2014; Troyer and Kutas,
2020), we hypothesized that longer windows might be advantageous for capturing thematic and
event-based relations, whereas capturing similarity relations might generally be insensitive to
window size. Our intuition was that event-based relations often are expressed in language via
more distal lexical co-occurrences, at least sufficiently frequently that model performance might
be influenced by window size. Therefore, we included short (2 words on each side), medium (7
words) and long (13) windows for each model. Rather than varying all possible
hyperparameters, we focused on those that seemed most likely to matter (like window size), or
have been shown to impact performance in previous studies. We tested a total of 96 models.

4.1 CBOW/Skip-gram hyperparameters

All CBOW and Skip-gram models used 300-dimensional embeddings (i.e., the networks
had hidden layers of size 300). In addition to testing short (S), medium (M), and long (L)
windows, respectively, we varied (1) the threshold for random downsampling of high-frequency
words (Y: threshold = 0.001; N: do not downsample) and (2) using negative sampling (Y) or
simply using hierarchical softmax (N). With negative sampling, 10 randomly sampled noise
words were drawn. In all cases, we trained for five epochs with an initial learning rate of 0.025.
The shape parameter for the negative sampling distribution was 0.75. These combinations
produced 12 models for each of the three types of embedding (i.e., 3 window sizes, 2
downsampling possibilities, and 2 negative sampling possibilities). Using the Python gensim
library implementation of Word2Vec (Rehurek & Sojka, 2011), we thus generated 36 CBOW

and 36 Skip-gram models.
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4.2 PPMI Hyperparameters

PPMI models used the same window sizes (S =2, M =7, L = 13) as in our CBOW and
Skip-gram models. We varied two other hyperparameters: (1) smoothing the context distribution
when computing mutual information (Y: smooth with an exponent of 0.75; N: no smoothing)
and (2) shifting PPMI values. Shifting is used to “zero out” small mutual information values,
and is controlled by a shift parameter k. The final mutual information values are f’; =

max(P;;,log k). We chose either k =5 (Y) or do not shift (N: k = 1). All words in the window

ij»
were uniformly weighted when computing co-occurrences. We initially explored other
weighting schemes but this manipulation made no discernible difference to performance in an
initial set of analyses. We used our own Python package for PPMI to generate the 12 PPMI
models — this package is available at https://github.com/thelahunginjeet/pyppmi.
4.3 GloVe Hyperparameters

GloVe models used 300-dimensional embeddings and the same window sizes. We varied
two parameters related to GloVe’s factorization of the co-occurrence matrix: (1) the weighting
function parameter alpha (S = 0.75, L = 1.0) and (2) the weighting function cutoff x,,,, (S = 10,
L =100; see Equation 9 and Figure 1 in Pennington, Socher, & Manning, 2014). The
hyperparameters that we did not vary were the number of passes in the decomposition (25) and

the initial learning rate (0.05). Using C code available from the original authors

(https://nlp.stanford.edu/projects/glove/), we generated 12 GloVe models.

Table 2 is a guide to our notation for models and hyperparameters. For example, a
CBOW model using mean embeddings, with long windows, no downsampling of frequent
words, and training with negative sampling is denoted as CBOW(m)-LNY. A GloVe model with

short windows, a weighting function alpha of 1.0, and a weighting function cutoff of 10 is
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denoted as GLoVe-SLS. A link containing sample python scripts and data relevant to this

project is provided at https://osf.i0/86dxs/.

S.

Table 2: Guide to hyperparameters and shorthand notation for DSMs.

model abbreviation embedding first second third example
parameter parameter parameter shorthand
. . down-sampling negative
word, context, i window size -
W(.)rd2vec SG() of mean (S=5M=15, threshold | sampling (y) or SGW)-LYY
(Skip-gram) (w,c.m) L=27) (Y=0.001, hierarchical
T N=none) softmax (n)
word2vec word, context window size down-sampling negative
(Continuous CBOW. or’mean ’ (8=5.M=15 threshold sampling (y) or i CBOW(m)-
Bag Of (x) (w,c.m) 1;27_) ’ (Y=0.001, hierarchical SNN
Words) ™ B N=none) softmax (n)
. . weighting N
Global vectors window size function weighting
for word GloVe (S=5,M=15, parameter function cutoff i GloVe-SSS
representation = = =
p! L=27) (8=0.75, L=1) (S=10, L=100)
Positive i . context
Pointwise window size smoothing Ml shifting
Mutual PPMI > =075, (v=5Nenone) | 1 MNY
Information N=none)

Results & Discussion

5.1 Corpus Coverage and Context Embeddings

Table 1 indicates that we have excellent corpus coverage, usually exceeding 99%. The only

notable exceptions are the shape and manipulation relations for which lower coverage is due to

multi-word phrases that were used in the human rating studies (e.g., baby carriage and
badminton racket). Note that there are fewer than 222 and 3,500 pairs in SimLex-222-V and

SimVerb-3500, respectively, because we manually removed all antonym pairs, as discussed
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above. We retained the names SimLex-222-V and SimVerb-3500 to remain consistent with the
original rating studies.

We begin with one result that is independent of relation type. All of the six Skip-gram
and six CBOW models using only context embeddings that were trained without negative
sampling failed to account for any of the ratings (all correlations were close to zero). This was
not true of word embeddings or mean embeddings trained without negative sampling but was
specific to context embeddings. Other work has demonstrated that the success of negative
sampling in word2vec models relies on the underlying distributional structure of the
language/corpus, and not the prediction mechanism in the model (Johns, et al. 2019). However,
there is no difference in the corpus we used for the three embeddings so this does not seem to be
the explanation here. In any case, we refrain from further discussion of these 12 models, and
focus only on the remaining 84. In all cases, we scored the models as follows. For a given pair
of words rated for a particular semantic relation, we computed a cosine between the two word
vectors of each model. We did this for all pairs for that relation, and then we calculated the
Spearman correlation between model cosines and human ratings.

5.2 Similarity

5.2.1. SimLex. Figure 1 shows the results for SimLex-999, divided into nouns (SimLex-
666-N), verbs (SimLex-222-V), and adjectives (SimLex-111-A). Because we show many
comparisons of this type, we describe Figure 1 in detail. For each set of ratings, we show a
color-coded barplot. CBOW models are on an orange spectrum, with word/context/mean
embeddings having successively darker colors. SG models are similar, but on a purple spectrum.
GloVe models are in yellow, and PPMI in black. In each bar plot: (1) the height of the bar

corresponds to the median Spearman correlation over all sets of hyperparameters for that type of
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model; (2) the plus sign on top of the bar signifies the single best hyperparameter combination
within a model class, and (3) dotted lines are drawn at the minimum correlation that would be
significant at p = .05 with df = number of item pairs minus two.

Figure 1 shows that model performance on nouns is quite good, consistent with previous
work and with our WordSim-Sim results in Section 5.1.2. Substitutional similarity of nouns
seems to be encoded across models (i.e., is well-captured by all of the DSMs), and there are no
major differences among the types of models. Interestingly, the models do almost as well on
adjectives, with CBOW and Skip-gram performing somewhat better than GloVe and PPMI.
Capturing verb similarity is substantially worse, with correlations dropping by factors of two or
more, with the exception of CBOW using context embeddings (medium orange bar; see 5.1.4 for
further discussion of verb similarity). Although CBOW(c) is particularly good at capturing verb
similarity, and comparable with the best performing models for nouns and adjectives, it will
become apparent that it performs poorly on many other relations. On the contrary, the median
correlations for GloVe and PPMI are below the significance level for verb similarity, but as we

will see, GloVe’s performance on thematic and event-based relations is strong.

CBOW(w) WSS CBOW(m) M SG(c) GloVe
e CBOW(c) SG(w) EE SG(m) EEm PPMI
1.00
0.75 1
[
.0
5 .50 +
= 0.501 +
£ i R + i+
S +
vt +
0.25 1
+

SimLex-666-Noun SimLex-222-Verb SimLex-111-Adjective

28



Figure 1. Summary of Spearman correlations between model-derived similarities and human
ratings for SimLex (666 noun pairs, 192 verb pairs, 111 adjective pairs). For each of the eight
model types (model + embedding), the bar height is the median correlation across the
hyperparameter sets and the plus symbol denotes the maximum correlation obtained across
the set. Dotted lines illustrate the size of the minimum p = .05 significant correlation given the
number of pairs in the rating set (see Table 1 for number of pairs). For CBOW(c) and SG(c),
models that did not use negative sampling performed consistently poorly and they are
excluded.

5.2.2. Nouns and WordSim-Sim. Figure 2 shows noun similarity correlations for SimLex-
666-N (repeated from Figure 1 to facilitate comparison) and WordSim-Sim. All models other
than CBOW(c) capture WordSim-Sim ratings extremely well. In this study and others (Levy,
Goldberg, & Dagan, 2015; Baroni et al., 2014), these relations are well-captured by a variety of
DSMs, and show generally low hyperparameter sensitivity, as evidenced by the small difference
between the median correlation over all sets of hyperparameters and the single best
hyperparameter combination [the + sign].

CBOW(w) B CBOW(m) B SG(c) GloVe
e CBOW(c) SG(w) mm SG(m) EEE PPMI
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correlation
o
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|
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SimLex-666-Noun WordSim-Sim

Figure 2. Model correlations with noun similarity relations (SimLex-666-N and WordSim-Sim);
all annotations and symbols are as in Figure 1.
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5.2.3 Similarity on Specific Dimensions. Figure 3 shows performance on similarity ratings
that focus on four dimensions: function, shape, manipulation, and color. All DSMs capture
concrete objects’ similarity of function, which likely can be primarily attributed to the overlap
between function and overall similarity in concrete objects in the real world, and the fact that
things with similar functions are somewhat substitutional in language. Table 1 shows that one of
the highest rated pairs in this set is apple-peach, both of which people eat (function). In addition,
apples and peaches also share other types of features (e.g., round, grown on trees, sold in
supermarkets), and this similarity presumably is reflected in shared linguistic contexts. In
contrast, you have to go down to a pair tied for 57th in rating to find two words with similar
function that are dissimilar on other dimensions (birdcage-doghouse), and which seem unlikely

to participate in shared linguistic contexts.
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Figure 3. Model correlations with noun-noun similarity rated on specific dimensions (Function,
Shape, Color, and Manipulation); all annotations and symbols are as in Figure 1.

30



Manipulation is analogous to some degree in that the linguistic contexts of the highest
scoring pairs are likely to share some words (e.g., “wear” for helmet and crown, and “keys” for
piano and typewriter). More surprisingly, most models pick up on shared color (significantly,
albeit weakly), in which little else appears to discriminate high and low scoring pairs (e.g., puck-
spider, peas-frog). This sensitivity to color similarity may be due to color words appearing in
linguistic contexts (e.g., black appearing with both puck and spider). Unexpectedly, many of the
models also produce significant correlations with shape ratings (although these correlations are
weaker than those with color), with the best PPMI and GloVe models approaching a Spearman
correlation of .25 or .20. Note that all of the function, shape, manipulation, and color relation
pairs consist entirely of object nouns. Recently, “Multimodal DSMs” have been created by
combining the standard textual input with images (Lazaridou, Pham, & Baroni, 2015). It would
be interesting to test the degree to which multimodal models better capture color and shape
relations.

5.2.4. Verb Similarity. None of the DSMs capture verb similarity particularly well (Figure
4, with SimLex-222-V repeated from Figure 1 to facilitate comparison with SimVerb-3500) as
compared to overall noun, function, and manipulation similarity. The models perform somewhat
better on SimVerb-3500. This occurs even though 170 pairs are in both SimLex-222-V and
SimVerb-3500, with the Spearman correlation for human ratings of those pairs equal to 0.91. An
interesting exception is CBOW with context embeddings. For SimLex-222-V, the median
CBOW(c) model is better than the best model of any other type (even though CBOW(c) was

anomalously poor at WordSim-Sim, though not SimLex-666-N).
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Figure 4. Model correlations with verb similarity relations (SimLex-222-V and SimVerb-3500);
all annotations and symbols are as in Figure 1.

The DSMs may perform poorly on verb similarity ratings because verbs tend to have a
greater number of meanings and senses. Because verb meaning is more malleable, they occur in
more disparate linguistic contexts than do nouns, in particular concrete nouns (Gentner &
Boroditsky, 2001; Kersten & Earles, 2004). Note that all of the DSMs used herein compute a
single vector for a word, regardless of multiple senses and/or meanings. Furthermore, for verbs
there may be additional variability in the human ratings because individuals may differ with
respect to the verb meaning or sense that they consider when rating similarity.

We investigated a representative model (SG(m)-SY'Y, the best overall performing DSM;
see Figure 9) by considering items that participants rated as highly similar but the DSMs rated as
low. A number of these pairs include a verb that is often considered as a light verb (e.g., do, get,
give, have, make, take). Light verbs are used frequently in constructions in which they seem to
have little meaning, such as “I’ll get better”, “She made a comment”, or “She gave a talk”. DSM
representations will be influenced by the frequent light verb usages, whereas when humans rate,

for example, the similarity of make and build, make in the context of build presumably allows
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people to ignore the frequent light verb occurrences of make. We investigated this using SG(m)-
SYY by removing all verb pairs that included do, get, give, have, make, and take from SimLex-
222-V (23 pairs) and SimVerb-3500 (130 pairs). Removing these items modestly increased the
Spearman correlation from .30 to .39 for SimLex-222-V, and from .35 to .37 for SimVerb-3500.
Thus, this type of ambiguous verb is challenging to some degree for DSMs.

5.2.5. Adjectives. Similarity between pairs of adjectives is captured almost as well as noun
similarity by the majority of the DSMs (see Figure 1). GloVe is slightly below the CBOW and
Skip-gram models, and PPMI performs the most poorly.

5.3 General Relatedness

Figure 5 shows model correlations with WordSim-Rel (general relatedness word pairs and
instructions). Two observations are notable. First, CBOW(c) performs poorly relative to the
other models. Second, the correlations with human ratings are quite strong and comparable for
all other DSMs, although the models do not capture general relatedness as well as they capture

WordSim-Sim similarity (see Figure 2).
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Figure 5. Model correlations with general relatedness (WordSim-Rel); all annotations and
symbols are as in Figure 1.

5.4 Verb-Noun Relations

Figure 6 shows model performance for verb-agent/patient, verb-instrument, and verb-location
relations. Interestingly, GloVe and PPMI in particular capture these thematic relations much
more strongly than they do verb similarity (see Figure 4). This may occur because a verb is
paired with a concrete noun in each item (although locations tend to be rated as somewhat less

concrete than are types of things and people; Brysbaert, Warriner, & Kuperman, 2014).
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Figure 6. Model correlations with verb-noun thematic role relations (Verb-Agent/Patient, Verb-
Instrument, Verb-Location); all annotations and symbols are as in Figure 1.

Although the verbs themselves may occur in quite variable contexts, the agent, patient,
instrument, and location nouns tend to be less ambiguous than verbs, which might make
capturing the verb-noun ratings easier. Furthermore, the related verb-noun combinations tend to
occur together in language (and the world), whereas verb-verb similarity is more strongly tied to

substitution in context. Also note that the human ratings differ substantially in that participants
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rated the similarity between pairs of verbs for SimVerb-3500 and SimLex-222-V, whereas the
verb-noun relation ratings involved judging, for example, how common it is for an action to be
performed by someone, or how common it is for an action to occur at a certain location. Overall,
the DSMs account reasonably well for these thematic role relations. In fact, GloVe and PPMI,
and to a slightly lesser extent, CBOW with mean or word embeddings, and Skip-gram with word
embeddings, perform as well on the verb-noun relation ratings as they do on SimLex-666-N
(noun pair similarity).

A final potentially important factor underlying the DSMs’ better performance on
verb-noun than verb-verb relations follows from the fact that the verb-noun pairs were chosen as
candidates for word-word priming studies. That is, because the experimenters (who include the
final author on the present article) were testing whether it is possible for these verbs and nouns
to prime one another outside of any other context, they selected verb-noun pairs with verb sense
(as well as noun sense) in mind. Therefore, they chose verb-noun pairs in which the dominant
sense of the verb matched the most strongly related nouns that followed. In contrast, the
SimLex-222-V and SimVerb-3500 pairs were not selected with these constraints in mind.

5.5 Event-Based Relations

Figure 7 shows model performance on the six noun-noun event-based relations. One surprising
feature of these results is that the models perform quite well on relations that involve people and
animals, but they perform poorly on relations that include things (inanimate objects). Looking
more carefully into model performance at the pair level provides a couple of potential

explanations for the discrepancy between people/animals and things.
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Figure 7. Model correlations with noun-noun event-based relations (Event-Person, Event-Thing,
Instrument-Person, Instrument-Thing, Location-Animate, Location-Thing). All annotations and
symbols are as in Figure 1.

Figure 8 shows scatterplots of the model pair similarities against the human ratings, for a
representative DSM, SG(m)-SYY. There are a few differences among the relations. In terms of
the human ratings themselves, Figure 8 shows that they are reasonably evenly distributed across
the one to seven scale for all of the relations except event-thing and location-thing. In both of
these cases, the ratings are skewed toward the high end, so that event-thing and location-thing
ratings will be difficult for any DSM to predict. The red boxes in the event-thing and location-
thing scatterplots are meant to draw the reader’s attention to the fact that in these data, pairs of
concepts that are deemed highly related by humans have a huge spread in model similarities,
from completely unrelated to highly related. When we look at the event-thing and location-thing
model ratings for pairs that have human ratings of 6.75 or above, we find what we call a

birthday-food problem.
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Figure 8. Scatter plot of word pair cosine similarities from a representative DSM (Skip-gram
using mean embeddings, short windows, random downsampling of frequent words, and
negative sampling) against human ratings, on an item-by-item basis, for the six sets of noun-
noun thematic relations. Red boxes highlight items which are given very high ratings (6.5 or
higher out of 7) by human participants.

Because food is not associated specifically with a single or a small set of real world events or
locations (people grow, buy, prepare, eat, and talk about food in many places), words like food
appear in a large number of diverse linguistic contexts, and DSM scores can be lower for pairs
including these words. Furthermore, for birthday-food, the real world event-based conditional
probability is relatively high in one direction, P(food|birthday), but low in the other
P(birthday|food). That is, given that a person is at a birthday party, the probability of food being
present is high, whereas given that there is food present, the probability of being at a birthday
party is very low. DSM scores, in a sense, depend on both conditional probabilities as reflected
in linguistic input. In contrast, human ratings can be influenced in ways that the models are not.
When participants were asked to rate “How likely is each type of thing to be found in this

situation”, birthday-food had a mean rating of 6.90 out of 7 because there pretty much always is
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food at a birthday party. For a rating task such as this, participants apparently ignore the low
conditional probability of a birthday party given the presence of food. That is, the fact that
people eat food in many other instances other than birthday parties did not strongly influence
people’s ratings. In other cases, the thing that was used in the rating task refers to an object that
occurs in only one or a few locations, or at one or a few types of events, such as gravestone,
ballot, or runway. Because those words were paired in the rating task with the strongly related
event or location, the model cosines and human ratings tended to be much more concordant.

In the event-people and location-animate relations, there is less variability in model scores
for the most highly human-rated items. This occurs generally because the words used to refer to
types of people in these rating tasks tended to be more situationally specific, as in waiter,
teacher, cashier, lawyer, and bride, as opposed to say, child, grandparent, person, and woman.
For the event-people pairs that have mean human ratings greater than or equal to 6.75, SG(m)-
SYY appropriately produced high scores to wedding-bride, olympic-athlete, and trial-defendant
(situationally specific people), although it did produce lower scores to cruise-captain, baptism-
baby, and sale-shopper (more situationally diverse people). An important point, however, is that
the people and animate items were dominated by the former type, thus resulting in higher
correlations for those relations.

These issues are not specific to SG(m)-SYY. As one can see in Figure 7, all classes of
models perform worse on event-based relations involving inanimates (e.g., event-thing) than on
the corresponding set involving animates (e.g., event-person). We therefore investigated model
behavior on items with high participant ratings (> 6.75) and low scores in three additional
models: CBOW(m)-LNY, GloVe-SSL, and PPMI-SYN. These were chosen because they are the

best performing models of their class overall (as discussed in section 5.5). All of the models
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tended to generate relatively low similarity scores for pairs in which conditional probabilities are
highly asymmetric. In addition to birthday-food, other pairs characterized by this pattern include
forest-stick, restaurant-chair, tavern-glass, anniversary-food, party-music, and store-sign.

The item-level analyses on the event relations and verb similarity data yield an important
point (but perhaps an obvious one) that is often overlooked in investigations of DSMs (or
simulations of human data in general, regardless of the type of modeling or computational
analyses involved). Model performance can be strongly influenced by the manner in which
items are chosen for a study, and by the instructions that are given to participants. These aspects
of human studies can have a larger effect and be a more critical factor in understanding model
quality (or lack thereof), than the specific model or set of hyperparameters chosen for a given
model. Another very different recent approach using “socially-based” models (Johns, 2021)
demonstrated that making encodings that are aware of how words are communicated across
people and discourses might also provide representations that lean toward encoding non-

similarity relations.

5.6 Overall Performance
We used a rank aggregation method to investigate and summarize overall model performance.

(Rank aggregation code is available at https://github.com/thelahunginjeet/pyrankagg.) We

treated the 19 ratings instruments as raters and the 84 models as the objects to be ranked. For a
given rating type (e.g., WordSim-Sim), the model with the highest correlation was given rank 1,
and the one with lowest correlation was ranked 84. We used a Robust Rank Aggregation method
(Kolde et al., 2012) to produce scores. Although these scores can be used to produce
voted/aggregate model ranks, we considered the scores directly because they allow us to see not

only which models are best, but how close they are to each other.
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Figures 9-11 show model scores from the ranking algorithm considering all 19 relations
(we excluded SimLex-999 while including each part-of-speech based SimLex component;
Figure 9), similarity relations only (Figure 10, 9 ratings; SimLex-666-N, SimLex-222-V,
SimLex-111-A, WordSim-Sim, Function, Shape, Manipulation, Color, SimVerb-3500), and (3)
relatedness, thematic, and event-based relations only (Figure 11, 10 ratings; WordSim-REL,

Verb-Agent/Patient, Verb-Instrument, Verb-Location, and the six noun event-based relations).
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Figure 9. Ranking of 84 models using their performance over the entire set of relations
considered in this study. The bar height is the sorted robust rank aggregation score, which is
used to determine rank ordering. Skip-gram models with both word and mean embeddings and
GloVe cluster near the top. Note that we have used all-lowercase shorthand for the model
abbreviations, for better legibility.

One observation is that the rankings are crowded at the top. Although it is possible to crown a
“best” model in each class, in many cases that best model is very close to multiple runners-up. In

Figure 9, one must extend to at least the 40th best model to see a noticeable decrease. This
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flatness is encouraging because it means, for example, that although GloVe models with a large
weighting function cutoff (“GloVe-xxL” models) are overall the best, there are Skip-gram,
CBOW, and a small number of PPMI models that, given appropriate hyperparameter choices,
perform nearly as well. We use the word “encouraging” because if, for example, a cognitive
psychologist, cognitive neuroscientist, or psycholinguist previously had used one of these
models to control for a semantic variable in their stimuli in an experiment, there is no need for
them to second-guess their model choice because a number of models with slightly different
hyperparameters would also have worked reasonably well.

A second observation is that there is a striking difference in the kinds of models that are
best at capturing similarity (Figure 10) versus those that are best at capturing other types of
semantic relatedness (Figure 11). Relatedness is dominated by GloVe; the top 10 models are all
GloVe (with the eleventh best model a PPMI model, another co-occurrence model). This is
consistent with Pennington, Socher, and Manning’s (2014) claims that GloVe was developed
with the goal of learning longer-range semantic information. Moreover, GloVe does this over a
range of hyperparameter combinations, although Figure 11 shows that medium and long
windows are generally better for capturing thematic relations. Following the GloVe models are a
mixture of PPMI models and SG(w) models with medium and long windows. Conversely, for
similarity, SG(w) and SG(m) models with short and medium window sizes are the best

performing.
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Figure 10. Ranking of 84 models using their performance over the similarity relations (SimLex,
WordSim-Sim, Function, Shape, Manipulation, Color, SimVerb-3500). The bar height is the
sorted robust rank aggregation score, which is used to determine rank ordering. Skip-gram

models, particularly those using word embeddings, are the best performing models. Note that

we have used all-lowercase shorthand for the model abbreviations, for better legibility.
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Figure 11. Ranking of 84 models using their performance over the relatedness, thematic, and
event-based relations (WordSim-Rel, Verb-Agent/Patient, Verb-Instrument, Verb-Location,
Event-Person, Event-Thing, Instrument-Person, Instrument-Thing, Location-Animate, Location-
Thing). The bar height is the sorted robust rank aggregation score, which is used to determine
rank ordering. GloVe models perform best here, followed by Skip-gram. Note that we have
used all-lowercase shorthand for the model abbreviations, for better legibility.

One of the primary conclusions from these analyses is that model class is generally more
important for achieving good overall performance than are specific hyperparameter values. For
example, in Figure 11, our original hypothesis that long windows will perform better in
capturing thematic relations is not borne out by the results. GloVe models of all window sizes
are better than other models with long windows, and the best non-GloVe model (PPMI-SYN)
has short windows. Furthermore, many models with long windows are among the worst
performing. As another example, the best performing embedding type is similarly mixed

between word and mean embeddings.

43



Are there any obvious differences in model architecture that would explain these broad
patterns of differential model performance, specifically GloVe’s superior performance on
thematic relations, and Skip-gram’s on similarity relations? For GloVe, a useful comparison can
be made with PPMI. PPMI and GloVe are reasonably similar models, and certainly more similar
to each other than to either of the word2vec models. Both models begin with co-occurrence
matrices, and GloVe’s word vectors are produced from a factorization of the PPMI matrix. This
factorization, while not an orthogonal decomposition, may act in a similar manner to
decompositions like those used in principal components analysis. In PCA, an
eigendecomposition of the covariance matrix is able to find new, effective degrees of freedom
that can be complex combinations of the original ones (coordinate axes, in this case). In a
similar manner, GloVe’s matrix decomposition may be able to produce combinations of local
co-occurrence patterns to produce word vectors that can be similar in direction despite not
consistently occurring in close proximity in text.

The default implementation of GloVe (Pennington et al, 2014) uses as its representations
a combination of “word” and “context” vectors; the factorization it performs decomposes the
log-count matrix into the product of two matrices (plus bias terms) and rows/columns of both
matrices are combined to form GloVe’s type-level representation of a word. Figure 7 shows that
mean embeddings for both CBOW and Skip-gram perform better on thematic relations across
the board; the best performing mean embedding CBOW and Skip-gram models (plus signs in
Figure 7) are much closer to GloVe than word or context embeddings alone. Levy et al. (2015)
point out that the effect of adding context to word vectors converts the cosine similarity function
into a weighted sum of two terms: one (first order similarity) that is high when one word appears

in the context of another, and another (second order similarity) that is high when the two words
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are replaceable. The addition of context vectors adds first order similarity, and since thematic
relations are about shared context and not substitutability, models that incorporate both (whether
GloVe or Skip-gram/CBOW) perform better on those relations.

Conversely, notice in Figure 10 that the best models on similarity relations are
predominantly Skip-gram and CBOW, and they overwhelmingly use word embeddings alone.
Since similarity relations are more dominated by substitutability, it makes sense that letting
second order similarity dominate (as is the case when context embeddings are omitted) would
lead to better performance on these relations. Finally, we have no obvious answer as to why
simply including context embeddings in Skip-gram and CBOW’s representations is insufficient
to obtain performance on thematic relations comparable to GloVe. However, we do note that
Levy et al. (2015) point out that the bias parameters in GloVe are learned during training, giving
GloVe additional degrees of freedom when compared to Skip-gram and CBOW, which could
also contribute to better performance in the tasks we consider.

5.7. Clustering in Model and Relations Space

Finally, we present an additional analysis of overall model performance. Figure 12 shows a
heatmap of the Spearman correlations of each of the 84 models for each of the 19 relations. The
matrix has been hierarchically clustered in both model and relations space using unweighted
average linkage (Sokal and Michener, 1958) and Euclidean distance, with cluster numbers being
determined using the Gap* statistic (Mohajer, Englmeier, & Schmid, 2010). Relations are
clustered on the x-axis, with the three major clusters indicated by the background color (green,
magenta, or gray) of the x-axis labels. The y-axis is organized by model similarity, with the 6
major clusters of models indicated by the background color (brown, gray, orange, green, blue, or

cyan) of the y-axis labels.
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Figure 12. Clustering in model and relations space. Shown here is the (clustered) matrix of
Spearman correlations of all 84 models we tested against all 19 relations. Hierarchical
clustering with unweighted average linkage was performed on both relations (columns) and
models (rows). Each dendrogram was cut to obtain clusters using the Gap* statistic (see text).
Cluster identity is denoted by the colored boxes on the axis labels; there is no correspondence
between coloring for model (row) and relation (column) clusters. Guides to the membership of
the model clusters (the row clusters) are given in corresponding colored text at the right side of
the plot. Note that we have used all-lowercase shorthand for the model abbreviations, for better
legibility.
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On the x- and y-axes we have used colored boxes to highlight discrete clusters of both
relations (x-axis, 3 clusters) and models (y-axis, 6 clusters).The three relations clusters have
green, gray, and magenta boxes, and the six model clusters use orange, brown, gray, green, blue,
and cyan coloring.

When looking at the grouping by relation, one can see that the models do particularly
well on noun similarity relations (green box, x-axis; WordSim-Sim, WordSim-Rel and Function)
and poorly on verb similarity (gray box, x-axis; SimVerb-3500 and SimLex-222-V), thematic
relations involving inanimate objects (gray box, x-axis; Location-Thing, Instrument-Thing,
Event-Thing), and Color and Shape ratings (gray box, x-axis). This is consistent with the bar
graphs shown previously. Performance on thematic relations involving animals and people
(magenta box, x axis; Event-Person, Instrument-Person, Location-Animate) is substantially
better than on thematic relations involving inanimate objects (gray box, x axis), which was
discussed above as the “birthday/food” problem. Finally, it is clear that the models are better at
capturing verb-noun relations (magenta box, x axis; Verb-Instrument, Verb-Location, Verb-
Agent/Patient) than verb similarity relations (gray box, x axis; SimVerb-3500 and SimLex-222-
V). This difference was discussed in Section 5.3. We also note that this performance hierarchy is
generally preserved across models and hyperparameters, with the exception of some SG models
that do not use negative sampling (blue box, y axis) and CBOW using context embeddings
(green box, y axis).

Clustering by model shows little mixing of the types of DSMs in the clusters; co-
occurrence models (GloVe and PPMI) occupy a single cluster (orange box, y axis) . None of the
six clusters mix word2vec and co-occurrence based models. In contrast, models with different

hyperparameters generally do cluster together so long as they are the same DSM type.
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Irrespective of hyperparameters, all of the GloVe and PPMI models are in a single cluster
(orange box, y axis). The vast majority of CBOW and SG models are also in a single cluster
(gray box, y axis). An exception to this pattern is that any SG or CBOW models with mean or
context embeddings that do not use negative sampling are in separate clusters (short window
SG(m) models in the blue box, y axis, medium/long window SG models in the cyan box, y axis,
and CBOW(c) models in the green box, y axis). This is consistent with our observations that
negative sampling improves performance of SG and CBOW models that use context
embeddings, and that CBOW(c) models are generally poor. Looking across the columns, one
can see this clear drop in correlation for the blue, green, and cyan groups (all on the y axis) when
compared to the orange and gray groups (both on the y axis). In particular, SG(m) models that
use negative sampling separate from those that do not; the former are in the gray box, y axis,
and the latter in the blue and cyan boxes, y axis.
6. General Discussion

The goal of the present article was to investigate the degree to which a sample of
currently best-performing count and predict DSMs capture a range of semantic relations that are
important for language processing. The primary novel contribution lies in testing DSMs on
semantic relations that were divided into 19 datasets based on semantic relations and part of
speech. These included similarity for nouns, verbs, and adjectives, as well as function, shape,
manipulation, and color similarity for nouns. We also tested verb-based thematic relations,
noun-noun event-based relations, and a dataset that includes multiple semantic relations. Finally,
we investigated CBOW and Skip-gram context embeddings, and the average of the word and

context embeddings, which has rarely been done.
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Note that our theoretical approach and expectations contrast with those of Lake and
Murphy (2021). As part of their studies, they judged DSMs in terms of their ability to capture
exclusively semantic similarity. Lake and Murphy were interested in the degree to which DSMs
capture superordinate category membership; they considered cases in which DSMs captured
other semantic relations to be a failure. In contrast, because our interest was spurred by a desire
to use DSMs as a basis for networks that might be used to simulate semantic and language
processing more generally, we view DSM sensitivity to multiple types of semantic relations as a
feature, rather than a bug.

Noun similarity, echoing other studies, is clearly the easiest kind of relation for these
models to encode. To a great extent, the models were constructed to capture this relation.
Correlations with human ratings approach 0.75 for both WordSim-Sim and word pairs sharing a
functional relationship, and approach 0.5 for SimLex-666-N. Surprisingly, we found weak but
significant correlations for perceptually similar items (manipulation, shape and color, see Lewis
et al, 2019 for a similar result for shape and color). In general, the models are better at verb-noun
relations than verb similarity, although some of this difference is almost certainly due to specific
instructions given to SimLex and SimVerb study participants that would be difficult to emulate
with these models (i.e., to ignore antonyms, although they clearly are related). Some models,
GloVe in particular, do almost as well on verb/noun relations that are important components of
sentence comprehension as they do on noun similarity. Finally, all models to some degree match
human ratings on the event-based relations, performing better on sets involving people and
animals than those involving things, an issue we discussed in detail above and revisit

subsequently.
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In terms of differentiating among models, there are two main takeaways: (1) there is no
winner-take-all model, and (2) model class/type is generally more important than
hyperparameter values. With respect to (1), when looking at overall rankings, in terms of
similarity ratings, Skip-gram and CBOW models dominate (Figure 12), so if a researcher’s goal
is to construct vectors that are sensitive to similarity, Skip-gram, and to a lesser extent CBOW,
appears to be the best choice. For the conglomeration of thematic and event-based relations, the
top 10 models are all GloVe, with 8 of those using medium (15 word) or long (27 word)
windows (Figure 13). Therefore, if a researcher’s goal is to construct vectors that are sensitive to
these other relations, especially those that play key roles in sentence processing or event
cognition, GloVe appears to be the best choice. When we ranked the models based on their
performance on all of the relations we examined, both GloVe and the word2vec models (CBOW
and Skip-gram) appear near the top (Figure 11). Moreover, all rankings we produced (Figures
11-13) are crowded at the top; the difference between the best model and the 10th-best model
can be in the third or fourth decimal place (in terms of score).

Returning to (2) above, the relative importance of model class over hyperparameter
settings, even parameters that one would think should have a strong influence - for example,
needing longer windows to capture thematic relations - are less important than model type.
GloVe is dominant on non-similarity semantic relations, despite using a mix of medium (15
word), long (27 word), and short (5 word) windows. Conversely, word2vec models with
medium-length windows are competitive with short windows near the top of the similarity
rankings. Finally, even negative sampling, while generally favored, is not absolutely required for
good model behavior (except in the case of using solely the context embeddings from Skip-gram

and CBOW), as there are two CBOW models (CBOW(w)-LYN and CBOW(m)-LYN) and one
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Skip-gram model (SG(w)-SYN) without negative sampling in the top 10 for similarity relations,
and two models (SG(w)-MNN and SG(w)-MYN) in the top 10 overall.

Finally, the item-level analysis we conducted to explain model performance on SimLex-
222-V and SimVerb-3500 and the noun-noun event-based ratings suggest two additional
lessons. The verb similarity results indicate that there can be important subtleties to consider
when comparing DSMs to human data; model performance may reflect the inability of a
particular model to capture a certain kind of relation, but it may also have to do with specific
instructions given to the human participants that the models either are not, or cannot, be exposed
to. Regarding the event-based relations, our analysis points toward features of human event
knowledge that none of the DSMs we tested can capture. In looking at items with low DSM
scores but high participant ratings, a pattern emerges: they are pairs in which the conditional
probabilities of the two items are highly asymmetric. For example, returning to the birthday/food
example, given that you are at a birthday, the likelihood of encountering food is quite high.
However, solely given that you are eating food, the likelihood that you are at a birthday is
extremely low. In our rating study, the human participants were given the event name (birthday)
and asked to rate the likelihood that a set of things would be found there, which led them to
indicate that food is highly related to birthday. Because all of the DSMs we considered align
words in vector space when they co-occur in highly similar contexts, the DSMs tend to score
words as highly related only when both of the items are highly likely to imply the other. For
example, given that you are in a cemetery, it is highly probable you will see gravestones, and
given you are looking at gravestones, it is also highly likely you are in a cemetery.

Cemetery/bench, on the other hand, is more akin to birthday/food.
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What, then, can we say about the relation between DSMs and human semantic
knowledge? This is a complex question that, in our view, consists of at least three parts, not
necessarily independent: (1) do DSMs learn word representations that show some functional
equivalence to what humans learn, (2) do they acquire that knowledge in a way that is similar to
the way in which humans acquire it, and (3) can they be queried for that knowledge in the way
we can query a human? Based on our findings and those cited in the Introduction, it would be
unwise to claim that DSMs are complete models of human semantic knowledge. Lake and
Murphy (2021) detail many ways in which DSMs (including models like BERT and GPT) fall
short of humans, among which are: they have no grounding in, or influence from, perception;
they acquire no actual knowledge about the world; they have difficulty with conceptual
combinations (“butter knife”); and they cannot respond to instructions. To that, we would add
that our own findings on event relations suggest the models also have serious difficulty in
understanding relations with highly asymmetric conditional probabilities (what we called the
birthday/food problem) and in relations involving words (like light verbs) that can occur in
many, drastically different contexts. The issue of instructions (our (3) above) is clearly relevant
to what we found as well; all the models perform suboptimally on color and shape similarity,
likely because objects similar to each other only in one of these two dimensions are highly
unlikely to occur in consistent contexts. However, if you asked human participants “how similar
are puck and spider?” instead of “how similar in color are puck and spider,” you would get a
dramatically different answer. The fact that 1) these DSMs (and many other NLPs) cannot be
given these kinds of instructions and 2) we cannot unpack their latent variables to separate

different types of semantic relations often means that it can be hard to determine if the problem
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is the representation they form or the inability to instruct them to focus on a particular aspect of
that representation.

What about the good? If talking specifically about the models we consider here, they
clearly do learn some word representations that are functionally similar to human
representations, at least as far as relations between concepts are concerned. All of the models we
consider perform well on noun and function similarity. As far as how they learn, there is at least
one way in which this is realistic: the huge statistical learning literature has made it clear that
humans can learn from regularities in the environment, even when those regularities are weak
and the environment is relatively impoverished. The classic experiment of Saffran, Aslin, and
Newport (1996) showed that young babies can differentiate “words” from “nonwords” when
trained on a continuous stream of syllables in which the conditional probabilities have been
manipulated to make certain syllabic patterns more frequent. This occurs without any acoustic
markers of word or phrasal boundaries, or anything like grammar, in the input stream. DSMs do
something very much like this; they learn from regularities of word patterns. We note that one of
the weaknesses of the type-based DSMs, not shared by BERT or GPT, is that input is not
structured; sentences are decomposed into bags of words in which order is arbitrary. It is thus
clear why type-based DSMs cannot discriminate between agent-verb and verb-patient relations
(and our analyses did not require them to do so).

As to whether this structure is learned in the same way as humans do (our (2) above), the
models are weaker in that regard. DSMs are not necessarily a functional account of semantic
knowledge, but there may be some overlap. An important aspect of learning language appears to
be learning co-occurrences. When people rate various semantic relations, knowledge of co-

occurrences derived from language input likely influences their ratings to some degree. This
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may be particularly important for types of information that are not present in people’s physical
real world environment. On the other hand, it is unclear that the human mechanism for doing
this would be direct (as in a DSM), rather than being an emergent property of some other system
(for example, next word prediction). A similar tension between neurobiological and algorithmic
accounts has recently been discussed in a different context (network models versus DSMs;
Kumar et al, 2021), in which the authors recognized the power of learning co-occurrences but
were similarly wary of claiming that DSMs are good models for human cognition. Rather than
hope that any one of these models is actually a complete model of human semantic knowledge,
researchers should instead use them pragmatically depending on what kinds of materials and
relations they wish to consider.

Despite these drawbacks, in the absence of a method to empirically generate the basis for
human semantic relation judgments at large scales, DSMs of various stripes remain the best
current way to predict or fit human semantic knowledge at a large scale. Even if no single DSM
provides a general account, the fact that DSM performance is somewhat relation-specific gives
us two things. First, this yields an automated way of predicting human judgements for a variety
of relations, which can be useful for experimental control in a variety of settings. Second, it
gives researchers a set of levers to try to unpack aspects of relational knowledge. For example, if
the algorithm and parameters of one particular DSM provide the best fit to shape similarity,
whereas those of another DSM provide the best fit to manipulation similarity, what hypotheses
can be generated about the basis for human ratings on these dimensions?

7. Conclusions
Quantifying human semantic knowledge is a long-standing and multifaceted challenge.

The ability to translate theories of human semantic knowledge into numbers that specify the
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relation between any arbitrary pair of words, no matter how concrete or abstract they are, has
been a holy grail in this area. This ability would provide researchers with the means to compare
theories (do the values that follow from one theory account for more variance in human
performance than those of another?) and to control experimental item selection, as well as many
other applications.

DSMs have a long history of use in cognitive science (Landauer & Dumais, 1997; Lund
& Burgess, 1996), have increased in use as technological innovations have produced more
sophisticated models (e.g., Mikolov et al., 2013), and appear to provide surprisingly robust
characterizations of semantic relatedness. DSMs produce quantified representations that provide
a measure of distance between any pair of concepts, they can be applied to any word (not just
concrete words), and they can be derived automatically from large text corpora.

But to what degree do DSMs capture different, specific aspects of semantic relations that
we can measure in experiments with human subjects? Our goal in this article was to compare
currently best-performing DSMs on a broad range of semantic relations. Despite the large
amount of research that has been done with DSMs to date, we believe that the comparisons of
DSMs and the range of human performance data presented here will provide a unique resource
for researchers who are interested in using DSMs as a basis for constructing models of language

comprehension.
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Appendix
Events, Locations, and Instruments Ratings Methods and Descriptive Results

Methods
Participants

One-hundred, forty-one students (mean age = 19, range = [17-24]) participated for partial
course credit. Approximately 80% of participants identified as female; 19% identified as male;
and 1% identified as non-binary. All participants gave informed consent under the approval of the
institutional review board at the University of Connecticut. The number of participants who
completed each list differed somewhat by cue-target type (see Materials & Procedures), which
included events-people (N = 41), events-things (N = 20), locations-animate (N = 20), locations-
things (N = 20), instruments-animate (N = 20), and instruments-things (N = 20). The number of
participants for the events-people ratings was approximately double that of the other cue-response

types due to experimenter error (we ran the condition twice), and we elected to include all data.
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Materials & Procedures
The items were taken from Hare, Jones, Thomson, Kelly, and McRae (2009). In that study,
participants were given cue words and produced up to five responses of a certain type, according
to six different sets of instructions:
1. Events-people: Participants were presented with 45 event nouns such as sale and were
asked to provide types of people that typically are found at those events (e.g., clerk,
shopper).
2. Events-things: Participants were presented with 53 event nouns such as banquet and
were asked to provide things that typically are found at those events (e.g., wine, flowers).
3. Locations-people and animals: Participants were presented with 31 nouns describing
locations (e.g., barn) and were asked to provide people and/or animals that typically are
found at those locations (e.g., farmer, cow).
4. Locations-things: Participants were presented with 61 location nouns (e.g., bathroom)
and were asked to provide things that are typically found at those locations (e.g.,
toothbrush, toiler).
5. Instruments-people: Participants were presented with 45 nouns describing instruments
(e.g., wrench) and were asked to respond with people that typically use the instrument
(e.g., plumber, carpenter).
6. Instruments-things: Participants were presented with 43 instrument nouns (e.g.,
scissors) and were asked to respond with the things that people typically act upon with
each (e.g., hair, paper).
Hare et al.’s resulting data contained 5854 unique cue-response pairs. For the present

purposes, we selected a subset of these data subject to several constraints. A weighted score for
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each response was computed based on the number of participants who provided each response in
first, second, third, fourth, or fifth position in Hare et al. (with first position given five times the
weight as the fifth, and so forth). First, we excluded all cue-target pairs with a weighted score of
less than 3. Second, we excluded all cues with fewer than seven unique responses across Hare et
al.’s participants. Finally, two authors used intuition to select approximately half of the remaining
cue-response pairs to use for the present study. This included eliminating pairs with generic
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responses (e.g., “woman,” “man”). This resulted in 2,717 pairs: events-people: 538; events-things:
592; locations-people and animals: 504; locations-thingss: 356; instruments-people: 287;
instruments-things: 440).

A separate list was created for each of the 6 cue-response types. A separate group of
participants responded to each list. Within each list, each cue word was presented on a separate
screen along with all of its responses (mean = 12.5; range = 6-20) on the same screen. Participants
rated the event-based relations on a scale of 1 (Not at all likely) to 7 (Extremely likely). They were
informed that “In this study, you will be presented with a list of events [or locations or
instruments]. For each, we would like you to imagine situations that could take place during that
event” [or location or instrument].” Specific instructions varied according to each cue-response
type:

1. Events-people: How likely is each type of person to be found in this situation?

2. Events-things: How likely is each type of thing to be found in this situation?

3. Locations-people-animals: How likely is each type of person/animal to be found at this

location?

4. Locations-things: How likely is each type of thing to be found at this location?

5. Instruments-people: How likely is each type of person to use the instrument?

70



6. Instruments-things: How likely is the instrument to be used on each type of thing?
Results

Overall, ratings were relatively high, collapsing across all six list types (M =5.73, SD =0.47,
range = 1-7). Ratings varied somewhat across the six conditions: events-people (M = 5.73, SD =
0.76, range = 1-7), events-things (M = 6.15, SD =0.71, range = 1-7), locations-people and animals
(M =5.78, SD = 1.07, range = 1-7), locations-things (M = 6.30, SD = 0.64, range = 1-7),
instruments-people (M = 5.41, SD = 1.12, range = 1-7), and instruments-things (M = 5.01, SD=

1.02, range = 1-7). Histograms for each list are provided in Supplemental Figure 1.
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Supplemental Figure 1. Histograms of mean ratings (by item) for each set. Abbreviations are as
follows: Events-Things, E-T; Events-People, E-P; Instruments-Things, I-T; Instruments-People,

I-P; Locations-Things, L-T; Locations-Animals-People, L-A.
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