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Abstract
In this paper, we focus on the mathematical foundations of reduced order model (ROM)
closures. First, we extend the verifiability concept from large eddy simulation to the ROM
setting. Specifically, we call a ROM closure model verifiable if a small ROM closure model
error (i.e., a small difference between the true ROM closure and the modeled ROM closure)
implies a small ROM error. Second, we prove that the data-driven ROM closure studied here
(i.e., the data-driven variational multiscale ROM) is verifiable. Finally, we investigate the
verifiability of the data-driven variational multiscale ROM in the numerical simulation of
the one-dimensional Burgers equation and a two-dimensional flow past a circular cylinder at
Reynolds numbers Re = 100 and Re = 1000.
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1 Introduction

Full order models (FOMs) are computational models obtainedwith classical numerical meth-
ods (e.g., finite element or finite difference methods). In the numerical simulation of fluid
flows, FOMs often yield high-dimensional (e.g., O(106)) systems of equations. Thus, the
computational cost of using FOMs in important many-query fluid flow applications (e.g.,
uncertainty quantification, optimal control, and shape optimization) can be prohibitively
high.

Reduced order models (ROMs) are computational models that yield systems of equations
whose dimensions are dramatically lower than those corresponding to FOMs. For example, in
the numerical simulation of fluid flows that are dominated by recurrent spatial structures (e.g.,
flows past bluff bodies), the dimensions of the resulting system of equations can beO(10) for
ROMs andO(106) for FOMs, while the ROM and FOM accuracy is of the same order. Thus,
ROMs have been used in many-query fluid flow applications to reduce the computational
cost of FOMs. Probably the most popular type of ROM used in these applications is the
Galerkin ROM (G-ROM), which is constructed by using the Galerkin method. The G-ROM
is based on a simple yet powerful idea: Instead of using millions or even billions of general
purpose basis functions (as in classical Galerkin methods, such as the tent functions in the
finite element method), G-ROM uses a lower-dimensional data-driven basis. Specifically, the
available numerical or experimental data is used to build a few ROM basis functions that
model the spatial structures that dominate the flow dynamics.

The G-ROM has been successful in the efficient numerical simulation of relatively simple
laminar flows, e.g., flow past a circular cylinder at low Reynolds numbers. However, the
standard G-ROM generally fails in the numerical simulation of turbulent flows. The main
reason is that, in order to ensure a relatively low computational cost, only a few ROM
basis functions are used to build the standard G-ROM. These few ROM basis functions can
represent the simple dynamics of laminar flows, but not the complex dynamics of turbulent
flows. Thus, in the numerical simulation of turbulent flows, the standard G-ROM is equipped
with a ROM closure model, i.e., a correction term that models the effect of the discarded
ROM basis functions on the ROM dynamics.

Over the last two decades, ROM closure modeling has witnessed a dynamic development.
A survey of current ROM closure modeling strategies is presented in [2]. Three main types
of ROM closure models have been proposed: (i) Functional ROM closures are constructed
by using physical insight. Classical examples of functional ROM closures include eddy
viscositymodels [53], inwhich themain role of the ROMclosuremodel is to dissipate energy.
(ii) Structural ROM closures are a different class of models that are developed by using
mathematical arguments. Examples of structural ROM closures include the approximate
deconvolution ROM [56], the Mori-Zwanzig formalism [15, 34, 40], and the parameterizing
manifolds [11–13]. (iii) The most active research area in ROM closure modeling is in the
development of data-driven ROM closures in which available data is utilized to build the
ROM closure model. An example of data-driven ROM closure is the data-driven variational
multiscale ROM (DD-VMS-ROM) that was proposed in [37, 54]. The DD-VMS-ROM has
been investigated numerically in [31, 36–38, 54, 55]. However, providing mathematical
support for the DD-VMS-ROM is an open problem.
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In classical CFD, there exists extensive mathematical support for closure modeling. For
example, the monographs [9, 27, 45] present the mathematical analysis for many large eddy
simulation (LES)models, as well as the numerical analysis of their discretization. In contrast,
despite the recent increased interest in ROM closure modeling [2], the mathematical founda-
tions of ROM closures are relatively scarce. Indeed, the ROM closure models are generally
assessed heuristically: The proposed ROM closure model is used in numerical simulations
and is shown to improve the numerical accuracy of the standard G-ROM and/or other ROM
closure models. However, fundamental questions in ROM numerical analysis are still wide
open for most of these ROM closure models: Is the proposed ROM closure model stable?
Does the ROM closure model converge? If so, what does it converge to?

Only the first steps in the numerical analysis of ROM closures have been taken. To our
knowledge, the first numerical analysis of a ROM closure model was performed in [10],
where an eddy viscosity ROM closure model (i.e., the Smagorinsky model) was analyzed
in a simplified setting. Next, the numerical analysis of eddy viscosity variational multiscale
ROMswas carried out in [25, 26]. Finally, the numerical analysis of the Samagorinsky model
in a reduced basis method (RBM) setting was performed in [7, 44]. We note that numerical
analysis for regularized ROMs, which are related to but different from ROM closures, was
performed in [19, 57]; see also [5] for related work.

In this paper, we take a next step in the development of numerical analysis for ROM
closures andproveverifiability for a data-drivenROMclosuremodel, i.e., theDD-VMS-ROM
proposed in [37, 54]. Specifically, we show that the ROM closure model in the DD-VMS-
ROM is accurate in a precise sense. More importantly, we prove that the DD-VMS-ROM is
verifiable, i.e., we prove that since the DD-VMS-ROM closure model is accurate, the DD-
VMS-ROM solution is accurate. We note that this is not a trivial task: The Navier–Stokes
equations (and their filtered counterparts), which are the mathematical models that we use in
this paper, are nonlinear and sensitive to perturbations, so adding to them a relatively small
term (i.e., the ROMclosure term) does not automatically imply that the resulting solution will
be close to the original one. To prove that the DD-VMS-ROM closure model is verifiable,
we use the following ingredients: (i) We use ROM spatial filtering to determine an explicit
formula for the exact ROM closure term, which needs to be modeled. (ii) We use data-driven
modeling to construct the DD-VMS-ROM closure model and show that this closure model is
accurate, i.e., it is close to the exact ROM closure model. (iii) We use physical constraints to
increase the accuracy of our data-driven ROM closure model. We note that the verifiability
concept was defined in an LES context (see, e.g., [30] as well as [9] for a survey). However,
to our knowledge, this is the first time the verifiability concept is defined and investigated in
a ROM context.

The rest of the paper is organized as follows: In Sect. 2, we outline the construction of the
standard G-ROM. In Sects. 3 and 4, we use ROM spatial filtering to build LES-ROMs and
utilize data-driven modeling to build the closure model in the DD-VMS-ROM, respectively.
In Sect. 5, we prove the main theoretical result in this paper, i.e., we prove that the DD-
VMS-ROM is verifiable. In Sect. 6, we illustrate the theoretical developments. Specifically,
for the Burgers equation and the two-dimensional flow past a circular cylinder, we show the
following: (i) the ROM closure error (i.e., the difference between the true ROM closure term
and the DD-VMS-ROM closure term) is small and it becomes smaller and smaller as we
increase the ROM dimension; and (ii) as the ROM closure error decreases, so does the ROM
error (i.e., the DD-VMS-ROM is verifiable). Finally, in Sect. 7, we present the conclusions of
our theoretical and numerical investigations and outline several directions for future research.
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2 Galerkin ROM (G-ROM)

In this section, we outline the construction of the Galerkin ROM for the Navier–Stokes
equations (NSE):

∂u
∂t

− Re−1Δu + u · ∇u + ∇ p = f , (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p the pressure, and Re the Reynolds number. The NSE (2.1)–(2.2) are
equipped with an initial condition and, for simplicity, homogeneous Dirichlet boundary con-
ditions. To build theROMbasis, we assume thatwe have access to the snapshots {u0h, ..., uM

h },
which are the coefficient vectors of the FEM approximations of the NSE (2.1)–(2.2) at the
time instances t0, t1, . . . , tM , respectively. The number of snapshots, M , is an arbitrary pos-
itive integer. In what follows, we assume that M is fixed. Next, we use these snapshots and
the proper orthogonal decomposition (POD) [23, 52] to construct an orthonormal ROM basis
{ϕ1, ...,ϕd}, which generates the ROM space Xd defined as follows:

Xd := span{ϕ1, ...,ϕd}, (2.3)

where d is the number of linearly independent snapshots {u0h, ..., uM
h }. Thus, d is themaximal

dimension of a basis that spans the same space as the space spanned by the given snapshots.
By using the ROM basis functions in (2.3), we construct ud , which is the d-dimensional

ROM approximation of NSE velocity, u:

ud(x, t) =
d∑

i=1

(ad)i (t)ϕi (x). (2.4)

To find the vector of ROM coefficients ad in (2.4), we use the Galerkin projection, i.e., we
replace u with ud in the NSE (2.1)–(2.2), and then project the resulting equations onto the
ROM space, Xd . This yields the d-dimensional Galerkin ROM (G-ROM):

((ud)t , vd) + Re−1(∇ud ,∇vd) + (ud · ∇ud , vd) = ( f , vd), ∀ vd ∈ Xd , (2.5)

where (·, ·) denotes the L2 inner product. We note that the G-ROM (2.5) does not include a
pressure term, since the ROM basis functions are assumed to be discretely divergence-free.
This is the case if, e.g., the snapshots are discretely divergence-free. Indeed, when POD is
used to construct the ROM basis (as in our numerical investigation), the ROM basis functions
are linear combinations of the snapshots. Since the snapshots are discretely divergence-free,
so are the ROM basis functions. We also note that alternative formulations within the RBM
framework are used in, e.g., [4, 6, 21, 22, 35, 42].

By using the backward Euler time discretization, we get the full discretization of the
d-dimensional G-ROM (2.5) as follows: ∀ n = 1, ..., M

(
und − un−1

d

Δt
, vd

)
+ Re−1(∇und ,∇vd ) + (und · ∇und , vd ) = ( f n, vd ), ∀ vd ∈ Xd , (2.6)

where the superscript n denotes the approximation at time step n. To obtain the finite-
dimensional representation of the d-dimensional G-ROM (2.6), we choose vd to be
ϕ1, . . . ,ϕd , which yields the following system of equations:

and − an−1
d

Δt
= bn + A and + (and)

� B and , (2.7)
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where and is the vector of unknown ROM coefficients, b is a d×1 vector, A is a d×d matrix,
and B is a d × d × d tensor.

The system of equations in (2.7) can be written componentwise as follows:

(and)i − (an−1
d )i

Δt
= bni +

d∑

m=1

Aimanm +
d∑

m=1

d∑

k=1

Bimkanma
n
k , 1 ≤ i ≤ d , (2.8)

where, for 1 ≤ i,m, k ≤ d ,

bni = ( f n,ϕi ), (2.9)

Aim = −Re−1 (∇ϕm,∇ϕi

)
, (2.10)

Bimk = −(
ϕm · ∇ϕk,ϕi

)
. (2.11)

3 Large Eddy Simulation ROM (LES-ROM)

The ROM closure that we investigate in this paper (i.e., the DD-VMS-ROM presented in
Sect. 4) is a large eddy simulation ROM (LES-ROM). Thus, in this section, we briefly
outline the construction of LES-ROMs.

LES-ROMs are ROM closures that have been developed over the last decade (see [53,
56] and the survey in Section V in [2], as well as related approaches in [17, 18]). LES-
ROMs utilize mathematical principles used in classical LES [9, 47] to construct ROMclosure
models for ROMs in under-resolved regimes, i.e., when the number of ROM basis functions
is insufficient to represent the complex dynamics of the underlying flows. Classical LES and
LES-ROMs are similar in spirit: They both aim at approximating the large scales in the flow at
the available coarse resolution (e.g., coarse mesh in classical LES and not enough ROMbasis
functions in LES-ROMs). Furthermore, they both use spatial filtering to define the large scales
that need to be approximated. We emphasize, however, that there are also major differences
between classical LES and LES-ROMs. One of the main differences is the type of spatial
filtering used to define the large flow structures. In classical LES, continuous filters (e.g., the
Gaussian filter) are used to define the filtered equations at a continuous level. In contrast,
in LES-ROMs, due to the hierarchical structure of the ROM spaces, the ROM projection
(which is a discrete spatial filter) is generally used instead. (For a notable exception, see the
ROM differential filter, which is a continuous spatial ROM filter used in [56] to construct
the approximate deconvolution ROM closure.) The ROM projection is used, in particular,
to build variational multiscale (VMS) ROM closures (see, e.g., [8, 25, 26, 46, 49, 53] and
the VMS-ROM survey in Section V.A in [2]), such as the closure that we investigate in this
paper, which we describe next.

To construct the DD-VMS-ROM, we start by choosing the “truth" solution, i.e., the most
accurate ROM solution that we can construct with the given snapshots.

Definition 1 (Truth Solution) For fixed M and d , we define the d-dimensional G-ROM solu-
tion of (2.6) as our “truth" solution.

The goal of an LES-ROM is to construct an r -dimensional ROM whose solution, ur ,
approximates as accurately as possible the large scale component of the truth solution, Pr (ud).
We note that, since r � d , the LES-ROM development takes place in an under-resolved
regime.

In what follows, our goal is to use data to construct an LES-ROM (specifically, the DD-
VMS-ROM) whose solutions are as close as possible to Pr (ud), i.e., the ROM projection of
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the truth solution. Thus, in the numerical analysis in Sect. 5, the DD-VMS-ROM solution
will be compared to large scale component of the truth solution, which will be considered as
data.

In what follows, we use the LES-ROM framework to achieve the following objectives: (i)
Use the ROM projection to define the large ROM spatial scales; (ii) Use the ROM projection
to filter the d-dimensional G-ROM (2.6) and obtain the LES-ROM, i.e., the set of equations
for the filtered ROM variables; and (iii) Finally, use data-driven modeling to construct a
ROM closure model for the filtered ROM equations developed in step (ii). In this section,
we discuss steps (i) and (ii); in the next section, we discuss step (iii), i.e., we construct the
DD-VMS-ROM.

To define the large ROM scales and build the VMS framework, we first decompose the
d-dimensional ROM space Xd into two orthogonal subspaces

Xr := span{ϕ1, ...,ϕr }, (3.1a)

(Xr )⊥ := span{ϕr+1, ...,ϕd}, (3.1b)

where Xr contains the first r dominant ROM basis functions, and (Xr )⊥, which is orthog-
onal to Xr , contains the less energetic ROM basis functions. We also define the following
orthogonal projections:

Definition 2 (Orthogonal Projections) Let Pr : L2 → Xr be the orthogonal projection onto
Xr , and Qr : L2 → (Xr )⊥ be the orthogonal projection onto (Xr )⊥, which can be defined
as

Pr (u) =
r∑

i=1

(u,ϕi )ϕi , u ∈ L2, (3.2a)

Qr (u) =
d∑

i=r+1

(u,ϕi )ϕi , u ∈ L2, (3.2b)

where L2 denotes the space of square integrable functions on the spatial domain.

Next, in the LES spirit, we decompose the most accurate ROM solution at time step n, und
(i.e., the d-dimensional G-ROM solution (2.6), which is the “truth" solution that is employed
as a benchmark in our investigation) as

und := Pr (und)︸ ︷︷ ︸
large scales

+ Qr (und)︸ ︷︷ ︸
small scales

, (3.3)

where Pr and Qr are the two orthogonal projections in Definition 2. Equation (3.3) represents
the LES-ROM decomposition of the “truth" solution, und , into its large scale component,
Pr (und), and its small scale component, Qr (und).

The ROM spatial filter that we use to construct the LES-ROM is the ROM projection
filter [39, 53], i.e., the orthogonal projection Pr defined in Definition 2, which satisfies the
following equation: For given u ∈ L2,

(
Pr (u),ϕi

) = (
u,ϕi

)
, ∀ i = 1, ..., r . (3.4)

To construct the LES-ROM,we need to construct the equation satisfied by the large scales,
Pr (und), defined in (3.3). We note that, by using Definition 2 and the ROM orthogonality
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property, we obtain the following formula for the large scale component Pr (und):

Pr (und) =
r∑

i=1

(and)i ϕi . (3.5)

To construct the LES-ROM satisfied by Pr (und), we apply the ROM spatial filter, Pr , to
the equation satisfied by the “truth” solution, und (i.e., to the full discretization of the d-
dimensional G-ROM (2.6)), we restrict the test functions in (2.6) to the r -dimensional ROM
subspace Xr defined in (3.1a), and we use the decomposition (3.3). This yields the equations
satisfied by the large scales, Pr (und), i.e., the LES-ROM equations:

(
Pr (und) − Pr (u

n−1
d )

Δt
, vr

)
+ Re−1(∇Pr (und),∇vr ) + (Pr (und) · ∇Pr (und), vr )

+ En + (τ FOM (und), vr ) = ( f n, vr ) , ∀ vr ∈ Xr ,

(3.6)

where we used that, by (3.4), (Pr ( f n), vr ) = ( f n, vr ). In the LES-ROM Eq. (3.6), the
Reynolds stress tensor τ FOM (und) and commutation error E are defined as follows:

τ FOM (und) := und · ∇und − Pr (und) · ∇Pr (und), (3.7)

En := Re−1(∇Qr (und),∇vr ), (3.8)

respectively. We note that, to obtain the LES-ROM Eq. (3.6), we used the fact that the term
(Qr (und), vr ) vanishes since Qr (und) is orthogonal to any vector in Xr . We also note that the
term (∇Qr (und),∇vr ) in the commutation error term (3.8) does not vanish since the ROM
basis functions are only L2-orthogonal, not H1

0 -orthogonal.

Remark 1 (Commutation Error) In [31], we investigated the effect of the commutation
error (3.8) on ROMs. We showed that the commutation error is generally nonzero, but
becomes negligible for large Re. Since our current investigation centers around LES-ROMs
for turbulent flows, for simplicity, we do not consider the commutation error.

Definition 3 (Closure Model) A closure model consists of replacing the Reynolds stress
tensor τ FOM (und) in (3.6) with another tensor τ ROM (Pr (und)) depending only on Pr (und).

Thus, the role of the closure model τ ROM is to replace the true closure model τ FOM (und)
(which cannot be computed in Xr ) with a term that can actually be computed in Xr . Since
a closure model cannot in general be exact (i.e., τ FOM (und) 
= τ ROM (Pr (und))), when
τ ROM (Pr (und)) is inserted for τ FOM (und) in (3.6) the solution of the resulting system is
just an approximation to Pr (und). We denote this LES-ROM approximation to Pr (und) as u

n
r ,

which can be written as

unr =
r∑

i=1

(anr )i ϕi . (3.9)

Thus, the LES-ROM equations for unr are

(
unr − un−1

r

Δt
, vr

)

+ Re−1(∇unr ,∇vr ) + (unr · ∇unr , vr ) + (τ ROM (unr ), vr ) = ( f n, vr ), ∀ vr ∈ Xr .

(3.10)
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Inserting (3.9) into (3.10) yields the following matrix form of the LES-ROM:

anr − an−1
r

Δt
= bn + Aanr + (anr )

T Banr + [−(τ ROM (unr ),ϕi )i=1,...,r ], (3.11)

where the vector bn , the matrix A, and the tensor B are defined in (2.9)-(2.11), but here
are truncated to the first r components, i.e., the indices i, k,m in (2.9)-(2.11) are restricted
between 1 and r . We opt for this slight abuse of notation in order to avoid introducing new
variables that would overload the presentation.We also note that [−(τ ROM (unr ),ϕi )i=1,...,r ]
in (3.11) denotes the r × 1 vector whose i th component is given by −(τ ROM (unr ),ϕi ).

4 Data Driven Variational Multiscale ROM (DD-VMS-ROM)

In this section, we outline the construction of the data-driven variational multiscale ROM
(DD-VMS-ROM) closure model proposed in [37, 54]. We also describe the physical con-
straints that we add to the DD-VMS-ROM in order to increase its stability and accuracy. The
construction of the DD-VMS-ROM is carried out within the LES-ROM framework described
in Sect. 3.

To construct the DD-VMS-ROM, we start from the LES-ROMEq. (3.11). First, we notice
that since we used the ROM projection as a spatial filter, the LES-ROM (3.11) is in fact
a variational multiscale ROM (VMS-ROM). However, the VMS-ROM (3.11) is not closed
since the closure term τ ROM (unr ) still needs to be determined. To construct a VMS-ROM
closure model, we use data-driven modeling. Specifically, we first postulate a linear ansatz
for the VMS-ROM closure term, and then we determine the parameters in the linear ansatz
that best match the FOM data. The linear ansatz for the VMS-ROM closure term can be
written as follows:

[ − (τ ROM (unr ),ϕi )i=1,...,r ] ≈ Ã anr , (4.1)

where anr is the vector of ROM coefficients of the solution unr ; cf. (3.9). To determine the
r × r matrix Ã in (4.1), in the offline stage, we solve the following low-dimensional least
squares problem:

min
Ã

M∑

n=1

∥∥∥∥−
[(

und · ∇und − Pr (und ) · ∇Pr (und ) , ϕi

)

i=1,...,r

]
− [( Ã bnr

)
i=1,..,r ]︸ ︷︷ ︸

:=[(τ ROM (Pr (und )), ϕi )i=1,...,r ]

∥∥∥∥
2

, (4.2)

where und and Pr (und) are obtained from the available FOM data and are defined in (2.4) and
(3.5), respectively, and bnr is the r -dimensional vector that contains the first r entries of the
vector and .
Physical Constraint In the numerical investigation in [16], it was shown that, in the mean,
the LES-ROM closure model dissipates energy. Thus, to mimic this behavior, in [36] we
equipped the DD-VMS-ROM with a similar physical constraint. Specifically, in the least
squares problem (4.2), we added the constraint that Ã be negative semidefinite:

(anr )
T Ãanr ≤ 0 ∀ anr ∈ R

r . (4.3)

For the numerical results presented in Sect. 6, this condition (4.3) is guaranteed by enforcing
a particular structure on Ã. Specifically, we require the entries of Ã to satisfy the following
relations:

Ãi j = − Ã ji , ∀ i 
= j, and Ãii ≤ 0, ∀ i . (4.4)
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Solving the least squares problem (4.2) with the physical constraint (4.3), using the result-
ing matrix Ã in the linear ansatz (4.1), and plugging this in the VMS-ROM (3.11) yields the
data-driven variational multiscale ROM (DD-VMS-ROM):

anr − an−1
r

Δt
= bn + (A + Ã)anr + (anr )

T Banr . (4.5)

5 Verifiability of the DD-VMS-ROM

In this section, we prove the verifiability of the DD-VMS-ROM described in Sect. 4. In
Sect. 5.1, we introduce the verifiability and mean dissipativity concepts in the ROM setting.
In Sect. 5.2, we prove that the DD-VMS-ROM is verifiable.

5.1 Definition of Verifiability andMean Dissipativity

The goal of this subsection is to define the verfiability of ROM closure models. Verifiability
of closure models has been investigated for decades in classical CFD (see, e.g., [30] as well
as [9] for a survey of verifiability methods in LES). We emphasize, however, that, to our
knowledge, the verifiability concept has not been defined in a ROM context. In this section,
we take a first step in this direction and define verifiability of ROM closure models. We also
define the mean dissipativity of ROM closures, which will be used in Sect. 5.2 to prove the
verifiability of the DD-VMS-ROM.

In the remainder of this paper, we also use the following notation:

Definition 4 (Generic Constant C) We denote with C a generic constant that can depend
on the fixed data (e.g., the solution, u, the number of snapshots, M , the number of linearly
independent snapshots, d , and the “truth” solution, ud ), but not on the ROM parameters (e.g.,
the ROM dimension, r , and the ROM solution, ur ).

Definition 5 (Verifiability)Let the number of snapshots,M , (and, thus, the number of linearly
independent snapshots, d) be fixed. A ROM closure model is verifiable in the L2 norm, || · ||,
if there is a constant C such that, for all r ≤ d and for all n = 1, . . . , M , the following a
priori error bound holds:

|| Pr (und) − unr ||2 ≤ C
1

n

n∑

j=1

||Pr ( τ FOM (u j
d) − τ ROM (Pr (u

j
d) )||2, (5.1)

where u j
d represents the “truth" solution (i.e., the d-dimensional G-ROM solution of (2.6))

at t = t j , j = 1, . . . , M , and unr solves the ROM equipped with the given ROM closure
model at t = tn, n = 1, . . . , M .

Definition 5 says that a ROM closure model is verifiable if a small average error in the
ROM closure term implies a small error in the LES-ROM approximation.

Remark 2 (A Priori Error Bound) We emphasize that inequality (5.1) in the verifiability
definition is an a priori error bound. This ROM error bound is similar to the a priori error
bounds for classical FOMs, e.g., the FE method, which are often of the following form (see,
e.g., Theorem 1.5 in [51]):

error ≤ C
(
h p1 + Δt p2

)
, (5.2)
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where h is the spatial mesh size, Δt is the time step, p1 and p2 are exponents that depend on
the particular finite element and time discretization used, andC is a generic constant that can
depend on the problem data (including the solution of the continuous problem), but not on the
discretization parameters. As explained in Section 2.4 of [33], the a priori error bound (5.2)
shows asymptotic convergence as h → 0 and Δt → 0, and can give the asymptotic rate
of convergence with respect to the spatial and temporal discretizations. We emphasize that
one essential feature of the FE a priori error bound (5.2) is that it can be proven before
actually running the FE model (which explains the error bound’s a priori qualifier). We note,
however, that since the constantC on the right-hand side of (5.2) can depend on the unknown
solution of the continuous problem, the a priori error bound (5.2) cannot be used to decide
where the spatial mesh should be refined or coarsened. For that purpose, one could instead
use a posteriori error bounds, in which the right-hand side depends entirely on computable
quantities, e.g., the FE solution [3].

The ROM error bound (5.1) in the verifiability definition is similar to the a priori FE error
bound (5.2). Indeed, the right-hand side of (5.1) does not depend on the ROM solution and
can be evaluated before actually running the ROM. Thus, the ROM error bound (5.1) is an
a priori error bound, just like the FE error bound (5.2). Furthermore, the right-hand side
of (5.1) is the product of a generic constant that does not depend on the ROM discretization
parameters, and a term that can be tuned by the user (i.e., the average ROM closure error
term). Thus, as the average ROM closure error in (5.1) decreases, we expect the ROM error
to decrease at the same rate. Our numerical investigation in Sect. 6 shows that this is indeed
the case. There is, however, a difference between the a priori ROM error bound (5.1) and
the a priori FE error bound (5.2): The latter depends on two FE parameters that can be
easily adjusted (i.e., the spatial mesh size, h, and the time step, Δt). The former, however,
depends on the average ROM closure error, which can be tuned by varying the parameters
in the numerical discretization of the least squares problem (4.2). This process is explained
in Sects. 6.1 and 6.2.

Remark 3 We note that the terms on the right-hand side of (5.1) in the verifiability definition
are the same as those used in the least squares problem (4.2). Furthermore, the L2 norm is
used in both (5.1) and (4.2). Thus, solving the least squares problem (4.2) to construct theDD-
VMS-ROM and proving that the DD-VMS-ROM is verifiable (as we will do in Theorem 2)
should yield accurateDD-VMS-ROMapproximations. The numerical investigation in Sect. 6
will show that, as expected, the DD-VMS-ROM approximations are accurate.

Definition 6 (Mean Dissipativity) A ROM closure model satisfies the mean dissipativity
condition if for the und , u

n
r , and n given inDefinition 5, the following inequalities are satisfied:

0 ≤ (τ ROM (Pr (und)) − τ ROM (unr ) , Pr (und) − unr ) < ∞. (5.3)

5.2 Proof of DD-VMS-ROM’s Verifiability

In this section, we first prove that the DD-VMS-ROM is mean dissipative. Then, we use this
result to prove that the DD-VMS-ROM is verifiable.

Theorem 1 TheDD-VMS-ROMwith linear ansatz (4.5)andphysical constraint (4.3) satisfies
mean dissipativity according to Definition 6.

Proof The least squares problem (4.2) yields the ROMoperator Ã for−(τ ROM (Pr (und),ϕi ),
which is the VMS-ROM closure term. We note that the same ROM operator Ã is used to
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construct the VMS-ROM closure term −(τ ROM (unr ),ϕi ). Specifically, the ROM operator
Ã that is created by solving the least squares problem (4.2) for the VMS-ROM closure term
−(τ ROM (Pr (und),ϕi ) is used in the linear ansatz −(τ ROM (Pr (und),ϕi )i=1,...,r ≈ Ã br ,
where bnr is the r -dimensional vector defined in (4.2), i.e., the r -dimensional vector that
contains the first r entries of the vector and . The sameROMoperator Ã is also used in the linear
ansatz (4.1) for theVMS-ROMclosure term−(τ ROM (unr ),ϕi ):−(τ ROM (unr ),ϕi )i=1,...,r ≈
Ã ar . We approximate the VMS-ROM closure terms with these ansatzes and obtain the
following equalities:

(τ ROM (Pr (und)) − τ ROM (unr ) , ϕi )

=
(
τ ROM (Pr (und)) , ϕi

)
−

(
τ ROM (unr ) , ϕi

)

= (− Ã bnr )i − (− Ã anr )i

= ( − Ã (bnr − anr )
)
i ∀i = 1, .., r .

(5.4)

To prove that the inner product (τ ROM (Pr (und))−τ ROM (unr ) , Pr (und)−unr ) is non-negative,
we use the definitions of Pr (und) in (3.5) and unr in (3.9), and rewrite it as follows:

(
τ ROM (Pr (und)) − τ ROM (unr ) , Pr (und) − unr

)

=
(
τ ROM (Pr (und)) − τ ROM (unr ) ,

r∑

i=1

(and − anr )i ϕi

)

=
r∑

i=1

(and − anr )i
(
τ ROM (Pr (und)) − τ ROM (unr ) , ϕi

)
.

(5.5)

By applying (5.4) to (5.5) and using the physical constraint (4.3), we get

(τ ROM (Pr (und)) − τ ROM (unr ) , Pr (und) − unr ) =
r∑

i=1

(and − anr )i
( − Ã (bnr − anr )

)
i

= −(bnr − anr )
T Ã (bnr − anr ) ≥ 0, (5.6)

since Ã is negative semi-definite. In (5.6), we have used that bnr is an r -dimensional vector
that contains the first r entries of the and . The inequality in (5.6) concludes the proof. ��
Remark 4 Wenote that in Theorem1we proved theROMmean dissipativity property only for
Pr (und) and unr . This is in contrast with the FEM context, where mean dissipativity is proven
for general FEM functions (see, e.g., [30]). However, the result presented in Theorem 1 is
sufficient for proving the verifibility property given in Theorem 2 below.

Next, we prove that the DD-VMS-ROM is verifiable.We note that, as explained in Sect. 3,
the goal for the DD-VMS-ROM solution is to approximate as accurately as possible Pr (und),
which is the large scale component of the d-dimensional G-ROM solution (2.6), i.e., the
“truth” solution that is employed as a benchmark in our investigation. Furthermore, as
explained in the second paragraph following Definition 1, the “truth” solution, ud , will be
considered as given data. We also note that Pr (und) satisfies the LES-ROM Eq. (3.6), which,
for clarity, we rewrite below:

(
Pr (und) − Pr (u

n−1
d )

Δt
, vr

)
+ Re−1(∇Pr (und),∇vr ) + (Pr (und) · ∇Pr (und), vr )

+ (τ FOM (und), vr ) = ( f n, vr ),

(5.7)
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where we used the fact that (τ FOM (und), vr ) is equal to (Pr (τ FOM (und)), vr ).We also rewrite
the full discretization of the DD-VMS-ROM (3.10):

(
unr − un−1

r

Δt
, vr

)
+ Re−1(∇unr ,∇vr ) + (unr · ∇unr , vr )

+ (τ ROM (unr ), vr ) = ( f n, vr ).

(5.8)

Furthermore, we use the linear ansatz (4.1) and the physical constraint (4.3) for the ROM
closuremodel in theDD-VMS-ROM (5.8).We also choose the initial condition u0r = Pr (u0d).

The DD-VMS-ROM error at time step n, which we denote with en , is defined as the
difference between the large scale component of the “truth” solution, Pr (und) (which is the
solution of (5.7)), and the DD-VMS-ROM solution of (5.8), unr : e

n = Pr (und) − unr .
To prove the DD-VMS-ROM’s verifiability, we use the following bound on the nonlinear

term, which is given in Lemma 22 in [33] (see also Lemma 61.1 in [48]):

Lemma 1 Let Ω ⊂ Rq be an open, bounded set of class C2, with q = 2 or 3. For all
u, v,w ∈ [H1

0(Ω)]q ,
b(u, v,w) ≤ C(Ω)

√||u|| ||∇u|| ||∇v|| ||∇w||, (5.9)

where the trilinear form b(·, ·, ·) [33, 50] is defined as
b(u, v,w) = (u · ∇v,w). (5.10)

Theorem 2 The DD-VMS-ROM (5.8) with linear ansatz (4.1), physical constraint (4.3), and
the initial condition u0r = Pr (u0d) is verifiable: For a small enough time step, Δt d j <

1, ∀ j = 1, ..., M, where d j =
(
27(Re)3C(Ω)4

16 ||∇Pr (u
j
d)||4 + Re

)
and C(Ω) is the constant

in Lemma 1, the following inequality holds for all n = 1, . . . , M:

||en ||2 + Δt
n∑

j=1

Re−1||∇e j ||2

≤ exp
(
Δt

n∑

j=1

d j

1 − Δtd j

)(
Δt

n∑

j=1

Re−1||Pr (τ FOM (u j
d) − τ ROM (Pr (u

j
d))) ||2

)
,

(5.11)

where en = Pr (und) − unr .

Proof We subtract (5.8) from (5.7) and replace n with j to get the error equation:

(
e j − e j−1

Δt
, vr

)
+ Re−1(∇e j , ∇vr ) + b(Pr (u

j
d ), Pr (u

j
d ), vr ) − b(u j

r , u
j
r , vr )

+(
τ ROM (Pr (u

j
d )) − τ ROM (u j

r ), vr
) = −(

τ FOM (u j
d ) − τ ROM (Pr (u

j
d )), vr

)
. (5.12)

We set vr = e j in (5.12), add and subtract b(u j
r , Pr (u

j
d), e

j ), and use the fact that

b(u j
r , e j , e j ) = 0 to get the following equation:

Δt−1(e j − e j−1, e j ) + Re−1||∇e j ||2 + b(e j , Pr (u
j
d ), e

j )

+(τ ROM (Pr (u
j
d )) − τ ROM (u j

r ), e
j ) = −(τ FOM (u j

d ) − τ ROM (Pr (u
j
d )), e

j ). (5.13)

123



Journal of Scientific Computing            (2022) 93:54 Page 13 of 26    54 

From Theorem 1, we have the following inequality:

(τ ROM (Pr (u
j
d)) − τ ROM (u j

r ), e
j ) ≥ 0. (5.14)

By applying (5.14) to (5.13), we get the following inequality:

Δt−1(e j − e j−1, e j
) + Re−1||∇e j ||2

≤ −b(e j , Pr (u
j
d), e

j ) − (
τ FOM (u j

d) − τ ROM (Pr (u
j
d)), e

j ).
(5.15)

Applying Hölder’s and Young’s inequalities to the terms (e j − e j−1, e j ) and
−(τ FOM (u j

d) − τ ROM (Pr (u
j
d)), e

j ) in (5.15) we obtain that, for any C1,C2 > 0, the
following inequalities hold:

(e j − e j−1, e j ) = ||e j ||2 − (e j , e j−1)

≥ ||e j ||2 − ||e j || ||e j−1||
≥ ||e j ||2 − C1

2
||e j ||2 − 1

2C1
||e j−1||2

(5.16)

and

| − (τ FOM (u j
d) − τ ROM (Pr (u

j
d)), e

j )| = | − (Pr (τ
FOM (u j

d) − τ ROM (Pr (u
j
d))), e

j )|
≤ 1

2C2
||Pr (τ FOM (u j

d) − τ ROM (Pr (u
j
d))) ||2 + C2

2
||e j ||2. (5.17)

Applying Lemma 1 to the term −b(e j , Pr (u
j
d), e

j ), we obtain the following inequality
for any C3 > 0:

| − b(e j , Pr (u
j
d), e

j )| ≤ C(Ω) ||∇e j ||3/2 ||∇Pr (u
j
d)|| ||e j ||1/2

≤ 3C3C(Ω)

4
||∇e j ||2 + C(Ω)

4(C3)3
||∇Pr (u

j
d)||4||e j ||2,

(5.18)

where C(Ω) is the constant in Lemma 1.
By choosing C1 = 1, C2 = Re, and C3 = 2Re−1/3C(Ω), we get the following inequal-

ity:

1

2Δt
(||e j ||2 − ||e j−1||2) + Re−1

2
||∇e j ||2

≤
(27(Re)3C(Ω)4

32
||∇Pr (u

j
d)||4

+ Re

2

)
||e j ||2 + Re−1

2
||Pr (τ FOM (u j

d) − τ ROM (Pr (u
j
d))) ||2.

(5.19)
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By multiplying (5.19) by 2Δt and summing the resulting inequalities from j = 1 to n,
we obtain the following inequality:

||en ||2 + Δt
n∑

j=1

Re−1||∇e j ||2

≤ ||e0||2 + Δt
n∑

j=1

(27(Re)3C(Ω)4

16
||∇Pr (u

j
d)||4 + Re

)
||e j ||2

+ Δt
n∑

j=1

Re−1||Pr (τ FOM (u j
d) − τ ROM (Pr (u

j
d))) ||2.

(5.20)

To apply the discrete Gronwall’s lemma, we first make the following notation:

a j := ||e j ||2 ≥ 0,

b j := Re−1||∇e j ||2 ≥ 0,

d j :=
(27(Re)3C(Ω)4

16
||∇Pr (u

j
d)||4 + Re

)
≥ 0,

c j := Re−1||Pr (τ FOM (u j
d) − τ ROM (Pr (u

j
d))) ||2 ≥ 0,

H := ||e0||2 ≥ 0.

(5.21)

We also recall that, by the small time step assumption, the following inequality holds:Δt d j <

1, ∀ j . By using the notation in (5.21), we rewrite (5.20) as follows:

an + Δt
n∑

j=1

b j ≤ Δt
n∑

j=1

d j a j + Δt
n∑

j=1

c j + H . (5.22)

By using the discrete Gronwall’s lemma (see Lemma 27 in [33]) in (5.22), we obtain the
following inequality:

an + Δt
n∑

j=1

b j ≤ exp
(
Δt

n∑

j=1

d j

1 − Δtd j

)(
Δt

n∑

j=1

c j + H
)
. (5.23)

We note that choosing the initial condition u0r = Pr (u0d), implies that e0 = u0r −Pr (u0d) =
0, and thus H = 0. As a result, (5.23) implies that (5.11) holds. ��
Remark 5 We note that the small time step assumption that we made in the theorem, i.e., that
Δt d j < 1 ∀ j = 1, ..., M , is also made in a FE context (see Lemma 27 and the proof of
Theorem 24 in [33]).

Remark 6 In this paper, we used backward Euler time discretization to obtain the full dis-
cretizations of the ROMs. However, other time discretization schemes could be applied as
well.

6 Numerical Results

In Theorem 2, we proved that the DD-VMS-ROM presented in Sect. 4 is verifiable. In this
section, we present numerical support for the theoretical results in Theorem 2. In Sect. 6.1,
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we provide details on the numerical implementation of the DD-VMS-ROM.We numerically
show that the DD-VMS-ROM and in Sect. 6.2 we present the criteria used to assess the
numerical results is verifiable for the Burgers equation in Sect. 6.3 and for the flow past a
cylinder in Sect. 6.4.

6.1 Numerical Implementation

“Truth” Solution For computational efficiency, instead of solving the very large-dimensional
G-ROM (2.5) to get the “truth" solution, ud , we simply project the FOM data on the ROM
space, i.e., ud = Pr (uh), r = d . In our numerical investigation, the two approaches yield
similar results (i.e., the difference between the two approaches is on the order of the time
discretization error). Thus, using the projection of the FOM data as “truth" solution does not
affect our numerical investigation of the DD-VMS-ROM’s verifiability.
Least Squares Regularization: Truncated SVD As is often the case in data-driven model-
ing [41], the least squares problem (4.2) that we need to solve in order to determine the
entries in the ROM closure operator Ã used to construct the DD-VMS-ROM (4.5) can be ill
conditioned. To alleviate the ill conditioning of the least squares problem, we proposed the
use of the truncated SVD [37, 54] as a regularization method [20, Chapter 4] (see also [58]
for a related approach). For completeness, in Algorithm 1, we outline the construction of the
DD-VMS-ROM with the truncated SVD procedure.

Algorithm 1: Least Squares Regularization: Truncated SVD
1: Formulate the standard linear least squares problem for the unknown vector xu :

min
xu

∥∥Exu − f
∥∥2, (6.1)

where E ∈ R
Mr×r2 is a matrix whose entries are determined by ad (t j ), j = 1, · · · , M , f ∈ R

Mr×1 is a

vector whose entries are determined by Pr (τ FOM (t j )), and xu ∈ R
r2×1, j = 1, · · · , M , is a vector

whose entries are determined by Ã.
2: Calculate the SVD of E :

E = UΣV�. (6.2)

3: Specify a tolerence tol.
4: Keep the entries in Σ that are larger than tol; the resulting matrix is Σ̃ (̃σ = σ if σ > tol; the singular

values of E can be chosen as tol values).
5: Construct Ẽ , the truncated SVD of E :

Ẽ = ŨΣ̃ Ṽ�, (6.3)

where Ũ and Ṽ are the entries of U and V that correspond to Σ̃ , respectively.
6: The solution is given by

xu =
(
Ṽ Σ̃−1Ũ�)

f . (6.4)

The tolerance tol specified in step 3 of Algorithm 1 (which yields the truncation parameter
k, i.e., the index of the lowest singular value retained in the matrix Σ̃ constructed in step 4
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of Algorithm 1; see equations (4.2) and (4.3) in [20, Chapter 4]) plays an important role in
the numerical implementation of the DD-VMS-ROM. Specifying a large tol value yields a
well conditioned least squares problem in step 1 and, as a result, minimizes the numerical
errors in the least squares problem. However, a large tol value also decreases the accuracy
of the least squares problem, i.e., yields a DD-VMS-ROM closure operator Ã that does not
accurately match the FOM data. On the other hand, choosing a small tol value does not
significantly decrease the accuracy of the DD-VMS-ROM closure operator Ã, but does not
significantly alleviate the ill conditioning of the least squares problem either. In our numerical
investigation, a careful choice of the tolerance tol yields optimal DD-VMS-ROM results.

If physical constraints such as that given by (4.4) are added when solving the mini-
mization problem (6.1), then the optimal Ã given by (6.4) associated with a specified
tol should be replaced by the solution of a constrained linear least squares solver with
Ẽ given by (6.3) as the data matrix. For all the numerical results presented in Sects. 6.3
and 6.4, we use the Matlab built-in solver lsqlin for this purpose. Specifically, we use
the interior-point algorithm option for lsqlin with ConstraintTolerance = 1E-10,
OptimalityTolerance = 1E-9,StepTolerance = 1E-12, andMaxIter = 1000.
Time Discretization Although the DD-VMS-ROM’s verifiability was proven in Theorem 2
for the backward Euler time discretization, in the numerical investigation of the flow past
a cylinder (Sect. 6.4), we use the linearized BDF2 time discretization. We use this higher-
order time discretization in order to decrease the impact of the time discretization error on
the LES-ROM error, which is the main focus of the numerical investigation in this section.
Furthermore,we believe that themathematical arguments used to prove theDD-VMS-ROM’s
verifiability in Theorem 2 can be extended to higher-order time discretizations such as that
considered in Sect. 6.4.
Criteria To illustrate numerically the DD-VMS-ROM verifiability proven in Theorem 2,
we use the following approach, which was outlined in Sect. 3 (see, e.g., the discussion after
Definition 1) and Sect. 5 (see, e.g., Definitions 4 and 5): First, we fix the number of snapshots,
M . Therefore, the maximal dimension of the ROM space, d , is also fixed. Furthermore, the
“truth" solution ud (i.e., the solution of the d-dimensional G-ROM (2.5)) is also fixed. The
goal of our numerical investigation is to show that, for fixed M, d , and ud , there exists a
constant C (see Definition 4) such that for varying r values and for varying tol values, the
inequality (5.11) is satisfied. Thus, the goal is to bound the error between theDD-VMS-ROM
solution, ur , and the large scale component of the “truth” solution, Pr (ud).

To this end, we use the following metrics: To quantify the LES-ROM error, i.e., the
averaged error associated with the first term on the LHS of inequality (5.11) (see also the
LHS of (5.1)), we use the following average L2 norm:

E(L2) = 1

M

M∑

n=1

‖Pr (und) − unr ‖2 = 1

M

M∑

n=1

‖en‖2 . (6.5)

To quantify the LES-ROM closure error, i.e., the term on the RHS of inequality (5.11), we
use the following metric:

η(L2) = 1

M

M∑

n=1

∥∥∥Pr (τ FOM (und) − τ ROM (Pr (und) ) )

∥∥∥
2

L2
. (6.6)

Note that the ROM error E(L2) and the closure error η(L2) depend on both the dimension
r of the LES-ROM and the aforementioned tolerance index (i.e., truncation parameter) k
associated with the tolerance of the truncated SVD used to construct Ã for the given r . We
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Fig. 1 Burgers equation (6.8), reconstructive regime: E(L2) and η(L2) for three fixed r values and different
tolerance index k values in the truncated SVD. Recall that E(L2) and η(L2) are defined by (6.5) and (6.6),
respectively. As mentioned in Sect. 6.1, the tolerance values in the truncated SVD take the form of the
truncation index k, which is the index of the lowest singular value retained in the matrix Σ̃ constructed in step
4 of Algorithm 1. For an r -dimensional ROM, the matrix E in Algorithm 1 is of dimension Mr × r2; cf. (6.1).
Thus, the tolerance index k can take values between 1 and r2. As a result, there are r2 data points in each of
the three panels for both E(L2) (blue curve) and η(L2) (red curve) (Color figure online)

suppressed these dependencies to simplify the notation. It should be clear from the context
which parameter is varied for each of the numerical results presented below.

6.2 Assessment of Results

To illustrate numerically the DD-VMS-ROM verifiability proven in Theorem 2, we need to
show that as η(L2) in (6.6) decreases, so does E(L2) in (6.5). Specifically, according to
(5.11) (see also Definition 5), we should see log(η(L2)) and log(E(L2)) obey the following
relation:

log(E(L2)) ≤ α log(η(L2)) + β, (6.7)

with α = 1 and some β > 0. As pointed out above, both E(L2) and η(L2) depend on two
parameters: the ROM dimension r and the tolerance index k in the truncated SVD. In the
numerical investigation, we perform two types of experiments:

(i) For a fixed r , we aim to show that (6.7) holds with α ≥ 1 as k is varied;
(ii) For each r , we pick the corresponding k that minimizes E(L2), and aim to show that

(6.7) holds with α ≥ 1 as r is varied.

Since in practice one is interested in the settings for which η(L2) is relatively small, a rate
α > 1 indicates a better rate than the rate predicted by Theorem 2.

We would like to note that our numerical investigation is somewhat different from the
standard investigations used in the numerical analysis literature. While increasing the ROM
dimension r is analogous to reducing the mesh size h in numerical analysis, the tolerance
index k for the truncated SVD (which is tied specifically to the data-driven aspect of the
LES-ROM closure examined here) has no analog in classical numerical analysis.
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6.3 Burgers Equation

In this section, we investigate the DD-VMS-ROM verifiability in the numerical simulation
of the one-dimensional viscous Burgers equation:

⎧
⎪⎨

⎪⎩

ut − νuxx + uux = 0 , x ∈ (0, 1), t ∈ (0, 1],
u(0, t) = u(1, t) = 0 , t ∈ (0, 1],
u(x, 0) = u0(x) , x ∈ [0, 1],

(6.8)

with non-smooth initial condition (6.9):

u0(x) =
{
1, x ∈ (0, 1/2],
0, x ∈ (1/2, 1]. (6.9)

This test problem has been used in, e.g., [1, 32, 54].
Snapshot Generation We generate the FOM results by using a linear finite element (FE)
spatial discretization with mesh size h = 1/2048, a backward Euler time discretization with
timestep size Δt = 5 × 10−4, and a viscosity coefficient ν = 10−2. Due to the parabolic
nature of the Burgers equation (6.8), the discontinuity in the initial data (6.9) is smoothed
out as soon as t > 0. It becomes a (smooth) viscous shock with relatively steep gradient due
to the small viscosity used, and persists for the whole duration of the time integration, i.e.,
for t in [0, 1]. See also [14, 24], where a stochastic version of this type of viscous shocks is
considered within a reduced order modeling context.
ROMConstructionWe run the FOM from t = 0 to t = 1, which yields a total of 2001 solution
snapshots. Since the spatial derivatives of the FOM solution are involved in the τ FOM part
of the closure error η(L2) (see (3.7)) and the initial condition given by (6.9) is discontinuous,
we remove the FOM solution in the time interval [0, 0.01), and thus collect a total of 1981
equally spaced snapshots in the time interval [0.01, 1] to generate the ROM basis functions.
To train the DD-VMS-ROM closure operator Ã, we use FOM data on the same time interval
[0.01, 1]. We also test the DD-VMS-ROM on the time interval [0.01, 1]. That is, each ROM
is initialized at t = 0.01 using the projected FOM data and run up to t = 1, and the ROM
error E(L2) in (6.5) and the closure error η(L2) in (6.6) are both computed over the time
interval [0.01, 1]. Thus, we consider the reconstructive regime. The ROMs are integrated
with the backward Euler time discretization and the same timestep size as that used for the
FOM.
Numerical ResultsWebegin by presenting the results obtained for the first type of experiments
outlined in Sect. 6.2. That is, we fix the ROM dimension r , and examine how E(L2) in (6.5),
which measures the DD-VMS-ROM error, and η(L2) in (6.6), which measures the DD-
VMS-ROM closure error, vary as the tolerance index k in the truncated SVD used in the
data-driven modeling part is varied. Specifically, we monitor the decaying rate of E(L2)with
respect to η(L2) as k is varied. The results in Fig. 1, for r = 8, 14, and 20, generally show
that, as η(L2) decreases (red curves), so does E(L2) (blue curves). We note, however, that
as shown for r = 8 and r = 14 in Fig. 1, the global minimum of the ROM error E(L2)

may not be achieved at k = r2, which corresponds to the case when the full SVD is used to
construct the data-driven closure term Ã; see the caption of Fig. 1. We also note that larger
local fluctuations in both curves are displayed for r = 14 and r = 20, which is due to the
fact that the condition number of the data matrix E�E increases significantly for these two
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Fig. 2 Burgers equation (6.8), reconstructive regime: linear regression for E(L2) and η(L2) for fixed r values
and different tolerance values in the truncated SVD. The red dots in each panel correspond to the data points
(E(L2), η(L2)) shown in the corresponding panel in Fig. 1. The linear regression for E(L2) in terms of η(L2)
in each panel is indicated by the solid black line (Color figure online)

Fig. 3 Burgers equation (6.8), reconstructive regime: E(L2) and η(L2) as r increases. For each r , the tolerance
index k in the truncated SVD is chosen to minimize the corresponding ROM error E(L2)

values. Indeed, the condition number of E�E is 6.35×106 for r = 20, 1.2×105 for r = 14,
and 1.6 × 103 for r = 8.1

With the k-dependence data available, we turn now to examining the relation (6.7) for
fixed r values while k is varied. For this purpose, in Fig. 2, we plot the corresponding linear
regression (LR) slope. We note that the LR slopes shown in Fig. 2 are computed based on
those (E(L2), η(L2)) data pairs for which η(L2) ≤ 100 since most of the data pairs are
aggregated below that threshold and, more importantly, the cases with small η(L2) are those
of practical interest. The results in Fig. 2 show that (6.7) holds with α either greater than 1
or just slightly below 1.

Next, we consider the other type of experiments, in which we vary r , and for each r we
pick the corresponding k that minimizes E(L2). These results are plotted in Fig. 3, which
shows again that (6.7) holds with α ≥ 1, this time when r is varied.

Overall, the results in this section provide strong numerical support to the theoretical
understanding put forth in Theorem 2 in the Burgers equation setting.

1 For the case r = 20, for about 5% of the total 400 possible k values, the constrained linear least squares
solver lsqlin fails to converge. These k values are scattered around k = 300. We did not include the
corresponding E(L2) and η(L2) data in Fig. 1 and we also excluded them when computing the corresponding
linear regression slope presented in Fig. 2.
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Fig. 4 Geometry of the flow past a circular cylinder numerical experiment

6.4 Flow Past A Cylinder

In this section, we investigate the DD-VMS-ROM verifiability in the numerical simulation of
a 2D channel flow past a circular cylinder at Reynolds numbers Re = 100 and Re = 1000.
This test problem has been used in, e.g., [36, 37, 54].
Computational Setting As a mathematical model, we use the NSE (2.1)–(2.2). The compu-
tational domain is a 2.2 × 0.41 rectangular channel with a cylinder of radius 0.05, centered
at (0.2, 0.2), see Fig. 4.

We prescribe no-slip boundary conditions on the walls and cylinder, and the following
inflow and outflow profiles [28, 36, 43]:

u1(0, y, t) = u1(2.2, y, t) = 6

0.412
y(0.41 − y), (6.10)

u2(0, y, t) = u2(2.2, y, t) = 0, (6.11)

where u = 〈u1, u2〉. There is no forcing and the flow starts from rest.
Snapshot Generation For the spatial discretization, we use the pointwise divergence-free,
LBB stable (P2, Pdisc

1 ) Scott-Vogelius finite element pair on a barycenter refined regular
triangular mesh [29]. The mesh yields 103K (102962) velocity and 76K (76725) pressure
degrees of freedom. We use the linearized BDF2 temporal discretization and a time step size
Δt = 0.002 for both FOM and ROM time discretizations. On the first time step, we use a
backward Euler scheme so that we have the two initial time step solutions required for the
BDF2 scheme.
ROM Construction The FOM simulations settle down to periodic dynamics at different time
instances for the two Reynolds numbers used in the numerical investigation: For Re = 100
after t = 5, and for Re = 1000 after t = 13. To construct the ROM basis functions, we
use 10 time units of FOM data. Thus, to ensure a fair comparison of the numerical results at
different Reynolds numbers, we collect FOM snapshots on the following time intervals: For
Re = 100 from t = 7 to t = 17, and for Re = 1000 from t = 13 to t = 23.

To train the DD-VMS-ROM closure operator Ã, we use FOM data for one period. The
period length of the FOM dynamics is different for the two different Reynolds numbers:
From t = 7 to t = 7.332 for Re = 100, and from t = 13 to t = 13.268 for Re = 1000.
Thus, we collect 167 snapshots for Re = 100, and 135 snapshots for Re = 1000.

6.4.1 Numerical Results for Re = 100

In Fig. 5, for three different r values, we plot E(L2) in (6.5), which measures the DD-
VMS-ROM error, and η(L2) in (6.6), which measures the DD-VMS-ROM closure error.
To compute E(L2) and η(L2), we fix the r value and decrease the tolerance index k in the
truncated SVD,which is used in the data-drivenmodeling part. As the tolerance decreases, we
monitor the decaying rate of E(L2) with respect to η(L2). The results in Fig. 5, for r = 4, 6,
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Fig. 5 Flow past a cylinder, Re = 100, reconstructive regime: E(L2) and η(L2) values for fixed r values and
different tolerance index k values in the truncated SVD

Fig. 6 Flow past a cylinder, Re = 100, reconstructive regime: linear regression for E(L2) and η(L2) for fixed
r values and different tolerance values in the truncated SVD

and 8, generally show that, as η(L2) decreases, so does E(L2). We note that, in each panel,
the minimal E(L2) value is actually achieved at k = r2, i.e., when the full SVD is used in
constructing the closure term Ã. This is due to the fact that for all the r values considered,
the condition number of the corresponding data matrix E�E is always below 103. The same
observation is true for the Re = 1000 test case presented in Sect. 6.4.2.

In Fig. 6, for r = 4, 6, and 8, we plot the LR slope for E(L2) with respect to η(L2). For
r = 4, the LR slope is 0.56, for r = 6 the LR slope is 0.99, and for r = 8 the LR slope is
1.03. These results indicate an almost linear correlation between E(L2) and η(L2), again in
agreement with (6.7) with α = 1, except for r = 4. One possible explanation for the r = 4
case is that, due to the low-dimensionality of the ROM, we do not have sufficient data points
to accurately estimate the LR slope.

When we vary r and choose the tolerance index k in the truncated SVD to minimize the
corresponding E(L2), the results are shown in Fig. 7. This figure shows again that (6.7) holds
with α = 1 in the varying r setting.

Overall, the results in Figures 5, 6, and 7 support the theoretical results in Theorem 2.

6.4.2 Numerical Results for Re = 1000

In Fig. 8, for three different r values, we plot E(L2) in (6.5), which measures the DD-
VMS-ROM error, and η(L2) in (6.6), which measures the DD-VMS-ROM closure error. To
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Fig. 7 Flow past a cylinder, Re = 100, reconstructive regime: E(L2) and η(L2) values as r increases. For
each r , the tolerance index k in the truncated SVD is chosen to minimize the corresponding ROM error E(L2)

Fig. 8 Flow past a cylinder, Re = 1000, reconstructive regime: E(L2) and η(L2) values for fixed r values
and different tolerance index k values in the truncated SVD

compute E(L2) and η(L2), we fix the r value and decrease the tolerance in the truncated
SVD, which is used in the data-driven modeling part. As the tolerance decreases, we monitor
the decaying rate of E(L2) with respect to η(L2). The results in Fig. 8, for r = 4, 6, and 8,
generally show that, as η(L2) decreases, so does E(L2).

In Fig. 9, for r = 4, 6, and 8, we plot the LR slope for E(L2) with respect to η(L2). For
r = 4, the LR slope is 1.71, for r = 6 the LR slope is 2.07, and for r = 8 the LR slope is
1.00. These results indicate that E(L2) decays at least linearly as η(L2) is reduced, again in
agreement with (6.7) with α ≥ 1.

When we vary r and choose the tolerance index k in the truncated SVD to minimize the
corresponding E(L2), the results are shown in Fig. 10. This figure shows again that (6.7)
holds with α ≥ 1 in this varying r setting.

Overall, the results in Figures 8, 9, and 10 support the theoretical results in Theorem 2,
yielding the same conclusion as that in Sect. 6.4.1.

7 Conclusions and FutureWork

Over the last two decades, a plethora of ROM closure models have been developed for
reduced order modeling of convection-dominated flows. Various ROM closure models have
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Fig. 9 Flow past a cylinder, Re = 1000, reconstructive regime: linear regression for E(L2) and η(L2) for
fixed r values and different tolerance values in the truncated SVD

Fig. 10 Flow past a cylinder, Re = 1000, reconstructive regime: E(L2) and η(L2) values as r increases. For
each r , the tolerance index k in the truncated SVD is chosen to minimize the corresponding ROM error E(L2)

been constructed by using physical insight, mathematical arguments, or data. Although these
ROM closure models are built by using different arguments, they are constructed by using
the same heuristic algorithm: (i) In the offline stage, the ROM closure model is built so that it
is as close as possible (in some norm) to the “true" ROM closure term. (ii) In the online stage,
one needs to check whether the ROM closure model yields a ROM solution that is as close
as possible to the filtered FOM solution. If the ROM solution is an accurate approximation
of the filtered FOM solution, the ROM closure model is deemed accurate. This heuristic
algorithm is the most popular approach used in assessing the success of the current ROM
closuremodels. However, a natural question is whether one can actually prove anything about
these ROM closure models. For example, can one prove that an accurate ROM closure model
(constructed in the offline phase) yields an accurate ROM solution (in the online phase)?

In this paper, we took a step in this direction and answered the above question by extending
the verifiability concept from classical LES to a ROMsetting. Specifically, we defined aROM
closure model as verifiable if the ROM error is bounded (in some norm) by the ROM closure
model error. Furthermore, we proved that a recently introduced data-driven ROM closure
model (i.e., the DD-VMS-ROM [37, 54]) is verifiable. Finally, we showed numerically that
the DD-VMS-ROM closure is verifiable. Specifically, in the numerical simulation of the
one-dimensional Burgers equation and the two-dimensional flow past a circular cylinder at
Reynolds numbers Re = 100 and Re = 1000, we showed that by reducing the error in
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the ROM closure term, we can achieve a decrease in the ROM error, as predicted by the
theoretical results.

There are several natural research directions that can be pursued in the quest to lay
mathematical foundations for ROM closure models. For example, one could investigate the
verifiability of (functional, structural, or data-driven) ROM closure models that are different
from the DD-VMS-ROM investigated in this paper. One could also extend the verifiability
concept to ROMclosures that are built from experimental data. In that case, one could replace
the high-dimensional “truth" solution used in this paper with the experimental solution inter-
polated onto a discrete mesh. Another potential research direction is the investigation of
different norms (e.g., the H1 norm) in the least squares problem (4.2), verifiability definition
(i.e., Definition 5), and verfiability theorem (i.e., Theorem 2). Finally, one could consider
other mathematical concepts that are used in classical LES (see, e.g., [9]) and extend them
to a ROM setting.
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