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Abstract

A central challenge in physics is to describe non-equilibrium systems driven by randomness, such as a
randomly growing interface, or fluids subject to random fluctuations that account e.g. for local stresses and
heat fluxes in the fluid which are not related to the velocity and temperature gradients. For deterministic
systems with infinitely many degrees of freedom, normal form and center manifold theory have shown
a prodigious efficiency to often completely characterize how the onset of linear instability translates into
the emergence of nonlinear patterns, associated with genuine physical regimes. However, in presence of
random fluctuations, the underlying reduction principle to the center manifold is seriously challenged due
to large excursions caused by the noise, and the approach needs to be revisited.

In this study, we present an alternative framework to cope with these difficulties exploiting the approxi-
mation theory of stochastic invariant manifolds, on one hand, and energy estimates measuring the defect of
parameterization of the high-modes, on the other. To operate for fluid problems subject to stochastic stir-
ring forces, these error estimates are derived under assumptions regarding dissipation effects brought by the
high-modes in order to suitably counterbalance the loss of regularity due to the nonlinear terms. As a result,
the approach enables us to predict, from reduced equations of the stochastic fluid problem, the occurrence
in large probability of a stochastic analogue to the pitchfork bifurcation, as long as the noise’s intensity and
the eigenvalue’s magnitude of the mildly unstable mode scale accordingly.
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In the case of SPDEs forced by a multiplicative noise in the orthogonal subspace of e.g. its mildly unstable
mode, our parameterization formulas show that the noise gets transmitted to this mode via non-Markovian
coefficients, and that the reduced equation is only stochastically driven by the latter. These coefficients
depend explicitly on the noise path’s history, and their memory content is self-consistently determined by
the intensity of the random force and its interaction through the SPDE’s nonlinear terms. Applications to a
stochastic Rayleigh-Bénard problem are detailed, for which conditions for a stochastic pitchfork bifurcation
(in large probability) to occur, are clarified.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The development of instability in a physical system may often be described in terms of the
temporal evolution of the amplitudes of certain normal modes, namely those that are mildly
unstable and those that are only slightly damped in linear theory. When the number of these
nearly marginal modes is finite, their amplitudes are governed by ordinary differential equations
(ODEs) in which the growth rates of the linear theory have been renormalized by nonlinear terms
[29,20]. Intuitively, the reason for this reduction is a simple separation of time scales. Modes that
have just crossed the imaginary axis have a small real part and are evolving on long time scales,
all the other fast modes rapidly adapting themselves to the slow modes.

For deterministic dynamical physical systems with infinitely many degrees of freedom (d.o.f.),
normal form and center manifold theory [38,52] along with their recent extension [53] have
shown a prodigious efficiency to often completely characterize how the onset of linear instability
translates into the emergence of nonlinear patterns, associated with genuine physical regimes.
To do so, the theory along with its recent advances identify, for a given problem, a nonlinear
reduction mapping that permits to reduce the many d.o.f. to a few essential variables (governed
by reduced ODEs), able to predict in turn the dynamical transitions [53].

However, in presence of random fluctuations, the reduced ODEs produced by these determin-
istic theories are no longer valid objects to account for phenomena pertaining to the stochastic
realm such as noise-induced transitions. In the stochastic context, the reduction mapping needs
indeed to account for these random fluctuations. This mapping consists of e.g. a parameterization
of the stable modes which becomes then stochastic due to noise. The existence of such reduction
mappings has been abundantly studied under various settings for stochastic partial differential
equations (SPDEs) [4,33,31,32], but the question of their efficient calculation or approximation
has been much less addressed, mainly in some special cases [8] or by means of deterministic
(and thus incomplete) formulas [14].

Only in the recent years, the derivation of general, stochastic, approximation formulas to the
leading-order (in the nonlinear terms) of stochastic invariant manifolds (IMs) appeared in [26]
for a broad class of SPDEs subject to a multiplicative noise. Yet, in spite of their relevance
demonstrated through numerical examples [27], the usage of such formulas to derive reduced
stochastic differential equations (SDEs) aimed at predicting dynamical transitions in SPDEs,
calls for more understanding.'

Indeed, what makes the success of center/unstable manifold theory to describe bifurcations for
PDEs—the so-called reduction principle [29,62]—from low-dimensional reduced systems fails
to operate in the stochastic realm, calling for a new approach to apprehend bifurcation analysis in
presence of noise. The reason is that a breakdown of the reduction principle to the center/unstable
manifold now takes place in the stochastic setting, and an exponential slaving of the stable modes
onto the unstable ones is no longer valid, due to large excursions caused by the (white) noise, even
when its intensity is small. At a technical level, the exponential attraction by invariant manifolds
that holds in presence of a sufficiently large spectral gap and that extends to SPDEs with globally
Lipschitz nonlinearity [26, Corollary 4.3], is violated in the stochastic setting for SPDEs with
nonlinearities that are only locally Lipschitz, such as encountered in stochastic fluid problems.
In these cases, the solution is not guaranteed to stay within the neighborhood over which the
local stochastic IMs exist, due to noise-induced deviations.

1 In fact, the bifurcation analysis for SPDE:s is available only for a few particular cases [25,65]. Even for stochastic
ODEsg, the question of how to describe a stochastic bifurcation is not completely settled; see e.g. [2, Chap. 9] and [16].
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In this article we bring justification regarding the usage of reduced SDESs built upon stochastic
IMs and their approximations formulas based on [26] to predict dynamical transitions in SPDEs,
via estimates measuring the error between the solutions to the reduced SDEs and those of the
original SPDE. More generally, the goal of this article is twofold: (i) To advance the fundamental
understanding for the efficient derivation of reduced models able to describe spatiotemporal pat-
tern formations and their transitions subject to random fluctuations in non-equilibrium systems
described by SPDEs, and (ii) to derive error estimates relevant for the analysis of the spatio-
temporal transitions, in a random environment.

Other approaches have shown their usefulness to derive low-dimensional reduced systems
able to capture the essential macroscopic dynamics of SPDEs. Examples include the averaging
method [17,44,56,66], the amplitude equation approach [6,12,5,8], and approaches rooted in the
singular perturbation theory of Markov processes [50,47].

However, it remains challenging to derive reduced systems and rigorous error estimates to
predict dynamical transitions in e.g. stochastic fluid problems involving typically quadratic non-
linearities. For such problems, the main issue lies in the fact that the nonlinearity does not act only
on the dominant modes but also influences them through non-dominant modes [11,8], and thus
makes central the way the noise interacts with the nonlinear dynamics, either forcing the domi-
nant or the neglected modes, or both. This is where, as explained below, the stochastic reduction
mappings provided by the approximation theory of stochastic IMs [26] show their usefulness. As
we will see, these mappings parameterize the neglected variables beyond Ornstein-Uhlenbeck
approximations (cf. [7,50,13]) by producing essential variables able to predict dynamical transi-
tions (with large probability) for a broad class of SPDEs with quadratic nonlinearities (such as
arising in fluid problems), regardless of whether the noise acts only on the resolved or unresolved
scales, or both (cf. [8]).

The main difficulty to perform an efficient stochastic reduction for SPDEs is thus to track
properly the noise-path dependence which in many situations requires to be properly parameter-
ized to render account for noise-induced phenomena and other interactions between the noise and
nonlinear dynamics. This is the purpose of Theorem 2.1 recalled below that summarizes from
[26] general formulas of stochastic reduction mappings based on the approximation results of
[26, Thm. 6.1 & Cor. 6.1]. These results entail that the corresponding stochastic reduction map-
pings not only provide the leading-order approximation of the underlying stochastic IM but also
the tracking of its time-stochastic dependence via explicit random coefficients; see (2.17) below.
As already pointed out in [27, Chap. 5] and more substantiated here, these coefficients are non-
Markovian as dependent explicitly on the history of the noise path, conveying thus exogenous
memory effects [40,37] rooted in the (very) small-scale fluctuations (noise).?

Mathematically, these coefficients are shown to correspond to stationary solutions of auxiliary
SDEs whose drift part depends on the distance to certain resonances between the critical eigen-
values (losing stability) and the stable part of the spectrum; see (2.19) below. Such a distance to
resonance controls in turns the decay of temporal correlations of these coefficients, as well as
their statistics, allowing for non-Gaussian ones—unlike Ornstein-Uhlenbeck processes encoun-

2 These exogenous memory effects are to be contrasted with the endogenous ones encountered in the reduction of
nonlinear autonomous systems as predicted by the Mori-Zwanzig (MZ) theory; see e.g. [19,36,67,35,59]. The former are
functionals of the “past” of the noise and emerge in the reduction of stochastic systems by means of stochastic IMs [27]
whereas the latter are functionals of the past of the resolved variables that arise in the reduction of autonomous systems
when the validity of (deterministic) IMs or, more generally, of the conditional expectation alone in the MZ expansion,
breaks down; see [61,22-24].
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tered in other reduction methods [7,50,13]—with tails all the more pronounced than their ratio
with the noise amplitude approaches unity; see Appendix A.

As already shown through numerical examples in [27], these non-Markovian coefficients con-
stitute in fact the key ingredients for the reduced SDEs to achieve good performance, and can be
seen as part of the essential variables produced by the underlying stochastic reduction mapping.
For instance, in the case when the noise acts only on the (unresolved) stable modes, such a re-
duction mapping shows that the noise gets transmitted to the (resolved) unstable modes via these
non-Markovian coefficients, and the reduced equation is only stochastically driven by the latter.
In contrast, any deterministic parameterization of the unresolved modes will lead in this case to a
deterministic ODE system, which is insufficient to capture any noise-induced phenomena in the
original system. In Sec. 2.3 below, we illustrate on a simple two-dimensional system, the ability
to capture its stochastic dynamics and its large excursions from such non-Markovian reduced
equations.

In this article, we go beyond these numerical examples and show that these non-Markovian co-
efficients play furthermore a key role to conduct a rigorous error analysis thanks to the auxiliary
SDEs they satisfy. Our focus is on SPDEs involving energy-preserving quadratic nonlinearities
motivated by physical problems such as the prediction and characterization of pattern formation
arising in fluid problems after the onset of instability and subject to noise disturbance. In order
to circumscribe the difficulties while conveying the main ideas, we place ourselves in the case
of a supercritical pitchfork bifurcation, assuming that exactly one eigenmode loses its stability
at the critical parameter value. An attentive reader will notice that the framework laid out here is
actually not limited to the pitchfork scenario and adaptable to many other bifurcation/transition
scenarios, including the Hopf bifurcation and other attractor bifurcations.

At the basis of our error estimates is a ‘“Markovianisation” of the one-dimensional non-
Markovian reduced SDE governing the local dynamics in the case of a pitchfork bifurcation
scenario; cf. (3.8) and (3.19) below. In this reformulation, the dynamical equation satisfied by
the stochastic parameterization ®(¢) is obtained by Itd’s formula, which is made explicit thanks
to the aforementioned auxiliary SDEs determining the random coefficients involved in ®; see
again (2.19). By recasting the original SPDE into a system of two coupled equations satisfied
by the unstable and stable components of the SPDE solution (see (3.23)), the estimates become
facilitated, exploiting in particular the dynamical equation satisfied by ®(¢) (in (3.19)) aimed at
parameterizing the stable component of the SPDE solution.

The error estimates assessing the quality of our non-Markovian reduced SDEs to predict
dynamical transitions in SPDEs, are then organized through Secns. 3 and 4 as follows. After
establishing in Sec. 3.2 a suitable a priori bound for the solution (X (¢), ®(¢)) of the Markovian-
ized reduced system (3.19), we derive in Sec. 3.3 a residual error estimate for the non-Markovian
reduced SDE (3.8); see Lemma 3.1 and Theorem 3.1 below. This residual error estimate gives—
with large probability and over long time intervals—the error made by (X (), ®(¢)) in satisfying
the SPDE model (3.23). Our result shows that this error is all the smaller as the eigenvalue €
associated with the unstable mode is small and the noise intensity scales as /€.

We then derive in Sec. 4 rigorous error estimates between the solutions of the reduced systems
and those of the original SPDE emanating from small initial data. The result presented in The-
orem 4.1 shows that the same bounds controlling the residual error in Theorem 3.1 control also
in large probability and over long time intervals, the error between the solutions of the reduced
systems and those of the SPDE.

The derivation of this error estimate requires suitable a priori bounds of the SPDE solution
itself. As explained in Sec. 4.1 below, the main difficulty in deriving these a priori bounds com-
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pared to those for (X (¢), ®(¢)) lies in the infinite-dimensional character of the projection onto
the stable subspace of the SPDE solution to which applies the loss of regularity via the nonlin-
earity B, requiring de facto new estimates. In contrast, ®(¢) is of finite-dimensional range due
to our working assumptions; see condition (3.4) below. This latter condition is typically encoun-
tered for fluid problems defined e.g. on rectangular spatial domains and is made here to avoid
unnecessary technicalities. We show that with the addition of mild dissipative assumptions on
the linear operator L,, one can deal with more general situations and counterbalance the loss of
regularity induced by the nonlinear term B to derive thereof the required a priori bounds on the
SPDE solution; see Conditions (L1)-(L2) and Remark 4.1 below.

Equipped with these error estimates, the non-Markovian reduced SDE (3.8) provides thus a
natural normal form to describe in large probability the notion of a stochastic pitchfork bifurca-
tion for SPDEs. Indeed, thanks to the error estimates of Theorem 4.1, the non-Markovian reduced
SDE:s derived from the approximation formulas of stochastic IMs given in Theorem 2.1, provide
an effective way to predict stochastic pitchfork bifurcations (in large probability) for a broad
class of SPDEs issued from fluid dynamics, as long as the noise intensity and the eigenvalue’s
magnitude of the mildly unstable mode, scale accordingly.

As an application, we illustrate in Sec. 5 below that our framework is able to predict a stochas-
tic pitchfork bifurcation in a stochastic Rayleigh-Bénard model, in terms of natural conditions
involving the distance of the Rayleigh number to its first critical value; see Theorem 5.1. The ar-
ticle is then concluded by Sec. 6 with a discussion about future developments of the framework
introduced here.

2. Reduced-order dynamics of stochastic PDEs near the onset of instability
2.1. SPDEs driven by multiplicative noise

In [26,27] was undertaken the endeavor of deriving general, analytic formulas for the approx-
imation of (local) stochastic invariant manifolds of the following class of nonlinear stochastic
evolution equations posed on a Hilbert space H and driven by a multiplicative noise according
to

du = (Lyu+ F(u))dt + ouodW,, u € H, 2.1

where ou o dW, means that this stochastic term (of magnitude o > 0) is considered in the
Stratonovich sense. Here W, denotes a standard Brownian motion whose probability space is
denoted by €2, and whose probability law is denoted by IP. A noise’s realization, also called a
noise path will be thus labeled by an element w in 2. This multiplicative term is such that the
perturbation “scales” with the solution, such that the total energy is e.g. (formally) P-almost
surely preserved in the case of a nonlinearity F that is energy preserving.

Such equations result from recasting an SPDE with its boundary conditions, in which the
unknown u evolves in a functional space, taken to be here a Hilbert space H. The operator L
represents a linear differential operator (parameterized by a scalar 1) while F is a nonlinear
operator that accounts for the nonlinear terms. Both of these operators imply loss of regularity
when applied to a function u# in H. To have a consistent existence theory of solutions and their
stochastic invariant manifolds for SPDEs requires to take into account these loss of regularity
effects.
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To do so, we place ourselves in the functional setting of sectorial operators and analytic semi-
groups [38,55]. We assume that

Ly=—-A+P,

where A is sectorial with domain D(A) C H which is compactly and densely embedded in H.
We assume also that —A is stable, while P is a low-order perturbation of A, i.e. P, : D(A%) —
H is a family of bounded linear operators depending continuously on A, for some « in [0, 1); see
[38, Sec. 1.4] for definitions of fractional power of an operator and the function space D(A%).
In practice, the choice of o should match the loss of regularity effects caused by the nonlinear
terms so that

F: D(A%) — H,

is a well-defined C?-smooth mapping that satisfies F'(0) =0, D F(0) = 0 (tangency condition),
and

F(u) = Fe(u, - ,u) + O(luls*h, 2.2)

with p > k > 2, and Fy denoting the leading-order operator (on D(A%)) in the Taylor expansion
of F, near the origin. A broad class of stochastic equations that arise in many branches of physics
can be recasted into this abstract functional framework. Such equations driven by (possibly spa-
tially inhomogeneous) multiplicative noise are met in various contexts such as in turbulence
theory (intermittency phenomena) [10], ocean dynamics [58], climate dynamics [45,49,30,1,3],
non-equilibrium phase transitions [18,39,51,60], statistical physics [57] or population dynamics
[41,28].

For later usage, we denote by V, the function space D(A%). In particular D(A) C V C H. The
norm of H is denoted by || - ||, while the norm of V is denoted by || - ||y. Under mild conditions
often met in applications about the spectrum of L, (in particular near the instability onset, [26,
Secns. 3.3 and 6.2]), one can then prove that for any initial condition ug in V (sufficiently small),’
emanates a (unique) solution to Eq. (2.1) in the sense that v = e~4®®)y is the unique classical
solution of

d
d—’t’ = Lyv+ Z(t, )v + e 20O F(eZ00)y) y(0) = e~ 200y, 2.3)
that lies, P-a.s., in
C((0,7); D(A) N C([0,7); V)N C'((0,7); H), (2.4)

where 7 is a stopping time* and Z (¢, w) denotes the Ornstein-Uhlenbeck (OU) process, stationary
solution of the scalar Langevin equation

3 The existence and uniqueness result proved in [26] for globally Lipschitz nonlinearity, applies to the case of a standard
cutoff argument of the nonlinearity ensures existence and uniqueness for sufficiently small initial data.

4 Defined, loosely speaking, as the (random) minimum time after which v(¢, w) exits the neighborhood of the origin
over which the required estimates apply.
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dr = —rdt + o dW;(w). 2.5)

Furthermore, u depends continuously on A and on uq, and is a stochastic H-valued adapted
process.
Note that to derive (2.3) from (2.1), we need to note that, by using the Itd’s formula,

2
o
de—Z(f,a)) — (Z(t, a))e—Z(t,w) + Ee—z(t,w)) dt _ o.e—Z(T,w) th
=Z(t, w)e “ dt — g™ 400 o dW,,

where the last equality follows from the conversion between It6 and Stratonovich integrals. On
the other hand,

dv=d(e 2"y) =y o de 2 4 ¢ 200 6 qy,

and (2.3) results from (2.1), after simplification.

Note that the usage of the OU process Z(f, w) through the transformation v = e~ 2"-®)y is
here motivated by the fact that the PDE with random coefficients (2.3) enjoys a better temporal
regularity than the SPDE (2.1) due to the Holder regularity of the OU process [26, Lemma 3.1],
which allows in turn for applying standard existence and uniqueness results from the theory of
non-autonomous PDEs; see [38, Theorem 3.3.3 and Corollary 3.5.3]. We refer to [26, Proposition
3.1] and [26, Appendix A], for more details.

In this article, we are concerned with the study of bifurcations for the class of problems that
can be recast into the abstract formulation of Eq. (2.1). In other words, we are interested in
describing how linear instability translates to nonlinear dynamics, in presence of multiplicative
noise. We are in particular concerned with the dynamical reduction problem near the onset of
instability, i.e. to describe by a low-dimensional object the SPDE dynamics in case of e.g. the
existence of a critical value A, at which m eigenvalues 8;(1) of Lj (counting algebraic multi-
plicity) cross the imaginary axis. In this case, it is known, under the assumptions recalled above,
that a finite-dimensional C”-smooth stochastic (local) invariant manifold, 90, (w), exists near
the origin [26, Corollary 5.1 and Prop. 6.1]. This manifold is obtained as the graph of a random
mapping, h* over the space H, of eigenmodes e ;j losing stability. Inspired by the deterministic
theory, such manifolds are natural objects to consider for reduction of SPDEs near the instability
onset. In [26,27], the approximation problem of such manifolds was thus investigated. Theo-
rem 2.1 below gives a summary of the main approximation results derived in [26, Theorem 6.1]
(see also [26, Corollary 6.1]) which allows, in practice, for deriving explicit reduced systems.

However, due to noise, intrinsic difficulties arise and the prediction of transitions for Stochas-
tic PDEs, based on such reduced systems, requires a particular care. Indeed, what makes the suc-
cess of center/unstable manifold theory to describe bifurcations for PDEs from low-dimensional
reduced systems fails to operate in the stochastic realm, calling for a new approach to appre-
hend bifurcation analysis in presence of noise. The reason is that a breakdown of the reduction
principle to the center/unstable manifold now takes place, and exponential slaving of the stable
modes onto the unstable ones is no longer valid, due to large excursions caused by the (white)
noise, even when its intensity is small. We come back to this issue in Sec. 2.3 below and the later
sections (Secns. 3 and 4) about the error estimates. Next we recall the approximation formulas
that play a key role in the derivation of these error estimates.
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2.2. Leading-order approximation of stochastic invariant manifolds, and non-Markovian terms

Note that L has a compact resolvent by recalling that D(A) is compactly and densely embed-
ded in H [34, Prop. I1.4.25]. As a consequence, since L, : D(A) — H is a closed operator due to
the sectorial property of —L;, we have that for each A, the spectrum of L;, o (L, ), consists only
of isolated eigenvalues with finite algebraic multiplicities; see [43, Thm. I1I-6.29] (see also [34,
Corollary IV.1.19]). This spectral property combined with the sectorial property of —L; implies
that there are at most finitely many eigenvalues with a given real part. The sectorial property of
—L, also implies that the real part of the spectrum, Reo (L} ), is bounded above; see also [34,
Thm. I1.4.18].

These two properties about Reo (L)) allow us in turn to label elements in o (L)) according
to the lexicographical order. According to this rearrangement, we can label the eigenvalues by a
single positive integer n, so that

o (Ly) ={Bn(1) | n e N*}, (2.6)
with, for any 1 <n < n’, either
Re S, (1) > Re By (2), 2.7
or
Re B, (2) =Re B,y (), and ImpB,(2) > Im By (1). (2.8)

In this convention, an eigenvalue of algebraic multiplicity m, is repeated m times. Hereafter, this
rearrangement is mainly used for simplifying the notations of some theoretical developments,
whereas the labeling with wavenumbers is often restored when dealing with applications; see
Sec. 5 below.

As already mentioned, we are concerned with describing how linear instabilities translate to
the nonlinear dynamics, in presence of multiplicative noise. To do so, the onset of instability is
described in terms of the principle of exchange of stabilities (PES) [52], concerned with the loss
of stability of the basic steady state. More precisely, the PES describes situations for which the
spectrum of L, experiences the following change at a critical parameter A:

<0 ifd <A,
ReBj(A)3=0 ifa=x, 1=<j<m,
. 2.9)
>0 ifA> A,
ReBj(rc) <0, j>=m+1,

for some m > 0, and for A in some neighborhood A of X.. To this PES condition (2.9) is associ-
ated the following decomposition of o (L;):

oc(Ly)={BiM)1j=1 2, ,m}

(2.10)
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The PES condition prevents eigenvalues from o5(L)) to cross the imaginary axis as A varies
in A. Hence, no eigenvalues other than those of o.(L;) change sign in A. Furthermore, the PES
condition implies the following uniform spectral gap by reducing A accordingly [26, Lemma
6.1],

0> 2kne > ns, 2.11)

where k is the leading order of F' (see (2.2)), and

ne=inf inf {(Re(B;j()}, ns=sup sup {Re(B;(M)}.
eA j=1,--,m AEA j>m+1

Such a uniform spectral gap condition is required for the approximation formulas of stochastic
invariant manifolds recalled in Theorem 2.1 below; see [26, Theorem 6.1] and [26, Corollary 6.1].
It also implies (exponential) dichotomy estimates (see [26, Eqns. (3.24a,b,c)]) to be satisfied by
the semigroup generated by L, and that are key to ensure the existence of stochastic invariant
manifolds (see [26, Appendix B]) associated with the m modes losing their stability according to
(2.9).

To these modes, we associate the reduced state space, H, given by

H. =spanfey, - -, en}, (2.12)

while a mode e, with n > m + 1 denotes a stable mode. In what follows, the indices ji, - - , jk
correspond to the m critical wavenumbers losing stability (allowing repetition) at A = A.. We
finally introduce the notation

k
(k. B.V)) =Y By (M), (2.13)

=1

with k denoting the k-tuple, (1, ---, 1). The projector onto the subspace H; (resp. H.) spanned
by the stable modes (resp. given by (2.12)) is denoted by Il (resp. I1;). The inner product in
H is denoted by (-, -). We have then the following stochastic invariant manifold approximation
theorem which lies at the core of our reduction approach near the onset of instability for non-
equilibrium systems subject to random fluctuations.

Theorem 2.1. Assume that F and L, satisfy the assumptions recalled above, and that the PES
condition (2.9) is satisfied. Then for each X\ in a neighborhood A of A., Eq. (2.1) admits a
stochastic (local) invariant manifold, 93?3; = gmph(h(’})), with hﬁ) that maps H. into the regular
space D(A%), for every w in Q.

The mapping hﬁ) characterizing imf‘u is a time-dependent stochastic mapping which is approx-
imated by another such mapping <I>é) satisfying for any € > 0,

IRl (X, 1) — @5 (X, Dy <€l X|I*, 0 e, 1 €R, (2.14)

as long as X lies in a neighborhood N of the origin in H; spanned by the m eigenmodes e
losing their stability (see (2.12)), as lambda crosses .
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The mapping <DZ‘) in (2.14) is given explicitly by the following random Lyapunov-Perron inte-
gral:

0
O (X, 1) = / e k=DWis@ld,=sLi p B (o512 X)) ds, (2.15)

—00
with W s (@) = Wi (@) — Wi(w).

This mapping is well defined if (k, B.(1)) > Bu(X) for n > m + 1 and possesses the following
expansion:

OF (X, 1) = Z " (X, 1)e,, X € He, w € Q. (2.16)
n>m+1
Here
A _ A . .
OLNX, )= Y Fp MUV o)X - X, (2.17)
U5 Jk)
where 1 < j1,---, jk <m, Xj = (X, ej), and the Fj”lmjk are coefficients accounting for the n-th

component of the nonlinear interactions (through the leading-order term Fy) between the low
modes ej,, ---, e, (in H¢), namely:

F o= (Filej. - ej) €0, 1< ji, - jx <m, (2.18)
where the e}, denote the eigenmodes of the adjoint operator of L.
The M;’I)‘ i terms are path-dependent coefficients making explicit the (t, w)-dependence of

Cbé), which are obtained as stationary solutions of the auxiliary scalar SDE:

AM = (1 - ((k, B.(1) — ,3,,(A))M> df — o (k — )M o dW,. (2.19)

This theorem is a reformulation of [26, Proposition 6.1 and Theorem 6.1] whose proofs can
be found in [26, Section 6.4]. Note that although proved for L, self-adjoint, the conclusions of
these results extend to the case L, diagonalizable in C. We emphasize that such approximation
results have been also extended in [26, Corollary 7.1] to situations in which stable modes are
included in the reduced state space which has important consequences for certain applications
requiring higher-dimensional reduced state spaces to ensure better approximation of the SPDE
dynamics as previously illustrated in [27, Chapter 6] in the context of capturing by reduced
equations noise-induced large excursions.

The above theorem provides via the coefficients of ®* (X, #) an explicit tracking of the time-
stochastic dependence of the (unknown) random mapping hﬁ)(X ,1). Prior works proposed de-
terministic approximation formulas for hé)(X ,t) in the case F(u) = B(u, u) [14], or F(u) = u?
(both with error O (|| X)) [15]; see also [27, Section 4.1]. However, such deterministic approxi-
mation formulas are of limited virtues for applications; see e.g. example (2.30).
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Instead, the path-dependent coefficients M;’lA i (simply referred to as M-terms hereafter),
depend on the past of the noise, when, for A in a neighborhood of X., the following non-resonance
conditions are satisfied

(F,”l...jk #0) = (Re(k, B.(2) > Reﬂn(k)), 1<ji,-,jk<mn>m+1.  (NR)

Under such an (NR)-condition, the M-terms are indeed given by

0
M = [ RO RO 0, )
—0o0

with W; ;(w) = W;1s(w) — W;(w). Note that due to the NR-condition, the integral in (2.20) is
well defined almost surely, since the Brownian motion W; satisfies the sublinear growth condition
lim;_, 150 W/t =0, almost surely (see [26, Lemma 3.1]). Finally, note that the PES condition
implies that the NR-condition is satisfied for A in neighborhood of A, as Zlgzl Re B, (1) >
kne > 2kne > ns > Re B, (1) due to (2.11).
The exponential decaying integrand in (2.20) depends on the distance, (k, B.(1)) — Bn(A),
(k)

e

between the El_ el 13—resonance made up from critical eigenvalues, and the stable eigenvalue
B (A). Such a distance to resonance controls in turns the decay of temporal correlations of the
M-terms, provided that the noise intensity, o, lies in some admissible range; see Lemma (A.1)
in Appendix A. As a result, these terms exhibit decay of correlations of a “reddish” nature,
although allowing for non-Gaussian statistics with heavy tails all the more pronounced than
(7/\/ (k, B.(X)) — Bn(1) is close to 1 from below (in the case of real eigenvalues); see Ap-
pendix A.2.

The M -coefficients are thus non-Markovian and convey exogenous memory effects in the
sense of [40,37]. It is worthwhile noting that the “noise bath” is essential for these coeffi-
cients to exhibit decay of correlations, the M-terms being reduced to simply the constant term
((k, B,(X)) — Bn (M), when o =0, recovering standard approximations formulas of (deter-
ministic) invariant manifolds; see [23, Theorem 2].

These non-Markovian terms are new ingredients produced by the interactions between
the noise with the nonlinear effects. The reduced systems built from the corresponding non-
Markovian parameterization, CIDﬁ, (X,t) given by Theorem 2.1, are thus, in general, non-
Markovian SDEs. In the case where F (u) is a quadratic nonlinearity, B(u, u), such as arising in
fluid problems (see Secns. 3 and 4 below), such a non-Markovian reduced SDE takes the form

dX = (HCL,\X n l'Ic<B(X, X)+B(®(X. 1), X) + B(X, D(X. 1))
2.21)
+ B(®(X, 1), DX, t))))dt +oXodW, XeR",

which in coordinate forms reads
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(a) ()

m m o0
dX, = <,3g(k)Xg+ dYoBLXxiXi+ Y > (B, +B,fp)B;1jM;“j’*(r,w)x,~x,x,,

i,j=1 p.i,j=ln=m+1
- - - 13 n pn’ Agn.A o (2.22)
+ Z Z Z Bnn’Biijinj’ (t’a))Mpq’ (tsw)XinXqu dr
n,n'=m+1i,j=1p,q=1

(c)
+oXgodW,, 1<€<m, with B}, =(B(e,.e,).e}).

Here the X, are aimed at approximating the amplitudes of the SPDE solution onto the m modes
e; (1 <€ <m) losing stability, as A crosses A.

In the expansion (2.22), the (a)-terms account for self-interactions between the unstable
modes, the (b)-terms account for cross-interactions between unstable and stable modes, and the
(c)-terms for self-interactions between the stable modes. The non-Markovian terms appear only
out of the two latter types of interactions.

As we will see, the M-terms are key, under certain circumstances, to appropriately track the
fluctuations and large-excursions caused by the (white) noise, although the original SPDE is
Markovian. This is particularly true for SPDEs forced by a multiplicative noise in the orthogonal
subspace of e.g. its mildly unstable mode. Our parameterization formulas show that the noise
gets transmitted to this mode via non-Markovian coefficients, and that the reduced equation is
only stochastically driven by the latter. This situation is a special case of more general spatially
inhomogeneous multiplicative noises, for which the remark below points out the required modi-
fications of Theorem 2.1.

Remark 2.1. Theorem 2.1 above can be extended to the case of SPDEs driven by spatially inho-
mogeneous multiplicative noise, of the form

du = (Lyu + F(u))dt 4 o (u) o dW,, (2.23)

where L, and F satisfy the assumptions of Theorem 2.1 and

Ny
a(u)zzo,w,ej)ej, (2.24)
j=1

with o; > 0 and Ny > 1. While the proof of [26, Theorem 6.1] requires a certain care to handle
such multiplicative noises, the same approach applies and leads to approximation formulas of
stochastic invariant manifolds for Eq. (2.23) which are still given by (2.16)—(2.17), with the only
difference that the M-terms are now replaced by

0
M’/'ll’-}-»-jk (t, w) = / e((kvﬂu()\))*/gnO‘))S+(ks‘7)wl.x(w)ds7 (2.25)
—o0

where
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k
(k.o)=) o), — o (2.26)
(=1

These M-terms are obtained as stationary solutions of the auxiliary scalar SDE:
AM = (1 - ((k, B.(W) — B (A))M) dr — (k, 6)M o dW,. (2.27)

Remark 2.2. It is also interesting to point out that when Theorem 2.1 is applied to (finite-
dimensional) SDE systems of the form dy = (Ay + F(y))dt + oy odW, with A beingad x d
matrix and F : R — R4 a sufficiently smooth function satisfying F(0) = 0 and D F(0) = 0, our
approximation formula (2.15) coincides with the one determined by the cohomological equation
given by [2, Eq. (8.4.9)] for the lowest-order non-trivial H ;0 therein. Indeed, for such SDEs,

—Z(t,0)

after performing the change of variables x = e v, we obtain the following RDE system

d
d—f = Ax 4+ Z(t, w)x 4+ e 2O F (219 y): (2.28)

see again (2.3). Denoting the analogue of ® for this transformed RDE by W and adopting the in-
variance equation approach such as reviewed in [23, Sec. 2.2], the homological equation satisfied
by W(¢, w) reads

dw
5 T De Ve, D(Acxe+ Z(1, 0)xe) — (A W+ Z(1, )W) = Mee 209 F(e?"9x,), (2.29)

where k > 2 denotes the lowest-order term in the Taylor expansion of F'. Note that compared with
[23, Eq. (2.27)] for the deterministic case, the above equation involves also a time-derivative term
% arising from the time-dependence (or noise-path dependence) nature of W.

Note that (2.29) is the same as [2, Eq. (8.4.9)] when the RDE system (2.28) is considered and
when p therein equals the lowest order k in the Taylor expansion of F here, since at this lowest
order the term Ry (xc) in [2, Eq. (8.4.9)] simply equals e 20 Fr (eZ2®) ).

On one hand, the approach adopted in [2] for finite-dimensional SDEs aims to handle more
general SDE settings when e.g. the basic reference state is more complicated than a steady state,
by relying on the multiplicative ergodic theorem and the associated Lyapunov spectra and Os-
eledets subspaces to perform the decomposition of the stochastic flow. Extension to SPDEs using
the Oseledets ergodic theorem has been pursued in [54].

On the other hand, the practical aspects in the general setting are still too intricate to derive
reduced systems with easily computable coefficients even for high-dimensional SDEs (let alone
SPDEs). Indeed, as pointed out in [2, Sec. 8.4.3] already for the application to a two-dimensional
SDE system associated with the Duffing-van der Pol oscillator in the Pitchfork bifurcation sce-
nario, “the computational effort for these results is enormous and could only be accomplished by
using the computer algebra program MAPLE ....”

Instead, by adopting a standard normal modes framework, although we lose the characteriza-
tion of perturbations near complicated states, we gain insights about (i) the derivation of explicit
reduced equations based on rigorous approximation formulas (as reviewed in Theorem 2.1), and
(ii) error estimates (see Theorem 4.1 below) for SPDEs that cover the challenging case of fluid
problems.
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Fig. 1. Schematic of the stochastic invariant manifold approximation summarized by Theorem 2.1. The time-
dependent stochastic manifold, o> (X, 1) (red curve) approximates the stochastic invariant manifold h}‘ (X, t) (blue

curve). For a given noise’s realization w, the shape of the latter changes in the course of time. The approximation
(I>7L (X, 1) is able to track these changes due to the path-dependent, non-Markovian, coefficients, M A ik (t, ), solving
the SDE (2.19). In this schematic, the black curve shows a solution path to the SPDE that evolves on the stochastic
invariant manifold. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this

article.)

2.3. Tracking the large-excursions through the non-Markovian M -terms

As already mentioned, although Theorem 2.1 provides an analytic approximation of the (un-
known) slaving function /%, and in particular regarding its dependence with respect to time and
the noise path, it suffers from a technical restriction, namely that the approximation (2.14) is
valid over a deterministic neighborhood N of the origin.

From an analysis viewpoint, this theorem concedes thus some taste of dissatisfaction since as
soon as X becomes a time-dependent random variable,’ large excursions caused by the (white)
noise are expected to take place even for small noise intensity, pushing X outside of N in the
course of time and questioning de facto the validity of the approximation (2.14). This restriction
is technical (from the proof), but even if the neighborhood would be allowed to fluctuate with
time, still noise could drive the solutions outside of it.

Similarly, exponential attraction results of invariant manifolds that occur in presence of a suf-
ficiently large spectral gap and that extend to SPDEs with globally Lipschitz nonlinearity ([26,
Corollary 4.3]), encounter however similar technical restrictions for SPDEs with nonlinearities
that are only locally Lipschitz, such as for fluid problems. The current proofs do not allow indeed
for establishing a pathwise exponential attraction of local stochastic invariant manifolds, prevent-
ing to rely on a reduction principle as in the deterministic theory [29], to analyze bifurcations.
This important but subtle point, misled some authors in their conclusions regarding the analogue
of a reduction principle for SPDEs; see [26, Remark 4.3]. We provide in Secns. 3 and 4 below
error estimates accounting for large-excursions and that are furthermore relevant for stochas-
tic fluid problems, allowing in turn to make precise the use of stochastic invariant manifolds in
bifurcation analysis of such SPDEs.

Before embarking in these error estimates, we provide below a simple example to illustrate
these issues, and to show that the non-Markovian M -terms allow for tracking the large excursions
caused by the noise. For this purpose, we consider the stochastic system:

5 Such as when X is a solution to non-Markovian reduced equation (2.21).
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dA= A+ AB)dt, >0

(2.30)
dB = (kB —A2)dt+aBo dW;, k <0,0 >0,
in which the noise forces only the equation of the stable mode, here the B-equation. This system
arises in diverse fields, with or without stochastic forces. For instance it arises in the study of
nonlinear crystals [57], and more recently in the study of the finite time blow-up problem for the
3-D Navier Stokes equations [63], where such systems are used as elemental “pump gates” to
execute transition of energy from one mode to another.
Here, we are looking for a closed equation describing the evolution of A without resolving B.
If one adopts ideas of deterministic unstable/center-manifold reduction to seek for such a closure
[48], we arrive using this theory at the parameterization B = —(2A — «)~! A2, which leads to the
closure

X=X — 2r—x)"1X3. (2.31)

This closure is here only deterministic and thus cannot capture the stochastic nature of the dy-
namics of (2.30).

We would like instead to use an explicit stochastic parameterization of B. To be of practi-
cal interest, this stochastic parameterization should be able to track the large excursions caused
by the white noise. Application of our parameterization formulas to this particular system (see
Remark 2.1), provides such a stochastic parameterization. The latter is given here by the non-

Markovian parameterization B = —Mlzi)‘ (t, a))Az, with Mlzi}‘ being the stationary solution of
(see (2.27))
dM =1 - QA —k)M)dt +o M o dW,, (2.32)
namely
0
Mlzi)h (t, ) = / e2A—#)s =0 (Wrps(@0)=Ws(@)) 4o (2.33)
—0o0

The closure becomes then the following ODE with a path-dependent coefficient:
X =AX — M3, 0) X5, (2.34)

Recall that the AB-system is forced by a noise in the orthogonal subspace of its mildly unstable
mode. In this case, our parameterization formulas show that the noise gets transmitted to this
mode via the non-Markovian coefficient M 12ix’ and that the reduced equation is only stochasti-
cally driven by the latter.

The practical efficiency of such parameterizations to track the large excursions induced by
the white noise is illustrated in Fig. 2. The left panel shows a solution path of (2.30) displayed
in the (A,B)-plane (black dash curve), and two time instances of the non-Markovian unstable
manifold approximation, B = —M 12i)‘(t, w)A? (red curves). In contrast this figures shows that
the deterministic unstable manifold (blue curve) gives only a poor approximation of the solu-
tion path’s average motion. The consequence is that, given a noise realization w, the A- and
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Fig. 2. Left panel: A solution path of (2.30) shown in the (A,B)-plane (black dash curve), and two time instances of the
non-Markovian unstable manifold approximation, B = —M lzik(t, a))A2 (red curves). The latter is able to track the large
excursions of the solution path, while the deterministic unstable manifold gives only a poor approximation to its average
motion. Right, top-to-bottom panels: A- and B-time series as simulated from (2.30) (black curves), the deterministic
closure (2.31) (blue curves), and non-Markovian closure (2.34) (red curves).

B-trajectories as simulated from (2.30) (black curves), are approximated to a good precision by
the non-Markovian closure (2.34) (red curves), whereas the closure (2.31) based on the deter-
ministic unstable manifold is only proposing a deterministic constant approximation.

The reasons for such a successful closure by Eq. (2.34), can be worked it out on this example
as system (2.30) possesses a natural closure which allows for providing a more intuitive “raison
d’étre” of the non-Markovian parameterization B = —M 12 i)‘ (t, w)A?. Indeed, by integrating the
B-equation of system (2.30), a closed form equation can be naturally derived for describing the
evolution of B, given by the following integro-differential equation with path-dependent kernel

I(t)

t

Ly ( [ e'<<f—S>+“(Wt(w>—Ws(w>>A2(s)ds)A. (2.35)
dt

Thus the quality of approximation of the integral term in (2.35) by the non-Markovian parame-
terization B = —M 12ix (t, w)A? is conditioning the efficiency of the closure (2.34).

It is worthwhile noting that this non-Markovian parameterization can be obtained by integra-
tion of a backward-forward system [27, Chap. 4], which for this example, consists of approxi-
mating A(s) (for s <t) — in the integral term of (2.35) and only for this term — by the solution
of the following backward linear equation

da®
— = kA(l)(s), s <t
ds (2.36)

AV @) = A@).
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Thus, by approximating A(s) in the integral term of (2.35), with

A(s) =6V A®@) + 0(A()), (2.37)
we obtain the following equation (up to order 3),

J(@)

t
6:1_1;‘ A < / =20 (1=5)+0 (W (@)~ Wy (@) ds>A3,

from which we recover the closure (2.34) (see also (2.33)), by using the change of variable
s’ = s —t in the integral term. The reader may wonder why approximating the exact closure (2.35)
by (2.34), on this particular example. The reasons are multiple, especially in terms of insights
gleaned by this operation. First, it shows the relevance of the non-Markovian parameterization
resulting from application of Theorem 2.1, for certain parameter regimes like that corresponding
of Fig. | (for which J(¢) = I (¢)). Second, it shows the relevance — for stochastic systems —
of approximating a fully non-Markovian closure like (2.35) by a non-Markovian closure (2.34)
that involves only the past of the noise, the latter allowing for an efficient simulation of the path-
dependent coefficient Mlzi’\ (t, w) in (2.33) by an SDE decoupled from the A-equation (i.e. by
simulating (2.32)). Instead, the closure (2.35) would require to resolve the corresponding time
integral I(¢) at each time step to compute A(#), an operation that is costly numerically. This
decoupling from the A-equation to simulate the M-term and thus J (¢) approximating I (#) may
be seen as a small advantage here due to the small size of system (2.30), but such a feature is
highly beneficial numerically when the size of the original system gets much larger, as for fluid
models; see Sec. 5 below.

As much as striking might be the ansatz (2.36), the non-Markovian closure (2.34) depending
only on the past of the noise, provides thus, under certain circumstances, a good approximation of
A(t) obtained from the closed form equation (2.35) depending furthermore on the past-history of
A(t). The general error estimates of Secns. 3 and 4 below allow us to clarify these circumstances,
for this particular example and beyond. In particular, they show that when A is sufficiently small
and the noise’s intensity o, scales as +/A, the non-Markovian closure (2.34) (depending on the
past of the noise) provides a good approximation of the exact non-Markovian closure (2.35)
(depending not only on the past of the noise but also the past of A).

3. Modeling error estimates from reduced equations
In this section we apply the approximation formulas of Theorem 2.1 to derive general error
estimates, establishing further legitimacy of the reduced equations that can be derived by appli-

cation of Theorem 2.1, near the onset of instability.
To simplify the presentation of the ideas, we focus on the following class of SPDE

du = (Lpu + B(u,u))dt +ouo dW,, 3.1
and place ourselves in a pitchfork bifurcation scenario when o = 0.
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3.1. Assumptions and pitchfork scenario

Recall that, L, denotes a linear operator on the Hilbert space H such that L), = —A + P,
where A is the generator of a contraction semigroup in H, while P; is a low-order perturbation
of A,i.e. Py:V — H is a family of bounded linear operators depending continuously on the
parameter A, with D(A) C V C H. Recall also that D(A) is compactly and densely embedded
in H.

Denote the eigenelements of L, by {(8x(X), ex) : k € N}. To derive our error estimates, we
assume

Condition (A1). The linear operator L, is self-adjoint.

Condition (A2). The principle of exchange of stabilities (PES) condition is satisfied with m = 1
in (2.10), namely there exists L. such that:

<0 ifrA<Ae,

BiA)1=0 ifr=Ac,
. 3.2)

>0 ifA> A,

Bj(he) <0, forall j =2,

and all the eigenvalues B;(X), for j > 2, remain negative for X in some interval [Ac, \*], with
A > A

Condition (A3). The nonlinear term B is a continuous bilinear map from 'V x V to H. Further-
more the following conditions hold:

(B(u,u),u) =0, foranyuinV, 3.3)
and there exists N > 1 for which
(B(e1,e1),e,) =0, n> N, 3.4)
while for at least one 2 <n < N, (B(ey, e1), e;) #0.

Note that if (B(e1, e1),e,) =0 for all n > 2, then the manifold @, will be identically zero
and one needs then to consider higher-order approximation formulas; see [27].

3.2. Preparatory estimates for the pitchfork scenario
The parameterization of the modes e; to ey is given by

N
DX, 1,0) =Y Py(X, 1, w)en, (3.5)
n=2

with
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@, (X, 1, ) = By, M (1, 0) X2, (3.6)
where
Bl = (B(ei.e)). en). 3.7)
Here X denotes the amplitude of e;. In what follows we will omit the dependence on w, reserving
this explicit dependence only when necessary.

Due to (3.3), we have (B(eq, e1), e;) = 0 and the invariant manifold (IM) reduced equation,
up to order O (X?), takes the following form

dx = (ex X Fo(D(X, t)))dt YoXodW, (3.8)
with
Fe(v) =((Ber,v) + B(v,e))),e1), VveVs. (3.9)
Note that
N
XF (DX, 1) = x(Z @, (X, 1) (B}, + B,}l)>
n=2 (3.10)

<ZB M} @)(Bl, + B )>X3
We assume then

Condition (P). The coefficients in (3.10), satisfy for A in [A¢, A*], the dissipation condition
ZB M) (BL, + B),) <0, forallt. G.11)

Condition (P) is a sufficient condition for the reduced equation (3.8) to experience a stochastic
supercritical pitchfork bifurcation as € changes sign; see Sec. 5.4 below and Appendix D.
Since M ;’1’)‘ is always positive, (3.11) can be ensured if we have forall2 <n < N,

By (Bl + Byy) <0, (3.12)
and at least one of the inequalities in (3.12) is a strict one. In case o = 0, such a condition is
a sufficient condition for the deterministic reduced equation Eq. (3.8) to experience a pitchfork
bifurcation [29,52].

We turn now to the derivation of an equation satisfied by ® which is key in our estimates
presented below. From (3.6), we obtain by using the Stratonovich form of Itd’s formula [46]:

d®, = B!, X? o dM};" + 2B}, M} X o dX. 3.13)
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Since here (k, B:(A)) =2¢ and k =2 in (2.19), we have that M;’i)‘ satisfies
dM = (1 — (2 — By (W))M) dt — o M o dW,. (3.14)
Using (3.14) and (3.8) in (3.13), we get after simplification that
dd, = (B.(M) P, + B, X2 420, F(P(X, 1)) dt + o ®, 0 dW,. (3.15)
Then, by (3.5) and (3.15), the equation satisfied by ® is:
d® = (LE® + X2 By + 20F(®(X. 1)) di +d o dW,, (3.16)
where L; =TI;L; and we have used

N
Y Bl X%, = X*T1;B(e1. 1), (3.17)
n=2

which holds thanks to (3.4), and we have introduced
Bfl =TII;B(e,eq). (3.18)

To summarize, we get from (3.8) and (3.16) that (X, ®) satisfy the following system:

dxX = (ex X Fo(D(X, t)))dt +o0XodW,,
(3.19)
dd = (Licb + X2B?, + 20 F(D(X, t))) df +o® o dW,.

We have then the following lemma, whose proof is provided in Appendix B.

Lemma 3.1 (A priori estimates for X and ®). Assume that Condition (P) holds. Consider the
system (3.19) for which the initial condition (X (0), (0, w)) satisfies, for any o in 2,

X (0) = Xo,
N
(3.20)
0, 0)=Y (B?1 M0, w)X%)en,
n=2

where N is the integer that appears in (3.4).
Assume furthermore that Conditions (Al), (A2), and (A3) hold, with B1(A) = € in (A2). As-
sume finally that o = \/€ and that

1 Xol ~ Ve. (3:21)

Then, for any given T > 0 and any x in (0, 1), there exists a constant C > 0 depending on x but
independent of €, for which the following estimate holds:
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P| sup |X(t)| <C+c and sup |®@)||<Ce|>1—x. (3.22)
(0,7 /€] (0,7 /e]

Remark 3.1.

(i) The proof of Lemma 3.1 given in Appendix B relies on Lemmas A.2 and A.3, themselves
proved in their respective appendices. These latter lemmas show that the constant C in (3.22)
grows as x decreases, i.e. the larger the probability with which (3.22) holds, the closer one
needs to push € towards O in order for the corresponding a priori bounds about | X ()| and
||P(2)] to be below a target value.

(ii) Note that a solution (X (¢), ®(¢)) to the system (3.19) emanating from an initial condition
satisfying (3.20), implies that (X, ¢) is given by the parameterization (3.5), for all > 0.
As it can be observed in the proof of Lemma 3.1, it is the dynamic interpretation of ®(X, 1)
(i.e. the equation it solves in system (3.19)) that allows for deriving estimates about (X, ¢),
while X is a solution to the reduced equation (3.8).

3.3. Residual error estimates in large probability

We first rewrite the original SPDE (3.1) into a coupled system for u(t) = IT.u(t) = x(t)e;
and ugs = [gu:

dx = (ex +xFc(us) + M B(us, us))dr + ox o dW, (3.23a)
dus = (Ljiu5 —i—szfl + xFs(us) + s Bus, us))dt +oug o dW;, (3.23b)

where F is defined in (3.9) and

1 B(us, us) = (B(us, us), e1),

(3.24)
Fe(v) = Ms(Bler,v) + B(v, e1)), Vuve V.

Note that the term Hl(sz(el, el)) does not appear in the equation for x since it equals
xz(B(el, e1), e1), which is zero thanks to (3.3).

For any arbitrary stochastic processes X (¢)e; and Y (¢) that are adapted to the underly-
ing stochastic basis and evolve respectively in H. and in V;, we define the residual R(¢) =
(R1(t), Ra(t)), where

t
Ri(t) = X (1) — eV x(0) — f eEU=IToWi=Wo) p (5) ds,
0

t
Ra(t) =Y (1) — ! EFo Wiy (0) — / L= WimW) £y (5) ds, with (3.25)
0
E1(s) = X () Fc(Y(5)) + T B(Y (5), Y (),
Ex(s) = X*(5) B} + X () Fs(Y () + T B(Y (5), Y (s)).
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This residual measures the modeling error made by the process (X (¢), Y (¢)) in satisfying the
system (3.23), and thus the modeling error made by X (#)e; + Y (¢) in satisfying the SPDE (3.1).
Now pick up any solution (X (¢), ®(¢)) of the surrogate system (3.19), for which the initial
condition satisfies the relation (3.6) at t = 0. Note that such a solution is well defined for all time
t > 0, since under this constraint on the initial data, the system (3.19) is equivalent to the reduced
equation (3.8).
We have the following bounds for the residual:

Theorem 3.1. Consider the solution (X (t), ®(¢)) to Eq. (3.19) and its residual error defined in
(3.25). Assume that the assumptions of Lemma 3.1 are satisfied. Then, for any T > 0 and any x
in (0, 1), there exists a constant C > 0 independent of € for which

Pl sup [Ri(®)]<Ce)>1—x, (3.26)
1€[0,T /€]
and
Pl sup Rl <Ce?)>1—x. (3.27)
tel0,T /€]

Proof. Let (X (z), ®(¢)) be a solution to (3.19). After integration and simplifications, we obtain
that (3.25) becomes

t
Ri(1) =— f U= o Wi=WoTT, B(d(s), (s)) ds,
0

(3.28)

t
Ra(1) =/eL§<H>+“<Wt*Wv)E3(s)ds,
0

with

E3 =20 F.(®) — XFo(®) — [T, B(D, D). (3.29)

Then, the desired results follow directly from the a priori estimates (3.22) together with the
probabilistic estimate about the Brownian motion given in Lemma A.3. Indeed, by letting Q* and
y be the same as given in the proof of Lemma 3.1 (see (B.19)), we have proved that || ® (7, w)|| <
Ce for t in [0, T /€] and w in Q*; cf. (B.23). Since ®(¢, ) as defined in (3.5) takes value in
a finite dimensional subspace of V due to the assumption (3.4), the two norms || - ||y and || - ||
are equivalent when restricted to this subspace. We get then ||® (¢, )|y < Ce by redefining C.
Thus,

167



M.D. Chekroun, H. Liu, J.C. McWilliams et al. Journal of Differential Equations 346 (2023) 145-204

t
Ri(t, )] < Cp / ST (s, )| ds

0
t

< C3C2e2’” / €19 4 €2 (3.30)
0
= CpC?e? (' — 1)e
<CC%* (T —1)e, Vit el0,T/el,w € Q.
The estimate (3.26) follows.

Finally, recall that for such 7 and w, we have that |X (¢, )| < C+/€ for some C > 0 indepen-
dent of €; see (B.20). Using the above estimates for X and ®, we get then

t
R2(0)]l < f P24y o (5) ds
0
<CE* 46>, Viel0,T/el,weQ*,

(3.31)

where C > 0 is another constant independent of €. We have thus derived the estimate (3.27). O

Remark 3.2. When more general spatially inhomogeneous multiplicative noise such as given
in Remark 2.1 is considered, we can still derive residual estimates in the style of (3.26) and
(3.27) under the same conditions as required in Theorem 3.1 with 0,, = ¢, 4/€ for some ¢, > 0,
n=1,..., N. The residual R, needs to be adapted accordingly by projecting onto each stable
moden=2,---, N as well.

The derivation of the associated residual estimates follows the same lines of arguments pre-
sented in the proof of Theorem 3.1 once the a priori estimate for X (#) and ®(¢) given by (3.22)
is established. The derivation of this latter a priori estimate follows the same steps as presented
in Appendix B, but by relying on the following transformation rather than the one given in (B.1):

U= 8—261‘—201 W, )(27 \Iln — 6—2/3,,1—20',,Wl cpﬁ (332)
4. Low- and high-mode error estimates

In this section, we go beyond the residual error estimates presented above to derive error
estimates between the solutions of the finite-dimensional surrogate system (3.19) and those of
the original SPDE (3.1). To do so, it requires a priori bounds for solutions to the SPDE (3.1).
The main difficulty compared to those conducted for solutions of (3.19) (cf. Lemma 3.1) lies in
the infinite-dimensional nature of u,, whereas & is of finite-dimensional range due to (3.4). As
a consequence, the loss of regularity via the nonlinearity B is now effective which requires new
estimates.

To cope with these difficulties one needs extra assumptions on the linear part L. To the
previous assumptions on this operator, we require in particular an extra condition to be satisfied
(Condition (L.2)) for the linear dissipative effects to suitably counterbalance the loss of regularity
due to the nonlinear terms in B. These conditions are described below.
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Condition (L1). Let Ly = —A + P, satisfy the Conditions (Al) and (A2) of Sec. 3, with A given
by

A = —Adiag(v) 4.1

where v is a d-dimensional vector with positive entries, denoted by vj, and diag(v) denotes the
d x d diagonal matrix with v as the diagonal entries. We assume furthermore that the boundary
conditions and functional setting are such that for any u in D(A), (Au,u) >0 and /{Au, u)
defines (after performing integration by parts) a norm ||u||y on V equivalent to ||u||y.

Condition (L2). There exist n in (0, 1) and § > 0 such that for all A in the interval [A., A*] given
in Condition (A2), the following damping relations hold for all us in Ws = D(A) N Hy:

(—nAus + Poutg, us) < —8usl?, (4.22)

(—nAus + Pous, Aus) < —8usll>. (4.2b)

For this class of linear operators, the error estimates derived hereafter allow us then, from the
reduced equations based on Theorem 2.1, to conclude to a pitchfork bifurcation scenario in large
probability. Our results apply to a broad class of SPDEs such as given by (3.1) (allowing even
for inhomogeneous noise), as long as the noise intensity o and the eigenvalue’s magnitude of
the mildly unstable mode, scale accordingly, while the linear and nonlinear terms obey standard
(energy-preserving) assumptions encountered in fluid problems (Condition (A3)). Applications
to Rayleigh-Bénard convection are detailed in Sec. 5 below.

Remark 4.1. The form of A assumed in Condition (L1) is chosen to simplify the derivation of
the error estimates in Theorem 4.1. More general differential operators A than (4.1) could have
been considered for which the conclusions of Theorem 4.1 would still hold. In that respect, an
analogue of Conditions (L.1) and (L2) would still hold for a differential operator A in divergence
form, that (possibly) includes higher-order derivatives and that satisfies a strong ellipticity con-
dition (see [64] and [55, Sec. 7.2]). Given a positive integer m, such an operator writes for any u
in the Sobolev space (H>" (D)) (over a smooth bounded domain D)

Au = Z (—=1)" D (agg(x) D*u), 4.3)
a,feNP
[a]=[Bl=m
where o = (a1, ..., ap) € NP, [a] =ay + - - - + «p, the coefficients a,p are matrix-valued map-

pings which are sufficiently smooth into the space of d x d symmetric matrices, and ayg = dgy.
If the lower bound of (Au, u) is controlled as follows (for any u in D(A))

(Au,u) >« Z | D%u||?, for some « > 0, 4.4)

aeN? [a]l=m
then with |lully = ZaENP,[a]zm | D%u|?, analogues of Conditions (L.1) and (L2) could be for-
mulated for which the conclusions of Theorem 4.1 would still hold. In Sec. 5 below, it is shown

that Conditions (L 1) and (L.2) as formulated here, i.e. for the operator A defined by (4.1), and
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with the linear damping estimates (4.2a)-(4.2b), are sufficient to apply Theorem 4.1 to a standard
Rayleigh-Bénard convection problem subject to multiplicative noise.

4.1. A priori bounds on SPDE solutions

Roughly speaking, we consider the following a priori bounds on the SPDE solution
(x(®), us(1))

M: sup |x(0)| < Cye,

1e[0,T /€]
(ID: sup lus(@)| < Ce,

1€[0,T /€] ¢ 4.5)
D :  sup Jus@®)|lv <Ce,

1€[0,T /€]

and are concerned whether these estimates hold in large probability. These a priori bounds are
key to derive our main Theorem about error estimates; see Theorem 4.1 and its proof. We recall
that the SPDE solutions are here understood in the sense recalled in Sec. 2.1. In that respect, to
derive a priori bounds like (4.5), one first work with the transformed equation Eq. (2.3), followed
by the inverse transformation to infer back the desired bounds about the SPDE solutions. We
refer to Appendix C for more details and provide here the main elements and ideas to derive (1),
(II), and (III) in large probability.
In that perspective, observe that standard energy estimates on the solutions to (3.23) lead to

X2 (t, ) + us(t, 0)|* < 2@ 140, w) |2 (4.6)

Thus, if one assumes |u(0)| ~ /€ one would obtain that, in large probability, |x(¢)| < C+/€ and
lus(H)|| < Cy/€ by conducting similar estimates as in Step 1 of the proof of Lemma 3.1 (and
using (3.3) for controlling the nonlinear term); see Appendix B.

To derive error estimates between u4(¢) and its parameterization ®(z), this is however insuffi-
cient, as the bound on ||us(¢)|| should scale as € and not /€ since || ®(¢)|| scales like € due (3.22).
The main difficulty compared to Step 2 of the proof of Lemma 3.1, lies in the infinite-dimensional
nature of ug, whereas @ is of finite-dimensional range due to (3.4). As a consequence, the loss
of regularity via the nonlinearity B is now effective which requires new estimates.

For instance, when estimating ||us||, by taking the inner product of the us-equation with u in
(3.23), this loss of regularity causes for instance the appearance in the RHS of terms depending
on |lus|ly (and not only on [lus||) since e.g. (B(e1, us), us) < Cplleillv llusllvllusll.

Nevertheless, such difficulties can be handled through a careful exploitation of the damping
effects brought by the linear part allowing for bypassing to estimate ||us|yv (at this stage), and
leading us to prove that, in large probability, and for 7 in [0, T /€],

4y

Ce
lus ()1 < e [lus(0) > + €’

5 , “.7

where y is as given in Lemma A.3, § is given in (4.2), and C > 0 is a generic constant indepen-
dent of €. The proof of this key estimate is given in Appendix C.1.
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As a consequence, if |x(0)| ~ /€ and ||us(0)| ~ €, one obtains that for any 7 > 0 and any x
in (0, 1),

IP((I) and (H)) >1—y. (4.8)

Nevertheless, since B : V x V — H (loss of regularity), to derive a full set of a priori estimates
about the SPDE solution, one cannot escape for estimating ||us||y. To do so, we take the inner
product of the ug-equation with Aug in (3.23), and after conducting the relevant estimates (see
Appendix C.2), we arrive at, in large probability, and for ¢ in [0, T /€],

t
muaw%scmumm%+wx2/eﬁvﬂﬁhﬂmfmhu 4.9)
0

namely ||lus(7)[|3 < Ce?, provided that |us(0, )|y ~ € and 0 < € < €* for some €* > 0 suffi-
ciently small.
Thus, if

[x(0)] ~ Ve, llus(0)ll ~ €, and [[usO)]v ~ e, (4.10)

we have that for any 7 > 0 and any y in (0, 1),
]P’((I), (I1), and (HI)) >1—y. @.11)
4.2. Fluid problems subject to fluctuations: low- and high-mode error estimates

From these probabilistic estimates we prove next our main error estimate theorem. This
theorem gives the error estimates made on the low- and high-mode dynamics, when they are
respectively approximated by the solution X (¢) to the reduced equation Eq. (3.8), and the pa-
rameterization ®(X (¢), ¢) given by (3.5)-(3.6).

Theorem 4.1. Assume that Conditions (L1), (L2), and (A3) are satisfied. Denote € = B (1) > 0.
Let u(t) = x(t)e; + us(t) be a solution to the SPDE (3.1).
Assume furthermore that Condition (P) is satisfied, that o = \/€ and that
X (0) =x(0) ~ Ve,
lusO)| ~ €, lusO)llv ~¢, (4.12)
lus (0) — (X, 0)]| ~ €72,

Consider the errors

a(t) =x(t) — X(t), (low-mode error)

(4.13)
b(t) = us(t) — ©(X, t) (high-mode error),

in which X (t) solves the reduced equation Eq. (3.8), and the parameterization ® is given by
(3.5)-(3.6).
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Then, for any T > 0 and any x in (0, 1), there exist €* > 0 and C > 0 such that for any € in
[0, €*], the following error estimate holds:

]P’( sup la()| < Ceand sup |Ib(®)] < Ce3/2) >1— . (4.14)
[0,T /€] [0,T /€]

Proof. First, let us write down the system of equations satisfied by the low-mode and high-mode

errors, a and b. By recalling that (X, ®) and (x, us) satisfy (3.19) and (3.23), respectively, we
infer that (a, b) satisfies

da = (ea T x T () + T Bluts. ttg) — XFo(D(X, t)))dt tfoaodw,,

db = (Lfb +x2Bf| + xFs(us) + Mg Bug, us) — X B} — 20 F(D(X, t)))dt +obo dW,,

4.15)
with F, given by (3.9), Bfl by (3.18), and I1; B and F; defined in (3.24).
We detail below the main elements to derive (4.14) from (4.15). We start with the estimates
of the nonlinear terms controlling the amplitudes of a(¢) and b(¢), in their respective dynamical
equations. For the a-equation, this term is given by IT; B (us, us) + I(¢) with

1(t) =xFc(us) — XFe(P(X, 1)), (4.16)
while for the b-equation, it is given by J (1) + (x*> — X?) B}, with
J(t) = xFo(ts) 4+ Mg B(us, us) — 20 F(D(X, 1)). (4.17)
Observe that

1(t) =aFc(us) + X (Fe(us) — Fe(P(X, 1))

(4.18)
=aFc(us) + X(B(e1,b) + B(b, e1), 1),
and that
al (t) < |Fe(us)| lal* + Clal |X|b]lv @.19)
< Cllusllvlal® + C€lal |X|]b]ly,
due to the definition of F, and the norm equivalence between || - ||, and ||b||y (Condition (L1)).

In the sequel, C > 0 will denote a generic constant that is allowed to change in the course of the
estimates.

Now let us take 2* be the subset of Q over which the a priori bounds (4.11) and (3.22) about
(x,ug) and (X, @), hold. Then over such a subset of events and for any ¢ in [0, T'/€], we deduce
from (4.19), that

I—=mn

a1 () < Cea(t)® + >

16112, (4.20)
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by using Young’s inequality, (4.11) to control |jus|v, and (3.22) to control X. The factor (1 —
n)/2 in (4.20) is chosen through application of the Young’s inequality, in order to be appropriately
“absorbed” by the linear damping effects on the high-modes, namely

(L$b, by = (Lyb, b)
= ((—nA + P)b,b) — (1 — 1){Ab, b) 4.21)
< =8|1b)1> = (1 = b3,

where the latter inequality is a consequence of Conditions (L1) and (L2).
As a result, we have over * and for any ¢ in [0, T' /€],

I—mn

al + (L$h,b) < Cea® — 8||b|* — 5 16112 < Cea® — 8|b)%. (4.22)
Similarly, we have over Q* and for any ¢ in [0, T /€],
all; B(us, us) < Ce*lal < Ce> + ed?. (4.23)

The estimates (4.22) and (4.23) are used to control a(¢). To control b(¢) one needs to estimate
(J(#),b) and ((x? — X?)B?,, b).

Here again by exploiting the a priori bounds (3.22), (4.11) and the Young’s inequality, we
infer that

)
(& = X)BY), b) < CV/elalllb]l < Cea® + S [1bII%, (4.24)
and
)
(J(1),b) < CE2|b) < Ce® + 3 15112, (4.25)

still over Q* and for any ¢ in [0, T /€].
From these estimates, and denoting by M = al + all; B(us, us), we observe, using (4.22),
that

M 4 ((x* = X?)BY|, b) + (J,b) 4 (L$b, b) + €a® < C1€> + Crea?, (4.26)

where C| and C; are two positive constants.
Following similar steps as in Appendix C.1 (in particular after transformation as in (C.0)), we
arrive then at
t
la)” + 1) < 2TV (ja ) + 1O ) + C1€° / IV g
0
< eI (ja(0)]” + [bO)|*) + Ci€?,

(4.27)
where y is given by Lemma A.3.
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Note that a(0) = 0. So if we assume ||b(0)|| ~ €, then,
la@®)? + 1b@)))> < Ce?, we Q*, 1[0, T/el. (4.28)

From this estimate, one can furthermore improve the estimate of ||5||. To do so, note that by using
the Young’s inequality differently than for obtaining (4.24), leads to

1)
(% = X*) B}, b) < CV/elal b < Cea® + - |IbII%. (4.29)

Similarly we can arrange the constants through Young’s inequality to get (J (¢), b) < Ce>/?||b|| <
Ce +5[b]%/4.
Now since |a(t)|2 < Ce? due to (4.28), we have

)
((x* = X*)B}|,b) < Ce® + Z||b||2. (4.30)
Then
1)
(& = X*)BP1,b) + (J,b) + (L]b, b) < Ce* = ZIb]1?, (4.31)

which, by application of Gronwall’s inequality (still following similar steps as in Appendix C.1),
gives

Ib())* < e 2 |b0)|* + Ce®,  weQ, tel0,T/e]. (4.32)
Thus, assuming ||b(0)|| ~ €3/2, leads finally to
16| < Ce3, weQ*, tel0, T/l (4.33)
The desired estimate (4.14) follows from (4.28) and (4.33). The proof is complete. O
Remark 4.2.

i) In the condition (4.12), if we drop the requirement ||us(0) — ®(X, 0)| ~ €3/2, the estimate
(4.28) still holds while (4.33) will be true after skipping a transient time of order |In(¢)|/§,
with § given by (4.2a).

Indeed, since it is assumed that X (0) ~ /€, then ®(X, 0) ~ €. This together with the condi-
tion ||us(0)|| ~ € leads to ||b(0)| = |lus(0) — ®(X, 0)|| ~ €. As a result, (4.28) still holds.

Note also that since [|b(0)| ~ €, then e =% +2Y||b(0)||> ~ € for all t > |In(e)|/8. This to-
gether with (4.32) leads to

Ib(r,w)|*> < Ce®, Vo eQ* te(lln(e)|/s, T/el. (4.34)
ii) Note also that if we drop the requirement ||us(0) — (X, 0)|| ~ €32 in the condition (4.12),
then as a direct reinterpretation of (4.28), the following relaxed version of the error estimate

(4.14) holds without skipping any transient dynamics:
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IP’( sup la(t)] <Ceand sup ||b(®)] < Ce) >1—x. 4.35)
[0,T/€] [0,T/€]

iii) A close inspection of the proofs about the error estimates shows that the requirement o = /€
could be relaxed to the cases 0 < o < /.

iv) Note that § < |82(1)], as can be seen by replacing b in (4.21) with e; and using (L e>, e2) =
Bo(M)|lea]|>. We can actually reduce the transient time |In(€)|/§ in (4.34) to |In(e)|/| B2 (A)].
This is because the estimate (4.32) still holds by replacing the exponent —é¢ therein by
—|B2(1)|t. Indeed, we just need to use |B2(A)| in place of § when applying the Young’s
inequality that leads to the two estimates (4.29) and (4.30). These together with (L3b, b) <
B2(A) ||b||2 lead to (4.31) with § therein replaced by |B2(A)].

5. Applications to Rayleigh-Bénard convection
5.1. The stochastic Rayleigh-Bénard model and its mathematical formulation

We consider the following non-dimensionalized Boussinesq equations driven by a linear mul-
tiplicative noise:

du = (Au—Vp+VROk — (u - V)u)di + ouodW,,
df = (A6 +VRw — (u - V)8)dt + 00 o dW,, (5.1)
divu =0.

Here, the unknown funj:tions are the velocity field u = (u, w), the pressure p, and the tem-
perature fluctuation 6. k = (0, 1) is the vertical unit vector, o > 0 is the noise amplitude. The
nondimensional parameter R is the Rayleigh number, which serves as the control parameter for
the bifurcation. We consider the case that the fluid is confined in a 2D nondimensional rectangu-
lar domain D = (0, L) x (0, 1), where L > 0 represents the aspect ratio between the width and
the height of the domain. To simplify the presentation, the above equations (5.1) are presented
for the case that the Prandtl number, Pr, is taken to be one. In the following, we use (x, z) to
denote the coordinates, x for the horizontal direction and z for the vertical direction.

Various physically sound boundary conditions can be handled in the theoretic setting; see [53,
Sec. 4.1.3]. To fix ideas, we consider free-slip boundary condition for #, and Dirichlet boundary
condition for T on the top and the bottom boundaries and Neumann boundary condition on the
lateral boundaries:

ow 96

MZO, 8__8_:0 atx:(),L,
* ) . (5.2)
w=0=0 L =0 atz=0,1.
0z

For the problem (5.1)-(5.2), we set the spaces

H={u,0)e(L*D)’ |divu=0,u-nlyp=0}
V={w0)eH D)YNH|0=0atz=0,1}, (5.3)
Hy = {(u,0) e (H*(D))? | diva = 0 and (5.2) holds},
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where n is the unit outward normal vector to 9D.
Let Lg : Hl — H be defined for any ¢ = (u, 6) in H| by
Lr =—A+ Pg, with
AY = (—LAu, —A9), 54
PRy = (VRL(OK), VR w),

where [L denotes the Leray projection defined on (L*(D))2, which projects each element into the
divergence-free subspace of (L3(D))%. We define also B: V x V — H as

By, ¥2) = (L1 - Viuz), —(u1 - V)02), (5.5

forall ¥ = (u1,01) and ¥, = (uz,62) in V.
We denote by || - || the norm on H defined for any ¢ = (u, w, 6) by

W12 = 1ulFa ) + W3y + 10172

and the norm on V, the norm || - ||y defined by

Iy =IVYl+ vl

Then the problem (5.1)-(5.2) can be written as

dy = (Lr¥ + B, ¥))di + o9 0 dW,. (5.6)

In the following, we assume for the non-dimensionalized spatial domain D = [0, L] x [0, 1]
that L is chosen such that the deterministic analogue of (5.1) admits a pitchfork bifurcation as
R crosses its critical value R, from below. As pointed out in Sec. 5.2 when verifying Condi-
tion (A2), there is exactly one critical wave vector for all values of L except those from a subset
of R* with measure zero; cf. (5.17) for the latter exceptional set. So the pitchfork bifurcation
scenario is a generic situation for the deterministic case.

5.2. Verification of Conditions (Al)-(A3) and (P)

In this section, we provide details on verifying the Conditions (A1)-(A3) and (P).

Verification of Condition (A1). Since the linear operator L g defined by (5.4) involves the Leray
projection L, it is not immediately clear that Ly is self-adjoint. However, this property will be
verified once the eigenfunctions of Ly are computed.

We consider thus the eigenvalue problem L gy = S in the space H;. That is

LAu +~RL(@OK) = Bu,
AO+~Rw=p6, (5.7)
divu =0.
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Recall that the eigenvalues and eigenfunctions for (5.7) are given as follows (see e.g. [53, Section
4.1.6]):

Group one:

Box = —k>72,  eox =+/2/L(0,0,sin(krz)), ke N. (5.8)

Group two: The eigenvalues are given, for all j, k in N, by

B (R) =—yj + (5.9)

with

aj=jm/L, yjx = Ja; +k*n?; (5.10)

and the corresponding eigenfunctions are given by

eij = (aﬁ sin(ajx) cos(kmz), bj".—Lk cos(ajx)sin(kmz), cj“.—Lk cos(ajx) sin(knz)), (5.11)
where
+ + + + + */Eaj +
a;, =—kaN;,, b,=a;N;,, ¢, ,=——-"—N7, (5.12)
Jjk ik Jjk I jk Jjk ijk +/3jik(R) Jjk
with
172
s A3+ PR (R))? /
jk= 2.2 T 2 2 (.13)
L(ij(yjk + .Bjk(R)) + Raj)

Note that in Group two above, the coefficient m in the third component of ej#k is
ik TPk

well defined for j, k in N and for all R > 0 because from (5.9), we know that ﬂjik(R) #* —yjzk.
The constant Njik, included in each of the three components of efk, is a normalization constant
ensuring ||ejtk|| =1.

Now, for any eigenfunctions ¥ ; and ¥, listed above, it follows from a direct calculation that
the following identity holds

(LrY 1. ¥2) = (¥ 1. LrY ). (5.14)

Thus, Lg is self-adjoint.

Verification of Condition (A2). Note that only eigenvalues from the second group, i.e., ,Bﬁ(R)
given by (5.9) can change signs when R varies. To identify the critical value of R, we equate
,Bjik(R) to zero to obtain
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R=y%/a]. (5.15)

The critical Rayleigh number R, is thus given by:

_ 7,/,6k . (k2ﬂ2+j27t2/L2)3
R, = min — = min -
jkeN a2 jkeN jim2/L?
J (5.16)
(14 2L
=mn-—-—7 5
jeN J°/L

One can readily check that the minimum is achieved at either (j,k) = (|L/+/2],1) or
(TL/~/21, 1), or both, depending on the value of L, where |L/+/2] denotes the largest inte-
ger below L/ V2, and [L/~/27 denotes the smallest integer above L/ V2. The cases with the
minimum achieved at both of the two indices (j1, 1) = (LL/\/EJ, 1) and (j2, 1) = (|'L/\/§'|, 1)
occur when yjﬁl’] /0112.1 = jﬁz, | /0‘]2‘2~ That is when L is chosen from the following subset of R

1 £ \2 L23 1 P \2 L23
s={1 >0 CHUBLEE CEOLID it = 1L/V2L = IL/VEL £ 2.

(5.17)
Note that S has measure zero. In the following, we focus on the case of pitchfork bifurcation,
and assume thus that L takes values outside of S. We denote the unique index that achieves the
minimum value R, by (j¢, 1).

Thus, Condition (A2) is verified with R playing the role of A and S1(A) in (2.9) taken to be
,8;;] (R) here. Although the eigenelements here are labeled using a double index associated with
the corresponding wave vectors, they can apparently also be labeled using a single index to fit
into the setting of (2.9).

Verification of Condition (A3). Since the spatial domain is taken to be a (2D) rectangle, then
B defined by (5.5) is a continuous bilinear map from V x V to H with V being the subspace of
(H'(D))3 given in (5.3).

Note also that B satisfies that

(B, %), ¥3) =—(B(¥1,¥3), ¥2), (5.18)

forall ¥, ¥,, and ¥ 5 in V. The condition (3.3) is a direct consequence of (5.18).
It follows also from a direct calculation that

(Ble].€f ). €j)) =0. Vj keN,

jel?
TNV2R(y ] + Bl (R)a]

+ Lt -
(Bej1,ej 1) eo0) =1 YL}, (vj, +B5 (R)?+ Ra3)
0 otherwise.

ifk=2, (5.19)

The condition (3.4) is thus verified with N therein equals 2 here, after re-arranging the double
index into a single one.

Verification of Condition (P). Recall that N in (3.11) is 2 here (see again (5.19)). From (5.19),
we also know
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TN2R(y} )+ B (R,
— <
VLG (i + B (R)? + Raj)

B} = (B(e]|.el)).en)) = (5.20)

Note also that
(Bly+ B3)) = (B(e] . em). el ) + (Bleo. e} ). el )
TV2R(2 + BT (R (5.2

VL2 (2 + B (R)? + Ra?)

Since M lziR is always positive, we have then
By M;®(Bl, + B),) <O0. (5.22)
Condition (P) is thus verified.
5.3. Verification of Conditions (L1) and (L2)
Since it has already been checked above that the linear operator Ly defined by (5.4) satisfies
Conditions (A1) and (A2), to verify Condition (L1), it remains to show that \/W induces

anorm on V equivalent to ||| y. For this purpose, we note that for A defined in (5.4), one has,
due to the boundary conditions, that for any ¥ = (u, w, 0) in D(A) = H;:

(AY, W) = Vul}s p) + VW p) + V0I5 ) = VY,

Note that

VeI <l¥lly <A+ O,

where C > 0 is a generic constant in the Poincaré inequality. Thus, ||V || defines a norm equiv-
alent to ||[¥ ]y .
Condition (L2) is a consequence of the following lemma.

Lemma 5.1. There exist an n in (0, 1), § > 0 and R* > R, for which the condition (4.2) holds
for the linear operator Ly defined in (5.4) for all R in [R., R*].

See Appendix E for a proof.
5.4. Stochastic pitchfork bifurcation in large probability
Due to (5.19), the parameterization ® defined in (3.5) reads here as
DX, t,0) = Do(X, t,w)epr, VX eR, (5.23)
with
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(X, 1, w) = BY MR (1, 0) X2, (5.24)

and B?, given by (5.20).
The abstract reduced equation (3.8) for the stochastic RBC problem takes then the following
explicit form

dX = (B} (R)X — a(RYM R (1, 0)X3) dt + 0 X 0 dW,, (5.25)

with

27°R(yj, + BL (R},

a(R)=—B? (B, + Bl,) = )
(R ==Bi(Bia B2) = o Ca = Br Ry R

(5.26)

We call (5.25), the non-Markovian RBC reduced equation.

Note that the RBC reduced equation (5.25) fits into the non-Markovian normal form of a
supercritical pitchfork bifurcation as given by Appendix D. In particular, the trivial steady state
X =0 is globally stable when the Rayleigh number R is below the critical value R, given by
(5.16). It becomes unstable when R > R, and two locally stable random steady states emerge.
These bifurcated random equilibria are given by =X, where

i
J2oR) [ MR (5. 0) exp(fr(t.s, w))ds

XR(t,0) = R=R., (5.27)

with

fr(t,s,0) = =28, (R)(t — ) = 20 (W, (@) — Ws(@)). (5.28)
This stochastic pitchfork bifurcation is shown in Fig. 3 at the level of the probability density
function (PDF) of the (random) steady states for a particular choice of the domain size L =3,
with o = 0.01.

In the following, we provide an interpretation of the general error estimate results given by
Theorem 4.1 for the stochastic RBC problem considered here. By doing so, we establish a rigor-
ous link between the pitchfork bifurcation for the non-Markovian RBC reduced equation (5.25)
and the dynamics of the full stochastic RBC problem (5.6) when the noise amplitude parameter
o scales like ~/8R with SR = R — R... For this purpose, we introduce

AR =Xg®)e] | + P(Xr(), 1), (5.292)
AR(t)==Xg®)el, +D(=Xg(0), 1), (5.29b)

where ";Zl is the eigenmode that becomes linearly unstable,

VRaj,

——————cos(a;,x) sin(nz)>,
yi+BL@®

ezl = (—71 sin(aj,x) cos(mz), &, cos(e . x) sin(mr z),

and the manifold function & is given by (5.23). Then, the following theorem holds.
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PDF of X
nN

Fig. 3. The stochastic supercritical pitchfork bifurcation for the RBC reduced equation (5.25). When R = R— R <
0, the probability density function (PDF) is a Dirac delta function since X = 0 is globally stable. When SR > 0, two
locally stable random steady states £X g emerge and X = 0 loses its stability. The most probable values of =X p as
SR varies, form the solid red curves in the (8R, X)-plane. The unstable trivial steady state for 6R > 0 is marked by
the dashed red line segment. The most probable states scale like /3R, which is consistent with the theoretic results
presented in Lemma D.1 by noting that € = ﬁJ.rl (R) in Lemma D.1 scales linearly with §R; cf. (5.32) below. For the
model parameters, we have set L = 3, leading to R ~ 660.52 and the critical wave number j. = 2. The noise amplitude
issetto o =0.01.

Theorem 5.1. Consider the stochastic RBC problem (5.6). Assume that the domain aspect ratio
parameter L is chosen outside of the measure zero set S given by (5.17), so that there is exactly
one mode that becomes unstable as R crosses the first critical value R, defined by (5.16). Denote
SR = R — R.. Assume that o = (/3;;1(1&))1/2 and that

X(0) = (¥(0), e} ) ~VoR, [¥,0)] ~ R, and [¥,(0)]lv ~ oR. (5.30)
J

Then, if X(0) > 0, the solution ¥ (t) of (5.6) emanating from ¥ (0) satisfies that for any x in
(0,1) and T > 0, there exist R* > R, and C > 0 such that the following estimate holds for all R
in [R¢, R*]:

P sup W@ - Af0 = CSR) = 1-x, (5.31)
[0.nT/éR]

where A‘,'g is defined in (5.29) and n > 0 is a constant depending only on the aspect ratio L. The
same estimate holds with A (t) replacing A;(I), if X(0) <0.

Proof. The desired result is a direct consequence of Theorem 4.1 and Remark 4.2-(ii). Indeed,
the Conditions (L 1), (L2), (A3), and (P) required in Theorem 4.1 are verified for the RBC prob-
lem considered here in Sections 5.2 and 5.3. To derive (5.31), we are only left to show that the
assumption (5.30) on the initial condition is equivalent to the analogues given in (4.12) stated
in terms of the parameter € = /3;;1 (R) instead.® Namely, we just need to show that 8R is pro-

6 Note that the condition lugs(0) — D(X,0)| ~ e3/2 required in (4.12) is not needed here as pointed out in Remark 4.2-
(ii).
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portional to €. The parameter n in the estimate (5.31) is related to the associated proportionality
constant when converting from 7 /e. We are thus only left with verifying the following scaling
relation:

(err)?/L?
(72 + (jem)?/L?)?

Bl (R) = (R—Re)+ O(IR — R/, (5.32)

which can be derived through direct algebraic operations. Indeed, by introducing 6 ;. = a?{ / yjz( 1
we have for R close to R, that

VB R= /8, R +8;,(R— R) = /8, Rey/T+ (R — R)/Re

(R - Rc)
2R,

(5.33)

= /8j.Re (1+ +0(|R—Rc|2)>.

With §;, defined above, we can rewrite ,B;.ZI(R) given by (5.9) as ﬁ;;l(R) = _ijcl + 4R,
leading in turn to

\/E(R - Rc)
B = =7} ViRt S5+ OUR = R, (5.34)

Since —yjzrl + /0. Rc = /37;1 (R;) =0, we get

Vi (R = R)

B (R) = BT/ O(R — R:). (5.35)

Recall also from (5.16) that R, = yﬁl/a}zc. Using this identity in (5.35), we get ,BZI(R) =
2

o
2)/;{] (R —R.) + O(|R — R.|?), and (5.32) follows. O

The above theorem shows that the SPDE solution ¥ (¢) of (5.6) is, in large probability, within
an C8R-cones centered around either A; or Ay defined in (5.29) depending on the sign of the
projected initial data X (0) = (¥ (0), e;rc 1), for ¢ in [0, nT /SR]. Recall also from Lemma D.1 (and
the scaling relation (5.32)) that the magnitude of the bifurcated random steady states £Xp for
the reduced equation (5.25) (and hence the corresponding lifted states A; in H) are of order
V/8R with large probability for all 7 > 0.

As a result, there exists a SR? > 0 such that for any SR in (0, 5Rj), the two CSR-cones, one
centered around A; and the other around A%, do not intersect with large probability; moreover,
the SPDE solutions emanating from initial data that satisfy the condition (5.30) stay within one of
these two cones with large probability and over a long time interval of order 1/6R. See Fig. 4 for
a schematic that illustrates this dynamical property in the projected unstable subspace. This sce-
nario is thus consistent with the idea of a stochastic pitchfork transition for the SPDE dynamics
that takes place when R crosses the threshold R, from below, albeit subject to large probability
and finite time intervals requirements.
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A+
—+X; —CoR
0.5 0 05 1 15 2

R

Fig. 4. A schematic to illustrate the stochastic pitchfork transition scenario for the stochastic RBC problem (5.6).
The red curves indicate the most probable values, denoted by £X%, of the random steady states =X p for the reduced
equation (5.25). Recall that X g scales like +/8R with large probability; see again Lemma D.1 and (5.32). The gray zones
indicate the CSR-cones centered at iX"I‘e with the radius CSR being the upper bound appearing in the error estimate
(5.31). The vertical dashed line marks out the threshold SR¥ at which X ’IS intersects with the line segment y = CSR.

For 4R in (0, SRj), the two CSR-cones are disjoint from each other. Theorem 5.1 ensures that for §R < min{BRﬁ, SR*},
the (projected) SPDE solution from an initial condition satisfying (5.30) is confined in one of the two cones with large
probability and over a large time interval of order 1/8R. Here, SR* = R* — R, with R* being as specified in Theorem 5.1.

6. Concluding remarks

Based on a dynamical reformulation of the leading-order approximation formulas for stochas-
tic invariant manifolds, we derived rigorous energy estimates between the solutions of the
corresponding reduced system (3.19) and those of the original SPDE (3.1). Such estimates as
summarized in Theorem 4.1 hold with large probability and are obtained for the case of a stochas-
tic pitchfork bifurcation scenario. The key Assumption (L2) that enables these estimates exploits
dissipation effects brought by the stable modes of the linear operator in order to suitably coun-
terbalance the loss of regularity due to the nonlinear terms.

Although seeking a P-almost sure description of the bifurcation for a given SPDE is still
out of reach for most problems arising from applications,” we showed in this article that the
dynamical properties of the SPDE solutions are actually captured by our reduced systems with
large probability and over long time intervals, as long as the noise’s intensity and the eigenvalue’s
magnitude of the mildly unstable mode, scale accordingly. While this type of characterizations
has been investigated in the literature before, such as via the amplitude equation approach [12],
these approaches do not seem to be directly applicable to problems considered here which are
with quadratic nonlinearities and subject to multiplicative noise. While the focus here is on the
pitchfork bifurcation, our approach can be suitably adapted to handle stochastic disturbances of

7 Recall that for stochastic ODEs already the question of how to describe a stochastic bifurcation, is not completely
settled; see e.g. [2, Chap. 9] and [16].
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fluids experiencing more general bifurcations such as S!-attractor bifurcations [52], Hopf, and
double-Hopf bifurcations.

We have also shown that the underlying analytic formulas of our reduced systems near the
onset of instability for SPDE models involve, unlike for PDEs, non-Markovian coefficients which
depend explicitly on the noise path (and its “past”), the model’s coefficients, the noise intensity,
as well as the model’s eigenelements. In that respect, the memory functions captured by these
coefficients are not set arbitrarily, but derived in a consistent manner, so that in particular the
characteristics of the memory function is self-consistently determined by the intensity of the
random force from the model’s equation.

As already pointed out in [27], higher-order approximations of the genuine stochastic center
manifold, h?U(X , 1), involve also memory coefficients albeit of more complicated functional de-
pendence on the noise path. The underlying high-order non-Markovian parameterizations have
also analytic expressions that can be derived by solving the appropriate backward-forward (BF)
systems [27, Chaps. 4 and 7.3]. The resulting random coefficients solve then new auxiliary SDEs
that can also be used for deriving the error estimates as done for the leading-order approximation.
Such high-order non-Markovian parameterizations should lead to improved error estimates, as
numerically shown in [27, Chap. 7] in a stochastic Burgers example; see also [21].

Finally and more generally, we mention that the usage of such backward-forward systems
allows also for moving away from criticality, by adopting and adapting the variational approach
and theory of optimal parameterizing manifolds (OPMs) of [22-24] to the stochastic context. The
new parameterizations obtained this way can be viewed as optimized homotopic deformations of
those valid near criticality recalled in Theorem 2.1 above. In the OPM approach, the optimization
step is performed using data of the fully resolved problem (in a parsimonious way) by minimizing
a least-square metric measuring typically the parameterization defect, and where the parameters
to optimize are reduced to the backward integration times t of the BF systems involved; see
[23, Sec. 4.3]. In the stochastic context, it means that the M,,-coefficients in (2.17) are replaced
away from criticality by integrals of the form fi) et Ms+oWs(@) dg, that are optimized (in 7) per
mode e,. Details about such an OPM approach for the stochastic context will be communicated
elsewhere.
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Appendix A. M-term: first moments, non-Gaussian statistics, and large probability
estimates

A.l. First moments

We consider the random variable of the form

0
M) = / 80N+ Ws(@) g (A.1)
—0o0
in which o is allowed to take negative values and g(A) is a function of the control parameter
A. Such random variables (with negative o) arise for instance when the stable modes are forced
stochastically but not the unstable ones; see Eq. (2.25).

The following lemma provides exact formulas for the expectation, variance and autocorrela-
tion function, of such a general M-term.

Lemma A.1. Let g > 0 and

ox = /28, o8 = /3. (A.2)

Then M -term defined by (A.1) a wide-sense stationary random process provided that |o | < oy,
and furthermore

(1) The expectation of M exists if and only if |o| < o4, and is given by

o] < oy. (A3)

2
EWM) = W,

(ii) The variance of M exists if and only if |0 | < o, and is given by

Var(M) 2 (A4)
ar = . .
(2g —0H)*(g—0?)
Finally, the autocorrelation R(t) of the stochastic process
0
Mt w) = / 85+ Wos @)= Wi@)) g (A5)
—00
exists if and only if |o| < ou, and is given by
02
R(t):exp(—(g— 7)|t|), teR. (A.6)
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This lemma results from direct application of the Fubini Theorem, the independent increment
property of the Wiener process, and the fact that E (e ")) = 11172 for any 7 € R, as expecta-

tion of the geometric Brownian motion generated by d.S; = “—22 S; dt +0 S; dW;. See the Appendix
of [27] for a proof.

A.2. Non-Gaussian statistics and log-normal approximations
We provide here a simple analytic understanding regarding the non-Gaussian statistics fol-

lowed by an arbitrary M-term, in the case of real eigenvalues. Recall that an M-term is obtained
as the stationary solution of the scalar SDE,

dM = (1 — gM)dt — o M 0 dW,, (A7)

where g denotes a distance to resonance, namely g = (k, B.(1)) — B, (1) for some n.
Rescale (A.7) by using

1 ~ - ~
Wi(w) = ﬁWg,(a)), t=gt, M=gM. (A.8)
Then (A.7) becomes
~ ~ ~ (e} ~ ~
dM = (1 — M)dr — —M o dW~. (A9)
NG ’

To have an explicit formula for the probability distribution function (PDF) of the random
variable M is non-trivial. We illustrate nevertheless that this PDF is well approximated by the
PDF of an analytic, log-normal distributed random variable N, provided that o < ,/g.

Our analysis revealed that the parameters of this log-normal distribution are

1
Ho.g =In(Kg g) — E(ZM)Z,

o\ (A.10)
o= |In (1 + (ﬁ) )
Kgyg

2
Kgog=——,
78 2—0?%/g

(A.1D)
_ 202%/g
flo.g = \/ 2-02/9)*(1—02/g)

where

The PDF of N is then given by ([42, Chap. 14])

p(N) =

_ 2
_ﬂm—w) N0, (A12)

——————exp
N4 V27 ( 2%7 .
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o//g = 0.05 o//g=0.1 o/\/g =02

Fig. 5. PDF of M (black) vs. its lognormal approximation given by (A.12) (red dash curve), for various values of o'/ ,/g.
A semi-log scale is used to plot these PDFs. Note that o/, /g < 1 is required to ensure the mean and variance of M to
exist; see Lemma A.1.

and turns out to approximate robustly the distribution of simulated M-term for different values
of o/,/¢ as shown in Fig. 5.

A.3. Probability estimates in the large

Lemma A.2. We assume that Conditions (Al) and (A2) as well as (3.4) of Sec. 3 hold. Consider
the M?i)‘—terms appearing in (3.6) forn =2, --- , N and A € [A¢, A*], where N is given by (3.4)
and A* is given in Condition (A2). Then, for any x in (0, 1), there exists k > 0 such that

Plo<mi@ <k|n=2.- N.aelhe A"l 21— x. (A.13)

Proof. The result is a direct consequence of the Chebyshev’s inequality, which states that if Y is
arandom variable and p > 1, then for any x > 0, it holds that

]P’{a):|Y|2K}§LE(|Y|p). (A.14)
KP

Since M ?i)‘ (w) = fi) o e2e=Pn()s+oWs(@) g and the eigenvalues are all real-valued and are ar-
ranged in descending order, we have for all w € 2, A € [A., A*],

0< M\ 0,w) <MY 0, 0) <--- < M0, w) < M0, w). (A.15)
Denote
A= argmax Bz (A). (A.16)
AE[Ae,A¥]
We have then
M2 ) < MY (@), Yo e Q. h e [he 271, (A.17)
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Recall that due to Lemma A.1

2
226 = po(AF)) — o2’

EME) = (A.18)

which holds for all o < /2(2¢€ — B2 (A%)). Since o = /e and ﬁg(kﬁ) < 0 thanks to Condi-
tion (A2), this desired condition o < 1/2(2¢ — B2(A%)) is satisfied. Thus, for any x in (0, 1),

thanks to (A.15) and (A.17), we just need to apply (A.14) with ¥ = M12i)‘t, p=1,and

1

K= —, (A.19)
|B2(A%) ] x
to ensure (A.13). 0O
Lemma A.3. Forany € >0, T > 0 and x in (0, 1], let y = /2T In(1 — x)), then
PiJe sup [Wiw)|<y{=1-x. (A.20)
0<t<T/e
Proof. Recall that for any y > 0 and T* > 0, it holds that
]P’{O sup |Wi(w)| =y} < 2P{|Wr+(0)| = v} (A21)
<t<T*
see e.g. Billingsley [9] page 529. So for any o > 0, we have
2
Pyo sup [Wi(@)| =y <2P{o|Wr«(w)|Zy}<exp|—55- ). (A.22)
0<t<T* 20°T*

where in the last inequality above we used the facts that Wz« (w) follows a normal distribution
with mean zero and variance equal to 7* and that

o0
/ e dx < ?ﬂz. (A.23)

a

Hence, with T* = T' /€ and 0 = /€, we have
0<t<T/e 2T

2
P{ﬁ sup |Wt(w>|zy}5exp(—y ) (A24)

Then, by choosing y = /—2T In(1 — x)), we get the desired estimate (A.20). O
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Appendix B. A priori estimates in large probability: surrogate system (3.19)

Proof of Lemma 3.1. The desired estimate (3.22) follows from (i) basic probabilistic estimates
about the M-terms and the Brownian motion (see Lemmas A.2 and A.3 above), and (ii) elemen-
tary energy estimates based on the dissipation condition (3.11).

To perform (and simplify) our estimates we first transform the SDE system (3.19) into dif-
ferential equations with random coefficients by using Z (¢, w), the Ornstein-Uhlenbeck process,
stationary solution of the scalar Langevin equation (2.5).

More exactly, we perform the change of variables

U=e 200X, W= 200¢, (B.1)

The system (3.19) is then transformed into

dU
o =eU + Z(t, 0)U + eZCOU Fo (D), (B.2a)
dw
5 = L3+ Z(t, o)V + 202 BS U? 4 22 0O WF (W), (B.2b)

The estimation of X and ® based on (B.2) are organized into three steps below.

Step 1: Energy estimates for X. Multiplying (B.2a) by U, we get

1d
EEUZ =eU? + Z(t, 0)U? + 2O UL F (W), (B.3)

Observe that by (3.5) and (3.9) we have

N
Fe) =e 2003 0, (B, + B),)
n=2
N (B.4)
= e UOX S Bl (B, + BY)
n=2
<0. (due to (3.11))
We get then from (B.3) that
liU2 <eU?+ Z(t, 0)U? (B.5)
2dt ~ ’ '
which leads to
U(t, 0) < U8, (B.6)

with a(t, w) = 2et + 2f0t Z(s, w)ds.
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Transforming back to the X-variable by using (B.1), and by noting that

t

Z(t,0) = Z(0, ) — / Z(5.0)ds + eW; (), (B.7)
0
we obtain
X2(t, w) < PIH2VEWI @ ¥ 2. (B.8)

Step 2: Energy estimates for ®. Note that (L;W, W) < B>(A) w)2. Taking the inner-product of
(B.2b) with W and using again the fact that 7. (W) <0 (cf. (B.4)), we get

1 djw|? 5
T BN + Z(t, ) | W] + e U(B, W). (B.9)
Now, note that
[ & 200 y2(Bs Wy = 2O U2 (B(ey, e1), W) < 2D U2|Bler. e[| W], (B.10)
which leads to
1
I < ———e*2C9|B(ey, e)|PU* + = 1B W] (B.11)
2[82(M)] 2

Using this last inequality in (B.9), we arrive at

1 d|w|?
2 dt

1 1
< =B MWV + Z(t, ) W] + =2 || B(ey, e1)|IPU*, (B.12)
2 21823

which leads, after integration, to

' 1
102, )| < P2PH2Jo 2645 g0, ) ||? + B0 IB(er, en)|I*J (t, ), (B.13)
with
t
J(t, w) =/eﬁ2()‘)([_s)+2f; Z(rw)dr 22(50) 74 (5 o) ds. (B.14)
0

By transforming back to the (X, ®)-variable using (B.1) and taking into account the identity
(B.7), we obtain

1

B(er, e |2 T (t, w), B.15
|ﬂ2(k)||| (e1, eI J(, w) ( )

|D(t, )] < P2P TV 100, w) > +

with
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t
Tt w) = / P2 =9+2/EW (@~ Ws(@) x5 0) ds. (B.16)
0

Step 3: Probabilistic estimates for X and . Based on (B.8) and (B.15), to derive (3.22), we
just need to obtain suitable bounds for W; and the random coefficients M fiA(O, )’s appearing
in the expression of ®(0, w); cf. (3.20). More precisely, for T and x as given in the statement
of Lemma 3.1, we show that there exists a subset Q* of Q with P(Q*) > 1 — x, over which
Mﬁ)‘ (0, w) is bounded foralln =1, --- , N, and \/€ W; (w) is also bounded for all w in * and ¢
in [0, T'/€]. The existence of such a subset Q2* is guaranteed by Lemma A.2 and Lemma A.3.

Indeed, applying Lemma A.2 with y therein replaced by yx /2, there exists a constant ¥ > 0
and a subset 2] with P(21) > 1 — x /2, for which

0<MP0,0) <k, w€Qp,n=2,---, N, % €A, A*]. (B.17)

Applying Lemma A.3 with x therein replaced by x /2, there exists a constant y > 0 and a subset
Qp with P(R22) > 1 — x /2, for which

Ve sup W) <y, €. (B.18)
0<t<T/e

Now, take Q* = Q| N Q. We have P(Q*) > 1 — x, and

Ve sup W) <y, weQF, (B.19a)
0<t<T/e
0<M70,0) <k, € Qi,n=2,--, N, %€, A*]. (B.19b)

Using (B.19a) and (3.21), we conclude from (B.8) that

X2(t, ) < (C)?TTe, 1€]0,T/el, we QF, (B.20)

where C; > 0 is a constant such that | Xo| < C14/€ (Due to (3.21)).

For @, the terms on the RHS of (B.15) can be estimated as follows. Using the definition of
®(0, w) in (3.20), the assumption on Xg in (3.21), and the probabilistic bound (B.19b) about the
Mfl”\—terms, we get

N
oP2ONH2/EW: () (0, )12 < 2 | (0, )| < k2(Cy)*e (Z(B{’l)z) €2, (B.21)
n=2

forany ¢ in [0, T'/€], and w in Q*, where C is the same as in (B.20).
For J defined by (B.16), using (B.19a) and (B.20), we obtain that for all  in Q* and ¢ in
[0, T /€],

t

Tt w) < / P2 WE=F4y g5 (€T €2 < Iﬂ%ﬂ(cl)“e“”gyez. (B.22)
2

0
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Now, by using (B.21) and (B.22) in (B.15), we arrive, for any ¢ in [0, T /€], and w in Q*, at

@@, w)|| < Cae, (B.23)

in which Cj is a constant independent of €. The desired estimate (3.22) follows now from (B.20)
and (B.23) by taking C = max{C1e’ 17, C,}. O

Appendix C. High-mode estimates in large probability

We provide in this section the proofs of the two key estimates (4.7) and (4.9), regarding the
high-mode component, u, of the solution, u, to Eq. (3.1).

C.1. High-mode estimate (4.7)

First note that, since the nonlinearity B in Eq. (3.1) is bilinear, the transformed equation (2.3)
for the variable v = e~ 2(-®)y associated with Eq. (3.1) becomes here

d
d_': — Lyv+ Z(t, w)v + €209 B(v), (C.1)

with Z (¢, w) denoting again the OU process, stationary solution of the scalar Langevin equation
(2.5).

Taking inner product of (C.1) with v and using the energy conservation property of B
(cf. (3.3)), we obtain

1 djjv]?
2 dr

= (Lyv, v) + Z(1, w)||vs|1* < €llvs|> + Z(z, w)||vs 1. (C2)

Integrating this last equation, then transforming back to the u-variable and taking into consider-
ation the identity (B.7), we obtain

21, @) + us(t, w)||* < VW@ 140, w) || (C3)

Recall also that, thanks to Lemma A.3, for any x in (0, 1), there exists a subset Q* C Q with
P(2*) > 1 — x and a constant y > 0, such that

Ve sup W) <y, we Q¥ (C.4)
0<t<T/e

see (B.19a). Thus, if |u(0)| ~ /€, then thanks to (C.3) and (C.4), there exists a constant C > 0
independent of € such that

X (1, ) + llus (t, ) |I* < Ce, Vi €[0,T/el, we Q. (C.5)
By introducing
y=e 20Dy oy, = 2@y, (C.6)
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we get from (3.23b) the following equation for vg:

dv s
T: = L3vs + Z(t, 0)vs + eZ ) (y? BY| + yFs(vs) + s B(vs, vs)). (C.7)
Noting that (B(vs, vs), vs) = 0 and that (L5 vs, vs) = (L3 vs, vs), We get then

1 djjvs|?

S = (Lave. va) + Z(, @) sl + X By + 3 Fow).vs). ()

For (L vs, vs), first note that by Condition (L1), we have
(Au,u) = |lul>, ueW=DA). (C.9)

Now, let n be as given by Condition (L2). Since L, = —A + Py, we get, thanks to (4.2a) and
(C.9)

(Lpvs, vs) = ((—=nA + P))vs, vs) — (I — ) {Avs, vs)

5 ) (C.10)
< —dlvslI” — (T = mllvslly-
Recall that Bi‘i1 =TII;B(e1, e1); see (3.18). We get
X0 (y2BF) vg) < e Cpy? e |17 lvsl
(C.11)

3 AZE0)(Cp)2 ey ||, ™ éllv 2
= 25 y 2 5 9

where Cp > 0 denotes the smallest constant for which || B(u, v)|| < Cpllu|lv|v|lv for all u and
vinV.
Recall also that F,(v) = I15(B(er, v) + B(v, e1)); see (3.24). We get then

20D (y Fo(vs), vs) < 262 Cplylller |y |vslv llvs |

. (C.12)
<2 CClylllerllvivsiviivsll,

where ¢ > 0 denotes the smallest constant for which |lu||y < €|lu||, for all u in V. Such a
constant exists due to the assumption that || - ||, defines an equivalent norm to || - ||y on V; see
Condition (L.1). We get then

20220 (¢Cpller|v)?

1—n
20Oy Fy(vs), vs) < —— 0512 + 1y llvs 1. (C.13)
2 1—=mn
Using (C.10), (C.11), and (C.13) in (C.8), we obtain
Ldllus]> 1 (1—n)
ET: < —Eanvsu2 —~ Tnvsn% + Z(t, ) |vs |I*
(C.14)
20 (Cp) et} 4 26220 (ECpllerllv)? 5. s
y MEEARS

28 I—=mn)
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By introducing

_Cllleilly . _ 2€Cgllerllv)?

Cc ; , C.15
1 25 2 d—n (C.15)

and restricting to the subset 2%, we have thanks to (C.5) and (C.6) that
CIEZZ(t,w)y4 + C2622(1,w) |y|2 || Vg ||2 S Ce*2z(l“a))62’ (C.16)

for w € Q*, t € [0, T /€], and some generic constant C > 0 independent of €.
Applying Gronwall’s inequality to (C.14) while taking into consideration (C.16), we get

t
t t
”Ug(t, w)”2 S e—ét+2f0 Z(S,a))dS”vg(O’ (1))”2 + CEZ/E_S(Z_S)+2L Z(T,a))dr—ZZ(s,w) dS, (C17)
0

which holds for w € Q* and ¢ € [0, T /¢].
Converting back to u, and using (C.4), we get

t
fta(r. ) = eV g0, ) € [ Ao g,
0

t
< e U (0, ) |)? + Ce* 2 / e =9 g
0

(C.18)

et

C
< e |lus(0, w)|I* + €2,

which holds for w € Q* and ¢ € [0, T /€]. The desired estimate (4.7) is thus derived.
C.2. High-mode estimate (4.9)

In the following, to simplify the presentation, the estimates presented below are articulated at
a formal level. The equations/inequations involving d| v ||% / dt can be made rigorous by working
with the corresponding integral formulation allowed by the regularity of v recalled in (2.4).

Back to (C.7), multiplying both sides by Avs and noting that (v, Avs) = ||v5||‘2, (ctf. (C.9)),
we get

1 dllvs 2 s
2 — (LS, Avg) + Z(t, ) || vs |2

2 dr (C.19)
+ e <(y23151 + yFs(vs) + s B(vs, Us)): AU5>~

194



M.D. Chekroun, H. Liu, J.C. McWilliams et al. Journal of Differential Equations 346 (2023) 145-204

For (Ljv,, Avg), using the assumption (4.2b), we get

<LiU57 Avs) = (Lyvs, Avs)
= ((—nA + P)vs, Avs) — (1 — n)(Avs, Avg) (C.20)
< —8llvsll2 — (1 — )|l Avs]|*.

We have also

2@ (YIRS Avg) < Cpe? @y ey || || Avs ||

1 1—1n (€2n
< 1—((:B>2 2Oy ey |1 + TnAvan.
By using the same type of estimates as given in (C.12)—(C.13), we get
2(¢Cp)? 1-
R O e ; A2 2 ey} [va2 + - [ Avs . (€22)
We also have
e?9) (B(vs, v5), Avs) < CpeZ " ||ug||3 || Avs |
1 2 27(t,w) 4 4 1— 1—n 2
< 1f(c B)%e sy + —— 1 4vs] (C.23)
1—n
< L gh(cpeen lvslly + —— Il Avs]|*.
l—n 4
Using the above estimates in (C.19), we get
1 dljvs |2
Ef < =8llvsll2 + Z(t, w)lvsll3 + Ce* 20 (y* + y2|vsll3 + [[vslly), (C.24)

where C > 0 is a constant independent of €.
Now, using the estimate of x given in (C.5) and noting that y = e~ 2.0y from (C.6), we
obtain

1 dlvs|?
57”5”” < =8llvs Iy + Z(, 0)lluslly + C (7270 + ellug |5 + 27w ). (C.25)

By choosing € sufficiently small (achieved by choosing A* sufficiently close to A.), we can ensure
that

) _ 8 2
Cellvslly < Ellvsllv- (C.26)
We get then
1 dvsll3 —27(t,w) 2 2Z(1,0) 4 >
2 dr ——|| vslly + Z(t, 0)l|vsll3 + Ce € +Ce lvslly- (C.27)

195



M.D. Chekroun, H. Liu, J.C. McWilliams et al. Journal of Differential Equations 346 (2023) 145-204

For the remaining part of the proof, the generic constant C > 0 (independent of ¢€) is allowed to
change in the course of the estimates.
Now, define

q(t, @) = 2R Zeo)ds 12 (C.28)

we get from (C.27) that

d
G SCHTRIEOEIOE 4 Clugf . ). (C.29)

To proceed further, we need an estimate on fé llus ||% ds. For this purpose, first note that if
[lus(0)|| ~ €, then it follows from (C.18) that

lus(t, w)|| < Ce, Vtel0,T/el, we Q. (C.30)

Recall also from (C.5) that |x(¢, w)| < C+/€ for w € Q* and ¢ € [0, T /¢]. Now, by integrating
(C.14) and using the above estimates for |x (¢, )| and |lus(?, ®)||, we get

t
1
s, @)% + (1 —n)/ezfs 2685y (s, )2 ds
0

(C.31)

t
ot 't
S ezjo Z(s,w)ds ||v5(0, w)HZ + CEZ / ezjs Z(T,w)dr—ZZ(s,w) dS,

0

which holds for w in 2* and ¢ in [0, T /€]. It follows that

t t
/ezﬁ(w’(w)_WS(w))Hus(S, w)”% ds < eZﬁWt(w) lluts (O, (z))||2 + Ce? / eZﬁ(W,(w)—Ws(w)) ds
0 0

<Ce’, VoeQ* tel0,T/el

(C.32)
Using (C.4), we get (after redefining C) that
t
/ lus(s, w)||2ds < Ce?, Yo e Q*, 1[0, T/e]. (C.33)
0

Now, let us denote f(s, ®) = exp (8s — 2 [ Z(r,w)dt — 2Z(s, w)). Applying Gronwall’s
inequality to (C.29) and using (C.33), we get
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t
q(t, w) <exp C/nus(s,w)n%ds q(0, w)
0

t 1

+C62/exp C/||u5(r,w)||§dr f(s, w)ds (C.34)
0 Ky

t
5Cq(0,w)+C62/f(s,a))ds,
0

which holds for w in Q* and ¢ in [0, T /€].
Now, converting back to ||u5||%, using (C.28) and (C.6), we get from (C.34) that

t
lus(t, @) < Cllus 0, )15 + Ce? / TP UTITRVEWO)= W (O) g (C.35)
0

which holds for w € Q* and ¢ € [0, T /€]. The desired estimate (4.9) follows then from (C.35)
since || - ||, defines an equivalent norm to || - ||y on V; see Condition (L1).

Appendix D. The non-Markovian normal form of a pitchfork bifurcation

We study here the following non-Markovian normal form of a supercritical pitchfork bifurca-
tion

dX = (eX —aM,(t,w)X>)dt + 0 X o dW,, (D.1)

where € is the bifurcation parameter, o and o are positive constants, and M, is the stationary
process given by

0
My (t,w) = / e85 toWsi(@)=Wi@) g -, € Q, g>0. (D.2)

—00

Note that since, M (¢, w) is always positive, the above equation has a supercritical stochastic
pitchfork bifurcation as € crosses 0 from below. In fact, by introducing a change of variables
X = X2, one can compute explicitly the bifurcated random steady states for (D.1). They are
given by *a, where

1
V2 f o Mo (5. ) exp(f. (1,5, ) ds

ae(t, w) = € >0, (D.3)

with
fe(t,s,w) =—=2¢e( —s) — 20 (Wi (w) — Ws(w)). (D.4)
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In the following, we show that when o = /€, then a.(¢) is on the order of /€ with large proba-
bility for all # > 0.

Lemma D.1. Consider the stationary solution a. for (D.1) given by (D.3). Assume that o = \/e.
Then, for any x in (0, 1), there exist positive constants c¢| and c; independent of € such that

P(c1ve<ac(t) scv/e) =1 —x, Veel0,2g],1>0. (D.5)

Proof. When € =0, (D.5) holds trivially since a. = 0 since the integral term in the RHS of (D.3)
becomes +00 when € = 0. We assume thus € > 0 in the calculation below.

Let us first recall that if a stochastic process X (¢, w) has continuous sample paths for almost
every w and satisfies

lim

—0o0

X(t,
(t @) = 0 for almost all w, (D.6)
then for any €; in (0, 1) and €, > 0, there exist #p > 0 and 2, ¢, C €2, such that
P(Qel,ez) = 1—- €1,
X (t, )] (D.7)
f<62, Vit>t, a)EQEl,Q.
The above result follows from a straightforward application of the Egoroff’s Theorem by con-
sidering random variables of the form X (¢,,, w)/¢, for each non-zero rational number #,,.
Now, let us consider the following scaling

T=et, Wiw)=VeW:(w). (D.8)

Since W is a Brownian motion, we can apply the above recalled general result to ensure that
for any y in (0, 1), there exist T* > 0, such that

~ 1~
P{IWE‘(w)I<Z|t|}Zl—X/2, Vi<-T* (D.9)
We obtain then using (D.8) that
1
}P{\/E|Wt(a>)|<ze|t|}zl—x/2, Vi< -—T*/e. (D.10)

From Lemma A.3 (applied to Brownian motion defined on (—o0, 0]), we also know that by

choosing y = /—2T*In(x /2), we get

—T*/e<t<0

]P’:«/g sup IWz(w)Ify}zl—x/Z. (D.11)

Now, from (D.10) and (D.11), we obtain a subset Q* C Q with P(2*) > 1 — x such that for all
w in * it holds that
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VelWi @) <y, Viel[-T"/e 0],

1 (D.12)
JVelW ()| < Ze|t|, Vi<—-T"/e.
Note that from (D.2) with o = /€, we have
t
M, (t, w) = e~ 8~ VeWi (@) / e85 TVEWy (@) gy, (D.13)
—0o0
Using (D.12) and (D.13), one readily obtains for any € in [0, 4¢) and w in Q* that
62)/ 4ey+(T*/4)
My(t,0) < | —+——|, tel[-T"/e0], (D.14)
8 48 —¢€
and
4 —€t/2
M;(t,w) < , te(—o0,—T*/e]. (D.15)
4g —€

Now, we are in position to estimate the random steady state a, at t = 0. Using (D.4), and
(D.14)—~(D.15), we get

0
/ Mo (5,0) exp e 0,5, ) ds < &

2y 2y Yert(T/4 4e-T*
Y (R - LeQ e e(0,49).
4g — € (4g — €)e
(D.16)
By restricting € to, for instance (0, 2g], we get then
0 * *
My (s, w)exp(fe(0,5,w))ds < — | — + + : (D.17)
2e g g ge
—0Q
Using this last estimate in (D.3) with r = 0 therein, we obtain
ac(0,w) > c1v/e, weQ* €€ (0,2g], (D.18)
with
172
— & / (D.19)
ae?? (€27 4 2ev+T*/D) 4 4ge=T" ' '
Using again (D.12), we also have
4eet/2
M (t, w) > , te(—o0,—T*/e], we Q*, (D.20)
4g+ €
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and we can simply bound M, (¢, w) below by zero for all ¢ in [—T* /¢, 0]. This way, we get

0
2 —37T*
/ Mo s, 0)exp(fe0, 5,00 ds = 75—, c€ (0.2 we " (D21)
€
leading thus to
(0, 0) < /e, weQF e e 0,2, (D22)

with ¢; = 1/9ge3T" /(4a). Since the constants ¢ and ¢, in respectively (D.18) and (D.22) depend
only on x (through y and T*) but not on €, the estimate (D.5) for t+ = 0 follows. Since a. is
stationary, the same estimation holds for all # > 0. The proof is complete. 0O

Appendix E. Proof of Lemma 5.1

Proof of Lemma 5.1. Recall that the linear operator Lr = —A + Ppg is defined in (5.4) and its
eigenelements are provided in Sec. 5.2. Note that A leaves invariant each of the one-dimensional
subspace spanned by any of the eigenvectors of L g. Thus, to verify (4.2), it is sufficient to show
that there exist 1 and &, for which (4.2) holds when u is taken to be any stable eigenmode of
Lpg.

We first verify (4.2) for us = eor given in (5.8) for any k in N. Note that since —Aeg; =
—k*72eor = Lgeok, we get Preox = (Lr + A)egr = 0 for all k. As a result, for any n in (0, 1),
we have

((—nA + Pr)eok, eor) = —nk* 2 lleo||* < —nm?lleok |1,

2_2 2 2 2 (E.1)
((=nA + Pr)eok, Aeor) = —nk“m”||Veor||” < —nm~[[Veor |,
which holds for all R and all k.
Now, for eigenfunctions in group two given by (5.11), we have
(A€ €5) = Virlles . (E2)

and

(Prejis €)= (L + A)e, €5) = B (R +viplles > = £/ Rad /v i llesl?, (D)

where the last equality follows from (5.9).
By using (E.2) and (E.3), we get

(1A + PRek. e5) = (=nvh £ Ra2/v2 ) ek (E4)

Similarly, we have

(=nA + PR)ek. Aek) = (=ny & Ra2/vE ) IVeR. (E.5)
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To proceed further, we discuss the two cases us; = efk and ug = e;k separately. For us = e;k,
let n in (0, 1) be arbitrarily fixed. Since

—nyj = REZ/vE < —nyji < =y, (E.6)

we get

(—nA+ PR)e. €5) < —nyfilles I, )
(—nA+ PR)ey;, Aes) < —nyi Ve, I,

which holds for all R and all indices (j, k) in N2.
For ug = eﬁ, we aim to show that there exist an n in (0, 1), R* > R, and a u > 0 such that

max (_W}k n ‘/Raf/y]?k) <_u, VReE[R., R (E.8)
J.K)€E
GO£(er D)

First note that since y jzk is always positive and increases as k increases, we have either

(G R)#(e 1) J#Je

GEN? (_””izk + W) = (—Wiz + \/W) : (E.10)
Js

(J:R)#(e 1)

or

To handle the case (E.9), let us introduce

fi(n, R =—nyj; +/Ra3 /v (E.11)

Since a? / yjzl <1 for any j, and yj21 approaches +00 as j increases, we see that for any fixed
n in (0, 1), we can make f;(n, R) as negative as needed by taking j sufficiently large. More
precisely, for any M > 0, and R; > R, there exists an index J such that

fin,R) = —M, (E.12)
for all j > J and R in [R, R1]. This implies that there exists J* > 0 such that the maximum in

(E.9) is achieved at some j < J* for all R in [R., R], where R| > R, is arbitrarily fixed. We
consider then the following set of functions

Fin, Ry ==y +Rag/vh,  jell, . T\ {e). (E.13)

From now on, both cases (E.9) and (E.10) can be handled in the same way. We thus introduce
also
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g(n. R)=—ny},+ [Re? /v2,. (E.14)

Note that f;(1, R) = /S;FI(R) and g(1,R) = ﬂZZ(R); cf. (5.9). Then, by the definition of
R., we know that f;(1, R.) <0 for all such j’s and g(1, R.) < 0 as well. Since f; and g are
continuous in both 1 and R, and we are considering only finitely many such functions, there
exists n in (0, 1), R* > R, and p > O for which

g, R) <—p and fi(n,R) <—p, jef{l,...,J"}\{jc}, R€[Rc, R"]. (E.15)

It follows then

Ro?
—nyjy+/Rad /y?, < —p and max —nvd + y_zf <—u, VRE€[R., R*]. (E.16)
Jje :

J#ic i
The desired estimate (E.8) follows then from (E.16), taking into consideration (E.9) and (E.10).

It follows then from (E.4), (E.5) and (E.8) that

(—nA+ PR)ely, eh) < —plled .
+ + + 12 (E.17)
((=nA+ Prej;, Aejy) < —ullVe |~

which holds for all R in [R;, R*] and (j, k) # (jc, 1).

To summarize, based on the estimates in (E.1), (E.7), and (E.17), by choosing n in (0, 1),
w >0 and R* > R, for which (E.17) holds, and letting § = min{nm?2, u, nylzl}, the condition
(4.2) holds for all us in D(A) N Hg and R in [R., R*]. The proof is now complete. 0
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