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Abstract

A central challenge in physics is to describe non-equilibrium systems driven by randomness, such as a 
randomly growing interface, or fluids subject to random fluctuations that account e.g. for local stresses and 
heat fluxes in the fluid which are not related to the velocity and temperature gradients. For deterministic 
systems with infinitely many degrees of freedom, normal form and center manifold theory have shown 
a prodigious efficiency to often completely characterize how the onset of linear instability translates into 
the emergence of nonlinear patterns, associated with genuine physical regimes. However, in presence of 
random fluctuations, the underlying reduction principle to the center manifold is seriously challenged due 
to large excursions caused by the noise, and the approach needs to be revisited.

In this study, we present an alternative framework to cope with these difficulties exploiting the approxi-
mation theory of stochastic invariant manifolds, on one hand, and energy estimates measuring the defect of 
parameterization of the high-modes, on the other. To operate for fluid problems subject to stochastic stir-
ring forces, these error estimates are derived under assumptions regarding dissipation effects brought by the 
high-modes in order to suitably counterbalance the loss of regularity due to the nonlinear terms. As a result, 
the approach enables us to predict, from reduced equations of the stochastic fluid problem, the occurrence 
in large probability of a stochastic analogue to the pitchfork bifurcation, as long as the noise’s intensity and 
the eigenvalue’s magnitude of the mildly unstable mode scale accordingly.
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In the case of SPDEs forced by a multiplicative noise in the orthogonal subspace of e.g. its mildly unstable 
mode, our parameterization formulas show that the noise gets transmitted to this mode via non-Markovian 
coefficients, and that the reduced equation is only stochastically driven by the latter. These coefficients 
depend explicitly on the noise path’s history, and their memory content is self-consistently determined by 
the intensity of the random force and its interaction through the SPDE’s nonlinear terms. Applications to a 
stochastic Rayleigh-Bénard problem are detailed, for which conditions for a stochastic pitchfork bifurcation 
(in large probability) to occur, are clarified.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The development of instability in a physical system may often be described in terms of the 
temporal evolution of the amplitudes of certain normal modes, namely those that are mildly 
unstable and those that are only slightly damped in linear theory. When the number of these 
nearly marginal modes is finite, their amplitudes are governed by ordinary differential equations 
(ODEs) in which the growth rates of the linear theory have been renormalized by nonlinear terms 
[29,20]. Intuitively, the reason for this reduction is a simple separation of time scales. Modes that 
have just crossed the imaginary axis have a small real part and are evolving on long time scales, 
all the other fast modes rapidly adapting themselves to the slow modes.

For deterministic dynamical physical systems with infinitely many degrees of freedom (d.o.f.), 
normal form and center manifold theory [38,52] along with their recent extension [53] have 
shown a prodigious efficiency to often completely characterize how the onset of linear instability 
translates into the emergence of nonlinear patterns, associated with genuine physical regimes. 
To do so, the theory along with its recent advances identify, for a given problem, a nonlinear 
reduction mapping that permits to reduce the many d.o.f. to a few essential variables (governed 
by reduced ODEs), able to predict in turn the dynamical transitions [53].

However, in presence of random fluctuations, the reduced ODEs produced by these determin-
istic theories are no longer valid objects to account for phenomena pertaining to the stochastic 
realm such as noise-induced transitions. In the stochastic context, the reduction mapping needs 
indeed to account for these random fluctuations. This mapping consists of e.g. a parameterization 
of the stable modes which becomes then stochastic due to noise. The existence of such reduction 
mappings has been abundantly studied under various settings for stochastic partial differential 
equations (SPDEs) [4,33,31,32], but the question of their efficient calculation or approximation 
has been much less addressed, mainly in some special cases [8] or by means of deterministic 
(and thus incomplete) formulas [14].

Only in the recent years, the derivation of general, stochastic, approximation formulas to the 
leading-order (in the nonlinear terms) of stochastic invariant manifolds (IMs) appeared in [26]
for a broad class of SPDEs subject to a multiplicative noise. Yet, in spite of their relevance 
demonstrated through numerical examples [27], the usage of such formulas to derive reduced 
stochastic differential equations (SDEs) aimed at predicting dynamical transitions in SPDEs, 
calls for more understanding.1

Indeed, what makes the success of center/unstable manifold theory to describe bifurcations for 
PDEs—the so-called reduction principle [29,62]—from low-dimensional reduced systems fails 
to operate in the stochastic realm, calling for a new approach to apprehend bifurcation analysis in 
presence of noise. The reason is that a breakdown of the reduction principle to the center/unstable 
manifold now takes place in the stochastic setting, and an exponential slaving of the stable modes 
onto the unstable ones is no longer valid, due to large excursions caused by the (white) noise, even 
when its intensity is small. At a technical level, the exponential attraction by invariant manifolds 
that holds in presence of a sufficiently large spectral gap and that extends to SPDEs with globally 
Lipschitz nonlinearity [26, Corollary 4.3], is violated in the stochastic setting for SPDEs with 
nonlinearities that are only locally Lipschitz, such as encountered in stochastic fluid problems. 
In these cases, the solution is not guaranteed to stay within the neighborhood over which the 
local stochastic IMs exist, due to noise-induced deviations.

1 In fact, the bifurcation analysis for SPDEs is available only for a few particular cases [25,65]. Even for stochastic 
ODEs, the question of how to describe a stochastic bifurcation is not completely settled; see e.g. [2, Chap. 9] and [16].
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In this article we bring justification regarding the usage of reduced SDEs built upon stochastic 
IMs and their approximations formulas based on [26] to predict dynamical transitions in SPDEs, 
via estimates measuring the error between the solutions to the reduced SDEs and those of the 
original SPDE. More generally, the goal of this article is twofold: (i) To advance the fundamental 
understanding for the efficient derivation of reduced models able to describe spatiotemporal pat-
tern formations and their transitions subject to random fluctuations in non-equilibrium systems 
described by SPDEs, and (ii) to derive error estimates relevant for the analysis of the spatio-
temporal transitions, in a random environment.

Other approaches have shown their usefulness to derive low-dimensional reduced systems 
able to capture the essential macroscopic dynamics of SPDEs. Examples include the averaging 
method [17,44,56,66], the amplitude equation approach [6,12,5,8], and approaches rooted in the 
singular perturbation theory of Markov processes [50,47].

However, it remains challenging to derive reduced systems and rigorous error estimates to 
predict dynamical transitions in e.g. stochastic fluid problems involving typically quadratic non-
linearities. For such problems, the main issue lies in the fact that the nonlinearity does not act only 
on the dominant modes but also influences them through non-dominant modes [11,8], and thus 
makes central the way the noise interacts with the nonlinear dynamics, either forcing the domi-
nant or the neglected modes, or both. This is where, as explained below, the stochastic reduction 
mappings provided by the approximation theory of stochastic IMs [26] show their usefulness. As 
we will see, these mappings parameterize the neglected variables beyond Ornstein-Uhlenbeck 
approximations (cf. [7,50,13]) by producing essential variables able to predict dynamical transi-
tions (with large probability) for a broad class of SPDEs with quadratic nonlinearities (such as 
arising in fluid problems), regardless of whether the noise acts only on the resolved or unresolved 
scales, or both (cf. [8]).

The main difficulty to perform an efficient stochastic reduction for SPDEs is thus to track 
properly the noise-path dependence which in many situations requires to be properly parameter-
ized to render account for noise-induced phenomena and other interactions between the noise and 
nonlinear dynamics. This is the purpose of Theorem 2.1 recalled below that summarizes from 
[26] general formulas of stochastic reduction mappings based on the approximation results of 
[26, Thm. 6.1 & Cor. 6.1]. These results entail that the corresponding stochastic reduction map-
pings not only provide the leading-order approximation of the underlying stochastic IM but also 
the tracking of its time-stochastic dependence via explicit random coefficients; see (2.17) below. 
As already pointed out in [27, Chap. 5] and more substantiated here, these coefficients are non-
Markovian as dependent explicitly on the history of the noise path, conveying thus exogenous
memory effects [40,37] rooted in the (very) small-scale fluctuations (noise).2

Mathematically, these coefficients are shown to correspond to stationary solutions of auxiliary 
SDEs whose drift part depends on the distance to certain resonances between the critical eigen-
values (losing stability) and the stable part of the spectrum; see (2.19) below. Such a distance to 
resonance controls in turns the decay of temporal correlations of these coefficients, as well as 
their statistics, allowing for non-Gaussian ones—unlike Ornstein-Uhlenbeck processes encoun-

2 These exogenous memory effects are to be contrasted with the endogenous ones encountered in the reduction of 
nonlinear autonomous systems as predicted by the Mori-Zwanzig (MZ) theory; see e.g. [19,36,67,35,59]. The former are 
functionals of the “past” of the noise and emerge in the reduction of stochastic systems by means of stochastic IMs [27]
whereas the latter are functionals of the past of the resolved variables that arise in the reduction of autonomous systems 
when the validity of (deterministic) IMs or, more generally, of the conditional expectation alone in the MZ expansion, 
breaks down; see [61,22–24].
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tered in other reduction methods [7,50,13]—with tails all the more pronounced than their ratio 
with the noise amplitude approaches unity; see Appendix A.

As already shown through numerical examples in [27], these non-Markovian coefficients con-
stitute in fact the key ingredients for the reduced SDEs to achieve good performance, and can be 
seen as part of the essential variables produced by the underlying stochastic reduction mapping. 
For instance, in the case when the noise acts only on the (unresolved) stable modes, such a re-
duction mapping shows that the noise gets transmitted to the (resolved) unstable modes via these 
non-Markovian coefficients, and the reduced equation is only stochastically driven by the latter. 
In contrast, any deterministic parameterization of the unresolved modes will lead in this case to a 
deterministic ODE system, which is insufficient to capture any noise-induced phenomena in the 
original system. In Sec. 2.3 below, we illustrate on a simple two-dimensional system, the ability 
to capture its stochastic dynamics and its large excursions from such non-Markovian reduced 
equations.

In this article, we go beyond these numerical examples and show that these non-Markovian co-
efficients play furthermore a key role to conduct a rigorous error analysis thanks to the auxiliary 
SDEs they satisfy. Our focus is on SPDEs involving energy-preserving quadratic nonlinearities 
motivated by physical problems such as the prediction and characterization of pattern formation 
arising in fluid problems after the onset of instability and subject to noise disturbance. In order 
to circumscribe the difficulties while conveying the main ideas, we place ourselves in the case 
of a supercritical pitchfork bifurcation, assuming that exactly one eigenmode loses its stability 
at the critical parameter value. An attentive reader will notice that the framework laid out here is 
actually not limited to the pitchfork scenario and adaptable to many other bifurcation/transition 
scenarios, including the Hopf bifurcation and other attractor bifurcations.

At the basis of our error estimates is a “Markovianisation” of the one-dimensional non-
Markovian reduced SDE governing the local dynamics in the case of a pitchfork bifurcation 
scenario; cf. (3.8) and (3.19) below. In this reformulation, the dynamical equation satisfied by 
the stochastic parameterization �(t) is obtained by Itô’s formula, which is made explicit thanks 
to the aforementioned auxiliary SDEs determining the random coefficients involved in �; see 
again (2.19). By recasting the original SPDE into a system of two coupled equations satisfied 
by the unstable and stable components of the SPDE solution (see (3.23)), the estimates become 
facilitated, exploiting in particular the dynamical equation satisfied by �(t) (in (3.19)) aimed at 
parameterizing the stable component of the SPDE solution.

The error estimates assessing the quality of our non-Markovian reduced SDEs to predict 
dynamical transitions in SPDEs, are then organized through Secns. 3 and 4 as follows. After 
establishing in Sec. 3.2 a suitable a priori bound for the solution (X(t), �(t)) of the Markovian-
ized reduced system (3.19), we derive in Sec. 3.3 a residual error estimate for the non-Markovian 
reduced SDE (3.8); see Lemma 3.1 and Theorem 3.1 below. This residual error estimate gives—
with large probability and over long time intervals—the error made by (X(t), �(t)) in satisfying 
the SPDE model (3.23). Our result shows that this error is all the smaller as the eigenvalue ε
associated with the unstable mode is small and the noise intensity scales as 

√
ε.

We then derive in Sec. 4 rigorous error estimates between the solutions of the reduced systems 
and those of the original SPDE emanating from small initial data. The result presented in The-
orem 4.1 shows that the same bounds controlling the residual error in Theorem 3.1 control also 
in large probability and over long time intervals, the error between the solutions of the reduced 
systems and those of the SPDE.

The derivation of this error estimate requires suitable a priori bounds of the SPDE solution 
itself. As explained in Sec. 4.1 below, the main difficulty in deriving these a priori bounds com-
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pared to those for (X(t), �(t)) lies in the infinite-dimensional character of the projection onto 
the stable subspace of the SPDE solution to which applies the loss of regularity via the nonlin-
earity B , requiring de facto new estimates. In contrast, �(t) is of finite-dimensional range due 
to our working assumptions; see condition (3.4) below. This latter condition is typically encoun-
tered for fluid problems defined e.g. on rectangular spatial domains and is made here to avoid 
unnecessary technicalities. We show that with the addition of mild dissipative assumptions on 
the linear operator Lλ, one can deal with more general situations and counterbalance the loss of 
regularity induced by the nonlinear term B to derive thereof the required a priori bounds on the 
SPDE solution; see Conditions (L1)-(L2) and Remark 4.1 below.

Equipped with these error estimates, the non-Markovian reduced SDE (3.8) provides thus a 
natural normal form to describe in large probability the notion of a stochastic pitchfork bifurca-
tion for SPDEs. Indeed, thanks to the error estimates of Theorem 4.1, the non-Markovian reduced 
SDEs derived from the approximation formulas of stochastic IMs given in Theorem 2.1, provide 
an effective way to predict stochastic pitchfork bifurcations (in large probability) for a broad 
class of SPDEs issued from fluid dynamics, as long as the noise intensity and the eigenvalue’s 
magnitude of the mildly unstable mode, scale accordingly.

As an application, we illustrate in Sec. 5 below that our framework is able to predict a stochas-
tic pitchfork bifurcation in a stochastic Rayleigh-Bénard model, in terms of natural conditions 
involving the distance of the Rayleigh number to its first critical value; see Theorem 5.1. The ar-
ticle is then concluded by Sec. 6 with a discussion about future developments of the framework 
introduced here.

2. Reduced-order dynamics of stochastic PDEs near the onset of instability

2.1. SPDEs driven by multiplicative noise

In [26,27] was undertaken the endeavor of deriving general, analytic formulas for the approx-
imation of (local) stochastic invariant manifolds of the following class of nonlinear stochastic 
evolution equations posed on a Hilbert space H and driven by a multiplicative noise according 
to

du = (
Lλu + F(u)

)
dt + σu ◦ dWt, u ∈ H, (2.1)

where σu ◦ dWt means that this stochastic term (of magnitude σ > 0) is considered in the 
Stratonovich sense. Here Wt denotes a standard Brownian motion whose probability space is 
denoted by �, and whose probability law is denoted by P . A noise’s realization, also called a 
noise path will be thus labeled by an element ω in �. This multiplicative term is such that the 
perturbation “scales” with the solution, such that the total energy is e.g. (formally) P -almost 
surely preserved in the case of a nonlinearity F that is energy preserving.

Such equations result from recasting an SPDE with its boundary conditions, in which the 
unknown u evolves in a functional space, taken to be here a Hilbert space H . The operator Lλ

represents a linear differential operator (parameterized by a scalar λ) while F is a nonlinear 
operator that accounts for the nonlinear terms. Both of these operators imply loss of regularity 
when applied to a function u in H . To have a consistent existence theory of solutions and their 
stochastic invariant manifolds for SPDEs requires to take into account these loss of regularity 
effects.
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To do so, we place ourselves in the functional setting of sectorial operators and analytic semi-
groups [38,55]. We assume that

Lλ = −A + Pλ,

where A is sectorial with domain D(A) ⊂ H which is compactly and densely embedded in H . 
We assume also that −A is stable, while Pλ is a low-order perturbation of A, i.e. Pλ : D(Aα) →
H is a family of bounded linear operators depending continuously on λ, for some α in [0, 1); see 
[38, Sec. 1.4] for definitions of fractional power of an operator and the function space D(Aα). 
In practice, the choice of α should match the loss of regularity effects caused by the nonlinear 
terms so that

F : D(Aα) → H,

is a well-defined Cp-smooth mapping that satisfies F(0) = 0, DF(0) = 0 (tangency condition), 
and

F(u) = Fk(u, · · · , u) + O(‖u‖k+1
α ), (2.2)

with p > k ≥ 2, and Fk denoting the leading-order operator (on D(Aα)) in the Taylor expansion 
of F , near the origin. A broad class of stochastic equations that arise in many branches of physics 
can be recasted into this abstract functional framework. Such equations driven by (possibly spa-
tially inhomogeneous) multiplicative noise are met in various contexts such as in turbulence 
theory (intermittency phenomena) [10], ocean dynamics [58], climate dynamics [45,49,30,1,3], 
non-equilibrium phase transitions [18,39,51,60], statistical physics [57] or population dynamics 
[41,28].

For later usage, we denote by V , the function space D(Aα). In particular D(A) ⊂ V ⊂ H . The 
norm of H is denoted by ‖ · ‖, while the norm of V is denoted by ‖ · ‖V . Under mild conditions 
often met in applications about the spectrum of Lλ (in particular near the instability onset, [26, 
Secns. 3.3 and 6.2]), one can then prove that for any initial condition u0 in V (sufficiently small),3

emanates a (unique) solution to Eq. (2.1) in the sense that v = e−Z(t,ω)u is the unique classical 
solution of

dv

dt
= Lλv + Z(t,ω)v + e−Z(t,ω)F (eZ(t,ω)v), v(0) = e−Z(0,ω)u0, (2.3)

that lies, P -a.s., in

C((0, τ );D(A)) ∩ C([0, τ );V ) ∩ C1((0, τ );H), (2.4)

where τ is a stopping time4 and Z(t, ω) denotes the Ornstein-Uhlenbeck (OU) process, stationary 
solution of the scalar Langevin equation

3 The existence and uniqueness result proved in [26] for globally Lipschitz nonlinearity, applies to the case of a standard 
cutoff argument of the nonlinearity ensures existence and uniqueness for sufficiently small initial data.

4 Defined, loosely speaking, as the (random) minimum time after which v(t, ω) exits the neighborhood of the origin 
over which the required estimates apply.
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dr = −r dt + σ dWt(ω). (2.5)

Furthermore, u depends continuously on λ and on u0, and is a stochastic H -valued adapted 
process.

Note that to derive (2.3) from (2.1), we need to note that, by using the Itô’s formula,

de−Z(t,ω) = (Z(t,ω)e−Z(t,ω) + σ 2

2
e−Z(t,ω))dt − σe−Z(t,ω) dWt

= Z(t,ω)e−Z(t,ω) dt − σe−Z(t,ω) ◦ dWt,

where the last equality follows from the conversion between Itô and Stratonovich integrals. On 
the other hand,

dv = d(e−Z(t,ω)u) = u ◦ de−Z(t,ω) + e−Z(t,ω) ◦ du,

and (2.3) results from (2.1), after simplification.
Note that the usage of the OU process Z(t, ω) through the transformation v = e−Z(t,ω)u is 

here motivated by the fact that the PDE with random coefficients (2.3) enjoys a better temporal 
regularity than the SPDE (2.1) due to the Hölder regularity of the OU process [26, Lemma 3.1], 
which allows in turn for applying standard existence and uniqueness results from the theory of 
non-autonomous PDEs; see [38, Theorem 3.3.3 and Corollary 3.5.3]. We refer to [26, Proposition 
3.1] and [26, Appendix A], for more details.

In this article, we are concerned with the study of bifurcations for the class of problems that 
can be recast into the abstract formulation of Eq. (2.1). In other words, we are interested in 
describing how linear instability translates to nonlinear dynamics, in presence of multiplicative 
noise. We are in particular concerned with the dynamical reduction problem near the onset of 
instability, i.e. to describe by a low-dimensional object the SPDE dynamics in case of e.g. the 
existence of a critical value λc at which m eigenvalues βj (λ) of Lλ (counting algebraic multi-
plicity) cross the imaginary axis. In this case, it is known, under the assumptions recalled above, 
that a finite-dimensional Cp-smooth stochastic (local) invariant manifold, Mλ(ω), exists near 
the origin [26, Corollary 5.1 and Prop. 6.1]. This manifold is obtained as the graph of a random 
mapping, hλ over the space Hc of eigenmodes ej losing stability. Inspired by the deterministic 
theory, such manifolds are natural objects to consider for reduction of SPDEs near the instability 
onset. In [26,27], the approximation problem of such manifolds was thus investigated. Theo-
rem 2.1 below gives a summary of the main approximation results derived in [26, Theorem 6.1]
(see also [26, Corollary 6.1]) which allows, in practice, for deriving explicit reduced systems.

However, due to noise, intrinsic difficulties arise and the prediction of transitions for Stochas-
tic PDEs, based on such reduced systems, requires a particular care. Indeed, what makes the suc-
cess of center/unstable manifold theory to describe bifurcations for PDEs from low-dimensional 
reduced systems fails to operate in the stochastic realm, calling for a new approach to appre-
hend bifurcation analysis in presence of noise. The reason is that a breakdown of the reduction 
principle to the center/unstable manifold now takes place, and exponential slaving of the stable 
modes onto the unstable ones is no longer valid, due to large excursions caused by the (white) 
noise, even when its intensity is small. We come back to this issue in Sec. 2.3 below and the later 
sections (Secns. 3 and 4) about the error estimates. Next we recall the approximation formulas 
that play a key role in the derivation of these error estimates.
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2.2. Leading-order approximation of stochastic invariant manifolds, and non-Markovian terms

Note that Lλ has a compact resolvent by recalling that D(A) is compactly and densely embed-
ded in H [34, Prop. II.4.25]. As a consequence, since Lλ : D(A) → H is a closed operator due to 
the sectorial property of −Lλ, we have that for each λ, the spectrum of Lλ, σ(Lλ), consists only 
of isolated eigenvalues with finite algebraic multiplicities; see [43, Thm. III-6.29] (see also [34, 
Corollary IV.1.19]). This spectral property combined with the sectorial property of −Lλ implies 
that there are at most finitely many eigenvalues with a given real part. The sectorial property of 
−Lλ also implies that the real part of the spectrum, Reσ(Lλ), is bounded above; see also [34, 
Thm. II.4.18].

These two properties about Reσ(Lλ) allow us in turn to label elements in σ(Lλ) according 
to the lexicographical order. According to this rearrangement, we can label the eigenvalues by a 
single positive integer n, so that

σ(Lλ) = {βn(λ) | n ∈ N∗}, (2.6)

with, for any 1 ≤ n < n′, either

Reβn(λ) > Reβn′(λ), (2.7)

or

Reβn(λ) = Reβn′(λ), and Imβn(λ) ≥ Imβn′(λ). (2.8)

In this convention, an eigenvalue of algebraic multiplicity m, is repeated m times. Hereafter, this 
rearrangement is mainly used for simplifying the notations of some theoretical developments, 
whereas the labeling with wavenumbers is often restored when dealing with applications; see 
Sec. 5 below.

As already mentioned, we are concerned with describing how linear instabilities translate to 
the nonlinear dynamics, in presence of multiplicative noise. To do so, the onset of instability is 
described in terms of the principle of exchange of stabilities (PES) [52], concerned with the loss 
of stability of the basic steady state. More precisely, the PES describes situations for which the 
spectrum of Lλ experiences the following change at a critical parameter λc:

Reβj (λ)

⎧⎪⎨⎪⎩
< 0 if λ < λc,

= 0 if λ = λc,

> 0 if λ > λc,

1 ≤ j ≤ m,

Reβj (λc) < 0, j ≥ m + 1,

(2.9)

for some m > 0, and for λ in some neighborhood � of λc . To this PES condition (2.9) is associ-
ated the following decomposition of σ(Lλ):

σc(Lλ) = {βj (λ) | j = 1, 2, · · · ,m},
σ (L ) = {β (λ) | j = m + 1, m + 2, · · · }. (2.10)

s λ j
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The PES condition prevents eigenvalues from σs(Lλ) to cross the imaginary axis as λ varies 
in �. Hence, no eigenvalues other than those of σc(Lλ) change sign in �. Furthermore, the PES 
condition implies the following uniform spectral gap by reducing � accordingly [26, Lemma 
6.1],

0 > 2kηc > ηs, (2.11)

where k is the leading order of F (see (2.2)), and

ηc = inf
λ∈�

inf
j=1,··· ,m{Re(βj (λ))}, ηs = sup

λ∈�

sup
j≥m+1

{Re(βj (λ))}.

Such a uniform spectral gap condition is required for the approximation formulas of stochastic 
invariant manifolds recalled in Theorem 2.1 below; see [26, Theorem 6.1] and [26, Corollary 6.1]. 
It also implies (exponential) dichotomy estimates (see [26, Eqns. (3.24a,b,c)]) to be satisfied by 
the semigroup generated by Lλ and that are key to ensure the existence of stochastic invariant 
manifolds (see [26, Appendix B]) associated with the m modes losing their stability according to 
(2.9).

To these modes, we associate the reduced state space, Hc, given by

Hc = span{e1, · · · , em}, (2.12)

while a mode en with n ≥ m + 1 denotes a stable mode. In what follows, the indices j1, · · · , jk

correspond to the m critical wavenumbers losing stability (allowing repetition) at λ = λc. We 
finally introduce the notation

(k,βc(λ)) =
k∑


=1

βj

(λ), (2.13)

with k denoting the k-tuple, (1, · · · , 1). The projector onto the subspace Hs (resp. Hc) spanned 
by the stable modes (resp. given by (2.12)) is denoted by �s (resp. �c). The inner product in 
H is denoted by 〈·, ·〉. We have then the following stochastic invariant manifold approximation 
theorem which lies at the core of our reduction approach near the onset of instability for non-
equilibrium systems subject to random fluctuations.

Theorem 2.1. Assume that F and Lλ satisfy the assumptions recalled above, and that the PES 
condition (2.9) is satisfied. Then for each λ in a neighborhood � of λc, Eq. (2.1) admits a 
stochastic (local) invariant manifold, Mλ

ω = graph(hλ
ω), with hλ

ω that maps Hc into the regular 
space D(Aα), for every ω in �.

The mapping hλ
ω characterizing Mλ

ω is a time-dependent stochastic mapping which is approx-
imated by another such mapping �λ

ω satisfying for any ε > 0,

‖hλ
ω(X, t) − �λ

ω(X, t)‖V ≤ ε‖X‖k, ω ∈ �, t ∈R, (2.14)

as long as X lies in a neighborhood Nε of the origin in Hc spanned by the m eigenmodes ej

losing their stability (see (2.12)), as lambda crosses λc.
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The mapping �λ
ω in (2.14) is given explicitly by the following random Lyapunov-Perron inte-

gral:

�λ
ω(X, t) =

0∫
−∞

eσ(k−1)Wt,s (ω)Ide−sLλPsFk(e
sLλX)ds, (2.15)

with Wt,s(ω) = Wt+s(ω) − Wt(ω).
This mapping is well defined if (k, βc(λ)) > βn(λ) for n ≥ m + 1 and possesses the following 

expansion:

�λ
ω(X, t) =

∑
n≥m+1

�n,λ
ω (X, t)en, X ∈ Hc, ω ∈ �. (2.16)

Here

�n,λ
ω (X, t) =

∑
(j1,··· ,jk)

F n
j1···jk

M
n,λ
j1···jk

(t,ω)Xj1 · · ·Xjk
, (2.17)

where 1 ≤ j1, · · · , jk ≤ m, Xj = 〈X, ej 〉, and the Fn
j1···jk

are coefficients accounting for the n-th 
component of the nonlinear interactions (through the leading-order term Fk) between the low 
modes ej1 , · · · , ejk

(in Hc), namely:

Fn
j1···jk

= 〈Fk(ej1, · · · , ejk
), e∗

n〉, 1 ≤ j1, · · · , jk ≤ m, (2.18)

where the e∗
n denote the eigenmodes of the adjoint operator of Lλ.

The Mn,λ
j1···jk

-terms are path-dependent coefficients making explicit the (t, ω)-dependence of 
�λ

ω, which are obtained as stationary solutions of the auxiliary scalar SDE:

dM =
(

1 −
(
(k,βc(λ)) − βn(λ)

)
M
)

dt − σ(k − 1)M ◦ dWt. (2.19)

This theorem is a reformulation of [26, Proposition 6.1 and Theorem 6.1] whose proofs can 
be found in [26, Section 6.4]. Note that although proved for Lλ self-adjoint, the conclusions of 
these results extend to the case Lλ diagonalizable in C. We emphasize that such approximation 
results have been also extended in [26, Corollary 7.1] to situations in which stable modes are 
included in the reduced state space which has important consequences for certain applications 
requiring higher-dimensional reduced state spaces to ensure better approximation of the SPDE 
dynamics as previously illustrated in [27, Chapter 6] in the context of capturing by reduced 
equations noise-induced large excursions.

The above theorem provides via the coefficients of �λ
ω(X, t) an explicit tracking of the time-

stochastic dependence of the (unknown) random mapping hλ
ω(X, t). Prior works proposed de-

terministic approximation formulas for hλ
ω(X, t) in the case F(u) = B(u, u) [14], or F(u) = up

(both with error O(‖X‖)) [15]; see also [27, Section 4.1]. However, such deterministic approxi-
mation formulas are of limited virtues for applications; see e.g. example (2.30).
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Instead, the path-dependent coefficients Mn,λ
j1···jk

(simply referred to as M-terms hereafter), 
depend on the past of the noise, when, for λ in a neighborhood of λc, the following non-resonance 
conditions are satisfied

(
Fn

j1···jk
�= 0

)
=⇒

(
Re (k,βc(λ)) > Reβn(λ)

)
, 1 ≤ j1, · · · , jk ≤ m, n ≥ m + 1. (NR)

Under such an (NR)-condition, the M-terms are indeed given by

M
n,λ
j1···jk

(t,ω) =
0∫

−∞
e
(
(k,βc(λ))−βn(λ)

)
s+σ(k−1)Wt,s (ω)ds, (2.20)

with Wt,s(ω) = Wt+s(ω) − Wt(ω). Note that due to the NR-condition, the integral in (2.20) is 
well defined almost surely, since the Brownian motion Wt satisfies the sublinear growth condition 
limt→±∞ Wt/t = 0, almost surely (see [26, Lemma 3.1]). Finally, note that the PES condition 
implies that the NR-condition is satisfied for λ in neighborhood of λc, as 

∑k

=1 Reβj


(λ) >
kηc > 2kηc > ηs ≥ Reβn(λ) due to (2.11).

The exponential decaying integrand in (2.20) depends on the distance, (k, βc(λ)) − βn(λ), 

between the 

(k)︷ ︸︸ ︷
(1 : · · · : 1)-resonance made up from critical eigenvalues, and the stable eigenvalue 

βn(λ). Such a distance to resonance controls in turns the decay of temporal correlations of the 
M-terms, provided that the noise intensity, σ , lies in some admissible range; see Lemma (A.1)
in Appendix A. As a result, these terms exhibit decay of correlations of a “reddish” nature, 
although allowing for non-Gaussian statistics with heavy tails all the more pronounced than 
σ/
√

(k,βc(λ)) − βn(λ) is close to 1 from below (in the case of real eigenvalues); see Ap-
pendix A.2.

The M-coefficients are thus non-Markovian and convey exogenous memory effects in the 
sense of [40,37]. It is worthwhile noting that the “noise bath” is essential for these coeffi-
cients to exhibit decay of correlations, the M-terms being reduced to simply the constant term 
((k, βc(λ)) − βn(λ))−1, when σ = 0, recovering standard approximations formulas of (deter-
ministic) invariant manifolds; see [23, Theorem 2].

These non-Markovian terms are new ingredients produced by the interactions between 
the noise with the nonlinear effects. The reduced systems built from the corresponding non-
Markovian parameterization, �λ

ω(X, t) given by Theorem 2.1, are thus, in general, non-
Markovian SDEs. In the case where F(u) is a quadratic nonlinearity, B(u, u), such as arising in 
fluid problems (see Secns. 3 and 4 below), such a non-Markovian reduced SDE takes the form

dX =
(

�cLλX + �c

(
B(X,X)+B(�(X, t),X) + B(X,�(X, t))

+ B(�(X, t),�(X, t))
))

dt + σX ◦ dWt, X ∈ Rm,

(2.21)

which in coordinate forms reads
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dX
 =
(

β
(λ)X
 +

(a)︷ ︸︸ ︷
m∑

i,j=1

B

ijXiXj +

(b)︷ ︸︸ ︷
m∑

p,i,j=1

∞∑
n=m+1

(B

pn + B


np)Bn
ijM

n,λ
ij (t,ω)XiXjXp

+
∞∑

n,n′=m+1

m∑
i,j=1

m∑
p,q=1

B

nn′Bn

ijB
n′
pqM

n,λ
ij (t,ω)Mn′,λ

pq (t,ω)XiXjXpXq︸ ︷︷ ︸
(c)

)
dt

+ σX
 ◦ dWt, 1 ≤ 
 ≤ m, with B

νμ = 〈B(eν, eμ), e∗


〉.

(2.22)

Here the X
 are aimed at approximating the amplitudes of the SPDE solution onto the m modes 
e
 (1 ≤ 
 ≤ m) losing stability, as λ crosses λc .

In the expansion (2.22), the (a)-terms account for self-interactions between the unstable 
modes, the (b)-terms account for cross-interactions between unstable and stable modes, and the 
(c)-terms for self-interactions between the stable modes. The non-Markovian terms appear only 
out of the two latter types of interactions.

As we will see, the M-terms are key, under certain circumstances, to appropriately track the 
fluctuations and large-excursions caused by the (white) noise, although the original SPDE is 
Markovian. This is particularly true for SPDEs forced by a multiplicative noise in the orthogonal 
subspace of e.g. its mildly unstable mode. Our parameterization formulas show that the noise 
gets transmitted to this mode via non-Markovian coefficients, and that the reduced equation is 
only stochastically driven by the latter. This situation is a special case of more general spatially 
inhomogeneous multiplicative noises, for which the remark below points out the required modi-
fications of Theorem 2.1.

Remark 2.1. Theorem 2.1 above can be extended to the case of SPDEs driven by spatially inho-
mogeneous multiplicative noise, of the form

du = (
Lλu + F(u)

)
dt + σ(u) ◦ dWt, (2.23)

where Lλ and F satisfy the assumptions of Theorem 2.1 and

σ(u) =
Nf∑
j=1

σj 〈u, e∗
j 〉ej , (2.24)

with σj ≥ 0 and Nf ≥ 1. While the proof of [26, Theorem 6.1] requires a certain care to handle 
such multiplicative noises, the same approach applies and leads to approximation formulas of 
stochastic invariant manifolds for Eq. (2.23) which are still given by (2.16)–(2.17), with the only 
difference that the M-terms are now replaced by

M
n,λ
j1···jk

(t,ω) =
0∫

−∞
e
(
(k,βc(λ))−βn(λ)

)
s+(k,σ )Wt,s (ω)ds, (2.25)

where
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(k,σ ) =
k∑


=1

σj

− σn. (2.26)

These M-terms are obtained as stationary solutions of the auxiliary scalar SDE:

dM =
(

1 −
(
(k,βc(λ)) − βn(λ)

)
M
)

dt − (k,σ )M ◦ dWt. (2.27)

Remark 2.2. It is also interesting to point out that when Theorem 2.1 is applied to (finite-
dimensional) SDE systems of the form dy = (

Ay + F(y)
)
dt + σy ◦ dWt with A being a d × d

matrix and F :Rd → Rd a sufficiently smooth function satisfying F(0) = 0 and DF(0) = 0, our 
approximation formula (2.15) coincides with the one determined by the cohomological equation 
given by [2, Eq. (8.4.9)] for the lowest-order non-trivial Hs

p0 therein. Indeed, for such SDEs, 

after performing the change of variables x = e−Z(t,ω)y, we obtain the following RDE system

dx

dt
= Ax + Z(t,ω)x + e−Z(t,ω)F (eZ(t,ω)x); (2.28)

see again (2.3). Denoting the analogue of � for this transformed RDE by � and adopting the in-
variance equation approach such as reviewed in [23, Sec. 2.2], the homological equation satisfied 
by �(t, ω) reads

d�

dt
+Dxc�(xc, t)(Acxc+Z(t,ω)xc)−(As�+Z(t,ω)�) = �ce

−Z(t,ω)Fk(e
Z(t,ω)xc), (2.29)

where k ≥ 2 denotes the lowest-order term in the Taylor expansion of F . Note that compared with 
[23, Eq. (2.27)] for the deterministic case, the above equation involves also a time-derivative term 
d�
dt

arising from the time-dependence (or noise-path dependence) nature of �.
Note that (2.29) is the same as [2, Eq. (8.4.9)] when the RDE system (2.28) is considered and 

when p therein equals the lowest order k in the Taylor expansion of F here, since at this lowest 
order the term Rc

p0(xc) in [2, Eq. (8.4.9)] simply equals �ce
−Z(t,ω)Fk(e

Z(t,ω)xc).
On one hand, the approach adopted in [2] for finite-dimensional SDEs aims to handle more 

general SDE settings when e.g. the basic reference state is more complicated than a steady state, 
by relying on the multiplicative ergodic theorem and the associated Lyapunov spectra and Os-
eledets subspaces to perform the decomposition of the stochastic flow. Extension to SPDEs using 
the Oseledets ergodic theorem has been pursued in [54].

On the other hand, the practical aspects in the general setting are still too intricate to derive 
reduced systems with easily computable coefficients even for high-dimensional SDEs (let alone 
SPDEs). Indeed, as pointed out in [2, Sec. 8.4.3] already for the application to a two-dimensional 
SDE system associated with the Duffing-van der Pol oscillator in the Pitchfork bifurcation sce-
nario, “the computational effort for these results is enormous and could only be accomplished by 
using the computer algebra program MAPLE ....”

Instead, by adopting a standard normal modes framework, although we lose the characteriza-
tion of perturbations near complicated states, we gain insights about (i) the derivation of explicit 
reduced equations based on rigorous approximation formulas (as reviewed in Theorem 2.1), and 
(ii) error estimates (see Theorem 4.1 below) for SPDEs that cover the challenging case of fluid 
problems.
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Fig. 1. Schematic of the stochastic invariant manifold approximation summarized by Theorem 2.1. The time-
dependent stochastic manifold, �λ

ω(X, t) (red curve) approximates the stochastic invariant manifold hλ
ω(X, t) (blue 

curve). For a given noise’s realization ω, the shape of the latter changes in the course of time. The approximation 
�λ

ω(X, t) is able to track these changes due to the path-dependent, non-Markovian, coefficients, Mn,λ
j1···jk (t, ω), solving 

the SDE (2.19). In this schematic, the black curve shows a solution path to the SPDE that evolves on the stochastic 
invariant manifold. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

2.3. Tracking the large-excursions through the non-Markovian M-terms

As already mentioned, although Theorem 2.1 provides an analytic approximation of the (un-
known) slaving function hλ

ω, and in particular regarding its dependence with respect to time and 
the noise path, it suffers from a technical restriction, namely that the approximation (2.14) is 
valid over a deterministic neighborhood Nε of the origin.

From an analysis viewpoint, this theorem concedes thus some taste of dissatisfaction since as 
soon as X becomes a time-dependent random variable,5 large excursions caused by the (white) 
noise are expected to take place even for small noise intensity, pushing X outside of Nε in the 
course of time and questioning de facto the validity of the approximation (2.14). This restriction 
is technical (from the proof), but even if the neighborhood would be allowed to fluctuate with 
time, still noise could drive the solutions outside of it.

Similarly, exponential attraction results of invariant manifolds that occur in presence of a suf-
ficiently large spectral gap and that extend to SPDEs with globally Lipschitz nonlinearity ([26, 
Corollary 4.3]), encounter however similar technical restrictions for SPDEs with nonlinearities 
that are only locally Lipschitz, such as for fluid problems. The current proofs do not allow indeed 
for establishing a pathwise exponential attraction of local stochastic invariant manifolds, prevent-
ing to rely on a reduction principle as in the deterministic theory [29], to analyze bifurcations. 
This important but subtle point, misled some authors in their conclusions regarding the analogue 
of a reduction principle for SPDEs; see [26, Remark 4.3]. We provide in Secns. 3 and 4 below 
error estimates accounting for large-excursions and that are furthermore relevant for stochas-
tic fluid problems, allowing in turn to make precise the use of stochastic invariant manifolds in 
bifurcation analysis of such SPDEs.

Before embarking in these error estimates, we provide below a simple example to illustrate 
these issues, and to show that the non-Markovian M-terms allow for tracking the large excursions 
caused by the noise. For this purpose, we consider the stochastic system:

5 Such as when X is a solution to non-Markovian reduced equation (2.21).
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dA = (λA + AB)dt, λ > 0

dB = (κB − A2)dt + σB ◦ dWt, κ < 0, σ > 0,
(2.30)

in which the noise forces only the equation of the stable mode, here the B-equation. This system 
arises in diverse fields, with or without stochastic forces. For instance it arises in the study of 
nonlinear crystals [57], and more recently in the study of the finite time blow-up problem for the 
3-D Navier Stokes equations [63], where such systems are used as elemental “pump gates” to 
execute transition of energy from one mode to another.

Here, we are looking for a closed equation describing the evolution of A without resolving B . 
If one adopts ideas of deterministic unstable/center-manifold reduction to seek for such a closure 
[48], we arrive using this theory at the parameterization B = −(2λ − κ)−1A2, which leads to the 
closure

Ẋ = λX − (2λ − κ)−1X3. (2.31)

This closure is here only deterministic and thus cannot capture the stochastic nature of the dy-
namics of (2.30).

We would like instead to use an explicit stochastic parameterization of B . To be of practi-
cal interest, this stochastic parameterization should be able to track the large excursions caused 
by the white noise. Application of our parameterization formulas to this particular system (see 
Remark 2.1), provides such a stochastic parameterization. The latter is given here by the non-
Markovian parameterization B = −M

2,λ
11 (t, ω)A2, with M2,λ

11 being the stationary solution of 
(see (2.27))

dM = (1 − (2λ − κ)M)dt + σM ◦ dWt, (2.32)

namely

M
2,λ
11 (t,ω) =

0∫
−∞

e(2λ−κ)s−σ(Wt+s (ω)−Ws(ω)) ds. (2.33)

The closure becomes then the following ODE with a path-dependent coefficient:

Ẋ = λX − M
2,λ
11 (t,ω)X3. (2.34)

Recall that the AB-system is forced by a noise in the orthogonal subspace of its mildly unstable 
mode. In this case, our parameterization formulas show that the noise gets transmitted to this 
mode via the non-Markovian coefficient M2,λ

11 , and that the reduced equation is only stochasti-
cally driven by the latter.

The practical efficiency of such parameterizations to track the large excursions induced by 
the white noise is illustrated in Fig. 2. The left panel shows a solution path of (2.30) displayed 
in the (A,B)-plane (black dash curve), and two time instances of the non-Markovian unstable 
manifold approximation, B = −M

2,λ
11 (t, ω)A2 (red curves). In contrast this figures shows that 

the deterministic unstable manifold (blue curve) gives only a poor approximation of the solu-
tion path’s average motion. The consequence is that, given a noise realization ω, the A- and 
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Fig. 2. Left panel: A solution path of (2.30) shown in the (A,B)-plane (black dash curve), and two time instances of the 
non-Markovian unstable manifold approximation, B = −M

2,λ
11 (t, ω)A2 (red curves). The latter is able to track the large 

excursions of the solution path, while the deterministic unstable manifold gives only a poor approximation to its average 
motion. Right, top-to-bottom panels: A- and B-time series as simulated from (2.30) (black curves), the deterministic 
closure (2.31) (blue curves), and non-Markovian closure (2.34) (red curves).

B-trajectories as simulated from (2.30) (black curves), are approximated to a good precision by 
the non-Markovian closure (2.34) (red curves), whereas the closure (2.31) based on the deter-
ministic unstable manifold is only proposing a deterministic constant approximation.

The reasons for such a successful closure by Eq. (2.34), can be worked it out on this example 
as system (2.30) possesses a natural closure which allows for providing a more intuitive “raison 
d’être” of the non-Markovian parameterization B = −M

2,λ
11 (t, ω)A2. Indeed, by integrating the 

B-equation of system (2.30), a closed form equation can be naturally derived for describing the 
evolution of B , given by the following integro-differential equation with path-dependent kernel

dA

dt
= λA −

( I (t)︷ ︸︸ ︷
t∫

−∞
eκ(t−s)+σ(Wt (ω)−Ws(ω))A2(s)ds

)
A. (2.35)

Thus the quality of approximation of the integral term in (2.35) by the non-Markovian parame-
terization B = −M

2,λ
11 (t, ω)A2 is conditioning the efficiency of the closure (2.34).

It is worthwhile noting that this non-Markovian parameterization can be obtained by integra-
tion of a backward-forward system [27, Chap. 4], which for this example, consists of approxi-
mating A(s) (for s ≤ t ) — in the integral term of (2.35) and only for this term — by the solution 
of the following backward linear equation

dA

ds

(1)

= λA(1)(s), s < t

A(1)(t) = A(t).

(2.36)
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Thus, by approximating A(s) in the integral term of (2.35), with

A(s) = eλ(s−t)A(t) + o(A(t)), (2.37)

we obtain the following equation (up to order 3),

dA

dt
= λA −

( J (t)︷ ︸︸ ︷
t∫

−∞
e(κ−2λ)(t−s)+σ(Wt (ω)−Ws(ω)) ds

)
A3,

from which we recover the closure (2.34) (see also (2.33)), by using the change of variable 
s′ = s− t in the integral term. The reader may wonder why approximating the exact closure (2.35)
by (2.34), on this particular example. The reasons are multiple, especially in terms of insights 
gleaned by this operation. First, it shows the relevance of the non-Markovian parameterization 
resulting from application of Theorem 2.1, for certain parameter regimes like that corresponding 
of Fig. 1 (for which J (t) ≈ I (t)). Second, it shows the relevance — for stochastic systems — 
of approximating a fully non-Markovian closure like (2.35) by a non-Markovian closure (2.34)
that involves only the past of the noise, the latter allowing for an efficient simulation of the path-
dependent coefficient M2,λ

11 (t, ω) in (2.33) by an SDE decoupled from the A-equation (i.e. by 
simulating (2.32)). Instead, the closure (2.35) would require to resolve the corresponding time 
integral I (t) at each time step to compute A(t), an operation that is costly numerically. This 
decoupling from the A-equation to simulate the M-term and thus J (t) approximating I (t) may 
be seen as a small advantage here due to the small size of system (2.30), but such a feature is 
highly beneficial numerically when the size of the original system gets much larger, as for fluid 
models; see Sec. 5 below.

As much as striking might be the ansatz (2.36), the non-Markovian closure (2.34) depending 
only on the past of the noise, provides thus, under certain circumstances, a good approximation of 
A(t) obtained from the closed form equation (2.35) depending furthermore on the past-history of 
A(t). The general error estimates of Secns. 3 and 4 below allow us to clarify these circumstances, 
for this particular example and beyond. In particular, they show that when λ is sufficiently small 
and the noise’s intensity σ , scales as 

√
λ, the non-Markovian closure (2.34) (depending on the 

past of the noise) provides a good approximation of the exact non-Markovian closure (2.35)
(depending not only on the past of the noise but also the past of A).

3. Modeling error estimates from reduced equations

In this section we apply the approximation formulas of Theorem 2.1 to derive general error 
estimates, establishing further legitimacy of the reduced equations that can be derived by appli-
cation of Theorem 2.1, near the onset of instability.

To simplify the presentation of the ideas, we focus on the following class of SPDE

du = (
Lλu + B(u,u)

)
dt + σu ◦ dWt, (3.1)

and place ourselves in a pitchfork bifurcation scenario when σ = 0.
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3.1. Assumptions and pitchfork scenario

Recall that, Lλ denotes a linear operator on the Hilbert space H such that Lλ = −A + Pλ, 
where A is the generator of a contraction semigroup in H , while Pλ is a low-order perturbation 
of A, i.e. Pλ : V → H is a family of bounded linear operators depending continuously on the 
parameter λ, with D(A) ⊂ V ⊂ H . Recall also that D(A) is compactly and densely embedded 
in H .

Denote the eigenelements of Lλ by {(βk(λ), ek) : k ∈ N}. To derive our error estimates, we 
assume

Condition (A1). The linear operator Lλ is self-adjoint.

Condition (A2). The principle of exchange of stabilities (PES) condition is satisfied with m = 1
in (2.10), namely there exists λc such that:

β1(λ)

⎧⎪⎨⎪⎩
< 0 if λ < λc,

= 0 if λ = λc,

> 0 if λ > λc,

βj (λc) < 0, for all j ≥ 2,

(3.2)

and all the eigenvalues βj (λ), for j ≥ 2, remain negative for λ in some interval [λc, λ∗], with 
λ∗ > λc.

Condition (A3). The nonlinear term B is a continuous bilinear map from V × V to H . Further-
more the following conditions hold:

〈B(u,u),u〉 = 0, for any u in V, (3.3)

and there exists N ≥ 1 for which

〈B(e1, e1), en〉 = 0, n > N, (3.4)

while for at least one 2 ≤ n ≤ N , 〈B(e1, e1), en〉 �= 0.

Note that if 〈B(e1, e1), en〉 = 0 for all n ≥ 2, then the manifold �λ will be identically zero 
and one needs then to consider higher-order approximation formulas; see [27].

3.2. Preparatory estimates for the pitchfork scenario

The parameterization of the modes e2 to eN is given by

�(X, t,ω) =
N∑

n=2

�n(X, t,ω)en, (3.5)

with
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�n(X, t,ω) = Bn
11M

n,λ
11 (t,ω)X2, (3.6)

where

Bn
ij = 〈B(ei , ej ), en〉. (3.7)

Here X denotes the amplitude of e1. In what follows we will omit the dependence on ω, reserving 
this explicit dependence only when necessary.

Due to (3.3), we have 〈B(e1, e1), e1〉 = 0 and the invariant manifold (IM) reduced equation, 
up to order O(X3), takes the following form

dX =
(
εX + XFc(�(X, t))

)
dt + σX ◦ dWt, (3.8)

with

Fc(v) = 〈(
B(e1, v) + B(v, e1)

)
, e1

〉
, ∀v ∈ Vs. (3.9)

Note that

XFc(�(X, t)) = X

( N∑
n=2

�n(X, t)
(
B1

1n + B1
n1

))

=
( N∑

n=2

Bn
11M

n,λ
11 (t)

(
B1

1n + B1
n1

))
X3.

(3.10)

We assume then

Condition (P). The coefficients in (3.10), satisfy for λ in [λc, λ∗], the dissipation condition

N∑
n=2

Bn
11M

n,λ
11 (t)

(
B1

1n + B1
n1

)
< 0, for all t. (3.11)

Condition (P) is a sufficient condition for the reduced equation (3.8) to experience a stochastic 
supercritical pitchfork bifurcation as ε changes sign; see Sec. 5.4 below and Appendix D.

Since Mn,λ
11 is always positive, (3.11) can be ensured if we have for all 2 ≤ n ≤ N ,

Bn
11

(
B1

1n + B1
n1

)≤ 0, (3.12)

and at least one of the inequalities in (3.12) is a strict one. In case σ = 0, such a condition is 
a sufficient condition for the deterministic reduced equation Eq. (3.8) to experience a pitchfork 
bifurcation [29,52].

We turn now to the derivation of an equation satisfied by � which is key in our estimates 
presented below. From (3.6), we obtain by using the Stratonovich form of Itô’s formula [46]:

d�n = Bn X2 ◦ dM
n,λ + 2Bn M

n,λ
X ◦ dX. (3.13)
11 11 11 11
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Since here (k, βc(λ)) = 2ε and k = 2 in (2.19), we have that Mn,λ
11 satisfies

dM = (
1 − (

2ε − βn(λ)
)
M
)

dt − σM ◦ dWt. (3.14)

Using (3.14) and (3.8) in (3.13), we get after simplification that

d�n = (
βn(λ)�n + Bn

11X
2 + 2�nFc(�(X, t))

)
dt + σ�n ◦ dWt. (3.15)

Then, by (3.5) and (3.15), the equation satisfied by � is:

d� =
(
Ls

λ� + X2Bs
11 + 2�Fc(�(X, t))

)
dt + σ� ◦ dWt, (3.16)

where Ls
λ = �sLλ and we have used

N∑
n=2

Bn
11X

2en = X2�sB(e1, e1), (3.17)

which holds thanks to (3.4), and we have introduced

Bs
11 = �sB(e1, e1). (3.18)

To summarize, we get from (3.8) and (3.16) that (X, �) satisfy the following system:

dX =
(
εX + XFc(�(X, t))

)
dt + σX ◦ dWt,

d� =
(
Ls

λ� + X2Bs
11 + 2�Fc(�(X, t))

)
dt + σ� ◦ dWt.

(3.19)

We have then the following lemma, whose proof is provided in Appendix B.

Lemma 3.1 (A priori estimates for X and �). Assume that Condition (P) holds. Consider the 
system (3.19) for which the initial condition (X(0), �(0, ω)) satisfies, for any ω in �,

X(0) = X0,

�(0,ω) =
N∑

n=2

(
Bn

11M
n,λ
11 (0,ω)X2

0

)
en,

(3.20)

where N is the integer that appears in (3.4).
Assume furthermore that Conditions (A1), (A2), and (A3) hold, with β1(λ) = ε in (A2). As-

sume finally that σ = √
ε and that

|X0| ∼ √
ε. (3.21)

Then, for any given T > 0 and any χ in (0, 1), there exists a constant C > 0 depending on χ but 
independent of ε, for which the following estimate holds:
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P

(
sup

[0,T /ε]
|X(t)| ≤ C

√
ε and sup

[0,T /ε]
‖�(t)‖ ≤ C ε

)
≥ 1 − χ. (3.22)

Remark 3.1.

(i) The proof of Lemma 3.1 given in Appendix B relies on Lemmas A.2 and A.3, themselves 
proved in their respective appendices. These latter lemmas show that the constant C in (3.22)
grows as χ decreases, i.e. the larger the probability with which (3.22) holds, the closer one 
needs to push ε towards 0 in order for the corresponding a priori bounds about |X(t)| and 
‖�(t)‖ to be below a target value.

(ii) Note that a solution (X(t), �(t)) to the system (3.19) emanating from an initial condition 
satisfying (3.20), implies that �(X, t) is given by the parameterization (3.5), for all t > 0. 
As it can be observed in the proof of Lemma 3.1, it is the dynamic interpretation of �(X, t)
(i.e. the equation it solves in system (3.19)) that allows for deriving estimates about �(X, t), 
while X is a solution to the reduced equation (3.8).

3.3. Residual error estimates in large probability

We first rewrite the original SPDE (3.1) into a coupled system for uc(t) = �cu(t) = x(t)e1
and us = �su:

dx = (
εx + xFc(us) + �1B(us, us)

)
dt + σx ◦ dWt, (3.23a)

dus = (
Ls

λus + x2Bs
11 + xFs(us) + �sB(us, us)

)
dt + σus ◦ dWt, (3.23b)

where Fc is defined in (3.9) and

�1B(us, us) = 〈B(us, us), e1〉,
Fs(v) = �s(B(e1, v) + B(v, e1)), ∀v ∈ Vs.

(3.24)

Note that the term �1
(
x2B(e1, e1)

)
does not appear in the equation for x since it equals 

x2〈B(e1, e1), e1〉, which is zero thanks to (3.3).
For any arbitrary stochastic processes X(t)e1 and Y(t) that are adapted to the underly-

ing stochastic basis and evolve respectively in Hc and in Vs, we define the residual R(t) =
(R1(t), R2(t)), where

R1(t) = X(t) − eεt+σWt X(0) −
t∫

0

eε(t−s)+σ(Wt−Ws)E1(s)ds,

R2(t) = Y(t) − etLs
λ+σWt Y (0) −

t∫
0

eLs
λ(t−s)+σ(Wt−Ws)E2(s)ds, with

E1(s) = X(s)Fc(Y (s)) + �1B(Y (s), Y (s)),

E (s) = X2(s)Bs + X(s)F (Y (s)) + � B(Y(s), Y (s)).

(3.25)
2 11 s s

166



M.D. Chekroun, H. Liu, J.C. McWilliams et al. Journal of Differential Equations 346 (2023) 145–204
This residual measures the modeling error made by the process (X(t), Y(t)) in satisfying the 
system (3.23), and thus the modeling error made by X(t)e1 + Y(t) in satisfying the SPDE (3.1).

Now pick up any solution (X(t), �(t)) of the surrogate system (3.19), for which the initial 
condition satisfies the relation (3.6) at t = 0. Note that such a solution is well defined for all time 
t ≥ 0, since under this constraint on the initial data, the system (3.19) is equivalent to the reduced 
equation (3.8).

We have the following bounds for the residual:

Theorem 3.1. Consider the solution (X(t), �(t)) to Eq. (3.19) and its residual error defined in 
(3.25). Assume that the assumptions of Lemma 3.1 are satisfied. Then, for any T > 0 and any χ
in (0, 1), there exists a constant C > 0 independent of ε for which

P

(
sup

t∈[0,T /ε]
|R1(t)| ≤ Cε

)
≥ 1 − χ, (3.26)

and

P

(
sup

t∈[0,T /ε]
‖R2(t)‖ ≤ Cε3/2

)
≥ 1 − χ. (3.27)

Proof. Let (X(t), �(t)) be a solution to (3.19). After integration and simplifications, we obtain 
that (3.25) becomes

R1(t) = −
t∫

0

eε(t−s)+σ(Wt−Ws)�1B(�(s),�(s))ds,

R2(t) =
t∫

0

eLs
λ(t−s)+σ(Wt−Ws)E3(s)ds,

(3.28)

with

E3 = 2�Fc(�) − XFs(�) − �sB(�,�). (3.29)

Then, the desired results follow directly from the a priori estimates (3.22) together with the 
probabilistic estimate about the Brownian motion given in Lemma A.3. Indeed, by letting �∗ and 
γ be the same as given in the proof of Lemma 3.1 (see (B.19)), we have proved that ‖�(t, ω)‖ ≤
Cε for t in [0, T/ε] and ω in �∗; cf. (B.23). Since �(t, ω) as defined in (3.5) takes value in 
a finite dimensional subspace of V due to the assumption (3.4), the two norms ‖ · ‖V and ‖ · ‖
are equivalent when restricted to this subspace. We get then ‖�(t, ω)‖V ≤ Cε by redefining C. 
Thus,
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|R1(t,ω)| ≤ CB

t∫
0

eε(t−s)+2γ ‖�(s,ω)‖2
V ds

≤ CBC2e2γ

t∫
0

eε(t−s) ds ε2

= CBC2e2γ (eεt − 1)ε

≤ CBC2e2γ (eT − 1)ε, ∀t ∈ [0, T /ε],ω ∈ �∗.

(3.30)

The estimate (3.26) follows.
Finally, recall that for such t and ω, we have that |X(t, ω)| ≤ C

√
ε for some C > 0 indepen-

dent of ε; see (B.20). Using the above estimates for X and �, we get then

‖R2(t)‖ ≤
t∫

0

eβ2(λ)(t−s)+2γ E3(s)ds

≤ C̃(ε3/2 + ε2), ∀t ∈ [0, T /ε],ω ∈ �∗,

(3.31)

where C̃ > 0 is another constant independent of ε. We have thus derived the estimate (3.27). �
Remark 3.2. When more general spatially inhomogeneous multiplicative noise such as given 
in Remark 2.1 is considered, we can still derive residual estimates in the style of (3.26) and 
(3.27) under the same conditions as required in Theorem 3.1 with σn = cn

√
ε for some cn ≥ 0, 

n = 1, . . . , N . The residual R2 needs to be adapted accordingly by projecting onto each stable 
mode n = 2, · · · , N as well.

The derivation of the associated residual estimates follows the same lines of arguments pre-
sented in the proof of Theorem 3.1 once the a priori estimate for X(t) and �(t) given by (3.22)
is established. The derivation of this latter a priori estimate follows the same steps as presented 
in Appendix B, but by relying on the following transformation rather than the one given in (B.1):

U = e−2εt−2σ1Wt X2, �n = e−2βnt−2σnWt �2
n. (3.32)

4. Low- and high-mode error estimates

In this section, we go beyond the residual error estimates presented above to derive error 
estimates between the solutions of the finite-dimensional surrogate system (3.19) and those of 
the original SPDE (3.1). To do so, it requires a priori bounds for solutions to the SPDE (3.1). 
The main difficulty compared to those conducted for solutions of (3.19) (cf. Lemma 3.1) lies in 
the infinite-dimensional nature of us, whereas � is of finite-dimensional range due to (3.4). As 
a consequence, the loss of regularity via the nonlinearity B is now effective which requires new 
estimates.

To cope with these difficulties one needs extra assumptions on the linear part Lλ. To the 
previous assumptions on this operator, we require in particular an extra condition to be satisfied 
(Condition (L2)) for the linear dissipative effects to suitably counterbalance the loss of regularity 
due to the nonlinear terms in B . These conditions are described below.
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Condition (L1). Let Lλ = −A + Pλ satisfy the Conditions (A1) and (A2) of Sec. 3, with A given 
by

A = −�diag(ν) (4.1)

where ν is a d-dimensional vector with positive entries, denoted by νj , and diag(ν) denotes the 
d × d diagonal matrix with ν as the diagonal entries. We assume furthermore that the boundary 
conditions and functional setting are such that for any u in D(A), 〈Au, u〉 ≥ 0 and 

√〈Au,u〉
defines (after performing integration by parts) a norm ‖u‖ν on V equivalent to ‖u‖V .

Condition (L2). There exist η in (0, 1) and δ > 0 such that for all λ in the interval [λc, λ∗] given 
in Condition (A2), the following damping relations hold for all us in Ws = D(A) ∩ Hs:

〈−ηAus + Pλus, us〉 ≤ −δ‖us‖2, (4.2a)

〈−ηAus + Pλus,Aus〉 ≤ −δ‖us‖2
ν . (4.2b)

For this class of linear operators, the error estimates derived hereafter allow us then, from the 
reduced equations based on Theorem 2.1, to conclude to a pitchfork bifurcation scenario in large 
probability. Our results apply to a broad class of SPDEs such as given by (3.1) (allowing even 
for inhomogeneous noise), as long as the noise intensity σ and the eigenvalue’s magnitude of 
the mildly unstable mode, scale accordingly, while the linear and nonlinear terms obey standard 
(energy-preserving) assumptions encountered in fluid problems (Condition (A3)). Applications 
to Rayleigh-Bénard convection are detailed in Sec. 5 below.

Remark 4.1. The form of A assumed in Condition (L1) is chosen to simplify the derivation of 
the error estimates in Theorem 4.1. More general differential operators A than (4.1) could have 
been considered for which the conclusions of Theorem 4.1 would still hold. In that respect, an 
analogue of Conditions (L1) and (L2) would still hold for a differential operator A in divergence 
form, that (possibly) includes higher-order derivatives and that satisfies a strong ellipticity con-
dition (see [64] and [55, Sec. 7.2]). Given a positive integer m, such an operator writes for any u
in the Sobolev space (H 2m(D))d (over a smooth bounded domain D)

Au =
∑

α,β∈Np

[α]=[β]=m

(−1)mDβ(aαβ(x)Dαu), (4.3)

where α = (α1, . . . , αp) ∈ Np , [α] = α1 + · · · + αp , the coefficients aαβ are matrix-valued map-
pings which are sufficiently smooth into the space of d × d symmetric matrices, and aαβ = aβα . 
If the lower bound of 〈Au, u〉 is controlled as follows (for any u in D(A))

〈Au,u〉 ≥ κ
∑

α∈Np,[α]=m

‖Dαu‖2, for some κ > 0, (4.4)

then with ‖u‖V =∑
α∈Np,[α]=m ‖Dαu‖2, analogues of Conditions (L1) and (L2) could be for-

mulated for which the conclusions of Theorem 4.1 would still hold. In Sec. 5 below, it is shown 
that Conditions (L1) and (L2) as formulated here, i.e. for the operator A defined by (4.1), and 
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with the linear damping estimates (4.2a)-(4.2b), are sufficient to apply Theorem 4.1 to a standard 
Rayleigh-Bénard convection problem subject to multiplicative noise.

4.1. A priori bounds on SPDE solutions

Roughly speaking, we consider the following a priori bounds on the SPDE solution 
(x(t), us(t))

(I) : sup
t∈[0,T /ε]

|x(t)| ≤ C
√

ε,

(II) : sup
t∈[0,T /ε]

‖us(t)‖ ≤ Cε,

(III) : sup
t∈[0,T /ε]

‖us(t)‖V ≤ Cε,

(4.5)

and are concerned whether these estimates hold in large probability. These a priori bounds are 
key to derive our main Theorem about error estimates; see Theorem 4.1 and its proof. We recall 
that the SPDE solutions are here understood in the sense recalled in Sec. 2.1. In that respect, to 
derive a priori bounds like (4.5), one first work with the transformed equation Eq. (2.3), followed 
by the inverse transformation to infer back the desired bounds about the SPDE solutions. We 
refer to Appendix C for more details and provide here the main elements and ideas to derive (I), 
(II), and (III) in large probability.

In that perspective, observe that standard energy estimates on the solutions to (3.23) lead to

x2(t,ω) + ‖us(t,ω)‖2 ≤ e2εt+2σWt (ω)‖u(0,ω)‖2. (4.6)

Thus, if one assumes |u(0)| ∼ √
ε one would obtain that, in large probability, |x(t)| ≤ C

√
ε and 

‖us(t)‖ ≤ C
√

ε by conducting similar estimates as in Step 1 of the proof of Lemma 3.1 (and 
using (3.3) for controlling the nonlinear term); see Appendix B.

To derive error estimates between us(t) and its parameterization �(t), this is however insuffi-
cient, as the bound on ‖us(t)‖ should scale as ε and not 

√
ε since ‖�(t)‖ scales like ε due (3.22). 

The main difficulty compared to Step 2 of the proof of Lemma 3.1, lies in the infinite-dimensional 
nature of us, whereas � is of finite-dimensional range due to (3.4). As a consequence, the loss 
of regularity via the nonlinearity B is now effective which requires new estimates.

For instance, when estimating ‖us‖, by taking the inner product of the us-equation with us in 
(3.23), this loss of regularity causes for instance the appearance in the RHS of terms depending 
on ‖us‖V (and not only on ‖us‖) since e.g. 〈B(e1, us), us〉 ≤ CB‖e1‖V ‖us‖V ‖us‖.

Nevertheless, such difficulties can be handled through a careful exploitation of the damping 
effects brought by the linear part allowing for bypassing to estimate ‖us‖V (at this stage), and 
leading us to prove that, in large probability, and for t in [0, T/ε],

‖us(t)‖2 ≤ e2γ ‖us(0)‖2 + Ce4γ

δ
ε2, (4.7)

where γ is as given in Lemma A.3, δ is given in (4.2), and C > 0 is a generic constant indepen-
dent of ε. The proof of this key estimate is given in Appendix C.1.
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As a consequence, if |x(0)| ∼ √
ε and ‖us(0)‖ ∼ ε, one obtains that for any T > 0 and any χ

in (0, 1),

P
(

(I) and (II)
)

≥ 1 − χ. (4.8)

Nevertheless, since B : V ×V → H (loss of regularity), to derive a full set of a priori estimates 
about the SPDE solution, one cannot escape for estimating ‖us‖V . To do so, we take the inner 
product of the us-equation with Aus in (3.23), and after conducting the relevant estimates (see 
Appendix C.2), we arrive at, in large probability, and for t in [0, T/ε],

‖us(t)‖2
V ≤ C‖us(0)‖2

V + Cε2

t∫
0

e−δ(t−s)+2
√

ε(Wt−Ws) ds, (4.9)

namely ‖us(t)‖2
V ≤ Cε2, provided that ‖us(0, ω)‖V ∼ ε and 0 ≤ ε ≤ ε∗ for some ε∗ > 0 suffi-

ciently small.
Thus, if

|x(0)| ∼ √
ε, ‖us(0)‖ ∼ ε, and ‖us(0)‖V ∼ ε, (4.10)

we have that for any T > 0 and any χ in (0, 1),

P
(

(I), (II), and (III)
)

≥ 1 − χ. (4.11)

4.2. Fluid problems subject to fluctuations: low- and high-mode error estimates

From these probabilistic estimates we prove next our main error estimate theorem. This 
theorem gives the error estimates made on the low- and high-mode dynamics, when they are 
respectively approximated by the solution X(t) to the reduced equation Eq. (3.8), and the pa-
rameterization �(X(t), t) given by (3.5)-(3.6).

Theorem 4.1. Assume that Conditions (L1), (L2), and (A3) are satisfied. Denote ε = β1(λ) > 0. 
Let u(t) = x(t)e1 + us(t) be a solution to the SPDE (3.1).

Assume furthermore that Condition (P) is satisfied, that σ = √
ε and that

X(0) = x(0) ∼ √
ε,

‖us(0)‖ ∼ ε, ‖us(0)‖V ∼ ε,

‖us(0) − �(X,0)‖ ∼ ε3/2.

(4.12)

Consider the errors

a(t) = x(t) − X(t), (low-mode error)

b(t) = us(t) − �(X, t) (high-mode error),
(4.13)

in which X(t) solves the reduced equation Eq. (3.8), and the parameterization � is given by 
(3.5)-(3.6).
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Then, for any T > 0 and any χ in (0, 1), there exist ε∗ > 0 and C > 0 such that for any ε in 
[0, ε∗], the following error estimate holds:

P
(

sup
[0,T /ε]

|a(t)| ≤ Cε and sup
[0,T /ε]

‖b(t)‖ ≤ Cε3/2
)

≥ 1 − χ. (4.14)

Proof. First, let us write down the system of equations satisfied by the low-mode and high-mode 
errors, a and b. By recalling that (X, �) and (x, us) satisfy (3.19) and (3.23), respectively, we 
infer that (a, b) satisfies

da =
(
εa + xFc(us) + �1B(us, us) − XFc(�(X, t))

)
dt + σa ◦ dWt,

db =
(
Ls

λb + x2Bs
11 + xFs(us) + �sB(us, us) − X2Bs

11 − 2�Fc(�(X, t))
)

dt + σb ◦ dWt,

(4.15)
with Fc given by (3.9), Bs

11 by (3.18), and �1B and Fs defined in (3.24).
We detail below the main elements to derive (4.14) from (4.15). We start with the estimates 

of the nonlinear terms controlling the amplitudes of a(t) and b(t), in their respective dynamical 
equations. For the a-equation, this term is given by �1B(us, us) + I (t) with

I (t) = xFc(us) − XFc(�(X, t)), (4.16)

while for the b-equation, it is given by J (t) + (x2 − X2)Bs
11 with

J (t) = xFs(us) + �sB(us, us) − 2�Fc(�(X, t)). (4.17)

Observe that

I (t) = aFc(us) + X(Fc(us) −Fc(�(X, t)))

= aFc(us) + X〈B(e1, b) + B(b, e1), e1〉,
(4.18)

and that

aI (t) ≤ |Fc(us)| |a|2 + C|a| |X|‖b‖V

≤ C‖us‖V |a|2 + CC|a| |X|‖b‖ν,
(4.19)

due to the definition of Fc, and the norm equivalence between ‖ · ‖ν and ‖b‖V (Condition (L1)). 
In the sequel, C > 0 will denote a generic constant that is allowed to change in the course of the 
estimates.

Now let us take �∗ be the subset of � over which the a priori bounds (4.11) and (3.22) about 
(x, us) and (X, �), hold. Then over such a subset of events and for any t in [0, T/ε], we deduce 
from (4.19), that

a(t)I (t) ≤ Cεa(t)2 + (1 − η)‖b(t)‖2
ν, (4.20)
2
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by using Young’s inequality, (4.11) to control ‖us‖V , and (3.22) to control X. The factor (1 −
η)/2 in (4.20) is chosen through application of the Young’s inequality, in order to be appropriately 
“absorbed” by the linear damping effects on the high-modes, namely

〈Ls
λb, b〉 = 〈Lλb,b〉

= 〈(−ηA + Pλ)b, b〉 − (1 − η)〈Ab,b〉
≤ −δ‖b‖2 − (1 − η)‖b‖2

ν,

(4.21)

where the latter inequality is a consequence of Conditions (L1) and (L2).
As a result, we have over �∗ and for any t in [0, T/ε],

aI + 〈Ls
λb, b〉 ≤ Cεa2 − δ‖b‖2 − (1 − η)

2
‖b‖2

ν ≤ Cεa2 − δ‖b‖2. (4.22)

Similarly, we have over �∗ and for any t in [0, T/ε],

a�1B(us,us) ≤ Cε2|a| ≤ Cε3 + εa2. (4.23)

The estimates (4.22) and (4.23) are used to control a(t). To control b(t) one needs to estimate 
〈J (t), b〉 and 〈(x2 − X2)Bs

11, b〉.
Here again by exploiting the a priori bounds (3.22), (4.11) and the Young’s inequality, we 

infer that

〈(x2 − X2)Bs
11, b〉 ≤ C

√
ε|a|‖b‖ ≤ Cεa2 + δ

2
‖b‖2, (4.24)

and

〈J (t), b〉 ≤ Cε3/2‖b‖ ≤ Cε3 + δ

2
‖b‖2, (4.25)

still over �∗ and for any t in [0, T/ε].
From these estimates, and denoting by M = aI + a�1B(us, us), we observe, using (4.22), 

that

M + 〈(x2 − X2)Bs
11, b〉 + 〈J, b〉 + 〈Ls

λb, b〉 + εa2 ≤ C1ε
3 + C2εa

2, (4.26)

where C1 and C2 are two positive constants.
Following similar steps as in Appendix C.1 (in particular after transformation as in (C.6)), we 

arrive then at

|a(t)|2 + ‖b(t)‖2 ≤ eC2εt+2
√

εWt (|a(0)|2 + ‖b(0)‖2) + C1ε
3

t∫
0

eC2ε(t−s)+2
√

ε(Wt−Ws) ds

≤ eC2T +2γ (|a(0)|2 + ‖b(0)‖2) + C1ε
2,

(4.27)
where γ is given by Lemma A.3.
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Note that a(0) = 0. So if we assume ‖b(0)‖ ∼ ε, then,

|a(t)|2 + ‖b(t)‖2 ≤ Cε2, ω ∈ �∗, t ∈ [0, T /ε]. (4.28)

From this estimate, one can furthermore improve the estimate of ‖b‖. To do so, note that by using 
the Young’s inequality differently than for obtaining (4.24), leads to

〈(x2 − X2)Bs
11, b〉 ≤ C

√
ε|a|‖b‖ ≤ Cεa2 + δ

4
‖b‖2. (4.29)

Similarly we can arrange the constants through Young’s inequality to get 〈J (t), b〉 ≤ Cε3/2‖b‖ ≤
Cε3 + δ‖b‖2/4.

Now since |a(t)|2 ≤ Cε2 due to (4.28), we have

〈(x2 − X2)Bs
11, b〉 ≤ Cε3 + δ

4
‖b‖2. (4.30)

Then

〈(x2 − X2)Bs
11, b〉 + 〈J, b〉 + 〈Ls

λb, b〉 ≤ Cε3 − δ

2
‖b‖2, (4.31)

which, by application of Gronwall’s inequality (still following similar steps as in Appendix C.1), 
gives

‖b(t)‖2 ≤ e−δt+2γ ‖b(0)‖2 + Cε3, ω ∈ �∗, t ∈ [0, T /ε]. (4.32)

Thus, assuming ‖b(0)‖ ∼ ε3/2, leads finally to

‖b(t)‖2 ≤ Cε3, ω ∈ �∗, t ∈ [0, T /ε]. (4.33)

The desired estimate (4.14) follows from (4.28) and (4.33). The proof is complete. �
Remark 4.2.

i) In the condition (4.12), if we drop the requirement ‖us(0) − �(X, 0)‖ ∼ ε3/2, the estimate 
(4.28) still holds while (4.33) will be true after skipping a transient time of order | ln(ε)|/δ, 
with δ given by (4.2a).
Indeed, since it is assumed that X(0) ∼ √

ε, then �(X, 0) ∼ ε. This together with the condi-
tion ‖us(0)‖ ∼ ε leads to ‖b(0)‖ = ‖us(0) − �(X, 0)‖ ∼ ε. As a result, (4.28) still holds.
Note also that since ‖b(0)‖ ∼ ε, then e−δt+2γ ‖b(0)‖2 ∼ ε3 for all t ≥ | ln(ε)|/δ. This to-
gether with (4.32) leads to

‖b(t,ω)‖2 ≤ Cε3, ∀ω ∈ �∗, t ∈ [| ln(ε)|/δ,T /ε]. (4.34)

ii) Note also that if we drop the requirement ‖us(0) − �(X, 0)‖ ∼ ε3/2 in the condition (4.12), 
then as a direct reinterpretation of (4.28), the following relaxed version of the error estimate 
(4.14) holds without skipping any transient dynamics:
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P
(

sup
[0,T /ε]

|a(t)| ≤ Cε and sup
[0,T /ε]

‖b(t)‖ ≤ Cε
)

≥ 1 − χ. (4.35)

iii) A close inspection of the proofs about the error estimates shows that the requirement σ = √
ε

could be relaxed to the cases 0 < σ ≤ √
ε.

iv) Note that δ < |β2(λ)|, as can be seen by replacing b in (4.21) with e2 and using 〈Lλe2, e2〉 =
β2(λ)‖e2‖2. We can actually reduce the transient time | ln(ε)|/δ in (4.34) to | ln(ε)|/|β2(λ)|. 
This is because the estimate (4.32) still holds by replacing the exponent −δt therein by 
−|β2(λ)|t . Indeed, we just need to use |β2(λ)| in place of δ when applying the Young’s 
inequality that leads to the two estimates (4.29) and (4.30). These together with 〈Ls

λb, b〉 ≤
β2(λ)‖b‖2 lead to (4.31) with δ therein replaced by |β2(λ)|.

5. Applications to Rayleigh-Bénard convection

5.1. The stochastic Rayleigh-Bénard model and its mathematical formulation

We consider the following non-dimensionalized Boussinesq equations driven by a linear mul-
tiplicative noise:

du = (
�u − ∇p + √

Rθ �k − (u · ∇)u
)
dt + σu ◦ dWt,

dθ = (
�θ + √

Rw − (u · ∇)θ
)
dt + σθ ◦ dWt,

div u = 0.

(5.1)

Here, the unknown functions are the velocity field u = (u, w), the pressure p, and the tem-
perature fluctuation θ . �k = (0, 1) is the vertical unit vector, σ > 0 is the noise amplitude. The 
nondimensional parameter R is the Rayleigh number, which serves as the control parameter for 
the bifurcation. We consider the case that the fluid is confined in a 2D nondimensional rectangu-
lar domain D = (0, L) × (0, 1), where L > 0 represents the aspect ratio between the width and 
the height of the domain. To simplify the presentation, the above equations (5.1) are presented 
for the case that the Prandtl number, Pr, is taken to be one. In the following, we use (x, z) to 
denote the coordinates, x for the horizontal direction and z for the vertical direction.

Various physically sound boundary conditions can be handled in the theoretic setting; see [53, 
Sec. 4.1.3]. To fix ideas, we consider free-slip boundary condition for u, and Dirichlet boundary 
condition for T on the top and the bottom boundaries and Neumann boundary condition on the 
lateral boundaries:

u = 0,
∂w

∂x
= ∂θ

∂x
= 0 at x = 0,L,

w = θ = 0,
∂u

∂z
= 0 at z = 0,1.

(5.2)

For the problem (5.1)-(5.2), we set the spaces

H = {(u, θ) ∈ (L2(D))3 | div u = 0,u · n|∂D = 0},
V = {

(u, θ) ∈ (H 1(D))3 ∩ H
∣∣ θ = 0 at z = 0,1

}
,

H = {
(u, θ) ∈ (H 2(D))3

∣∣ div u = 0 and (5.2) holds
}
,

(5.3)
1

175



M.D. Chekroun, H. Liu, J.C. McWilliams et al. Journal of Differential Equations 346 (2023) 145–204
where n is the unit outward normal vector to ∂D.
Let LR : H1 → H be defined for any ψ = (u, θ) in H1 by

LR = −A + PR, with

Aψ = (−L�u,−�θ),

PRψ = (
√

RL(θ �k),
√

R w),

(5.4)

where L denotes the Leray projection defined on (L2(D))2, which projects each element into the 
divergence-free subspace of (L2(D))2. We define also B : V × V → H as

B(ψ1,ψ2) = (−L((u1 · ∇)u2),−(u1 · ∇)θ2), (5.5)

for all ψ1 = (u1, θ1) and ψ2 = (u2, θ2) in V .
We denote by ‖ · ‖ the norm on H defined for any ψ = (u, w, θ) by

‖ψ‖2 = |u|2
L2(D)

+ |w|2
L2(D)

+ |θ |2
L2(D)

,

and the norm on V , the norm ‖ · ‖V defined by

‖ψ‖2
V = ‖∇ψ‖ + ‖ψ‖.

Then the problem (5.1)-(5.2) can be written as

dψ = (
LRψ + B(ψ,ψ)

)
dt + σψ ◦ dWt. (5.6)

In the following, we assume for the non-dimensionalized spatial domain D = [0, L] × [0, 1]
that L is chosen such that the deterministic analogue of (5.1) admits a pitchfork bifurcation as 
R crosses its critical value Rc from below. As pointed out in Sec. 5.2 when verifying Condi-
tion (A2), there is exactly one critical wave vector for all values of L except those from a subset 
of R+ with measure zero; cf. (5.17) for the latter exceptional set. So the pitchfork bifurcation 
scenario is a generic situation for the deterministic case.

5.2. Verification of Conditions (A1)-(A3) and (P)

In this section, we provide details on verifying the Conditions (A1)-(A3) and (P).

Verification of Condition (A1). Since the linear operator LR defined by (5.4) involves the Leray 
projection L, it is not immediately clear that LR is self-adjoint. However, this property will be 
verified once the eigenfunctions of LR are computed.

We consider thus the eigenvalue problem LRψ = βψ in the space H1. That is

L�u + √
RL(θ �k) = βu,

�θ + √
R w = βθ,

div u = 0.

(5.7)
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Recall that the eigenvalues and eigenfunctions for (5.7) are given as follows (see e.g. [53, Section 
4.1.6]):

Group one:

β0k = −k2π2, e0k =√
2/L(0,0, sin(kπz)), k ∈N. (5.8)

Group two: The eigenvalues are given, for all j, k in N , by

β±
jk(R) = −γ 2

jk ±
√√√√Rα2

j

γ 2
jk

, (5.9)

with

αj = jπ/L, γjk =
√

α2
j + k2π2; (5.10)

and the corresponding eigenfunctions are given by

e±
jk =

(
a±
jk sin(αj x) cos(kπz), b±

jk cos(αjx) sin(kπz), c±
jk cos(αjx) sin(kπz)

)
, (5.11)

where

a±
jk = −kπN±

jk, b±
jk = αjN

±
jk, c±

jk =
√

Rαj

γ 2
jk + β±

jk(R)
N±

jk, (5.12)

with

N±
jk =

(
4(γ 2

jk + β±
jk(R))2

L(γ 2
jk(γ

2
jk + β±

jk(R))2 + Rα2
j )

)1/2

. (5.13)

Note that in Group two above, the coefficient 1
γ 2
jk+β±

jk(R)
in the third component of e±

jk is 

well defined for j, k in N and for all R > 0 because from (5.9), we know that β±
jk(R) �= −γ 2

jk . 

The constant N±
jk , included in each of the three components of e±

jk , is a normalization constant 

ensuring ‖e±
jk‖ = 1.

Now, for any eigenfunctions ψ1 and ψ2 listed above, it follows from a direct calculation that 
the following identity holds

〈LRψ1,ψ2〉 = 〈ψ1,LRψ2〉. (5.14)

Thus, LR is self-adjoint.

Verification of Condition (A2). Note that only eigenvalues from the second group, i.e., β±
jk(R)

given by (5.9) can change signs when R varies. To identify the critical value of R, we equate 
β± (R) to zero to obtain
jk
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R = γ 6
jk/α

2
j . (5.15)

The critical Rayleigh number Rc is thus given by:

Rc = min
j,k∈N

γ 6
jk

α2
j

= min
j,k∈N

(k2π2 + j2π2/L2)3

j2π2/L2

= min
j∈N

π4(1 + j2/L2)3

j2/L2 .

(5.16)

One can readily check that the minimum is achieved at either (j, k) = (�L/
√

2�, 1) or 
(�L/

√
2�, 1), or both, depending on the value of L, where �L/

√
2� denotes the largest inte-

ger below L/
√

2, and �L/
√

2 � denotes the smallest integer above L/
√

2. The cases with the 
minimum achieved at both of the two indices (j1, 1) = (�L/

√
2�, 1) and (j2, 1) = (�L/

√
2 �, 1)

occur when γ 6
j1,1

/α2
j1

= γ 6
j2,1

/α2
j2

. That is when L is chosen from the following subset of R+:

S =
{
L > 0

∣∣∣ (1 + (j1)
2/L2)3

(j1)2 = (1 + (j2)
2/L2)3

(j2)2 with j1 = �L/
√

2�, j2 = �L/
√

2 �, j1 �= j2

}
.

(5.17)
Note that S has measure zero. In the following, we focus on the case of pitchfork bifurcation, 
and assume thus that L takes values outside of S . We denote the unique index that achieves the 
minimum value Rc by (jc, 1).

Thus, Condition (A2) is verified with R playing the role of λ and β1(λ) in (2.9) taken to be 
β+

jc1(R) here. Although the eigenelements here are labeled using a double index associated with 
the corresponding wave vectors, they can apparently also be labeled using a single index to fit 
into the setting of (2.9).

Verification of Condition (A3). Since the spatial domain is taken to be a (2D) rectangle, then 
B defined by (5.5) is a continuous bilinear map from V × V to H with V being the subspace of 
(H 1(D))3 given in (5.3).

Note also that B satisfies that

〈B(ψ1,ψ2),ψ3〉 = −〈B(ψ1,ψ3),ψ2〉, (5.18)

for all ψ1, ψ2, and ψ3 in V . The condition (3.3) is a direct consequence of (5.18).
It follows also from a direct calculation that

〈B(e+
jc1, e

+
jc1), e

±
jk)〉 = 0, ∀j, k ∈N,

〈B(e+
jc1, e

+
jc1), e0k)〉 =

⎧⎪⎨⎪⎩− π
√

2R(γ 2
jc1 + β+

jc1(R))α2
jc√

L(γ 2
jc1(γ

2
jc1 + β+

jc1(R))2 + Rα2
jc

)
if k = 2,

0 otherwise.

(5.19)

The condition (3.4) is thus verified with N therein equals 2 here, after re-arranging the double 
index into a single one.

Verification of Condition (P). Recall that N in (3.11) is 2 here (see again (5.19)). From (5.19), 
we also know
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B2
11 = 〈B(e+

jc1, e
+
jc1), e02)〉 = − π

√
2R(γ 2

jc1 + β+
jc1(R))α2

jc√
L(γ 2

jc1(γ
2
jc1 + β+

jc1(R))2 + Rα2
jc

)
< 0. (5.20)

Note also that (
B1

12 + B1
21

)= 〈B(e+
jc1, e02), e

+
jc1〉 + 〈B(e02, e

+
jc1), e

+
jc1〉

= π
√

2R(γ 2
jc1 + β+

jc1(R))α2
jc√

L(γ 2
jc1(γ

2
jc1 + β+

jc1(R))2 + Rα2
jc

)
.

(5.21)

Since M2,R
11 is always positive, we have then

B2
11M

2,R
11

(
B1

12 + B1
21

)
< 0. (5.22)

Condition (P) is thus verified.

5.3. Verification of Conditions (L1) and (L2)

Since it has already been checked above that the linear operator LR defined by (5.4) satisfies 
Conditions (A1) and (A2), to verify Condition (L1), it remains to show that 

√〈Aψ,ψ〉 induces 
a norm on V equivalent to ‖ψ‖V . For this purpose, we note that for A defined in (5.4), one has, 
due to the boundary conditions, that for any ψ = (u, w, θ) in D(A) = H1:

〈Aψ,ψ〉 = |∇u|2
L2(D)

+ |∇w|2
L2(D)

+ |∇θ |2
L2(D)

= ‖∇ψ‖2.

Note that

‖∇ψ‖ ≤ ‖ψ‖V ≤ (1 + C)‖ψ‖,

where C > 0 is a generic constant in the Poincaré inequality. Thus, ‖∇ψ‖ defines a norm equiv-
alent to ‖ψ‖V .

Condition (L2) is a consequence of the following lemma.

Lemma 5.1. There exist an η in (0, 1), δ > 0 and R∗ > Rc , for which the condition (4.2) holds 
for the linear operator LR defined in (5.4) for all R in [Rc, R∗].

See Appendix E for a proof.

5.4. Stochastic pitchfork bifurcation in large probability

Due to (5.19), the parameterization � defined in (3.5) reads here as

�(X, t,ω) = �2(X, t,ω)e02, ∀X ∈R, (5.23)

with
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�2(X, t,ω) = B2
11M

2,R
11 (t,ω)X2, (5.24)

and B2
11 given by (5.20).

The abstract reduced equation (3.8) for the stochastic RBC problem takes then the following 
explicit form

dX = (β+
jc1(R)X − α(R)M

2,R
11 (t,ω)X3)dt + σX ◦ dWt, (5.25)

with

α(R) = −B2
11

(
B1

12 + B1
21

)= 2π2R(γ 2
jc1 + β+

jc1(R))2α4
jc

L(γ 2
jc1(γ

2
jc1 + β+

jc1(R))2 + Rα2
jc

)2
. (5.26)

We call (5.25), the non-Markovian RBC reduced equation.
Note that the RBC reduced equation (5.25) fits into the non-Markovian normal form of a 

supercritical pitchfork bifurcation as given by Appendix D. In particular, the trivial steady state 
X = 0 is globally stable when the Rayleigh number R is below the critical value Rc given by 
(5.16). It becomes unstable when R > Rc, and two locally stable random steady states emerge. 
These bifurcated random equilibria are given by ±XR, where

XR(t,ω) = 1√
2α(R)

∫ t

−∞ M
2,R
11 (s,ω) exp(fR(t, s,ω))ds

, R ≥ Rc, (5.27)

with

fR(t, s,ω) = −2β+
jc1(R)(t − s) − 2σ(Wt(ω) − Ws(ω)). (5.28)

This stochastic pitchfork bifurcation is shown in Fig. 3 at the level of the probability density 
function (PDF) of the (random) steady states for a particular choice of the domain size L = 3, 
with σ = 0.01.

In the following, we provide an interpretation of the general error estimate results given by 
Theorem 4.1 for the stochastic RBC problem considered here. By doing so, we establish a rigor-
ous link between the pitchfork bifurcation for the non-Markovian RBC reduced equation (5.25)
and the dynamics of the full stochastic RBC problem (5.6) when the noise amplitude parameter 
σ scales like 

√
δR with δR = R − Rc . For this purpose, we introduce

A+
R(t) = XR(t)e+

jc1 + �(XR(t), t), (5.29a)

A−
R(t) = −XR(t)e+

jc1 + �(−XR(t), t), (5.29b)

where e+
jc1 is the eigenmode that becomes linearly unstable,

e+
jc1 =

(
−π sin(αjcx) cos(πz),αjc cos(αjcx) sin(πz),

√
Rαjc

γ 2
jc1 + β+

jc1(R)
cos(αjcx) sin(πz)

)
,

and the manifold function � is given by (5.23). Then, the following theorem holds.
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Fig. 3. The stochastic supercritical pitchfork bifurcation for the RBC reduced equation (5.25). When δR = R−Rc ≤
0, the probability density function (PDF) is a Dirac delta function since X = 0 is globally stable. When δR > 0, two 
locally stable random steady states ±XR emerge and X = 0 loses its stability. The most probable values of ±XR as 
δR varies, form the solid red curves in the (δR, X)-plane. The unstable trivial steady state for δR > 0 is marked by 
the dashed red line segment. The most probable states scale like 

√
δR, which is consistent with the theoretic results 

presented in Lemma D.1 by noting that ε = β+
jc1(R) in Lemma D.1 scales linearly with δR; cf. (5.32) below. For the 

model parameters, we have set L = 3, leading to Rc ≈ 660.52 and the critical wave number jc = 2. The noise amplitude 
is set to σ = 0.01.

Theorem 5.1. Consider the stochastic RBC problem (5.6). Assume that the domain aspect ratio 
parameter L is chosen outside of the measure zero set S given by (5.17), so that there is exactly 
one mode that becomes unstable as R crosses the first critical value Rc defined by (5.16). Denote 
δR = R − Rc. Assume that σ = (β+

jc1(R))1/2 and that

X(0) = 〈ψ(0), e+
jc1〉 ∼ √

δR, ‖ψs(0)‖ ∼ δR, and ‖ψs(0)‖V ∼ δR. (5.30)

Then, if X(0) > 0, the solution ψ(t) of (5.6) emanating from ψ(0) satisfies that for any χ in 
(0, 1) and T > 0, there exist R∗ > Rc and C > 0 such that the following estimate holds for all R
in [Rc, R∗]:

P
(

sup
[0,ηT /δR]

‖ψ(t) − A+
R(t)‖ ≤ CδR

)
≥ 1 − χ, (5.31)

where A+
R is defined in (5.29) and η > 0 is a constant depending only on the aspect ratio L. The 

same estimate holds with A−
R(t) replacing A+

R(t), if X(0) < 0.

Proof. The desired result is a direct consequence of Theorem 4.1 and Remark 4.2-(ii). Indeed, 
the Conditions (L1), (L2), (A3), and (P) required in Theorem 4.1 are verified for the RBC prob-
lem considered here in Sections 5.2 and 5.3. To derive (5.31), we are only left to show that the 
assumption (5.30) on the initial condition is equivalent to the analogues given in (4.12) stated 
in terms of the parameter ε = β+

jc1(R) instead.6 Namely, we just need to show that δR is pro-

6 Note that the condition ‖us(0) −�(X, 0)‖ ∼ ε3/2 required in (4.12) is not needed here as pointed out in Remark 4.2-
(ii).
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portional to ε. The parameter η in the estimate (5.31) is related to the associated proportionality 
constant when converting from T/ε. We are thus only left with verifying the following scaling 
relation:

β+
jc1(R) = (jcπ)2/L2

(π2 + (jcπ)2/L2)2 (R − Rc) + O(|R − Rc|2), (5.32)

which can be derived through direct algebraic operations. Indeed, by introducing δjc = α2
jc

/γ 2
jc1, 

we have for R close to Rc that

√
δjcR =

√
δjcRc + δjc (R − Rc) =√

δjcRc

√
1 + (R − Rc)/Rc

=√
δjcRc

(
1 + (R − Rc)

2Rc

+ O(|R − Rc|2)
)

.

(5.33)

With δjc defined above, we can rewrite β+
jc1(R) given by (5.9) as β+

jc1(R) = −γ 2
jc1 + √

δjcR, 
leading in turn to

β+
jc1(R) = −γ 2

jc1 +√
δjcRc +

√
δjc (R − Rc)

2
√

Rc

+ O(|R − Rc|2). (5.34)

Since −γ 2
jc1 +√

δjcRc = β+
jc1(Rc) = 0, we get

β+
jc1(R) =

√
δjc (R − Rc)

2
√

Rc

+ O(|R − Rc|2). (5.35)

Recall also from (5.16) that Rc = γ 6
jc1/α

2
jc

. Using this identity in (5.35), we get β+
jc1(R) =

α2
jc

2γ 4
jc1

(R − Rc) + O(|R − Rc|2), and (5.32) follows. �
The above theorem shows that the SPDE solution ψ(t) of (5.6) is, in large probability, within 

an CδR-cones centered around either A+
R or A−

R defined in (5.29) depending on the sign of the 
projected initial data X(0) = 〈ψ(0), e+

jc1〉, for t in [0, ηT /δR]. Recall also from Lemma D.1 (and 
the scaling relation (5.32)) that the magnitude of the bifurcated random steady states ±XR for 
the reduced equation (5.25) (and hence the corresponding lifted states A±

R in H ) are of order √
δR with large probability for all t > 0.
As a result, there exists a δR� > 0 such that for any δR in (0, δR�), the two CδR-cones, one 

centered around A+
R and the other around A−

R , do not intersect with large probability; moreover, 
the SPDE solutions emanating from initial data that satisfy the condition (5.30) stay within one of 
these two cones with large probability and over a long time interval of order 1/δR. See Fig. 4 for 
a schematic that illustrates this dynamical property in the projected unstable subspace. This sce-
nario is thus consistent with the idea of a stochastic pitchfork transition for the SPDE dynamics 
that takes place when R crosses the threshold Rc from below, albeit subject to large probability 
and finite time intervals requirements.
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Fig. 4. A schematic to illustrate the stochastic pitchfork transition scenario for the stochastic RBC problem (5.6).
The red curves indicate the most probable values, denoted by ±X∗

R
, of the random steady states ±XR for the reduced 

equation (5.25). Recall that XR scales like 
√

δR with large probability; see again Lemma D.1 and (5.32). The gray zones 
indicate the CδR-cones centered at ±X∗

R
with the radius CδR being the upper bound appearing in the error estimate 

(5.31). The vertical dashed line marks out the threshold δR� at which X∗
R

intersects with the line segment y = CδR. 
For δR in (0, δR�), the two CδR-cones are disjoint from each other. Theorem 5.1 ensures that for δR ≤ min{δR�, δR∗}, 
the (projected) SPDE solution from an initial condition satisfying (5.30) is confined in one of the two cones with large 
probability and over a large time interval of order 1/δR. Here, δR∗ = R∗ −Rc with R∗ being as specified in Theorem 5.1.

6. Concluding remarks

Based on a dynamical reformulation of the leading-order approximation formulas for stochas-
tic invariant manifolds, we derived rigorous energy estimates between the solutions of the 
corresponding reduced system (3.19) and those of the original SPDE (3.1). Such estimates as 
summarized in Theorem 4.1 hold with large probability and are obtained for the case of a stochas-
tic pitchfork bifurcation scenario. The key Assumption (L2) that enables these estimates exploits 
dissipation effects brought by the stable modes of the linear operator in order to suitably coun-
terbalance the loss of regularity due to the nonlinear terms.

Although seeking a P -almost sure description of the bifurcation for a given SPDE is still 
out of reach for most problems arising from applications,7 we showed in this article that the 
dynamical properties of the SPDE solutions are actually captured by our reduced systems with 
large probability and over long time intervals, as long as the noise’s intensity and the eigenvalue’s 
magnitude of the mildly unstable mode, scale accordingly. While this type of characterizations 
has been investigated in the literature before, such as via the amplitude equation approach [12], 
these approaches do not seem to be directly applicable to problems considered here which are 
with quadratic nonlinearities and subject to multiplicative noise. While the focus here is on the 
pitchfork bifurcation, our approach can be suitably adapted to handle stochastic disturbances of 

7 Recall that for stochastic ODEs already the question of how to describe a stochastic bifurcation, is not completely 
settled; see e.g. [2, Chap. 9] and [16].
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fluids experiencing more general bifurcations such as S1-attractor bifurcations [52], Hopf, and 
double-Hopf bifurcations.

We have also shown that the underlying analytic formulas of our reduced systems near the 
onset of instability for SPDE models involve, unlike for PDEs, non-Markovian coefficients which 
depend explicitly on the noise path (and its “past”), the model’s coefficients, the noise intensity, 
as well as the model’s eigenelements. In that respect, the memory functions captured by these 
coefficients are not set arbitrarily, but derived in a consistent manner, so that in particular the 
characteristics of the memory function is self-consistently determined by the intensity of the 
random force from the model’s equation.

As already pointed out in [27], higher-order approximations of the genuine stochastic center 
manifold, hλ

ω(X, t), involve also memory coefficients albeit of more complicated functional de-
pendence on the noise path. The underlying high-order non-Markovian parameterizations have 
also analytic expressions that can be derived by solving the appropriate backward-forward (BF) 
systems [27, Chaps. 4 and 7.3]. The resulting random coefficients solve then new auxiliary SDEs 
that can also be used for deriving the error estimates as done for the leading-order approximation. 
Such high-order non-Markovian parameterizations should lead to improved error estimates, as 
numerically shown in [27, Chap. 7] in a stochastic Burgers example; see also [21].

Finally and more generally, we mention that the usage of such backward-forward systems 
allows also for moving away from criticality, by adopting and adapting the variational approach 
and theory of optimal parameterizing manifolds (OPMs) of [22–24] to the stochastic context. The 
new parameterizations obtained this way can be viewed as optimized homotopic deformations of 
those valid near criticality recalled in Theorem 2.1 above. In the OPM approach, the optimization 
step is performed using data of the fully resolved problem (in a parsimonious way) by minimizing 
a least-square metric measuring typically the parameterization defect, and where the parameters 
to optimize are reduced to the backward integration times τ of the BF systems involved; see 
[23, Sec. 4.3]. In the stochastic context, it means that the Mn-coefficients in (2.17) are replaced 
away from criticality by integrals of the form 

∫ 0
−τ

egn(λ)s+σWs(ω) ds, that are optimized (in τ ) per 
mode en. Details about such an OPM approach for the stochastic context will be communicated 
elsewhere.
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Appendix A. M-term: first moments, non-Gaussian statistics, and large probability 
estimates

A.1. First moments

We consider the random variable of the form

M(ω) =
0∫

−∞
eg(λ)s+σWs(ω) ds, (A.1)

in which σ is allowed to take negative values and g(λ) is a function of the control parameter 
λ. Such random variables (with negative σ ) arise for instance when the stable modes are forced 
stochastically but not the unstable ones; see Eq. (2.25).

The following lemma provides exact formulas for the expectation, variance and autocorrela-
tion function, of such a general M-term.

Lemma A.1. Let g > 0 and

σ∗ =√
2g, σ# = √

g. (A.2)

Then M-term defined by (A.1) a wide-sense stationary random process provided that |σ | < σ#, 
and furthermore

(i) The expectation of M exists if and only if |σ | < σ∗, and is given by

E(M) = 2

2g − σ 2 , |σ | < σ∗. (A.3)

(ii) The variance of M exists if and only if |σ | < σ#, and is given by

Var(M) = 2σ 2

(2g − σ 2)2(g − σ 2)
. (A.4)

Finally, the autocorrelation R(t) of the stochastic process

M(t,ω) =
0∫

−∞
egs+σ(Ws+t (ω)−Wt (ω)) ds, (A.5)

exists if and only if |σ | < σ#, and is given by

R(t) = exp
(
−
(
g − σ 2 )

|t |
)
, t ∈ R. (A.6)
2
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This lemma results from direct application of the Fubini Theorem, the independent increment 
property of the Wiener process, and the fact that E(eσWt(·)) = eσ 2|t |/2 for any t ∈ R, as expecta-

tion of the geometric Brownian motion generated by dSt = σ 2

2 St dt +σSt dWt . See the Appendix 
of [27] for a proof.

A.2. Non-Gaussian statistics and log-normal approximations

We provide here a simple analytic understanding regarding the non-Gaussian statistics fol-
lowed by an arbitrary M-term, in the case of real eigenvalues. Recall that an M-term is obtained 
as the stationary solution of the scalar SDE,

dM = (1 − gM)dt − σM ◦ dWt, (A.7)

where g denotes a distance to resonance, namely g = (k, βc(λ)) − βn(λ) for some n.
Rescale (A.7) by using

Wt(ω) = 1√
g

W̃gt (ω), t̃ = gt, M̃ = gM. (A.8)

Then (A.7) becomes

dM̃ = (1 − M̃) d̃t − σ√
g

M̃ ◦ dW̃t̃ . (A.9)

To have an explicit formula for the probability distribution function (PDF) of the random 
variable M̃ is non-trivial. We illustrate nevertheless that this PDF is well approximated by the 
PDF of an analytic, log-normal distributed random variable N , provided that σ <

√
g.

Our analysis revealed that the parameters of this log-normal distribution are

μσ,g = ln(κσ,g) − 1

2
(�σ,g)

2,

�σ,g =
√√√√ln

(
1 +

(
ησ,g

κσ,g

)2
)

,

(A.10)

where

κσ,g = 2

2 − σ 2/g
,

ησ,g =
√

2σ 2/g

(2 − σ 2/g)2(1 − σ 2/g)
.

(A.11)

The PDF of N is then given by ([42, Chap. 14])

p(N) = 1

N�
√

2π
exp

(
− (ln(N) − μσ,g)

2

2�2

)
, N > 0, (A.12)
σ,g σ,g
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Fig. 5. PDF of M̃ (black) vs. its lognormal approximation given by (A.12) (red dash curve), for various values of σ/
√

g. 
A semi-log scale is used to plot these PDFs. Note that σ/

√
g < 1 is required to ensure the mean and variance of M̃ to 

exist; see Lemma A.1.

and turns out to approximate robustly the distribution of simulated M-term for different values 
of σ/

√
g as shown in Fig. 5.

A.3. Probability estimates in the large

Lemma A.2. We assume that Conditions (A1) and (A2) as well as (3.4) of Sec. 3 hold. Consider 
the Mn,λ

11 -terms appearing in (3.6) for n = 2, · · · , N and λ ∈ [λc, λ∗], where N is given by (3.4)
and λ∗ is given in Condition (A2). Then, for any χ in (0, 1), there exists κ > 0 such that

P
{

0 ≤ M
n,λ
11 (ω) < κ

∣∣ n = 2, · · · ,N,λ ∈ [λc,λ
∗]
}

≥ 1 − χ. (A.13)

Proof. The result is a direct consequence of the Chebyshev’s inequality, which states that if Y is 
a random variable and p ≥ 1, then for any κ > 0, it holds that

P {ω : |Y | ≥ κ} ≤ 1

κp
E(|Y |p). (A.14)

Since Mn,λ
11 (ω) = ∫ 0

−∞ e(2ε−βn(λ))s+σWs(ω)ds and the eigenvalues are all real-valued and are ar-
ranged in descending order, we have for all ω ∈ �, λ ∈ [λc, λ∗],

0 ≤ M
N,λ
11 (0,ω) ≤ M

N−1,λ
11 (0,ω) ≤ · · · ≤ M

3,λ
11 (0,ω) ≤ M

2,λ
11 (0,ω). (A.15)

Denote

λ� = argmax
λ∈[λc,λ∗]

β2(λ). (A.16)

We have then

M
2,λ

(ω) ≤ M
2,λ�

(ω), ∀ω ∈ �,λ ∈ [λc,λ
∗]. (A.17)
11 11
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Recall that due to Lemma A.1

E(M
2,λ�

11 ) = 2

2(2ε − β2(λ�)) − σ 2 , (A.18)

which holds for all σ <
√

2(2ε − β2(λ�)). Since σ = √
ε and β2(λ

�) < 0 thanks to Condi-
tion (A2), this desired condition σ <

√
2(2ε − β2(λ�)) is satisfied. Thus, for any χ in (0, 1), 

thanks to (A.15) and (A.17), we just need to apply (A.14) with Y = M
2,λ�

11 , p = 1, and

κ = 1

|β2(λ�)|χ , (A.19)

to ensure (A.13). �
Lemma A.3. For any ε > 0, T > 0 and χ in (0, 1], let γ = √−2T ln(1 − χ)), then

P

{
√

ε sup
0≤t≤T/ε

|Wt(ω)| ≤ γ

}
≥ 1 − χ. (A.20)

Proof. Recall that for any γ > 0 and T ∗ > 0, it holds that

P { sup
0≤t≤T ∗

|Wt(ω)| ≥ γ } ≤ 2P {|WT ∗(ω)| ≥ γ }; (A.21)

see e.g. Billingsley [9] page 529. So for any σ > 0, we have

P

{
σ sup

0≤t≤T ∗
|Wt(ω)| ≥ γ

}
≤ 2P {σ |WT ∗(ω)| ≥ γ } ≤ exp

(
− γ 2

2σ 2T ∗

)
, (A.22)

where in the last inequality above we used the facts that WT ∗(ω) follows a normal distribution 
with mean zero and variance equal to T ∗ and that

∞∫
a

e−x2
dx ≤

√
π

2
e−a2

. (A.23)

Hence, with T ∗ = T/ε and σ = √
ε, we have

P

{
√

ε sup
0≤t≤T/ε

|Wt(ω)| ≥ γ

}
≤ exp

(
− γ 2

2T

)
. (A.24)

Then, by choosing γ = √−2T ln(1 − χ)), we get the desired estimate (A.20). �
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Appendix B. A priori estimates in large probability: surrogate system (3.19)

Proof of Lemma 3.1. The desired estimate (3.22) follows from (i) basic probabilistic estimates 
about the M-terms and the Brownian motion (see Lemmas A.2 and A.3 above), and (ii) elemen-
tary energy estimates based on the dissipation condition (3.11).

To perform (and simplify) our estimates we first transform the SDE system (3.19) into dif-
ferential equations with random coefficients by using Z(t, ω), the Ornstein-Uhlenbeck process, 
stationary solution of the scalar Langevin equation (2.5).

More exactly, we perform the change of variables

U = e−Z(t,ω)X, � = e−Z(t,ω)�. (B.1)

The system (3.19) is then transformed into

dU

dt
= εU + Z(t,ω)U + eZ(t,ω)UFc(�), (B.2a)

d�

dt
= Ls

λ� + Z(t,ω)� + eZ(t,ω)Bs
11U

2 + 2eZ(t,ω)�Fc(�). (B.2b)

The estimation of X and � based on (B.2) are organized into three steps below.

Step 1: Energy estimates for X. Multiplying (B.2a) by U , we get

1

2

d

dt
U2 = εU2 + Z(t,ω)U2 + eZ(t,ω)U2Fc(�). (B.3)

Observe that by (3.5) and (3.9) we have

Fc(�) = e−Z(t,ω)
N∑

n=2

�n

(
B1

1n + B1
n1

)

= e−Z(t,ω)X2
N∑

n=2

Bn
11M

n,λ
11

(
B1

1n + B1
n1

)
≤ 0. (due to (3.11))

(B.4)

We get then from (B.3) that

1

2

d

dt
U2 ≤ εU2 + Z(t,ω)U2, (B.5)

which leads to

U2(t,ω) ≤ eα(t,ω)U2
0 , (B.6)

with α(t, ω) = 2εt + 2 
∫ t

Z(s, ω) ds.
0
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Transforming back to the X-variable by using (B.1), and by noting that

Z(t,ω) = Z(0,ω) −
t∫

0

Z(s,ω)ds + √
εWt(ω), (B.7)

we obtain

X2(t,ω) ≤ e2εt+2
√

εWt (ω)X2
0. (B.8)

Step 2: Energy estimates for �. Note that 〈Ls
λ�, �〉 ≤ β2(λ)‖�‖2. Taking the inner-product of 

(B.2b) with � and using again the fact that Fc(�) ≤ 0 (cf. (B.4)), we get

1

2

d‖�‖2

dt
≤ β2(λ)‖�‖2 + Z(t,ω)‖�‖2 + eZ(t,ω)U2〈Bs

11,�〉. (B.9)

Now, note that

I
def= eZ(t,ω)U2〈Bs

11,�〉 = eZ(t,ω)U2〈B(e1, e1),�〉 ≤ eZ(t,ω)U2‖B(e1, e1)‖‖�‖, (B.10)

which leads to

I ≤ 1

2|β2(λ)|e
2Z(t,ω)‖B(e1, e1)‖2U4 + 1

2
|β2(λ)|‖�‖2. (B.11)

Using this last inequality in (B.9), we arrive at

1

2

d‖�‖2

dt
≤ 1

2
β2(λ)‖�‖2 + Z(t,ω)‖�‖2 + 1

2|β2(λ)|e
2Z(t,ω)‖B(e1, e1)‖2U4, (B.12)

which leads, after integration, to

‖�(t,ω)‖2 ≤ eβ2(λ)t+2
∫ t

0 Z(s,ω)ds‖�(0,ω)‖2 + 1

|β2(λ)| ‖B(e1, e1)‖2J (t,ω), (B.13)

with

J (t,ω) =
t∫

0

eβ2(λ)(t−s)+2
∫ t
s Z(τ,ω)dτ e2Z(s,ω)U4(s,ω)ds. (B.14)

By transforming back to the (X, �)-variable using (B.1) and taking into account the identity 
(B.7), we obtain

‖�(t,ω)‖2 ≤ eβ2(λ)t+2
√

εWt (ω)‖�(0,ω)‖2 + 1

|β2(λ)| ‖B(e1, e1)‖2J̃ (t,ω), (B.15)

with
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J̃ (t,ω) =
t∫

0

eβ2(λ)(t−s)+2
√

ε(Wt (ω)−Ws(ω))X4(s,ω)ds. (B.16)

Step 3: Probabilistic estimates for X and �. Based on (B.8) and (B.15), to derive (3.22), we 
just need to obtain suitable bounds for Wt and the random coefficients Mn,λ

11 (0, ω)’s appearing 
in the expression of �(0, ω); cf. (3.20). More precisely, for T and χ as given in the statement 
of Lemma 3.1, we show that there exists a subset �∗ of � with P (�∗) ≥ 1 − χ , over which 
M

n,λ
11 (0, ω) is bounded for all n = 1, · · · , N , and 

√
εWt(ω) is also bounded for all ω in �∗ and t

in [0, T/ε]. The existence of such a subset �∗ is guaranteed by Lemma A.2 and Lemma A.3.
Indeed, applying Lemma A.2 with χ therein replaced by χ/2, there exists a constant κ > 0

and a subset �1 with P (�1) ≥ 1 − χ/2, for which

0 ≤ M
n,λ
11 (0,ω) < κ, ω ∈ �1, n = 2, · · · ,N,λ ∈ [λc,λ

∗]. (B.17)

Applying Lemma A.3 with χ therein replaced by χ/2, there exists a constant γ > 0 and a subset 
�2 with P (�2) ≥ 1 − χ/2, for which

√
ε sup

0≤t≤T/ε

|Wt(ω)| ≤ γ, ω ∈ �2. (B.18)

Now, take �∗ = �1 ∩ �2. We have P (�∗) ≥ 1 − χ , and

√
ε sup

0≤t≤T/ε

|Wt(ω)| ≤ γ, ω ∈ �∗, (B.19a)

0 ≤ M
n,λ
11 (0,ω) < κ, ω ∈ �1, n = 2, · · · ,N,λ ∈ [λc,λ

∗]. (B.19b)

Using (B.19a) and (3.21), we conclude from (B.8) that

X2(t,ω) ≤ (C1)
2e2T +2γ ε, t ∈ [0, T /ε], ω ∈ �∗, (B.20)

where C1 > 0 is a constant such that |X0| ≤ C1
√

ε (Due to (3.21)).
For �, the terms on the RHS of (B.15) can be estimated as follows. Using the definition of 

�(0, ω) in (3.20), the assumption on X0 in (3.21), and the probabilistic bound (B.19b) about the 
M

n,λ
11 -terms, we get

eβ2(λ)t+2
√

εWt (ω)‖�(0,ω)‖2 ≤ e2γ ‖�(0,ω)‖2 ≤ κ2(C1)
4e2γ

(
N∑

n=2

(Bn
11)

2

)
ε2, (B.21)

for any t in [0, T/ε], and ω in �∗, where C1 is the same as in (B.20).
For J̃ defined by (B.16), using (B.19a) and (B.20), we obtain that for all ω in �∗ and t in 

[0, T/ε],

J̃ (t,ω) ≤
t∫
eβ2(λ)(t−s)+4γ ds (C1)

4e4T +4γ ε2 ≤ 1

|β2(λ)| (C1)
4e4T +8γ ε2. (B.22)
0
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Now, by using (B.21) and (B.22) in (B.15), we arrive, for any t in [0, T/ε], and ω in �∗, at

‖�(t,ω)‖ ≤ C2 ε, (B.23)

in which C2 is a constant independent of ε. The desired estimate (3.22) follows now from (B.20)
and (B.23) by taking C = max{C1e

T +γ , C2}. �
Appendix C. High-mode estimates in large probability

We provide in this section the proofs of the two key estimates (4.7) and (4.9), regarding the 
high-mode component, us, of the solution, u, to Eq. (3.1).

C.1. High-mode estimate (4.7)

First note that, since the nonlinearity B in Eq. (3.1) is bilinear, the transformed equation (2.3)
for the variable v = e−Z(t,ω)u associated with Eq. (3.1) becomes here

dv

dt
= Lλv + Z(t,ω)v + eZ(t,ω)B(v), (C.1)

with Z(t, ω) denoting again the OU process, stationary solution of the scalar Langevin equation 
(2.5).

Taking inner product of (C.1) with v and using the energy conservation property of B
(cf. (3.3)), we obtain

1

2

d‖v‖2

dt
= 〈Lλv, v〉 + Z(t,ω)‖vs‖2 ≤ ε‖vs‖2 + Z(t,ω)‖vs‖2. (C.2)

Integrating this last equation, then transforming back to the u-variable and taking into consider-
ation the identity (B.7), we obtain

x2(t,ω) + ‖us(t,ω)‖2 ≤ e2εt+2
√

εWt (ω)‖u(0,ω)‖2. (C.3)

Recall also that, thanks to Lemma A.3, for any χ in (0, 1), there exists a subset �∗ ⊂ � with 
P (�∗) ≥ 1 − χ and a constant γ > 0, such that

√
ε sup

0≤t≤T/ε

|Wt(ω)| ≤ γ, ω ∈ �∗; (C.4)

see (B.19a). Thus, if |u(0)| ∼ √
ε, then thanks to (C.3) and (C.4), there exists a constant C > 0

independent of ε such that

|x(t,ω)|2 + ‖us(t,ω)‖2 ≤ Cε, ∀t ∈ [0, T /ε], ω ∈ �∗. (C.5)

By introducing

y = e−Z(t,ω)x, vs = e−Z(t,ω)us, (C.6)
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we get from (3.23b) the following equation for vs:

dvs

dt
= Ls

λvs + Z(t,ω)vs + eZ(t,ω)
(
y2Bs

11 + yFs(vs) + �sB(vs, vs)
)
. (C.7)

Noting that 〈B(vs, vs), vs〉 = 0 and that 〈Ls
λvs, vs〉 = 〈Lλvs, vs〉, we get then

1

2

d‖vs‖2

dt
= 〈Lλvs, vs〉 + Z(t,ω)‖vs‖2 + eZ(t,ω)

〈
y2Bs

11 + yFs(vs), vs

〉
. (C.8)

For 〈Lλvs, vs〉, first note that by Condition (L1), we have

〈Au,u〉 = ‖u‖2
ν, u ∈W = D(A). (C.9)

Now, let η be as given by Condition (L2). Since Lλ = −A + Pλ, we get, thanks to (4.2a) and 
(C.9)

〈Lλvs, vs〉 = 〈(−ηA + Pλ)vs, vs〉 − (1 − η)〈Avs, vs〉
≤ −δ‖vs‖2 − (1 − η)‖vs‖2

ν .
(C.10)

Recall that Bs
11 = �sB(e1, e1); see (3.18). We get

eZ(t,ω)〈y2Bs
11, vs〉 ≤ eZ(t,ω)CBy2‖e1‖2

V ‖vs‖

≤ e2Z(t,ω)(CB)2‖e1‖4
V

2δ
y4 + δ

2
‖vs‖2,

(C.11)

where CB > 0 denotes the smallest constant for which ‖B(u, v)‖ ≤ CB‖u‖V ‖v‖V for all u and 
v in V .

Recall also that Fs(v) = �s(B(e1, v) + B(v, e1)); see (3.24). We get then

eZ(t,ω)〈yFs(vs), vs〉 ≤ 2eZ(t,ω)CB |y|‖e1‖V ‖vs‖V ‖vs‖
≤ 2eZ(t,ω)CCB |y|‖e1‖V ‖vs‖ν‖vs‖,

(C.12)

where C > 0 denotes the smallest constant for which ‖u‖V ≤ C‖u‖ν for all u in V . Such a 
constant exists due to the assumption that ‖ · ‖ν defines an equivalent norm to ‖ · ‖V on V ; see 
Condition (L1). We get then

eZ(t,ω)〈yFs(vs), vs〉 ≤ 1 − η

2
‖vs‖2

ν + 2e2Z(t,ω)(CCB‖e1‖V )2

(1 − η)
|y|2‖vs‖2. (C.13)

Using (C.10), (C.11), and (C.13) in (C.8), we obtain

1

2

d‖vs‖2

dt
≤ −1

2
δ‖vs‖2 − (1 − η)

2
‖vs‖2

ν + Z(t,ω)‖vs‖2

+ e2Z(t,ω)(CB)2‖e1‖4
V y4 + 2e2Z(t,ω)(CCB‖e1‖V )2

|y|2‖vs‖2.

(C.14)
2δ (1 − η)
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By introducing

C1 = (CB)2‖e1‖4
V

2δ
, C2 = 2(CCB‖e1‖V )2

(1 − η)
, (C.15)

and restricting to the subset �∗, we have thanks to (C.5) and (C.6) that

C1e
2Z(t,ω)y4 + C2e

2Z(t,ω)|y|2‖vs‖2 ≤ Ce−2Z(t,ω)ε2, (C.16)

for ω ∈ �∗, t ∈ [0, T/ε], and some generic constant C > 0 independent of ε.
Applying Gronwall’s inequality to (C.14) while taking into consideration (C.16), we get

‖vs(t,ω)‖2 ≤ e−δt+2
∫ t

0 Z(s,ω)ds‖vs(0,ω)‖2 + Cε2

t∫
0

e−δ(t−s)+2
∫ t
s Z(τ,ω)dτ−2Z(s,ω) ds, (C.17)

which holds for ω ∈ �∗ and t ∈ [0, T/ε].
Converting back to us and using (C.4), we get

‖us(t,ω)‖2 ≤ e−δt+2
√

εWt (ω)‖us(0,ω)‖2 + Cε2

t∫
0

e−δ(t−s)+2
√

ε(Wt (ω)−Ws(ω)) ds

≤ e−δt+2γ ‖us(0,ω)‖2 + Ce4γ ε2

t∫
0

e−δ(t−s) ds

≤ e2γ ‖us(0,ω)‖2 + Ce4γ

δ
ε2,

(C.18)

which holds for ω ∈ �∗ and t ∈ [0, T/ε]. The desired estimate (4.7) is thus derived.

C.2. High-mode estimate (4.9)

In the following, to simplify the presentation, the estimates presented below are articulated at 
a formal level. The equations/inequations involving d‖vs‖2

ν/ dt can be made rigorous by working 
with the corresponding integral formulation allowed by the regularity of v recalled in (2.4).

Back to (C.7), multiplying both sides by Avs and noting that 〈vs, Avs〉 = ‖vs‖2
ν (cf. (C.9)), 

we get

1

2

d‖vs‖2
ν

dt
= 〈Ls

λvs,Avs〉 + Z(t,ω)‖vs‖2
ν

+ eZ(t,ω)
〈(

y2Bs
11 + yFs(vs) + �sB(vs, vs)

)
,Avs

〉
.

(C.19)
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For 〈Ls
λvs, Avs〉, using the assumption (4.2b), we get

〈Ls
λvs,Avs〉 = 〈Lλvs,Avs〉

= 〈(−ηA + Pλ)vs,Avs〉 − (1 − η)〈Avs,Avs〉
≤ −δ‖vs‖2

ν − (1 − η)‖Avs‖2.

(C.20)

We have also

eZ(t,ω)〈y2Bs
11,Avs〉 ≤ CBeZ(t,ω)y2‖e1‖2

V ‖Avs‖

≤ 1

1 − η
(CB)2e2Z(t,ω)y4‖e1‖4

V + 1 − η

4
‖Avs‖2.

(C.21)

By using the same type of estimates as given in (C.12)–(C.13), we get

eZ(t,ω)〈yFs(vs),Avs〉 ≤ 2(CCB)2

1 − η
e2Z(t,ω)y2‖e1‖2

V ‖vs‖2
ν + 1 − η

2
‖Avs‖2. (C.22)

We also have

eZ(t,ω)〈B(vs, vs),Avs〉 ≤ CBeZ(t,ω)‖vs‖2
V ‖Avs‖

≤ 1

1 − η
(CB)2e2Z(t,ω)‖vs‖4

V + 1 − η

4
‖Avs‖2

≤ 1

1 − η
C4(CB)2e2Z(t,ω)‖vs‖4

ν + 1 − η

4
‖Avs‖2.

(C.23)

Using the above estimates in (C.19), we get

1

2

d‖vs‖2
ν

dt
≤ −δ‖vs‖2

ν + Z(t,ω)‖vs‖2
ν + Ce2Z(t,ω)(y4 + y2‖vs‖2

ν + ‖vs‖4
ν), (C.24)

where C > 0 is a constant independent of ε.
Now, using the estimate of x given in (C.5) and noting that y = e−Z(t,ω)x from (C.6), we 

obtain

1

2

d‖vs‖2
ν

dt
≤ −δ‖vs‖2

ν + Z(t,ω)‖vs‖2
ν + C

(
e−2Z(t,ω)ε2 + ε‖vs‖2

ν + e2Z(t,ω)‖vs‖4
ν

)
. (C.25)

By choosing ε sufficiently small (achieved by choosing λ∗ sufficiently close to λc), we can ensure 
that

Cε‖vs‖2
ν ≤ δ

2
‖vs‖2

ν . (C.26)

We get then

1 d‖vs‖2
ν ≤ − δ ‖vs‖2

ν + Z(t,ω)‖vs‖2
ν + Ce−2Z(t,ω)ε2 + Ce2Z(t,ω)‖vs‖4

ν . (C.27)

2 dt 2
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For the remaining part of the proof, the generic constant C > 0 (independent of ε) is allowed to 
change in the course of the estimates.

Now, define

q(t,ω) = eδt−2
∫ t

0 Z(s,ω)ds‖vs‖2
ν, (C.28)

we get from (C.27) that

dq

dt
≤ Ceδt−2

∫ t
0 Z(s,ω)ds−2Z(t,ω)ε2 + C‖us‖2

ν q(t,ω). (C.29)

To proceed further, we need an estimate on 
∫ t

0 ‖us‖2
ν ds. For this purpose, first note that if 

‖us(0)‖ ∼ ε, then it follows from (C.18) that

‖us(t,ω)‖ ≤ Cε, ∀t ∈ [0, T /ε], ω ∈ �∗. (C.30)

Recall also from (C.5) that |x(t, ω)| ≤ C
√

ε for ω ∈ �∗ and t ∈ [0, T/ε]. Now, by integrating 
(C.14) and using the above estimates for |x(t, ω)| and ‖us(t, ω)‖, we get

‖vs(t,ω)‖2 + (1 − η)

t∫
0

e2
∫ t
s Z(s,ω)ds‖vs(s,ω)‖2

ν ds

≤ e2
∫ t

0 Z(s,ω)ds‖vs(0,ω)‖2 + Cε2

t∫
0

e2
∫ t
s Z(τ,ω)dτ−2Z(s,ω) ds,

(C.31)

which holds for ω in �∗ and t in [0, T/ε]. It follows that

t∫
0

e2
√

ε(Wt (ω)−Ws(ω))‖us(s,ω)‖2
ν ds ≤ e2

√
εWt (ω)‖us(0,ω)‖2 + Cε2

t∫
0

e2
√

ε(Wt (ω)−Ws(ω)) ds

≤ Cε2, ∀ω ∈ �∗, t ∈ [0, T /ε].
(C.32)

Using (C.4), we get (after redefining C) that

t∫
0

‖us(s,ω)‖2
ν ds ≤ Cε2, ∀ω ∈ �∗, t ∈ [0, T /ε]. (C.33)

Now, let us denote f (s, ω) = exp
(
δs − 2 

∫ s

0 Z(τ, ω) dτ − 2Z(s, ω)
)
. Applying Gronwall’s 

inequality to (C.29) and using (C.33), we get
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q(t,ω) ≤ exp

⎛⎝C

t∫
0

‖us(s,ω)‖2
ν ds

⎞⎠q(0,ω)

+ Cε2

t∫
0

exp

⎛⎝C

t∫
s

‖us(τ,ω)‖2
ν dτ

⎞⎠f (s,ω)ds

≤ Cq(0,ω) + Cε2

t∫
0

f (s,ω)ds,

(C.34)

which holds for ω in �∗ and t in [0, T/ε].
Now, converting back to ‖us‖2

V using (C.28) and (C.6), we get from (C.34) that

‖us(t,ω)‖2
ν ≤ C‖us(0,ω)‖2

ν + Cε2

t∫
0

e−δ(t−s)+2
√

ε(Wt (ω)−Ws(ω)) ds, (C.35)

which holds for ω ∈ �∗ and t ∈ [0, T/ε]. The desired estimate (4.9) follows then from (C.35)
since ‖ · ‖ν defines an equivalent norm to ‖ · ‖V on V ; see Condition (L1).

Appendix D. The non-Markovian normal form of a pitchfork bifurcation

We study here the following non-Markovian normal form of a supercritical pitchfork bifurca-
tion

dX = (εX − αMσ (t,ω)X3)dt + σX ◦ dWt, (D.1)

where ε is the bifurcation parameter, α and σ are positive constants, and Mσ is the stationary 
process given by

Mσ (t,ω) =
0∫

−∞
egs+σ(Ws+t (ω)−Wt (ω))ds, ω ∈ �, g > 0. (D.2)

Note that since, Mσ(t, ω) is always positive, the above equation has a supercritical stochastic 
pitchfork bifurcation as ε crosses 0 from below. In fact, by introducing a change of variables 
X̃ = X−2, one can compute explicitly the bifurcated random steady states for (D.1). They are 
given by ±aε , where

aε(t,ω) = 1√
2α

∫ t

−∞ Mσ (s,ω) exp(fε(t, s,ω))ds

, ε ≥ 0, (D.3)

with

fε(t, s,ω) = −2ε(t − s) − 2σ(Wt(ω) − Ws(ω)). (D.4)
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In the following, we show that when σ = √
ε, then aε(t) is on the order of 

√
ε with large proba-

bility for all t ≥ 0.

Lemma D.1. Consider the stationary solution aε for (D.1) given by (D.3). Assume that σ = √
ε. 

Then, for any χ in (0, 1), there exist positive constants c1 and c2 independent of ε such that

P
(
c1

√
ε ≤ aε(t) ≤ c2

√
ε
)≥ 1 − χ, ∀ε ∈ [0,2g], t ≥ 0. (D.5)

Proof. When ε = 0, (D.5) holds trivially since aε = 0 since the integral term in the RHS of (D.3)
becomes +∞ when ε = 0. We assume thus ε > 0 in the calculation below.

Let us first recall that if a stochastic process X(t, ω) has continuous sample paths for almost 
every ω and satisfies

lim
t→∞

X(t,ω)

t
= 0 for almost all ω, (D.6)

then for any ε1 in (0, 1) and ε2 > 0, there exist t0 > 0 and �ε1,ε2 ⊂ �, such that

P (�ε1,ε2) ≥ 1 − ε1,

|X(t,ω)|
t

< ε2, ∀ t ≥ t0, ω ∈ �ε1,ε2 .
(D.7)

The above result follows from a straightforward application of the Egoroff’s Theorem by con-
sidering random variables of the form X(tn, ω)/tn for each non-zero rational number tn.

Now, let us consider the following scaling

t̃ = εt, W̃t̃ (ω) = √
εWt(ω). (D.8)

Since W̃ is a Brownian motion, we can apply the above recalled general result to ensure that 
for any χ in (0, 1), there exist T ∗ > 0, such that

P

{
|W̃t̃ (ω)| < 1

4
|̃t |
}

≥ 1 − χ/2, ∀ t̃ ≤ −T ∗. (D.9)

We obtain then using (D.8) that

P

{√
ε|Wt(ω)| < 1

4
ε|t |

}
≥ 1 − χ/2, ∀ t ≤ −T ∗/ε. (D.10)

From Lemma A.3 (applied to Brownian motion defined on (−∞, 0]), we also know that by 
choosing γ = √−2T ∗ ln(χ/2), we get

P

{
√

ε sup
−T ∗/ε≤t≤0

|Wt(ω)| ≤ γ

}
≥ 1 − χ/2. (D.11)

Now, from (D.10) and (D.11), we obtain a subset �∗ ⊂ � with P (�∗) ≥ 1 − χ such that for all 
ω in �∗ it holds that
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√
ε|Wt(ω)| ≤ γ, ∀ t ∈ [−T ∗/ε,0],

√
ε|Wt(ω)| < 1

4
ε|t |, ∀ t ≤ −T ∗/ε.

(D.12)

Note that from (D.2) with σ = √
ε, we have

Mσ (t,ω) = e−gt−√
εWt (ω)

t∫
−∞

egs′+√
εWs′ (ω)ds′. (D.13)

Using (D.12) and (D.13), one readily obtains for any ε in [0, 4g) and ω in �∗ that

Mσ (t,ω) ≤
(

e2γ

g
+ 4eγ+(T ∗/4)

4g − ε

)
, t ∈ [−T ∗/ε,0], (D.14)

and

Mσ (t,ω) ≤ 4e−εt/2

4g − ε
, t ∈ (−∞,−T ∗/ε]. (D.15)

Now, we are in position to estimate the random steady state aε at t = 0. Using (D.4), and 
(D.14)–(D.15), we get

0∫
−∞

Mσ (s,ω) exp(fε(0, s,ω))ds ≤ e2γ

2ε

(
e2γ

g
+ 4eγ+(T ∗/4)

4g − ε

)
+ 4e−T ∗

(4g − ε)ε
, ω ∈ �∗, ε ∈ (0,4g).

(D.16)
By restricting ε to, for instance (0, 2g], we get then

0∫
−∞

Mσ (s,ω) exp(fε(0, s,ω))ds ≤ e2γ

2ε

(
e2γ

g
+ 2eγ+(T ∗/4)

g

)
+ 2e−T ∗

gε
. (D.17)

Using this last estimate in (D.3) with t = 0 therein, we obtain

aε(0,ω) ≥ c1
√

ε, ω ∈ �∗, ε ∈ (0,2g], (D.18)

with

c1 =
(

g

αe2γ (e2γ + 2eγ+(T ∗/4)) + 4αe−T ∗

)1/2

. (D.19)

Using again (D.12), we also have

Mσ (t,ω) ≥ 4eεt/2

, t ∈ (−∞,−T ∗/ε], ω ∈ �∗, (D.20)

4g + ε
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and we can simply bound Mσ(t, ω) below by zero for all t in [−T ∗/ε, 0]. This way, we get

0∫
−∞

Mσ (s,ω) exp(fε(0, s,ω))ds ≥ 2e−3T ∗

9gε
, ε ∈ (0,2g],ω ∈ �∗, (D.21)

leading thus to

aε(0,ω) ≤ c2
√

ε, ω ∈ �∗, ε ∈ (0,2g], (D.22)

with c2 =√
9ge3T ∗

/(4α). Since the constants c1 and c2 in respectively (D.18) and (D.22) depend 
only on χ (through γ and T ∗) but not on ε, the estimate (D.5) for t = 0 follows. Since aε is 
stationary, the same estimation holds for all t ≥ 0. The proof is complete. �
Appendix E. Proof of Lemma 5.1

Proof of Lemma 5.1. Recall that the linear operator LR = −A + PR is defined in (5.4) and its 
eigenelements are provided in Sec. 5.2. Note that A leaves invariant each of the one-dimensional 
subspace spanned by any of the eigenvectors of LR . Thus, to verify (4.2), it is sufficient to show 
that there exist η and δ, for which (4.2) holds when us is taken to be any stable eigenmode of 
LR .

We first verify (4.2) for us = e0k given in (5.8) for any k in N . Note that since −Ae0k =
−k2π2e0k = LRe0k , we get PRe0k = (LR + A)e0k = 0 for all k. As a result, for any η in (0, 1), 
we have

〈(−ηA + PR)e0k, e0k〉 = −ηk2π2‖e0k‖2 ≤ −ηπ2‖e0k‖2,

〈(−ηA + PR)e0k,Ae0k〉 = −ηk2π2‖∇e0k‖2 ≤ −ηπ2‖∇e0k‖2,
(E.1)

which holds for all R and all k.
Now, for eigenfunctions in group two given by (5.11), we have

〈Ae±
jk, e

±
jk〉 = γ 2

jk‖e±
jk‖2, (E.2)

and

〈PRe±
jk, e

±
jk〉 = 〈(LR + A)e±

jk, e
±
jk〉 = (β±

jk(R) + γ 2
jk)‖e±

jk‖2 = ±
√

Rα2
j /γ

2
jk‖e±

jk‖2, (E.3)

where the last equality follows from (5.9).
By using (E.2) and (E.3), we get

〈(−ηA + PR)e±
jk, e

±
jk〉 =

(
−ηγ 2

jk ±
√

Rα2
j /γ

2
jk

)
‖e±

jk‖2. (E.4)

Similarly, we have

〈(−ηA + PR)e± ,Ae± 〉 =
(
−ηγ 2

jk ±
√

Rα2/γ 2
)

‖∇e± ‖2. (E.5)

jk jk j jk jk
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To proceed further, we discuss the two cases us = e+
jk and us = e−

jk separately. For us = e−
jk , 

let η in (0, 1) be arbitrarily fixed. Since

−ηγ 2
jk −

√
Rα2

j /γ
2
jk ≤ −ηγ 2

jk ≤ −ηγ 2
11, (E.6)

we get

〈(−ηA + PR)e−
jk, e

−
jk〉 ≤ −ηγ 2

11‖e−
jk‖2,

〈(−ηA + PR)e−
jk,Ae−

jk〉 ≤ −ηγ 2
11‖∇e−

jk‖2,
(E.7)

which holds for all R and all indices (j, k) in N2.
For us = e+

jk , we aim to show that there exist an η in (0, 1), R∗ > R, and a μ > 0 such that

max
(j,k)∈N2

(j,k)�=(jc,1)

(
−ηγ 2

jk +
√

Rα2
j /γ

2
jk

)
≤ −μ, ∀R ∈ [Rc,R

∗]. (E.8)

First note that since γ 2
jk is always positive and increases as k increases, we have either

max
(j,k)∈N2

(j,k)�=(jc,1)

(
−ηγ 2

jk +
√

Rα2
j /γ

2
jk

)
= max

j∈N
j �=jc

(
−ηγ 2

j1 +
√

Rα2
j /γ

2
j1

)
, (E.9)

or

max
(j,k)∈N2

(j,k)�=(jc,1)

(
−ηγ 2

jk +
√

Rα2
j /γ

2
jk

)
=
(
−ηγ 2

jc2 +
√

Rα2
jc

/γ 2
jc2

)
. (E.10)

To handle the case (E.9), let us introduce

fj (η,R) = −ηγ 2
j1 +

√
Rα2

j /γ
2
j1. (E.11)

Since α2
j /γ

2
j1 ≤ 1 for any j , and γ 2

j1 approaches +∞ as j increases, we see that for any fixed 
η in (0, 1), we can make fj (η, R) as negative as needed by taking j sufficiently large. More 
precisely, for any M > 0, and R1 > Rc, there exists an index J such that

fj (η,R) ≤ −M, (E.12)

for all j ≥ J and R in [Rc, R1]. This implies that there exists J ∗ > 0 such that the maximum in 
(E.9) is achieved at some j ≤ J ∗ for all R in [Rc, R1], where R1 > Rc is arbitrarily fixed. We 
consider then the following set of functions

fj (η,R) = −ηγ 2
j1 +

√
Rα2

j /γ
2
j1, j ∈ {1, . . . , J ∗} \ {jc}. (E.13)

From now on, both cases (E.9) and (E.10) can be handled in the same way. We thus introduce 
also
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g(η,R) = −ηγ 2
jc2 +

√
Rα2

jc
/γ 2

jc2. (E.14)

Note that fj (1, R) = β+
j1(R) and g(1, R) = β+

jc2(R); cf. (5.9). Then, by the definition of 
Rc, we know that fj (1, Rc) < 0 for all such j ’s and g(1, Rc) < 0 as well. Since fj and g are 
continuous in both η and R, and we are considering only finitely many such functions, there 
exists η in (0, 1), R∗ > Rc and μ > 0 for which

g(η,R) < −μ and fj (η,R) < −μ, j ∈ {1, . . . , J ∗} \ {jc}, R ∈ [Rc,R
∗]. (E.15)

It follows then

−ηγ 2
jc2 +

√
Rα2

jc
/γ 2

jc2 < −μ and max
j∈N
j �=jc

⎛⎝−ηγ 2
j1 +

√√√√Rα2
j

γ 2
j1

⎞⎠≤ −μ, ∀R ∈ [Rc,R
∗]. (E.16)

The desired estimate (E.8) follows then from (E.16), taking into consideration (E.9) and (E.10).
It follows then from (E.4), (E.5) and (E.8) that

〈(−ηA + PR)e+
jk, e

+
jk〉 ≤ −μ‖e+

jk‖2,

〈(−ηA + PR)e+
jk,Ae+

jk〉 ≤ −μ‖∇e+
jk‖2,

(E.17)

which holds for all R in [Rc, R∗] and (j, k) �= (jc, 1).
To summarize, based on the estimates in (E.1), (E.7), and (E.17), by choosing η in (0, 1), 

μ > 0 and R∗ > Rc for which (E.17) holds, and letting δ = min{ηπ2, μ, ηγ 2
11}, the condition 

(4.2) holds for all us in D(A) ∩ Hs and R in [Rc, R∗]. The proof is now complete. �
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