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ABSTRACT

An analytical implementation of static dipole polarizabilities within the generalized Kohn–Sham semicanonical projected random phase
approximation (GKS-spRPA) method for spin-restricted closed-shell and spin-unrestricted open-shell references is presented. General
second-order analytical derivatives of the GKS-spRPA energy functional are derived using a Lagrangian approach. By resolution-of-the-
identity and complex frequency integration methods, an asymptotic O(N4 log(N)) scaling of operation count and O(N3) scaling of storage
is realized, i.e., the computational requirements are comparable to those for GKS-spRPA ground state energies. GKS-spRPA polarizabilities
are assessed for small molecules, conjugated long-chain hydrocarbons, metallocenes, and metal clusters, by comparison against Hartree–Fock
(HF), semilocal density functional approximations (DFAs), second-order Møller–Plesset perturbation theory, range-separated hybrids, and
experimental data. For conjugated polydiacetylene and polybutatriene oligomers, GKS-spRPA effectively addresses the “overpolarization”
problem of semilocal DFAs and the somewhat erratic behavior of post-PBE RPA polarizabilities without empirical adjustments. The ensem-
ble averaged GKS-spRPA polarizabilities of sodium clusters (Nan for n = 2, 3, . . ., 10) exhibit a mean absolute deviation comparable to PBE
with significantly fewer outliers than HF. In conclusion, analytical second-order derivatives of GKS-spRPA energies provide a computation-
ally viable and consistent approach to molecular polarizabilities, including systems prohibitive for other methods due to their size and/or
electronic structure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103664

I. INTRODUCTION

The dipole moment and the static polarizability are fundamen-
tal molecular properties defined by the linear and quadratic response
of the energy E with respect to a uniform electric fieldℱ

1,2

E(ℱ) = E0 − μ ⋅ℱ + 1
2
ℱ ⋅ α ⋅ℱ +O(ℱ3), (1)

where E0 is the unperturbed ground state energy, μ is the
dipole moment, and α is the static polarizability tensor. Accurate
ab initio calculation of electronic polarizabilities requires a bal-
anced description of electron correlation3 and suitable basis sets;4–7

moreover, vibrational, rotational, and thermal contributions to total
molecular polarizabilities can be significant.8 Wavefunction-based

response methods within the Hartree–Fock (HF) framework,9–11

second-order Møller–Plesset (MP2) perturbation theory,12,13 and
approximate coupled cluster theory (CC) methods, such as CC
singles and doubles (CCSD), CCSD with perturbative triples
[CCSD(T)],14,15 CC216 and CC317 methods, have been demon-
strated to yield highly accurate static polarizabilities for systems
whose ground state is dominated by the HF reference. With the
exception of HF, these approaches include electron correlations at
various levels of approximations, but can be computationally expen-
sive for large molecular systems, particularly in conjunction with
diffuse-augmented basis sets.18

Density functional approximations (DFAs)19,20 within the
Kohn–Sham (KS)21 or the generalized KS (GKS)22 framework
are widely used to compute molecular polarizabilities23–25 due to
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their computational efficiency. Nevertheless, one of the widely
known shortcomings of semilocal (SL) DFAs is their tendency to
massively overestimate polarizabilities of conjugated systems.26–29

This somewhat unexpected failure of semilocal DFAs has been
rationalized by an ultranonlocal “field counteracting” term in
the exact exchange–correlation (XC) potential not captured by
semilocal DFAs.27,30 This deficiency may be viewed as a form
of self-interaction error31,32 or violation of the fractional charge
condition.33

Over the past decades, significant effort has been devoted
toward rectifying the DFA errors in static polarizabilities, although
with varying levels of success.29,34–37 A popular workaround is
the use of hybrid functionals, which include a fraction of HF
exchange.24,38 Garza et al.,39 found static polarizabilities obtained
from range-separated hybrid (RSH) functionals to be more accurate
than SL DFA ones for long-range charge transfer systems. How-
ever, Nénon et al. concluded37 that not only long-range exchange
but also long-range correlations are vital for obtaining accurate
polarizabilities of large conjugated molecular systems. “Tuning” of
RSH functionals40 improves the nonlinear polarizabilities of cer-
tain push–pull systems but is not universally reliable.41 In prac-
tice, one often finds that the polarizabilities of conjugated systems
are so sensitive to the amount of HF exchange that one needs
to proceed with caution while using these DFAs for polarizability
calculations.

Here, we investigate whether the random phase approximation
(RPA) for the ground-state correlation energy42–44 can overcome
the overpolarization problem of SL and hybrid DFAs. RPA includes
the full HF exchange plus nonlocal long-range correlation and
hence does not rely on error cancellation between exchange and
correlation as do hybrid and SL DFAs. So far, RPA has mainly
been applied to energies and first-order properties in a post-KS
fashion45–48 starting, e.g., from a PBE calculation, but the recent
development of self-consistent RPA methods49 with much dimin-
ished dependence on the KS reference motivates this exploration
of second-order RPA properties. The computational cost of RPA
is higher than that of hybrid DFAs, but comparable to that of
a fast MP2 calculation.44,50 We focus on the GKS semicanonical
projected RPA (GKS-spRPA) method, which achieves full orbital
stationarity while systematically improving properties such as KS
orbital energies, densities, interaction energies, and stability of the
GKS reference compared to post-KS RPA.51 The latter is paramount
for second- and higher-order static response properties, which are
closely related to the second variation of the ground-state energy
functional. Apart from conjugated systems, the performance of RPA
response properties for open-shell transition metal compounds and
metallic systems is of particular interest for applications to linear and
nonlinear optical properties, where HF and MP2 polarizabilities are
unreliable.52,53

Here, we present the first derivation and implementation of
analytical second-order properties, specifically static polarizabili-
ties, within the GKS-spRPA framework. We aim to understand if
GKS-spRPA, which includes HF exchange as well as long-range
nonlocal correlations, can address the problem of overpolarization
affecting SL/hybrid DFAs when calculating static polarizabilities of
π - conjugated polymers. Furthermore, we test the accuracy of GKS-
spRPA static polarizabilities for metallocenes and small metal clus-
ters where the HF reference is qualitatively incorrect and HF-based

single-reference approaches such as MP2 are suspect.52,53 In Sec. II,
we briefly review the GKS-spRPA working equations. Next, ana-
lytical expressions for second-order properties are developed using
a Lagrangian approach, which uses resolution-of-the-identity (RI)
factorization of the Coulomb interaction54 and imaginary frequency
integration.50 The latter bypass explicit calculation of any four-
index arrays such as (perturbed) doubles amplitudes or four-center
integral derivatives encountered, e.g., in conventional analytical
second-order MP2 derivative theory,55–57 somewhat reminiscent of
Laplace-transform RI-MP2 approaches.16 The main result is an iter-
ative implementation of GKS-spRPA polarizabilities exhibiting the
same O(N4 logN) scaling as RPA single-point energies. Section IV
presents GKS-spRPA static polarizabilities of small molecules, con-
jugated systems, metallocenes, and metal clusters and compares
them to other theoretical and/or experimental results. Furthermore,
the basis set and numerical frequency grid convergence behavior
of the method are assessed. Conclusions from a theoretical and
computational viewpoint are presented in Sec. V.

II. THEORY

A. Overview of the GKS-spRPA method

In finite basis set calculations, the spin-unrestricted KS or GKS
molecular orbitals (MOs) {ϕpσ} are linear combinations of basis
functions {χμ},

ϕpσ(r) =∑
μ

Cμpσχμ(r). (2)

In molecular applications, the basis functions {χμ} are typically
atom-centered “atomic orbitals” (AOs), giving rise to a nondiagonal
overlap matrix

Sμν = ∫ d
3
r χμ(r)χν(r). (3)

Throughout this paper, indices i, j, . . . denote occupied a, b, . . . vir-
tual (unoccupied), and p, q, . . . general MOs, whereas atomic orbital
basis functions are denoted by Greek indices μ, ν, . . ., localized aux-
iliary basis functions are denoted by capital Roman indices P,Q, . . .,
and σ = α,β is a spin index. We consider real MOs and spin-
unrestricted references in this paper. The MO coefficients Cσ are
solutions of the canonical (G)KS equation51

H
KS
σ ∥Dα,Dβ∥Cσ = SCσεσ , (4)

under the orthonormality constraint

C
†
SC = 1, (5)

and εσ is the diagonal matrix of the orbital energies. The KS or
GKS Hamiltonian HKS

σ ∥Dα,Dβ∥ = hσ +VHXC
σ ∥Dα,Dβ∥ may be sep-

arated into a “core” Hamiltonian hσ containing the one-electron
operators of the kinetic energy, the electron-nucleus attraction, as
well as additional terms arising from static external electric or
magnetic fields. The Hartree, exchange, and correlation (HXC)
potential VHXC

σ = VH
+VXC

σ arises from a local multiplicative HXC
potential in the strict KS approach, whereas in GKS theory, the
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exchange–correlation potential is generally nonlocal.22,58 The σ-spin
(G)KS one-particle density matrix

Dσ = CσnσC
†
σ (6)

contains the occupation number matrix nσ which, for pure states,
is diagonal with eigenvalues 1 for occupied and 0 for virtual MOs.
The occupation numbers are usually chosen such that the canonical
KS orbitals and their energy eigenvalues satisfy the Aufbau princi-
ple. In the following we use the short-hand notation D = {Dα,Dβ},
C = {Cα,Cβ} and ε = {εα, εβ} for convenience.

Once the KSMOs and orbital energies are determined, the RPA
energy is obtained as the sum of the HF or HX energy EHF∥D∥ and
the RPA correlation energy EC RPA,59

E
RPA∥D∥ = EHF∥D∥ + ECRPA∥D∥. (7)

Within the RI approximation and using imaginary-axis frequency
integration,50 the RIRPA correlation energy is given by

E
CRIRPA∥D∥ = 1

2∫
∞

∞

dω

2π
⟨ln(1 +Q(ω)) −Q(ω)⟩, (8)

where ⟨⋅⟩ denotes the trace operation. The RI approximation50,54

for direct or Coulomb (J) contractions is an approximate factor-

ization of the four-center electron repulsion integrals (ERIs) Π(4)μνκλ

= (μν∣κλ) into lower-rank three- and two-center integrals,

Π
(4)
RI = Π

(3)(Π(2))−1Π(3)T , (9)

where Π(3)μνP = (μν∣P) and Π
(2)
PQ = (P∣Q). Here, we use the Mulliken

notation for ERIs,

(μν∣κλ) = ∫ d
3
r1d

3
r2
χμ(r1)χν(r1)χκ(r2)χλ(r2)∣r1 − r2∣ . (10)

(Π(2))−1 is calculated via Cholesky decomposition,

(Π(2))−1 = ΛT
Λ, (11)

where Λ is upper triangular.Q(ω) is expressed as

Q(ω) = 2BT
GB. (12)

G is a frequency dependent supermatrix,

G(ω) = Δ(Δ2
+ ω2

1)−1, (13)

where Δ in a general non-canonical basis is expressed as

Δiaσ jbσ′ = δσσ′(εabσδij − εijσ′δab), (14)

and BiaσP is defined as

BiaσP =∑
μνQ

CμiσCνaσ(μν∣P)(Λ)−1QP. (15)

The Post-KS RPA method depends explicitly on the reference
semilocal (SL) KS potential and orbitals. SL KS potentials are known
to be inaccurate for describing the electronic structure of open-
shell molecules, anions, and small-gap compounds.60,61 Further-
more, the post-KS RPA energy functional is not variationally stable
because of this dependence. To address such issues, Voora et al.51

devised an orbital self-consistent method called the GKS-spRPA,
which variationally extremizes the spRPA energy E spRPA∥D, H̃ KS∥
with respect to the GKS density matrix. The spRPA energy func-
tional E spRPA∥D, H̃ KS∥ implicitly depends on h,Π(2),Π(3) and Π

(4).
In general, the GKS density matrix can be defined as

D =∑
λ,λ′

Pλnλλ′Pλ′ , (16)

where Pλ are orthogonal projectors, which project onto the
space of KS orbitals with degenerate occupation numbers, and
nλλ′ = nλδλλ′ is diagonal with nλ denoting the occupation number
matrix of the λ block. For the case of integer orbital occupation
numbers, the nλ matrices have two distinct eigenvalues, 0 and 1.
The sp KS Hamiltonian is defined in terms of the semilocal KS
Hamiltonian as

H̃
KS
=∑

λ

PλH
KS SL

Pλ. (17)

D and H̃ KS commute by construction and a common set of
“semicanonical” basis can be determined. The GKS-spRPA effective
one particle Hamiltonian is given by

H
spRPA
σ ∥D, H̃ KS∥ = ∂E spRPA∥D, H̃ KS∥

∂Dσ

= H
HF
σ ∥D∥ +V c spRPA

σ ∥D, H̃ KS∥, (18)

where HHF
σ ∥D∥ is the Hartree–Fock Hamiltonian and

V
c spRPA
σ ∥D, H̃ KS∥ corresponds to the nonlocal GKS-spRPA

correlation potential. To determine the optimized orbitals, it is
sufficient to make the occupied-virtual block of H

spRPA
σ vanish

according to Brillouin’s theorem.62 The occupied-virtual block of
H

spRPA
σ is given by51

H spRPA
iaσ = HHF

iaσ + γiaσ − γaiσ +H
+

iaσ∥Tσ∥ + ∥Tσ , εσ∥ia, (19)

where H+ denotes the first-order HXC potential,63 Tσ is the GKS-
spRPA unrelaxed difference density matrix45

Tσ =
∂E spRPA

∂εσ
, (20)

whose occupied-virtual and virtual-occupied blocks are zero.
The occupied–occupied and virtual–virtual blocks of Tσ can be
expressed as

Tijσ = ∫
∞

−∞

dω

2π
∑
a

(M(ω) − ω2
Δ
−1
M(ω)Δ−1)iaσ jaσ , (21)
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Tabσ = ∫
∞

−∞

dω

2π
∑
i

(M(ω) − ω2
Δ
−1
M(ω)Δ−1)iaσ ibσ , (22)

where

M(ω) = GBQ̃B
T
G, (23)

and Q̃ is given by

Q̃ = (1 +Q)−1 − 1. (24)

The matrix elements of γ are obtained as45

γapσ = 2∫
∞

−∞

dω

2π
∑
j

(GBQ̃B
T)jaσ jpσ ,

γipσ = 2∫
∞

−∞

dω

2π
∑
b

(GBQ̃B
T)ibσ pbσ.

(25)

B. The GKS-spRPA energy Lagrangian

To determine molecular properties, we consider the first
and second-order response of the GKS-spRPA ground-state
energy with respect to changes in the defining parameters S,
X = {h,Π(2),Π(3),Π(4)}, and VXC, SL

= {VXC, SL
α ,VXC, SL

β }.50,54 We
define the GKS-spRPA energy Lagrangian as

L∥C, H̃ KS,T,W∥ = E spRPA∥D, H̃ KS∥ + ⟨T(H̃ KS
−H

KS SL∥D∥⟩
− ⟨Wn(C†

SC − 1)⟩. (26)

The MO coefficients C are the primary variational parameters, and
T and W are Lagrange multipliers enforcing Eq. (20) and (occu-
pied) MO orthonormality, respectively. The Lagrange multiplier T
constrains the sp Hamiltonian to be HKS SL. The density matrix
D depends on the MO coefficients and the occupation numbers
according to Eq. (6); however, in the present work, we only consider
number-conserving variations of D keeping the occupation num-
bers n constant at their ground-state values; for properties related to
changes in particle numbers such as ionization potentials or electron
affinities, the reader is referred to Refs. 64 and 65. Furthermore, the
Lagrangian parametrically depends on n, S, X, and VXC, SL.

The GKS-spRPA energy Lagrangian is constructed to be sta-
tionary at the GKS-spRPA ground-state solution. The stationarity
condition with respect to the MO coefficients C,

∂L∥C, H̃ KS,T,W∣n, S,X,VXC, SL∥
∂C

= 0, (27)

reduces to the GKS-spRPA Eq. (4) for nW = ε; the Lagrange mul-
tiplier W is thus the GKS-spRPA “energy weighted density matrix”
familiar from analytical gradient theory.66 By construction, L equals
the GKS-spRPA ground-state energy at its stationary point (E0),

L∥C, H̃ KS,T,W∣n, S,X,VXC, SL∥∣
stat

= E
spRPA∥D stat, H̃

KS∥D stat∥∣S,X,VXC, SL∥
= E0∥S,X,VXC, SL∥, (28)

where the subscript “stat” means that all variables are at their
stationary ground-state values.

Equation (28) greatly simplifies the computation of GKS-
spRPA energy derivatives due to the stationarity of L. For example,
the energy gradient with respect to a perturbation ξ is45

dE spRPA∥S,X,VXC, SL∥
dξ

= ⟨ ∂L
∂S
∣
stat

S
ξ⟩ + ⟨ ∂L

∂X
∣
stat

X
ξ⟩

+ ⟨ ∂L

∂VXC, SL ∣
stat

V
XC, SLξ⟩. (29)

(We neglect derivatives of frequency quadrature nodes and weights;
see Appendix B of Ref. 45 for further details.) Derivatives of matrices
with respect to perturbations {ξ} are represented using super-
script {ξ} for convenience. All derivatives with respect to varia-
tional parameters vanish in accordance with Wigner’s 2n + 1 and
2n + 2 rules67,68 The derivative with respect to X in Eq. (29) may be
expressed as

∂L

∂X
∣
stat
= P

spRPA, (30)

where PspRPA represents the GKS-spRPA generalized n-particle den-
sity matrix, and detailed expressions of this matrix are provided
in the supplementary material. The derivatives with respect to S

and VXC, SL are identified as the energy-weighted density matrix
W and the unrelaxed difference density matrix of the unperturbed
system,

∂L

∂S
∣
stat
=W,

∂L

∂VXC, SL ∣
stat
= T. (31)

Due to the orbital stationarity of the Lagrangian, no orbital
relaxation contribution to T is needed to evaluate the gradient.

C. Analytical second-order derivatives

Straightforward differentiation of Eq. (28) yields the second
analytical derivative of the GKS-spRPA energy with respect to
perturbations ξ and η,

∂
2E spRPA

∂η∂ξ
= (⟨( ∂

2L

∂η∂C†
)Cξ⟩ + ⟨( ∂

2L

∂η∂X
)Xξ⟩

+⟨( ∂L
∂X
)Xηξ⟩ + ⟨( ∂

2L

∂η∂S
)Sξ⟩ + ⟨(∂L

∂S
)Sηξ⟩

+⟨( ∂
2L

∂η∂VXC,SL )VXC, SLξ⟩+ ⟨( ∂L

∂VXC,SL )VXC,SLηξ⟩)∣
stat
.

(32)

The first term in Eq. (32) requires the calculation of perturbed
MO coefficients Cξ , which are typically obtained by introducing the
ansatz69

C(ξ) = C(0)U(ξ), (33)

where U(ξ) = 1 +Uξ
+ ⋅ ⋅ ⋅ and C(0) is the unperturbed MO coeffi-

cients matrix.U is not necessarily unitary;70 instead it is constrained
by the orthonormality condition of the MO coefficients according
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to Eq. (5), which may depend on the perturbation(s). The matrix
elements of the various blocks of Uξ are well known from ana-
lytic Hessian theory.71,72 The occupied–occupied block of Uξ can be
obtained in terms of the perturbed overlap matrix as

Uξ
ij = −

1
2
Sξij. (34)

The virtual–virtual block of the matrix Uξ is zero and the occupied-
virtual block is obtained as the solution of

∑
μνjb

(C† ∂
2L

∂C∂C†
C)

iajb

Uξ
jb = −∑

μ

∂
2L

∂ξ∂ Ciμ
Cμa. (35)

The term within parentheses is identified as the symmetric part of
the GKS-spRPA orbital rotation Hessian, which is often denoted
within time dependent response theory as (A + B),73 and accord-
ingly Eq. (35) takes the form

(A + B)Uξ
= RHS

ξ. (36)

The matrix elements of the occupied-virtual block of the right hand
side (RHS) can be expressed as

RHSξia = H spRPAξ
ia − (WS

ξ)
ia
−G

+

ia∥Sξ∥, (37)

where G+μνκλ is defined as

G
+

μνκλ =
∂Wμν

∂ Dκλ
. (38)

Here, we consider uniform electric field perturbations whose explicit
dependence in the Lagrangian arises only through the core Hamil-
tonian hσ (for field-independent basis functions). Therefore, deriva-
tives of the parameters Π

(2), Π(3) and Π
(4), S, VXC and H̃ with

respect to the perturbations vanish. Nuclear displacements in an
atom-centered basis71 or field-dependent basis functions, such as
gauge-including atomic orbitals,74,75 which are necessary whenmag-
netic field perturbations are involved, may perturb some or all of
the parameters and will be studied elsewhere. The ηξ element of
GKS-spRPA’s static polarizability tensor can be expressed as

∂
2E spRPA

∂η∂ξ
= ⟨( ∂

2L

∂η∂C†
σ

)
stat

C
ξ
σ⟩ + ⟨( ∂

2L

∂η∂hσ
)
stat

h
ξ
σ⟩ (39)

= ⟨RHS
η
σU

ξ
σ⟩ + ⟨D spRPAη

σ μξσ⟩, (40)

where μξσ is the ξ component of the σ - spin dipole moment matrix

and the GKS-spRPA one particle density matrixD spRPA
σ is defined as

∂L

dhσ
∣
stat
= D

spRPA
σ . (41)

For uniform electric field perturbations the overlap matrix
S is independent of the field and therefore using Eq. (37),
RHS

η
σ = H

spRPAη
σ .

Detailed expressions for the RHS and the GKS-spRPA orbital
rotation Hessian are provided in the supplementary material.

III. IMPLEMENTATION

1. Two index zeroth-order intermediates (independent of the
perturbation) such as Tijσ , Tabσ , γiaσ , γaiσ , γijσ , and γabσ are
built and stored in memory. The Q(ω) matrix is frequency-
dependent and is written to file for each frequency grid point
ωg asQ(ωg).

2. The RHS is built with the zeroth-order intermediates from
memory as well as the perturbed first-order intermediates (see
the supplementarymaterial for detailed equations).Tξ

σ and μησ
are used to get the first contribution to the polarizability as
αξη = ∑ijσ Tξ

ijσμη,jiσ +∑ab Tξ
abσ

μη,baσ .
3. Solving Eq. (35) is the most time-consuming part of an ana-

lytical static polarizability calculation within the GKS-spRPA.
Iterative techniques that avoid storage of the entire orbital
rotation Hessian matrix but rather deal with only the prod-
uct of this matrix with Uξ are preferred since these matrices
can be extremely large and dense.11,18 Krylov space methods
have been successfully applied in this regard,76–78 and we use
a recently developed nonorthonormal extension of it, which
exploits the decreasing norm of the residual vectors to boost
screening in integral-direct response calculations.79

4. The product of the orbital rotation Hessian matrix with Uξ is
constructed on the fly, and the resulting matrix Mξ is stored
in file during each iteration. The Mξ build consists of sev-
eral intermediate steps that have a scaling of O(N4log(N))
with system size N (see the supplementary material for more
details).

5. Once the converged Uξ and Mη matrices are obtained,
their contribution to the polarizability is calculated as
αξη = ∑iaσ M

ξ
iaσ U

η
aiσ .

This method was implemented in a branch of the TURBOMOLE
quantum chemistry program package80 and is scheduled for future
release.

IV. RESULTS

A. Basis set convergence

The convergence of GKS-spRPA polarizabilities (α is used to
denote the static polarizability tensor in the following sections) with
respect to the basis set size was studied for LiF andHCN. The geome-
tries were obtained from experimental results.81 The basis sets used
in this study include def2-SVP, TZVPP, QZVPP, SVPD, TZVPPD,
and QZVPPD. The extended def2-QZVPP basis sets, which are con-
structed by downward extrapolation from the def2-QZVPP basis
sets (1s1p1d1 f for the elements H–Be and 1s1p1d1 f 1g for all others)
as suggested by Rappoport and Furche,7 were used to approximate
the basis set limit. The basis set convergence of GKS-spRPA is
compared to that of the HF, PBE, PBE0, MP2, and CC2 methods
in Fig. 1. All calculations reported here were performed using the
TURBOMOLE program package.80 The % relative deviation from

the basis set limit (%RD = (α
method

−αreference)
αreference

× 100) in the isotropic
static polarizability of LiF using the basis sets def2-SVP, TZVPP,
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FIG. 1. Basis set convergence of the isotropic static polarizability within the
GKS-spRPA method for the LiF and HCN molecules, compared to the HF, PBE,
PBE0, MP2, and CC2 methods.

QZVPP, SVPD, TZVPPD, and QZVPPD are 23%, 21%, 8%, 8%,
1% and 0.4%, respectively. For the HCN molecule, the %RD for the
same order of basis sets are 29%, 12%, 6%, 3%, 0.74%, and 0.71%,
respectively. The def2-QZVPPD basis set produces %RD of ≤0.7%,
while the def2-TZVPPD basis set results in ≤1% RD compared to
the basis set limit in these test calculations. We conclude that the
def2-TZVPPD and the def2-QZVPPD basis sets are well suited for
calculations of static polarizabilities using the GKS-spRPA method.
Moreover, the basis set convergence observed for GKS-spRPA does
not differ significantly from that of MP2 or CC2.

B. Frequency grid convergence

The integration over imaginary frequency in Eq. (8) is done
numerically using the Clenshaw-Curtis quadrature with a finite
number of grid points as described by Eshuis et al.,50 who used
it for computing the RIRPA correlation energy. For polarizability
calculations, this is necessary to build several of the zeroth- and
first-order intermediates. To test the convergence of the GKS-spRPA
static polarizabilities with the number of frequency grid points, we
chose to study the C6H6 and LiNa molecules. The geometries of
these molecules were optimized at the level of B3-LYP DFA, the
cc-pVTZ basis set, the m4 integration grid, a SCF convergence
threshold of 10−8, and the optimized geometries are provided in the
supplementary material. The results of GKS-spRPA static polariz-
abilities calculated with the def2-QZVPPD basis set and the SL PBE
potential as a function of the number of frequency grid points are
shown in Fig. 2.

The semicanonical KS HOMO–LUMO gap for the C6H6 sys-
tem is 5.13eV, whereas for LiNa, it is 1.31eV. Increasing the number
of grid points from 25 to 200 for C6H6 results in a change in isotropic

FIG. 2. The convergence of the isotropic polarizability within the GKS-spRPA
method as a function of the number of frequency grid points for benzene (top)
and LiNa (bottom) molecules using the def2-QZVPPD basis and the PBE input
orbitals and orbital energies.

static polarizability (αiso) of 0.24 a.u. (0.4% change), whereas the
same increase in the case of LiNa results in a change in αiso of 34.01
a.u. (15% change), as can be seen from Fig. 2. Clearly, systems with a
small HOMO–LUMO gap require a large number of frequency grid
points to obtain converged static polarizabilities. However, the fre-
quency grids required to reduce the integration error reliably below
the inherent method error are comparable to those necessary for
first-order analytical derivatives.45

C. Small molecule benchmark

To analyze the accuracy of the GKS-spRPA static polarizabili-
ties and compare them with other quantum chemical methods, we
gathered a set of 25 atoms and small molecules. This set consists,
among others, of species that are challenging for DFT polarizabil-
ity predictions as identified by Hait and Head-Gordon.82 The geo-
metries of thesemolecules were optimized at theMP2/cc-pVTZ level
wherever experimental geometries81 were not available. A compar-
ison of the GKS-spRPA method with HF, MP2, PBE, and PBE0 is
presented in Fig. 3 followed by a statistical analysis of the errors in
Table I. All the analytical polarizabilities within GKS-spRPA were
calculated with the def2-QZVPPD basis set with SL PBE potential
and 100 frequency grid points. The reference CCSD(T) polariz-
abilities were calculated numerically using the def2-QZVPPD basis
set or are obtained from the numerical CCSD(T) results of Hait
and Head-Gordon82 or the analytical CCSD-F12 calculations of
Bokhan et al.83

The beryllium dimer is a difficult system for standard quan-
tum chemical methods to treat accurately because of the necessity to
not only describe long-range dispersion interactions but also static
correlation due to the near-degeneracy between the low-lying
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FIG. 3. The isotropic static polarizabilities of several small molecules computed
using GKS-spRPA are compared with HF, PBE, PBE0, and MP2 methods using
the def2-QZVPPD basis set for all of the systems and methods.

excited states.84 We had previously shown that the ground state
potential energy surface of this system is much more accu-
rately described by GKS-spRPA compared to post-KS RPA, opti-
mized effective potential RPA (OEP-RPA),85 MP2 and SL DFAs.51

The %RD of the GKS-spRPA polarizabilities from the reference
CCSD(T) for Be2, is found to be 9% while for HF it is 42%. PBE,
PBE0, andMP2 have %RDs of 22%, 26%, and 27%, respectively. This
shows that the accurate description of the energetics of Be2 at the
equilibrium bond distance by GKS-spRPA is also replicated for static
polarizabilities.

The error analysis in Table I shows that the MAEs are the
smallest for GKS-spRPA, followed by MP2, PBE0, PBE, and HF.
GKS-spRPA includes first-order exact exchange and correlation of
the ring type up to infinite order.86 These particle–hole excitations
are important to describe the polarization of electronic density,
and that is part of the reason for GKS-spRPA being successful in
predicting the static polarizabilities of these systems.

D. Conjugated polymers

Local and semilocal DFAs predict incorrect polarizabilities and
hyperpolarizabilities of conjugated molecules due to overpolariza-
tion problems that worsen with conjugation length.26,28 This has
been attributed to the absence of a field-induced counteracting term
in the response part of the XC potential in (semi)local DFAs.27

A solution to this problem that was conceived in semiconductor

TABLE I. The mean signed error (MSE), mean absolute error (MAE), root mean
square error (RMSE), standard deviation (Std. Dev.) and the maximum absolute error
(Max AE) in atomic units (a.u.) for the testset of 25 polarizabilities are reported for
several different methods. All calculations used the def2-QZVPPD basis set for all the
atoms, and the GKS-spRPA used the SL PBE potential.

GKS-spRPA HF PBE PBE0 MP2

MSE −0.92 3.56 1.70 1.35 0.63
MAE 2.34 5.42 3.08 2.74 2.77
Std. Dev. 4.66 10.89 4.77 5.29 5.39
Max AE 17.59 40.43 17.91 20.42 20.59

physics was the addition of polarization dependent terms to the XC
potential, which leads to polarization dependent DFT (PDDFT),36

but the PDDFT XC kernels are unknown and the method has
been applied usually for semiconductors where the susceptibility
is overestimated by ∼10%, whereas for conjugated polymers, the
polarizability overestimations can be much larger.26

Yang and co-workers29,87 used the OEP exchange func-
tional (OEP-EXX)88 for calculating polarizabilities of conjugated
oligomers and observed that their results were in good agree-
ment with HF results. They concluded that the OEP-EXX pro-
cedure includes “ultranonlocal” exchange effects that are missing
in (semi)local DFAs, but OEP-EXX still misses significant con-
tributions from nonlocal long-range correlations. Nénon et al.37

investigated the accuracy of tuned RSHs for calculating the static
polarizabilities of polydiacetylene (PDA) and polybutatriene (PBT)
oligomers, see Fig. 4, and concluded that the RSH functionals
with larger tuning parameters performed better than the ones with
smaller tuning parameters. Oviedo et al.89 also performed tuned
RSH calculations on PDA and PBT oligomers and found that with
very large tuning parameters, broken-symmetry solutions for PBT
oligomers are obtained, which results in more accurate polarizabil-
ities than the closed-shell singlet solutions that they obtain with
smaller tuning parameters.

For these systems, the SL DFAs result in increasingly smaller
HOMO–LUMO gaps as the system size increases, which is depicted
in Fig. 5. As the gap gets closer to zero, the static polarizability starts
to become divergent for (semi)local DFAs.

The %RDs in longitudinal static polarizabilities of conju-
gated polymers with respect to reference CCSD(T)-F12 results89 are
reported in Fig. 6. To investigate the effect of orbital optimization,
post-PBE polarizabilities obtained from five-point numerical finite
differences of energies (with a step size of 0.001 a.u. for the elec-
tric field) are also shown. The GKS-spRPA and post-KS RPA results
were obtained with a semilocal PBE potential, a def2-TZVPPD basis
set, DFT numerical integration grids of size 490, and 60 frequency
grid points. The PBE and HF calculations were also carried out with

FIG. 4. Structures of the polydiacety-
lene oligomer (PDA1, left) and polybu-
tatriene oligomer (PBT2, right) as well
as the longitudinal axis along which the
polarizabilities were calculated.
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FIG. 5. KS semilocal (PBE, PBE0) and HF HOMO–LUMO gaps as a function of
the number of monomer units of the PDA (top) and PBT (bottom) oligomers.

the def2-TZVPPD basis set, and numerical integration grids of size
4 were used for the PBE calculations. The CAM-B3LYP results, the
reference CCSD(T)-F12 results, as well as the optimized geometries
of all the molecules, were obtained from Oviedo et al.,89 who used
the cc-PVDZ basis set, froze the core electrons, and performed three-
point numerical finite field calculations to obtain the numerical
CCSD(T)-F12 static polarizabilities.

The percentage errors in static polarizabilities rapidly increase
with the system size for the PBE functional. In case of PDA5, the PBE
results reach a %RD of ≥100%. The post-PBE RPA polarizabilities,
on the other hand, become increasingly too small, particularly for
longer PDA chains. The GKS-spRPA errors, on the other hand, are

FIG. 6. %RD in longitudinal static polarizabilities of PDA (top) and PBT (bottom)
oligomers as a function of chain length using CCSD(T)-F12 results from Ref. 89 as
reference. def2-TZVPPD basis sets were used throughout; the SL PBE potential
and PBE orbitals were used in the GKS-spRPA and post-KS RPA (denoted RPA)
calculations.

almost independent of the system size for the PDA oligomers, with a
mean %RD of 13%, while RPA, HF, PBE, PBE0, and CAM-B3LYP
result in mean %RDs of −19%, 11%, 73%, 43%, and 23%, respec-
tively. For the PBT oligomers, the mean %RD for GKS-spRPA, RPA,
HF, PBE, PBE0, and CAM-B3LYP are 22%, 27%, 31%, 54%, 42%, and
29%, respectively. The GKS-spRPA static polarizabilities for both the
PDA and PBT oligomers are more accurate than the CAM-B3LYP
results, suggesting that the combination of exact HF exchange and
long-range correlations contained in the GKS-spRPA functional are
responsible for its better performance. HF is accurate for PDA poly-
mers, showing that the net effect of correlation is nearly zero, but the
results for other systems studied here suggest that this (somewhat
surprising) accuracy of HF may be fortuitous.

Despite the encouraging results for conjugated polymers, the
GKS-spRPA is not a functional self-consistent scheme, which means
that it has some dependence on the input semilocal DFA through
the semicanonical projected semilocal orbital energies [for example
in Eq. (12)]. The self-correlation error present in the GKS-spRPA
energy functional also contributes to the errors in polarizabilities,
which can be partially corrected by including beyond-RPA methods
such as the AXK91 and the SOSEX.92

E. Static polarizabilities of metallocenes

Transition metal metallocenes (TMM) exhibit diverse elec-
tronic structures with partially occupied d orbitals and multiple
low-lying spin configurations. These properties make them ideal
building blocks for molecular spintronic93 and optoelectronic94

devices. Theoretical predictions of the polarizabilities of TMMs
would help in designing and tuning the properties of these advanced
devices. However, TMMs pose challenges to conventional quan-
tum chemical methods because of the small HOMO–LUMO gap
due to several low-lying spin configurations. Experimental polariz-
abilities of the d6 metallocenes, namely ferrocene, ruthenocene, and
osmocene, were obtained using gas-phase refractivity measurements
by Hohm et al.53,95 Experimental polarizabilities include contribu-
tions due to effects such as vibrations and rotations, which can be
significant96,97 and thusmust be estimated for accurate comparisons.
Ensemble averaged polarizabilities of TMMs were obtained from
configurations sampled using ab initiomolecular dynamics (AIMD)
simulations to estimate the magnitude of these corrections. Classi-
cal MD simulations can provide suitable estimates here,98 because
vibrational averaging of electronic polarizabilities is typically the
main effect.99 AIMD simulations were run for a total of 10 ps with
a time step of 40 a.u. with random initial velocities corresponding
to a temperature of 300 K. The TPSS DFA was used along with
the def2-SVP basis set for all atoms. After an initial equilibration
period of 1 ps, 50 random snapshots were chosen and the aver-
age polarizability for this ensemble (ᾱiso) was calculated within the
PBE and PBE0 DFAs using the def2-TZVPPD basis set. Further-
more, geometry optimized structures for TMMs reported by Kehry
et al.100 were used to calculate their polarizabilities (αiso) using the
same DFAs and the difference ᾱiso − αiso provides an estimate of
the vibrational correction to the polarizabilities. Table II shows that
the estimated vibrational corrections (ᾱiso − αiso) for a given TMM
are similar (within 0.4 a.u.) when using the PBE and PBE0 DFAs.
Estimates for the purely electronic polarizability of the TMMs,
α el
exp, were obtained by subtracting the thus obtained correction
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TABLE II. Estimated vibrationally averaged polarizabilities ᾱiso, αiso, and their differ-
ence (diff = ᾱiso − αiso) in a.u. for ferrocene, osmocene, and ruthenocene using the
PBE and the PBE0 DFAs.

PBE PBE0

ᾱiso αiso Diff ᾱiso αiso Diff

Ferrocene 131.0 127.7 3.4 123.7 120.7 3.0
Ruthenocene 140.2 136.0 4.2 135.0 130.9 4.1
Osmocene 141.8 136.0 5.8 136.8 131.2 5.6

using the PBE0 DFA from the experimental polarizabilities by
Hohm et al.

The GKS-spRPA method was used subsequently to calculate α
for the three metallocenes using the geometries reported by Kehry
et al.100 who calculated the GW-BSE based static polarizabilities
of these molecules. The ground state minimum energy structures
of the metallocenes, optimized using the PBE0 functional, were
found to have the eclipsed conformation, as shown in Fig. 7. The
ground spin states of all these compounds were found to be singlets.
GKS-spRPA polarizability calculations were carried out using the
PBE SL potential, the def2-TZVPPD basis set for all the atoms along
with scalar relativistic effective core potential def2-ECP101 for the
transition metal atoms Ru and Os with a size 4 DFT integration
grid90 and 60 frequency grid points. Additionally, HF, MP2, PBE,
and PBE0 calculations were performed with the same basis set and
DFT grid as was used for the GKS-spRPA calculations. The thus
obtained polarizabilities are reported in Table III. The GKS-spRPA
results differ by at most 3.2 a.u. from the experimental values for
all three compounds, which is within the error margin of our esti-
mated experimental values. TheMP2, PBE, and PBE0 polarizabilities
follow a similar pattern as the GKS-spRPA ones but are less accu-
rate, while the HF polarizabilities are considerably too small, and the
GW-BSE@DFA results are too large.

F. Static polarizabilities of sodium clusters

Experimental static polarizabilities of alkali metal clusters, such
as sodium and lithium clusters are known to have large uncer-
tainties and poor reproducibility.102,103 For example, from Na6 to
Na7, the isotropic static polarizability (αiso) according to Rayane
et al.,102 decreases from 816.62 to 800.69, whereas there is an increase
observed by Knight et al.,103 from 754.42 to 808.34. Both Knight

FIG. 7. Structures of ferrocene [Fe(C5H5)2], ruthenocene [Ru(C5H5)2] and
osmocene [Os(C5H5)2] (left to right).

TABLE III. Isotropic electronic polarizabilities (a.u.) for ferrocene, osmocene, and
ruthenocene using various theoretical methods as compared to the estimated
experimental value α el

exp.

GKS-spRPA HF MP2 PBE PBE0 BSE α el
exp

Ferrocene 123.8 107.9 124.0 127.7 120.7 131.3 123.1
Ruthenocene 132.2 121.3 137.4 136.0 130.9 134.2 129.0
Osmocene 132.1 122.8 136.3 136.0 131.2 137.9 132.3

et al., and Rayane et al. used molecular beam deflection of the Nan
clusters through a static inhomogeneous transverse electric field to
measure the αiso of the Nan clusters. Accurate theoretical calculations
of the polarizabilities of these systems could resolve the uncertain
experimental results.

Previous theoretical studies based on MP2 by Chandraku-
mar et al.,52 also suggest a decrease in the αiso going from Na6
to Na7, while HF suggests an increase. These clusters are difficult
systems because they can have multiple nearly degenerate local min-
imum energy structures in the ground state. Furthermore, clusters
with odd numbers of electrons can have multiple nearly degen-
erate spin states that further complicate the electronic structure.
Therefore, accurate theoretical benchmark calculations taking into
account the fluxional nature of the metal cluster structures are nec-
essary, especially since these experiments are typically done at finite
temperatures.

In this study, the GKS-spRPA αiso are benchmarked for small
Nan clusters (n = 2, 3, . . . , 10) and we aim to answer two questions:
(i) Can GKS-spRPA predict the experimentally observed trends
accurately, and (ii) how important are thermal contributions to αiso?
To answer the first question, the geometries of the Nan clusters were
optimized to acquire local minimum energy structures, see Fig. 8,
and then αiso was calculated for these structures to obtain the zero
temperature results. Geometry optimization calculations were car-
ried out within the DFT using the B3-LYP functional and the def2-
TZVPP basis set for the Na atoms, and grid size 4 was used along

FIG. 8. Structures of sodium clusters optimized with the B3-LYP104 DFA using the
def2-TZVPP basis set. Normal mode analysis is performed to confirm that these
are local minimum energy structures.
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with weight derivatives. To address the second question, ab initio
molecular dynamics (AIMD) calculations were performed to sim-
ulate the equilibrium dynamics of the Nan clusters, and using these
AIMD trajectories, 50 snapshots were randomly selected fromwhich
the trajectory averaged polarizabilities (ᾱiso) were calculated. The
AIMD simulations were carried out using the B3-LYP functional
and the def2-TZVPP basis sets. Amicrocanonical ensemble was used
for the simulation of ground state equilibrium dynamics, ensuring
conservation of energy. The AIMD simulations were run for a total
of 10 ps with a 20 a.u. timestep. The first 1ps of the trajectory was
not used for sampling to allow the system to attain equilibrium,
and from the remaining 9 ps, 50 snapshots were selected at random
and used for the calculation of ᾱiso. The minimum/maximum devi-
ations as well as the average absolute deviations (AAD) of αiso and
ᾱiso from experimental polarizabilities are reported in Table IV. For
the local minimum energy structures, HF and PBE polarizabilities
can vary from being overestimated to underestimated with an AAD
of 74 and 86 a.u., respectively. GKS-spRPA polarizabilities are sys-
tematically underestimated with an AAD of 95 a.u.. The ensemble
averaged polarizabilities calculated using HF have maximum and
minimum deviations of 450.0 and −203.9 a.u., respectively, which
is quite large. The difference between the AAD of αiso and ᾱiso can
be associated with the average thermal correction to the calculated
polarizabilities. ᾱiso on average worsens the αiso by 10 a.u. with the
inclusion of structural fluctuations using the HF method. However,
using GKS-spRPA and PBE, the polarizabilities are improved by 15
and 8 a.u. on average. These results suggest that thermal effects are
not significant in determining the polarizabilities of the Nan clusters.
The distribution of the polarizabilities calculated from the AIMD
snapshots are represented in Fig. 9 as box plots. It can be observed
that the spread in the ᾱiso calculated using HF is considerably larger
for clusters with odd number of atoms, which have an open-shell
ground state electronic configuration than it is for clusters with even
number of atoms. Some of the Na3 AIMD snapshots resulted in
αisoof ∼ 900 a.u. using HF, which is qualitatively incorrect compared
to the experimental results, which are ≤500 a. u. for the Na3 clus-
ter. The spread in the GKS-spRPA results is independent of whether
the cluster has an odd or even number of Na atoms, and none of
the AIMD snapshots resulted in qualitative overestimation of αiso,

TABLE IV. Calculated minimum/maximum deviations (Min/Max) and the average
absolute deviation (AAD) of the isotropic polarizabilities (a.u.) for the geometry opti-
mized (Opt.) and AIMD structures of the Nan (n = {3, . . . , 10}) clusters using
the GKS-spRPA, HF and PBE methods compared to the experimental results. The

deviations are calculated as ᾱcalc
iso
− αexpt

iso
, where calc and expt refers to calculated

and experimental polarizabilities (average of the polarizabilities reported by Knight
et al.103 and Rayane et al.102), respectively.

GKS-spRPA HF PBE

Opt.
Min −262.5 −191.7 −285.6
Max −28.0 156.9 46.8
AAD 94.8 74.4 85.7

AIMD
Min −278.6 −203.9 −285.6
Max 36.9 450.0 46.8
AAD 79.9 74.4 85.7

FIG. 9. Calculated αiso using GKS-spRPA, PBE, and HF methods in a.u. for the
50 snapshots from the AIMD simulations are represented as box plots. The box
represents the interquartile range (IQR), which is from the 25th (first quartile, Q1)
to the 75th (third quartile, Q3) percentile of the data, and the line inside the box
represents the median. The whiskers denote Q1 −1.5× IQR and Q3 +1.5× IQR
and data points that lie outside this range are denoted by solid black diamonds.

as is the case with HF. In addition to temperature effects, the dis-
crepancy between the calculated and measured polarizabilities for
the Nan clusters has been attributed to errors in experiments, which
can arise because the accuracy of the measurements depends upon
several parameters used in the experimental setup.52

We compared the polarizabilities obtained within the
GKS-spRPAmethod for the Nan clusters to the numerical finite field
MP2 calculations reported by Chandrakumar and co-workers.52

According to Fig. 9, the MP2 αiso values show a spurious decrease
from Na6 (699 a.u.) to Na7 (655 a.u.), whereas they increase for the
GKS-spRPA method (675 and 715 a.u., respectively) and the experi-
ment. The average absolute deviation of αiso within GKS-spRPA is
27 a.u. compared to the MP2 results. In conclusion, GKS-spRPA
polarizabilities are more accurate than those of HF and are com-
parable to PBE, and both of these methods (PBE and GKS-spRPA)
result in systematic underestimations of the polarizabilities for
Nan clusters.

V. CONCLUSIONS

An analytical implementation of static GKS-spRPA polariz-
abilities within the RI approximation with O(N4 log N) floating
point operation count and O(N3)storage has been presented. The
basis-set requirements are similar to those encountered with HF,
DFAs, and MP2: Property optimized def2-TZVPPD and QZVPPD
basis sets7,105 yield converged GKS-spRPA polarizabilities with
%RDs of ≤1% relative to the basis set limit. For small molecules,
the GKS-spRPA polarizabilities are more accurate than the HF,
MP2, PBE, PBE0, and nonselfconsistent RPA ones when com-
pared to CCSD(T). A key finding is that GKS-spRPA addresses the
problem of overpolarization encountered by SL/hybrid DFAs for
π-conjugated systems, certainly at a qualitative level. Post-PBE RPA,
on the other hand, severely underestimates the static polarizabilities
of longer conjugated polymers, suggesting that orbital optimization
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is critical for accurate response properties. For the systems consid-
ered here, GKS-spRPA polarizabilities are also more accurate than
RSH polarizabilities, at least without molecule-specific “tuning.”37,40

This may be attributed to the inclusion of (100% of) exact HF
exchange and long-range correlation effects, which are only par-
tially or not at all present in RSHs. For ferrocene and its heavier
cogeners, GSK-spRPA polarizabilities clearly outperform previously
reported GW-BSE ones after vibrational corrections are included.
The isotropic static polarizabilities of small sodium clusters (αiso),
calculated using local minimum energy structures, and the ensem-
ble averaged isotropic static polarizabilities (ᾱiso), calculated using
AIMD ensemble averaging, were found to qualitatively agree with
experiments and showed a monotonic increase with cluster size.
Thermal averaging improved the results by 15 a.u. using the GKS-
spRPA method, indicating that thermal effects play a minor role for
static polarizabilities of these clusters. The more systematic behavior
of GKS-spRPA polarizabilities compared to MP2 mirrors findings
for dispersion energies106 and is more pronounced for large and
highly polarizable systems.

GKS-spRPA still violates the “flat plane condition”107 due to
residual self-correlation error, although orbital self-consistency is
likely to reduce its effects on properties. Apart from the sp approxi-
mation, this may be a major source of error in the present approach.
The magnitude of the latter could be explored using beyond-
RPA methods, including second-order exchange, such as AXK91

and SOSEX.92 In summary, the results presented here suggest that
GKS-spRPA is a step toward electronic structure methods yield-
ing consistently accurate response properties for diverse molecular
systems at an affordable cost.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of ana-
lytical second derivatives of the RPA energy Lagrangian, explicit
expressions for intermediate quantities, detailed numerical results,
and optimized geometries.
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