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Abstract 
 
 
Liquid-liquid phase separation (LLPS) of proteins is thought to be a primary driving force for the 
formation of membraneless organelles, which control a wide range of biological functions from 
stress response to ribosome biogenesis. LLPS of proteins in cells is primarily, though not 
exclusively, driven by intrinsically disordered (ID) domains. Accurate identification of ID regions 
(IDRs) that drive phase separation is important for testing the underlying mechanisms of phase 
separation, identifying biological processes that rely on phase separation, and designing sequences 
that modulate phase separation. To identify IDRs that drive phase separation, we first curated 
datasets of folded, ID, and phase-separating (PS) ID sequences. We then used these sequence sets 
to examine how broadly existing amino acids scales can be used to distinguish between the three 
classes of protein regions. We found that there are robust property differences between the classes 
and, consequently, that numerous combinations of amino acid property scales can be used to make 
robust predictions of LLPS. This result indicates that multiple, redundant mechanisms contribute 
to the formation of phase-separated droplets from IDRs. The top-performing scales were used to 
further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe 
to account for interactions between amino acids and obtained reasonable predictive power for 
mutations that have been designed to test the role of amino acid interactions in driving LLPS.  
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Introduction 
 
Many intracellular reactions occur within membrane-free compartments that form spontaneously 
from the cellular milieu (1). Examples of such compartments include P-bodies, Cajal bodies, the 
nucleolus, paraspeckles, and germ granules (2–4). The formation of membraneless organelles is 
facilitated primarily, though not exclusively (5, 6), by proteins that are intrinsically disordered (ID) 
or contain large ID regions (IDRs), collectively termed intrinsically disordered proteins (IDPs) (4, 
7). Because these protein-rich droplets typically exist in dynamic, liquid-like states rather than as 
fixed complexes (1, 2), this transition is referred to as liquid-liquid phase separation (LLPS). By 
forming specific compartments and micro-environments, LLPS exerts control over the spatial 
organization and biochemical reactivity within cells (8, 9). Indeed, LLPS has been found to 
modulate chemical and biochemical reactions (10–12) and LLPS dysregulation has been 
associated with several human diseases (13–15).  
 
Due to the critical role of protein LLPS in cell function and disease, significant efforts have been 
made to determine the physical mechanisms responsible for driving phase separation. Mutation 
and sequence analysis have demonstrated the importance of cation-π, π-π, π/sp2, and hydrophobic 
interactions (16–21). Groups of amino acids driving cohesive interactions are often characterized 
as “stickers” and are frequently interspaced with small polar residues acting as “spacers” (22–25). 
In addition, charge composition and patterning appear to contribute to the regulation of LLPS by 
IDRs (20, 26–29). Successfully predicting the relationship between primary sequence and phase 
separation behavior is key to understanding the molecular mechanisms underlying LLPS and to 
identifying the cellular processes that rely on LLPS. Effective predictive algorithms might also 
reveal how mutations affect LLPS-associated disease states.  
 
Several methods have been developed to predict which protein sequences drive LLPS (30, 31). 
Algorithms including PLAAC, PSPredictor, and PSPer are based on the composition of databases 
of proteins that are known to drive LLPS (28, 32, 33). Others, including catGRANULE and 
CRAPome, are associated with cellular structures (34, 35). Uniquely, PScore was developed based 
on a specific mechanism thought to drive LLPS: the propensity of cation-π and π-π interactions to 
drive cohesive protein interactions (16, 36). Simulation models of IDRs have also been used to 
identify which protein domains drive LLPS as well as how mutations will affect LLPS behavior 
of those proteins (37–41). The diversity of successful approaches for predicting LLPS indicates 
that multiple complementary mechanisms may be responsible for this phenomenon.  
 
We previously developed a predictive model of LLPS behavior, ParSe (“Partition Sequence”), 
that identifies phase-separating (PS) IDRs starting from predictions of hydrodynamic size, which 
is indicative of the relative strength of intramolecular as compared to solvent interactions (42). The 
ParSe algorithm uses a sequence-calculated polymer scaling exponent, vmodel, to quantify 
hydrodynamic size (43, 44). When vmodel is combined with a second sequence-based parameter, 
the intrinsic propensity for a sequence to form β-turns (45), the algorithm can distinguish between 
sequences belonging to one of three classes of protein regions: folded, ID, and PS ID (42). We 
proposed a physical mechanism whereby transient β-turn structures reduce the desolvation penalty 
of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron 
interactions. In this mechanism, β-turns could act as energetically favored nucleation points, 
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potentially explaining the observed higher propensity for turns in IDRs that drive phase separation 
in vivo (42, 45).  
 
However, the prior study did not test whether the combination of vmodel and β-turn propensity was 
uniquely able to distinguish folded, ID, and PS ID sequences, as would be required if this putative 
mechanism is necessary for LLPS. In the current study, we first curated the sequence training sets 
to expand the folded and ID categories. Our curated list of proteins that are ID but not thought to 
drive LLPS acts as a key negative control, enabling us to distinguish which features of IDRs in 
particular drive LLPS (31). Using the expanded sequence sets, we exhaustively tested all amino 
acid property scales found in the Amino Acid Index Database (46) for their ability to separate 
folded, ID, and PS ID sequences. We show that the three sequence sets are distinct in their means 
when quantified by the majority of amino acid scales, revealing that there are robust property 
differences between ID and PS ID sequences, not unlike the differences between folded and ID 
sequences.  
 
We applied principal component analysis (PCA) to identify the extent of variability between our 
sequence sets and the optimal combinations of property scales that maximize the distinction 
between ID and PS ID sequences. The resulting predictor, ParSe version 2 (v2), uses sequence 
hydrophobicity to distinguish folded from ID, and, subsequently, vmodel and a conformational 
parameter to distinguish ID from PS ID. In general, PS ID sequences exhibit enriched β-turn and 
depleted α-helix propensities. ParSe v2 more accurately predicts these regions from the amino acid 
sequence than the original version. We then compared our predicted propensity for LLPS with 
experimental results on mutant sequences designed to test the role of π- and charge-based 
interactions in LLPS behavior. We found that only by including effects representing interactions 
between amino acids could we accurately predict LLPS behavior of these mutants. Given the high 
fidelity of ParSe even in the absence of these interaction terms, it appears there are multiple diverse 
mechanisms that can drive LLPS and that PS ID sequences can be successfully identified through 
simple combinations of amino acid property scales. 
 
 
Results 
 
Construction of Protein Sequence Datasets. A limitation of the previous work, including our 
own (42), has been the relatively small set of sequences used to train predictors. We first sought 
to alleviate this problem by identifying additional sequences in our two negative control categories, 
folded proteins and IDRs, which are not thought to phase separate. The importance of well-defined 
negative control sets has been highlighted recently by Pansca et al (31) and Cai et al (47).  For 
example, some negative control sets like the human proteome are known to contain many false 
negatives, which can lead to misassignments by the predictor. 
 
We first expanded the set of folded proteins. Previously, we selected only folded regions found 
within known LLPS proteins. However, this selection may not be justified because it is not known 
whether folded regions within phase-separating proteins are biased differently in vmodel and β-turn 
propensity compared to folded proteins in general. Subsequently, we expanded the previous folded 
set (comprised of 82 sequences) to include sequences from 122 human proteins with 
nonhomologous folded structures (48), 32 proteins with small (N = 36) to large (N = 415) folded 
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structures (49), 54 folded extremophile proteins (50), 53 folded metamorphic proteins (51), and 90 
folded membrane proteins (Table S1). Combined, these folded protein regions represent 421 
unique sequences after removing duplicate entries. The folded sets were, overall, similar in both 
mean vmodel (Figure 1A, Table 1) and mean β-turn propensity (Table 2) to the previous folded set 
obtained from known LLPS proteins (Tables S2, S3), indicating that folded regions within LLPS 
proteins are indeed similar to folded regions more generally.  
 
Similarly, we expanded the set of IDR sequences not enriched for LLPS potential, called the “ID” 
set, by adding ID sequences found in the Biological Magnetic Resonance Bank (BMRB) (52) and 
DisProt (53, 54) databases. NMR experiments are typically performed at relatively high 
concentrations (≥100 µM), and so BMRB entries that do not explicitly address LLPS likely have 
a low propensity to phase separate. In addition, proteins known to drive LLPS are now annotated 
in DisProt; therefore, DisProt entries lacking such annotation are at least nominally depleted in 
LLPS drivers. Moreover, we only selected IDRs from DisProt that were both predicted to be 
disordered by MetaPredict (55) and were not highly homologous to proteins with folded structures 
in the Protein Data Bank (PDB) (56) using seqatoms (57). The combined ID set contains 121 
unique protein domains (Table S4).  
 
While these expanded datasets show slight differences in mean predicted vmodel or β-turn propensity 
from the datasets used in our previous work (Tables 1, 2, S2, S3), the expanded sets reinforce our 
previous findings that there exist significant differences in vmodel or β-turn propensity between the 
three classes of protein regions: folded, ID, and PS ID (Figure 1A). These results, as such, confirm 
that the two sequence-calculated metrics, vmodel and β-turn propensity, can be used in combination, 
as done previously, to predict phase separating regions within proteins (42). Additionally, when 
vmodel and β-turn propensity are calculated for homopolymers of the common amino acids and then 
presented in a β-turn propensity versus vmodel plot (Figure 1B), the values obtained are consistent 
with previous characterizations of “order promoting” as compared to “disorder promoting” amino 
acids (Figure 1B). In particular, we find that homopolymers of Trp, Cys, Phe, Ile, Tyr, Val, Leu, 
Ala, His, Met, and Thr fall within the “folded” region of the β-turn versus vmodel plot, and so are 
predicted to act as “order promoting” amino acids, while by similar analysis Arg, Gln, Pro, Glu, 
Lys, and Asp are “disorder promoting”, and Asn, Ser, and Gly are “phase separation promoting”. 
This result is similar to conclusions from analyses of protein structures (58, 59), where Trp, Cys, 
Phe, Ile, Tyr, Val, Leu, and Asn are enriched in folded proteins (“order promoting”), while Ala, 
Arg, Gln Pro, Glu, Lys, Gly, and Ser are enriched in IDPs (“disorder promoting”), and His, Met, 
Thr, and Asp are “ambiguous”. 
 
The clear segregation of some amino acids into the PS ID sector of the β-turn propensity versus 
vmodel plot motivated us to consider whether an approach as simple as color coding of the amino 
acids would enable identification of PS regions in proteins known to phase separate. Indeed, the 
PS driving regions of many proteins are visually apparent by our simple visualization tool based 
on the location of homopolymers in the β-turn propensity versus vmodel plot (Figure 1B). The 
magnitude is related to the propensity and the color indicates the quadrant of the plot; therefore, a 
shaded bar chart predicts the propensity for a sequence to promote order, disorder, or phase 
separation. The rapid identification of PS regions in proteins (Figure 1C) such as Ddx4, FUS, and 
Sup35 (3, 17, 22, 60) led us to conclude that PS regions in proteins are distinctly different than 
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other ID regions. We therefore sought to determine whether these classes of proteins were 
distinguishable by other amino acid property scales. 
 
Most amino acids property scales find significant differences between folded, ID, and phase-
separating protein regions. We sought to determine if additional sequence-based intrinsic 
properties were significantly different between protein regions that are folded, ID, or ID with high 
potential for driving LLPS. To explore this idea, 566 scales of amino acid properties were obtained 
from the Amino Acid Index Database (46), which is a curated set of numerical indices representing 
various physicochemical and biochemical properties of the amino acids. This approach is similar 
to work done to improve coarse-grained models by testing multiple hydrophobicity scales (40). 
We added to these scales a newly developed hydrophobicity scale designed to predict sequences 
that drive protein LLPS (19), as well as vmodel. For each scale and for each sequence, we summed 
the amino acid scale for amino acids in the sequence, and divided by the length, N. Welch’s 
unequal variances t-test (61), given as a one-tail p-value, was used to find scales that show a 
statistical difference in the means of the sequence sets. Using the nonparametric Mann-Whitney 
U-test (62) gave overall similar results (Figure S1). 
 
Figures 2A-C show that the different sequence sets have significantly different mean values for 
most scales when compared. For example, 81% of scales give p-values <0.05 (indicating means 
that are statistically different), when comparing ID and PS ID sequences (Figure 2A). Moreover, 
13% and 22% of scales yield p-values smaller (thus showing a more significant difference) than 
the p-values obtained from vmodel and β-turn propensity, respectively, used in ParSe (42). Each 
scale type (e.g., α-helix propensity, β-turn propensity, hydrophobicity, etc.) had some scales with 
very low p-values and some with p-values ≥0.05, suggesting that, overall, most, but not all, 
conformational and physicochemical based scales could substitute for vmodel or β-turn propensity 
in ParSe and likely exhibit some ability for identifying PS IDRs from sequence. This analysis 
reveals that the physical differences between PS and conventional IDRs are robust across many 
different scales of amino acid properties (Figure 2A). We conclude that PS regions likely contain 
a variety of complementary, redundant sequence features that drive LLPS.   
 
The differences between folded and ID (both ID and PS ID) datasets are also robust to different 
scales of amino acid properties (Figures 2B-C). 95% and 93% of scales produced p-values <0.05 
when means were compared between the folded and PS ID, and folded and ID sets, respectively.   
Almost all amino acid property scales yield statistically different means when comparing ID and 
folded sequences; the best performing scales were based on hydrophobicity. Those hydrophobicity 
scales with the lowest p-values when comparing means in the folded and ID sets had among the 
highest p-values when comparing means in the ID and PS ID sets (and vice versa), consistent with 
our previous findings that a single metric was insufficient to separate the three datasets.  
 
PCA identifies two principal modes of variation between proteins. We next sought to 
determine the degree to which amino acid scales could be combined without significant 
redundancy when comparing protein sequences. To do so, we used principal component analysis 
(PCA), which characterizes the variability in a dataset (63), in this case variability arising from 
different scales being applied to our sequences. Our primary focus is on distinguishing PS IDRs 
from conventional IDRs because many disordered predictors already exist to separate folded from 
disordered domains (55, 64, 65). We first selected the scale in each scale type (listed in Figure 2A) 
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with the smallest p-value when comparing the ID and PS ID sets; that is representative scales from 
each type that are best able to separate ID and PS ID sequences. We additionally included vmodel, 
which we found previously to give complementary information to β-turn propensity. Each scale 
was then used to calculate sequence properties via a sliding 25-residue window applied to protein 
domains in a combined set including both the ID and PS ID datasets or the human proteome. We 
used a sliding window to avoid averaging properties between regions of proteins with different 
characteristics (42).  
 
The results of the PCA indicate that most of the variability measured by high-performing scales 
within these datasets can be captured by 2-3 parameters (Figures 2D-E, S2). For both the combined 
ID dataset including ID and PS ID sequences and the human proteome, approximately 70% of the 
variability is captured by the first two principal components. Moreover, 58% of the variability in 
the combined ID set is captured by a single component. The variance arising from conformational 
propensity scales tend to cluster, as do those with physicochemical metrics like charge, 
hydrophobicity, and other compositional details. These results are robust to both the number of 
top-performing scales chosen and to the choice of reference set; we saw similar clustering when 
we extended this analysis to include the top three performing scales in each type and to the entire 
human proteome (Figure S2).  
 
Within these two categories (conformational propensity and physicochemical metrics), high-
performing scales function very similarly. As such, the predictive capabilities of amino acid scale 
combinations within each category are limited. In particular, turn and coil scales applied to protein 
sequences yield strongly correlated modes of variation that also are mostly anti-correlated with the 
variance produced from α-helix propensity scales (Figures 2D, S2). In our previous work, we 
proposed that β-turns could serve as a site for cohesive interactions between protein chains, driving 
LLPS (42). Our current results, while consistent with this hypothesis, show that this hypothesis 
cannot easily be distinguished from other structural hypotheses, e.g., that coils drive LLPS or helix 
inhibits LLPS, because the variation between these scales when applied to our datasets are all 
highly correlated. In contrast, the variances arising from hydrophobicity, charge, or vmodel in our 
datasets have patterns that, in general, are different from the variances arising from turn, coil, and 
α-helix conformational propensities. 
 
To illustrate the separation obtained when using complementary top-performing scales, we 
selected three scales to best separate our three datasets: 1) the top performing hydrophobicity scale 
for separating folded from either ID set (from Vendruscolo and coworkers (66)), 2) the top 
performing conformational scale in separating ID from PS ID sets, in this case one predicting α-
helical propensity (from Tanaka and Scheraga (67)), and 3) vmodel because it was most orthogonal 
to the latter helix scale in the PCA of our combined ID datasets. As can be seen in Figure 2F, 
significant separation is observed between our different datasets using these three intrinsic 
sequence properties. In general, the folded domains occupy a region with φ >0.08, and the greatest 
separation between the two disordered sets is observed in the α-helix/vmodel plane.   
 
When this approach is used to assess homopolymers of the common amino acids by their 
placement into a plot of hydrophobicity, α-helix propensity, and vmodel, the homopolymer results 
predict that Trp, Cys, Phe, Ile, Tyr, Val, Leu, His, and Met are “order promoting” amino acids, 
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while Ala, Arg, Gln, Pro, Glu, Lys, and Asp are “disorder promoting”, and Asn, Ser, Thr, and Gly 
are “phase separation promoting” (Figure S3), similar to what we found previously (Figure 1B). 
 
Predicting folded, ID, and phase-separating protein regions from sequence. Next, we used the 
separation obtained from this method to identify protein sequences belonging to folded, ID or PS 
ID categories, analogous to what we did for ParSe. Our aim was to see if using these top-
performing scales would provide better predictions of PS ID domains. We modified the algorithm 
making a second-generation version, ParSe version 2 (v2). In this version, as with the original (42), 
we apply a 25-residue window and then slide this window across a whole sequence in 1-residue 
steps (Figure 3A) to label individual amino acids as either P (for PS ID), D (for ID) or F (for 
folded), and then to regions that are at least 90% of any one of these labels (see Methods, Figure 
3C). Both ParSe v1 and v2 accurately delineate regions of Sup35 that have been experimentally 
determined (60) to behave as ID, PS ID, or folded regions (Figure 3C), and good accuracy is 
similarly found for other well-studied proteins (3, 17, 22, 68–72) utilizing diverse reported 
mechanisms driving LLPS (Figure S4).  
 
One advantage of our algorithm is that it is very fast, and so can easily be applied to large datasets, 
e.g., the human proteome. We measured the prevalence of protein regions predicted by ParSe v2 
to have LLPS potential in the human proteome (Figure 4) by two methods. First, as previously, we 
measured the longest predicted region with high LLPS potential (contiguous regions that are at 
least 90% labeled P). The results from ParSe v2 are mostly identical to results obtained previously 
using ParSe (42), whereby only ~5% of proteins in the human proteome have a predicted P-labeled 
region that is at least 50 residues in length. Disordered regions taken from DisProt (minus the 
LLPS annotated IDPs) (53, 54) and folded regions taken from SCOPe (Structural Classification of 
Proteins extended, version 2.07) (73, 74) gave results mirroring the human proteome result in the 
sense that these sequences are mostly devoid of long regions predicted to have high LLPS 
potential. In contrast, the 43 proteins assembled by Vernon et al (16) that have been verified in 
vitro to exhibit homotypic phase separation behavior tend to contain long stretches labeled P by 
ParSe v2, with ~90% of this set having predicted PS regions ≥50 residues in length. Only ~63% 
of the 98 parent proteins from which the PS ID set was derived have predicted PS regions ≥50 
residues, wherein not all in this set have been shown to phase separate as purified components. 
 
Second, we developed a numerical score to give a quantitative measure of the confidence of our 
assignment of P, F and D labels, and to give a single metric to define the LLPS potential of every 
protein. Our justification for using a single numerical score is, in part, the dominance of a single 
principal component in the PCA of the combined ID set (Figure 2E), although we generalized this 
approach to F-labeled positions as well. In the combined ID datasets, most of the variability was 
in a single direction nearly orthogonal to the line separating P and D sectors in our plot. As such, 
we used the linear distance of a 25 amino-acid window into its classifier sector (i.e., F, D, or P 
sector), relative to the cutoff boundary and normalized by the distance to the boundary of the 
training set mean (Figure 3B). Values greater than 1 in this classifier distance indicate a window 
located at a distance further from the sector boundary than the distance of the training set mean, 
whereas values less than 1 indicate a window closer to the cutoff boundary than the training set 
mean and, as such, possibly with some uncertainty for its classifier label. Classifier distances 
calculated from the Sup35 sequence are shown in Figure 3D, wherein window values have been 
assigned to the central residue of the window, as we did with the window label. 
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We used the summed classifier distance for every window labeled P to obtain an overall score for 
each protein. This method is more robust to situations where multiple smaller regions drive phase 
separation (Figure S4), as compared to, e.g., Sup35, where a single domain drives phase separation. 
Windows labeled either F or D do not contribute to this sum. The assumption we are making is 
that single regions that promote phase separation are sufficient to drive phase separation of larger 
proteins. This is consistent with the observation that many PS proteins still undergo LLPS when 
they contain other protein regions or GFP tags (2, 75). As before, we found that only a small 
fraction of the human proteome consists of proteins with IDRs driving phase separation (42). 
Indeed, using a cutoff for the summed classifier distance of 100 retains 100% and 76% of the 
proteins in the Vernon et al in vitro sufficient set and the parent proteins of our PS ID set, 
respectively. In contrast, only 10% of human proteins are predicted to drive phase separation 
through their IDRs by this cutoff (Figure 4B). Because we are focused solely on IDRs which drive 
phase separation, excluding multivalent interactions that involve ordered domains, nucleic acids, 
or other drivers of LLPS, the total number of LLPS drivers is somewhat larger than this. 
 
We used this whole protein metric (the summed classifier distance of P-labeled windows) to create 
a recall plot, used to assess prediction performance, for multiple datasets (Figures 4C, S5). The 
success in recall plots is typically quantified using the area under the curve (AUC), when 
comparing a test dataset to a comparison dataset (47, 76, 77). Here, in all cases, we used the human 
proteome as the comparison dataset. The SCOPe database and DisProt (excluding LLPS annotated 
entries) both have AUC values < 0.5 (Figure 4C), indicating that the human proteome does contain 
more proteins predicted to drive LLPS than these negative control groups. As a result, this 
approach likely gives a lower bound on the success of a predictor. As expected, our calculated 
AUC using ParSe v2 is highest on the in vitro sufficient LLPS drivers from Vernon et al (AUC = 
0.99, Figure 4C), which constitute a significant fraction of our positive control dataset (i.e., the 
parent proteins of the PS ID set). This is likely both because this is the dataset we used for training 
and because it is also the most highly curated dataset. To further test its efficacy, we measured 
AUC values for ParSe v2 on datasets of LLPS drivers curated by other groups  (16, 47, 76–78), 
and found it to perform quite well, with AUC values >0.8 (Figure S5).  
 
Figures 4A and S6 suggest ParSe v2 is an improvement (i.e., slightly higher recall), albeit 
marginally, compared to the original ParSe. The strong performance of ParSe v1 is, in part, because 
even in the original version, we used scales that gave strong separation between datasets. Utilizing 
scales with weaker predictive value leads to a less efficient predictor, as expected (Figure S7).  
 
We then sought to compare ParSe to other published predictors. Although their data are not as 
highly curated as others, recent published work by Chen et al included predictions from multiple 
predictors on a publicly available dataset, facilitating comparison to other LLPS predictors (76). 
Of note, the negative control set in Chen et al contains, by our prediction, a higher fraction of IDRs 
driving phase separation than the human proteome (Figure S8D), although whether this is a 
problem with the database or with our prediction method is unclear. On their datasets, ParSe 
performs similarly as measured by AUC scores, to PScore (16), CatGranule (34), and PLAAC (32) 
in identifying proteins that drive LLPS (Figure S8A-C). The quality of the test one can make of 
these predictors depends significantly on the quality of the datasets, and so a true test of these 
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predictors will require significantly more experimental data from both positive and negative 
controls (31, 47).  
 
Predicting the effects from mutation on phase separation behavior. Despite its simplicity, 
ParSe can predict the IDR(s) driving phase separation for a wide range of known phase-separating 
proteins, including FUS, Ddx4, LAF1, and A1. Several of these proteins have been the targets of 
mutagenesis studies implicating specific interactions between amino acids (i.e., cation-π or cation-
anion) in the formation of phase-separated droplets. Cation-π interactions are thought to occur 
between different amino acids in the chain, and the balance of residues, e.g., Arg and Tyr, is 
thought to be important for LLPS (16, 22, 36). Similarly, net charge per residue, as opposed to 
simply the number of negative or positive charges (39), as well as the specific charge pattern (27), 
are also thought the be key determinants of LLPS.  
 
Because ParSe is based only on the amino acid composition, and so does not include these higher-
order effects involving combinations of amino acid types, we hypothesize that ParSe will have 
little predictive value for mutations that specifically alter the ratio of these pairwise interactions. 
More generally, we sought to determine if ParSe v2 could model the effects on phase separation 
behavior arising from mutations in the protein sequence. We hypothesize that sequence changes 
targeting P-labeled positions would have the greatest ability to modulate phase separation 
behavior. To assess this idea, we used the classifier distance whereby a phase separation 
“potential” was modeled as the summed classifier distance of P-labeled windows in the protein, as 
we did above in the recall plots. We compared the summed classifier distance with quantitative 
measures of LLPS behavior from four mutational studies involving three IDRs that individually 
exhibit LLPS behavior in vitro as purified components (3, 18, 27, 39) with sets of published 
mutations modulating either charge patterning or π-based interactions (Figures 5, S9).  
 
As the different studies used different metrics to quantitatively assess phase separation, we first 
began by simply asking whether the summed classifier distance could accurately reproduce the 
rank ordering of variants. In Figure 5A, we ordered, from left-to-right, in decreasing phase 
separation “potential” as reported within each individual study the mutant and wild type sequences. 
Shown is the summed classifier distance of P-labeled windows. In the LAF-1 RGG study (27), 
mutants forming phase separated droplets at elevated temperatures indicated increased phase 
separation potential, whereas changes in the saturation concentration, csat, at a given temperature 
was used in studies with A1-LCD (18, 39). However, the mutant rank order in csat can change with 
the temperature; caused by differences in the standard molar enthalpy associated with phase 
separation, ∆h°, which reflects the temperature dependence to csat. To manage this issue, mutant 
data were separated into two sets. One set corresponding to those mutants with experimental csat 
at 4 °C (Table S6), and a second corresponding to those mutants with experimental ∆h°, ∆s°, and 
∆g° (Table S5). Figure 5A shows rank order in ∆h° for the A1-LCD mutants. Figure S9 ranks the 
A1-LCD mutants according to csat at 4 °C. The summed classifier distance (i.e., ParSe v2 predicted 
PS potential) of each mutant trended somewhat with the experimental rank order, correctly 
predicting an increase or decrease relative to the wild type in ~60% of the mutants as presented in 
Figure 5 (i.e., with A1-LCD mutants ranked by ∆h°) and ~65% in Figure S9 (i.e., with A1-LCD 
mutants ranked by csat). Thus, ParSe is only moderately able to predict the effects of mutations 
designed to disrupt pairwise interactions between amino acids such as those arising from aromatic, 



 11 

cation-π, and charge-based interactions. This performance is similar to the performance of PScore, 
PLAAC, and catGranule (Figure S10).  
 
To test the importance of pairwise interactions, we explicitly included different types of 
interactions in our model to try to account for these contributions and possibly improve the trend 
of calculated potential versus observed phase separation behavior. We expanded our calculation 
of LLPS potential to include both the summed P classifier distance and terms quantifying the 
effects of interactions between amino acids, termed Uπ for π-π and cation-π interactions, and Uq 
for charge-based effects. The contribution of these terms toward predicting the effects of mutations 
can give information on the relative importance of the individual terms. We used csat, ∆h°, ∆s°, 
and ∆g° separately to train this calculation; via 31 A1-LCD variants with csat and 27 A1-LCD and 
Ddx4 variants with ∆h, ∆s°, and ∆g° (Figures 5, S9). As csat is highly sensitive to the temperature 
(39), we expected the thermodynamic properties to be the more reliable metrics of LLPS. Indeed, 
we were best able to predict the effects of sequence changes on the measured ∆h° (Figure 5E). The 
predicted PS potential combining summed classifier distance with Uπ and Uq correctly predicts the 
directional change relative to wild type in ~90% of the mutants when Uπ and Uq were trained 
against ∆h°, and the correlation between experimentally measured ∆h° and ParSe-calculated PS 
potential was reasonably high (R=0.76; Figure 5C). Thus, explicit consideration of interactions 
between amino acid types is important for determining PS potential in these mutational studies. It 
remains to be seen whether ParSe is able to accurately predict PS potential of mutants designed to 
test other aspects of LLPS, such as its dependence on the presence of partner molecules or on a 
specific set of solution conditions (e.g., pH, ionic strength, temperature).   
 
Finally, we sought to determine what effect including these corrections to ParSe had on the 
identification of proteins driving phase separation. Overall, including Uπ and Uq into ParSe 
increases the number of proteins identified that drive phase separation in both the PS sets and the 
human proteome (Figure S11). As a result, the AUC when comparing either our PS ID set or the 
Vernon highly curated set to the human proteome is slightly reduced. However, whether this is a 
result of correctly classifying more human proteins as driving LLPS, or whether we have simply 
increased the false negative rate remains to be seen.  
 
 
Discussion 
 
In this work, we focused on identifying IDRs that drive phase separation, with a particular focus 
on separating PS IDRs from conventional IDRs that do not drive phase separation. Using carefully 
curated datasets of ID, PS ID and folded domains (Figures 1, 2), we developed a sequence-based 
predictor of phase separation (ParSe; Figure 3) which is fast enough to scan the entire human 
proteome in minutes on a single computer, and as or more accurate than other published predictors 
in identifying both proteins and regions within proteins that drive phase separation (Figures 2, 3, 
S5, S8, S10). We recognized that a wide variety of amino acid scales show significant differences 
between the ID and PS ID datasets, indicating that PS IDRs are a robustly different class of protein 
region than non-phase separating IDRs (Figure 2). We conclude that a redundant combination of 
molecular mechanisms driving cohesive interactions between amino acids is likely at play. This 
helps to explain why our general predictor of IDR hydrodynamic size (vmodel) is a strong indicator 
of LLPS potential, as we found previously (42). Moreover, by including interactions between 
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amino acids thought to drive phase separation, we were able to match existing data on mutant 
sequences (Figure 5). This extension highlights the importance of pair-wise interactions in 
modulating phase separation.  
 
While our approach has proved very successful, it, like other approaches to this problem, has 
significant limitations, including limitations in predicting responses to changes in solvent, 
limitations of the datasets, and limitations of the constraints of the approach chosen. The formation 
of phase separated droplets by polymer chains is a result, very generally, of interactions between 
chains that are stronger than the interactions of the chain with the solvent. As a result, LLPS is 
strongly dependent on the solution environment. Within cells, there are many proteins which 
assemble into membraneless organelles only within specific cellular conditions, e.g., upon 
lowering of pH (60). To accurately predict which solution conditions drive phase separation of any 
individual protein domain would require a detailed understanding of which mechanisms proteins 
use to drive phase separation, how those mechanisms are modulated by solutions conditions, and 
how cells modulate solution conditions in different cellular states. As a first step in this process, 
our aim is to simply improve identification of which IDRs and which potential mechanisms are 
used by IDRs to drive phase separation in a variety of cellular and solution conditions. Thus, 
although our predictor has high success in identifying proteins that have been seen experimentally 
to drive phase separation, we do not yet distinguish between responses to different cellular 
conditions, or, e.g., upper- versus lower-critical temperature. The temperature dependence of 
hydrophobicity scales as used by Dignon et al (79) could be a potential future approach to do this.  
 
A primary limitation of our work, as well as others, is that even our well curated datasets have 
misidentified regions. For example, because the IDR in a protein that is responsible for phase 
separation has not always been identified, we simply used all IDRs from known phase-separating 
proteins. As a result, our PS ID set likely includes some IDRs which are not involved in phase 
separation. Similarly, our ID set was curated from proteins that have not yet been identified to 
phase separate, including those with experiments done at high protein concentration. However, the 
lack of observation of phase separation at any one experimental condition does not preclude its 
formation. Indeed, a long history of solution screening for crystallography would indicate that 
protein behavior can vary dramatically based on solution conditions (80). However, it appears that 
our PS ID and ID datasets are sufficiently enriched or depleted for PS IDRs for us to identify key 
properties of IDRs that drive phase separation. For example, the performance of our predictor is 
improved as the rigor with which the dataset was curated improves. ParSe gives the highest AUC 
on the dataset from Vernon et al containing only those proteins shown to drive homotypic LLPS 
in vitro, compared to datasets containing PS drivers more generally, and weaker still on datasets 
including both LLPS drivers and proteins recruited to existing droplets (Figure S5) (16, 76, 77).    
 
Our approach is based primarily on sequence composition and not on sequence patterning or 
combinations of amino acids. It is surprising how effective this strategy is and how many different 
scales can be used to distinguish PS IDRs successfully. Nevertheless, our approach, while fast and 
effective, is unable to identify pairwise protein interactions that contribute to LLPS. In our analysis 
of mutants, we introduced a simple potential whereby amino acid pairs are counted, and this clearly 
improves the ability to predict the effects of mutation on phase separation (Figure 5). Pairwise 
interaction patterns are probably better identified by machine learning algorithms or simulation 
(27, 28, 40, 41, 47, 77). However, the efficacy of our approach appears to indicate that the primary 
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determinant of whether any one sequence will phase separate depends on the overall amino 
composition, whereas rearrangements, mutations, or post-translational modifications of that base 
sequence will modulate that propensity for phase separation. Thus, it appears that the identification 
of sequences that have the potential to phase separate is an easier problem than identifying how 
mutation of a few residues will impact that phase separation potential. This result is not specific to 
our predictor, as none of the predictors tested here showed significantly better correlation with 
changes in phase separation potential upon mutation (Figure S10). We additionally note that 
different experimental measurements of LLPS potential give different ordering of mutants (Figures 
5, S9), further compounding the issue. 
 
Finally, our approach differs from several others in that we are focused solely on the problem of 
separating PS IDRs from IDRs that do not phase separate (47, 76). We are thus not able to identify 
proteins that utilize multivalent interactions between folded domains and other folded, ID, or 
nucleic acid binding domains as a primary mechanism for driving phase separation (5, 6, 24, 25). 
Moreover, we are primarily focused on IDRs that drive phase separation, as opposed to those that 
are recruited to existing phase separated droplets, a case which has been recently considered by 
Chen et al (76). Our motivation for this narrow focus is that a broader focus might obscure 
mechanisms used only by PS IDRs, and that interactions between folded domains are, in general, 
better understood than those between disordered domains.   
 
The strong performance of ParSe on existing datasets, the robust nature of differences between PS 
IDRs and conventional IDRs, and the high correlation between ParSe and other predictors on 
databases of phase separating proteins all give confidence that ParSe is able to identify PS IDRs 
with significant accuracy. Because of its speed, ParSe can easily be applied to datasets of arbitrarily 
large size. As an example, we measured the summed classifier distance for the human proteome 
and found that only a small fraction of the human proteome is likely to drive phase separation 
(Figure 4B). Moreover, we identified the 500 proteins with the highest summed classifier distance 
in the human proteome, as well as their longest predicted PS ID region (Table S7). Many proteins 
involved in stress granule formation, RNA processing, and other functions known to be associated 
with membraneless organelles are identified in this process. However, many proteins are also 
identified that are not yet associated with a biological process driven by phase separation. This 
suggests that, while the fraction of human proteins driving phase separation may be small, not all 
of the biological processes relying on phase separation have yet been identified.   
 
 
Experimental procedures 
 
Protein databases 
 
A set of 224 IDRs from proteins that exhibit LLPS behavior, used for the PS ID set, was obtained 
from our prior work (42). For the ID set, we started with 23 IDR sequences used previously (42), 
and then added all DisProt consensus ID sequences not having the disorder function ontology 
identifier for LLPS, IDPO:00041 (54). Protein sequences in the BMRB (52) with “disordered” or 
“IDP” as a keyword or in the entry title were also added to the ID set. BMRB obtained sequences 
were restricted to those with ≥70% of residue positions classified as disordered by Wishart’s 
random coil index, using an S2 cutoff of 0.6 (81). DisProt and BMRB sequences were culled by 
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Metapredict (55), keeping only those predicted to be ID, and seqatoms (57), excluding those that 
were highly homologous to folded regions of proteins in the PDB. The folded set started with the 
82 folded sequences used previously (42), and then added a set of human proteins with 
nonhomologous structures (48), proteins with small to large structures (49), extremophile proteins 
(50), metamorphic proteins (51), and membrane proteins that were found by searching the PDB 
(56) for the phrase “membrane protein.” Using the PISCES Server (82), the human, extremophile, 
metamorphic, and membrane proteins had a maximum of 50% sequence identity within each 
folded subset and only X-ray structures with a resolution better than 2.5 Å. 
 
 
Calculation of β-turn propensity and vmodel 
 
The propensity to form β-turn structures was calculated by ∑ scalei/N, where scalei is the value 
for amino acid type i in the normalized frequencies for β-turn from Levitt (83). The summation is 
over the protein sequence containing N number of amino acids. vmodel was introduced previously 
(42) as a phenomenological substitute to the polymer scaling exponent (84, 85) and used to 
normalize protein hydrodynamic size to the chain length, 
 

𝜈𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑜𝑔(𝑅ℎ 𝑅𝑜⁄ ) 𝑙𝑜𝑔(𝑁)⁄ ,       [1] 
 
where Ro is a constant set to 2.16 Å, and the hydrodynamic radius, Rh, is calculated from sequence 
using an equation found to be accurate for monomeric IDPs (43, 44, 86–88). The equation to 
calculate Rh for a disordered sequence is, 
 
 𝑅ℎ = 2.16Å ∙ 𝑁(0.503−0.11∙𝑙𝑛(𝑓𝑃𝑃𝐼𝐼)) + 0.26 ∙ |𝑄𝑛𝑒𝑡| − 0.29 ∙ 𝑁0.5,   [2] 
 
where fPPII is the fractional number of residues in the PPII conformation, and Qnet is the net charge. 
fPPII is estimated from ∑ PPPII,i/N, where PPPII,i is the experimental PPII propensity determined for 
amino acid type i in unfolded peptides (89) and the summation is over the protein sequence. Qnet 
is determined from the number of lysine and arginine residues minus the number of glutamic acid 
and aspartic acid. 
 
 
Principal component analysis  
 
The statistical program R (90) was used to perform PCA on the sequence sets, and the packages 
ggfortify, ggplot2, factoextra, MetBrewer, and tidyverse were used to render the results. In the 
PCA, the variables were shifted to be zero centered and scaled to unit variance. 
 
 
ParSe v2 algorithm  
 
For an input primary sequence, whereby the amino acids are restricted to the 20 common types, 
ParSe v2 first reads the sequence to determine its length, N. Next, the algorithm uses a sliding 
window scheme (Figure 3A) to calculate vmodel, α-helix propensity, and ϕ for every 25-residue 
segment of the primary sequence. This window scheme can be applied to proteins with N >25. Rh 
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is calculated by Equation 2, which in turn is used to determine vmodel by Equation 1, by the same 
method used in the original ParSe described previously (42). α-helix propensity is calculated as 
the sequence sum divided by N using the scale by Tanaka and Scheraga (67). ϕ is calculated as the 
sequence sum divided by N using the hydrophobicity scale by Vendrusculo and coworkers (66). 
A window is labeled F if ϕ >0.08 (Figure 3B). If ϕ <0.08, a window is labeled P or D depending 
on the values of vmodel and α-helix propensity. Windows with high α-helix propensity and high 
vmodel are labeled D, while those with low α-helix propensity and low vmodel are labeled P. The P/D 
boundary was determined by the line that bisects the overlapping distributions of vmodel and α-helix 
propensity in the PS ID and ID sets, given by vmodel = -0.244•α-helix propensity + 0.789. The 
window label is assigned to the central residue in that window. N- and C-terminal residues not 
belonging to a central window position are assigned the label of the central residue in the first and 
last window, respectively, of the whole sequence. Protein regions predicted by ParSe v2 to be PS, 
ID, or folded are determined by finding contiguous residue positions of length ≥20 that are ≥90% 
of only one label P, D, or F, respectively. When overlap occurs between adjacent predicted regions, 
owing to the up to 10% label mixing allowed, this overlap is split evenly between the two adjacent 
regions.  
 
 
Classifier distance calculation 
 
The classifier distance is the normalized distance of a ParSe v2 generated window into its classifier 
sector (i.e., F, D, or P sector) and relative to the cutoff boundary (Figure 3B). For F labeled 
windows, the classifier distance is ϕ (of the window) minus the cutoff value of 0.08, and then 
normalized to distance of the folded set mean ϕ (0.1164) to the cutoff. Specifically, this is (ϕ – 
0.08)/(0.1164 – 0.08). For P or D labeled windows, first we find the point on the P/D boundary 
(vmodel = -0.244∙α-helix propensity + 0.789) that makes a perpendicular bisector when paired with 
the window values of vmodel and α-helix propensity. Then the distance between this point and the 
point defined by the window values of vmodel and α-helix propensity is determined. Specifically, 
this distance is sqrt((α – x)∙(α – x) + (vmodel – y)∙(vmodel – y)) where α is the α-helix propensity, x 
is (α/0.244 + 0.789 – vmodel)/(0.244 + 1/0.244) and y is (x – α)/0.244 + vmodel. This distance is 
normalized by dividing by 0.019 (the distance from the boundary to either of the set means). 
 
 
PSCORE calculation 
 
PSCORE, which is a phase separation propensity predictor (16), was calculated by computer 
algorithm using the Python script and associated database files available at 
https://doi.org/10.7554/eLife.31486.022. 
 
 
Granule propensity calculation 
 
Granule propensity was calculated by using the catGranule (34) webtool available at 
http://www.tartaglialab.com. 
 
 

https://doi.org/10.7554/eLife.31486.022
http://www.tartaglialab.com/
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PLAAC LLR calculation  
 
LLR score, which identifies prion-containing sequences (91), was calculated by using the webtool 
available at http://plaac.wi.mit.edu. 
 
 
Metapredict calculation 
 
Metapredict score (55), which predicts the presence of ID in a sequence, was calculated by 
computer algorithm using the Python script available at http://metapredict.net. 
 
 
Calculation of Uπ 
 
The relative contributions of aromatic and cation-π interactions to LLPS in our calculations 
followed the observed rank order by Wang et al: Tyr-Arg > Tyr-Lys ~ Phe-Arg > Phe-Lys (22). 
To mimic this ranking, we assumed 3:2:1 weighting and, also, that Phe-Tyr interactions would 
contribute comparably to Phe-Lys interactions, 
 
 Uπ = a∙(3∙(#Y × #R / (#Y − #R)#Y ≠ #R) 
  +2∙(#Y × #K / (#Y − #K)#Y ≠ #K) + 2∙(#F × #R / (#F − #R)#F ≠ #R) 
  +1∙(#F × #K / (#F − #K)#F ≠ #K) + 1∙(#F × #Y / (#F − #Y)#F ≠ #Y)).  [3] 
 
In Equation 3, #Y, #R, #F, and #K represent the number of Tyr, Arg, Phe, and Lys residues, 
respectively, in a sequence, calculated on a per-window basis, and a is a fitting parameter (see 
below). Thus, Uπ increases with increasing Tyr, Arg, Phe, and Lys content, and more so when 
interaction partners are present at similar levels. When the divisor is zero (e.g., when #Y = #R), it 
is changed to 1 to avoid infinite potentials.  
 
Window-specific Uπ was added to the classifier distance at windows labeled P. Moreover, Uπ was 
applied to D-labeled windows, allowing for the possibility of labels changing from D to P. This 
would occur when the value for Uπ was larger than the classifier distance at a D-labeled window. 
Thus, protein regions that otherwise have characteristics more like the ID set, in vmodel and α-helix 
propensity, could be labeled P if Uπ was large enough. When this occurs, the given classifier 
distance was determined by the difference between Uπ and the original classifier distance of the 
window formerly labeled D. 
 
The parameter a in Equation 3 was determined by finding the optimal correlation of ParSe-
calculated PS potential to ∆h° (finding a = 0.14; Figure 5B), ∆s° (finding a = 0.08), ∆g° (finding 
a = 0.11), or csat (finding a = 0.28). In each case, the mutants used to fit a were limited to the subset 
with identical charge and charge patterns, determined by calculating the net charge per residue, 
NCPR, and sequence charge decoration, SCD, of each sequence. NCPR is the number of Lys and 
Arg residues minus the number of Glu and Asp residues, divided by N. SCD is calculated by N-

1∑i∑j,j>i(qiqj)|j-i|1/2, where q is the amino acid specific charge (92). 
 
 

http://plaac.wi.mit.edu/
http://metapredict.net/
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Calculation of Uq. 
 
To model the contributions of charge-based interactions to LLPS, we build upon the observations 
by Schuster et al (27) and Bremer et al (39) that changes in SCD and NCPR, respectively, can 
affect phase separation potential. Accordingly, a simple charge-based potential was defined, 
 
 Uq = b∙SCD + c∙|NCPR|,         [4] 
 
where b and c are fitting parameters, and Uq is calculated on a per-window basis. Uq is added to 
the classifier distance at each window labeled P, and is applied to windows labeled D, following 
the scheme described above for Uπ, again allowing for the possibility of labels changing from D 
to P. As with a, the parameters b and c were fixed by finding the optimal correlation of calculated 
PS potential and ∆h° (finding 8.4 and 5.6, respectively; Figure 5C), ∆s° (finding 4.6 and 7.0, 
respectively), ∆g° (finding 5.2 and 5.4, respectively), or csat (finding -16.0 and 33, respectively). 
 
 
Calculation of ∆h°, ∆s°, and ∆g° from temperature dependence to csat. 
 
For some Ddx4 and A1-LCD sequences, ∆h° and ∆s° (and thus ∆g°) were not available, but csat 
measured at different temperatures has been reported (3, 18). For these proteins, the standard molar 
chemical potential, µ°, was used to relate csat in the dilute and dense phases, cdilute and cdense, 
respectively, to the standard molar enthalpy and entropy associated with phase separation (39), 
 
 ∆µ° = ∆g° = ∆h° − T∙∆s° 
        = µ°dense − µ°dilute 
                   = µdense − R∙T∙ln(cdense/cref) – (µdilute – R∙T∙ln(cdilute/cref)) 
                   = R∙T∙ln(cdilute/cdense), 
 
where µdense − µdilute is zero at equilibrium, R is the universal gas constant, and T is temperature. 
By plotting the natural logarithm of csat at different temperatures, a linear fit versus 1/T yields ∆h° 
and ∆s°. For A1-LCD mutants, 0.03 M was used for cdense (39). For Ddx4 mutants, 0.01 M was 
used for cdense (3). ∆g° was calculated from ∆h° − T∙∆s° and the standard temperature (273.15 K). 
 
 
Data availability 
 
The Parse v2 algorithm written in Fortran, Parse_v2.f, can be downloaded at 
https://github.com/stevewhitten/ParSe_v2. A webtool version can be used at 
https://stevewhitten.github.io/Parse_v2_web. 
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Table 
 
 
Table 1. Summary of mean vmodel in protein sequence sets. 
 

 
 
 
 
 
 
 

 
a Mean ± standard deviation. 
b One-tail p-value, where p-value <0.05 indicates the compared sets are statistically different in 
their means. Comparisons are to the PS ID sequence set. 
  

   
Set Number vmodel a t-test b U-test b 

PS ID 224 0.542 ± 0.020 - - 
ID  121 0.558 ± 0.022 2.5e-10 1.6e-11 
Folded 421 0.537 ± 0.008 1.2e-3 1.5e-3 
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Table 2: Summary of mean β-turn propensity in the protein sequence sets. 
 

 
 
 

 

 

 

 

 

a Mean ± standard deviation. 
b One-tail p-value, where p-value <0.05 indicates the compared sets are statistically different in 
their means. Comparisons are to the PS ID sequence set. 
  

  β-turn 
propensity a 

 
Set Number t-test b U-test b 

PS ID 224 1.152 ± 0.087 - - 
ID 121 1.101 ± 0.075 4.6e-8 4.9e-9 
Folded 421 0.971 ± 0.040 2.0e-33 1.1e-89 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Sequence-calculated vmodel and β-turn propensity separate protein regions by class. 
A, comparing vmodel and β-turn propensity in each sequence set. Filled circles show the mean and 
standard deviation in vmodel and β-turn propensity in the PS ID (blue), ID (red), and folded (black) 
sets. Open and dashed circles show the mean and standard deviation in individual subsets: previous 
ID and BMRB & DisProt (red); previous folded, human, small-to-large, extremophile, membrane, 
and metamorphic (black). B, comparing vmodel and β-turn propensity in homopolymers (N = 100) 
where amino acid type is identified by its one-letter code. A centralized origin was mapped into 
this plot at the β-turn propensity and vmodel values of 1.101 and 0.558, respectively, which are the 
means in the ID set. From this origin, every amino acid type can be represented by a distance 
magnitude and angular displacement; as shown for proline. A color wheel is used to convey 
angular displacement. C, magnitude/color plots are compared to the ParSe (original version) 
predictions for Sup35 (UniProt ID P05453), FUS (UniProt ID P35637), and Ddx4 (UniProt ID 
Q9NQI0), and to regions reported (i.e., identified) by experiment. Each figure shows the 
magnitude (y-axis) and color (angular displacement) by residue number (x-axis), as determined by 
amino acid type and its magnitude/color from panel B. ParSe predictions use blue (PS), red (ID), 
and black (folded). Striped represents ≥50% identity to a known folded protein. 
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Figure 2. Robust differences in intrinsic sequence-calculated properties are found when 
comparing means by protein region class. A-C, p-values calculated by Welch’s unequal 
variances t-test, shown as -log(p-value), compares set means in 567 amino acid scales and vmodel. 
Conformation-based scales, highlighted by blue boxplots, are grouped by type according to α-helix 
(Helix), sheet or strand (Sheet), β-turn, tight turn, or reverse turn (Turn), coil or loop (Coil), and 
aperiodic (Aper) propensities. Physicochemical-based scales, highlighted by green box plots, are 
grouped by type according to flexibility (Flex), size (Size), composition (Comp), negative charge, 
positive charge, or net charge (Charge), and hydrophobicity (ϕ). Hydrophobicity scales were 
separated into two types: structure-based (ϕ_struct), where the scale is derived from a structural 
metric like burial or contact frequency in surveys of high-resolution protein structures, and 
solution-based (ϕ_sol), where the scale is obtained from solution studies like measuring the 
transfer free energy of the amino acids from water to an organic solvent. Scales (e.g., refractivity, 
crystal melting point) that did not easily map into a conformation- or physicochemical-based group 
were combined separately (Other). Boxplots show the dataset median (50th percentile) with the 
central bar, and the vertical width spans the 25th to 75th percentiles. Open triangles highlight the 
smallest p-value when comparing means in the PS ID and ID sets (from an α-helix propensity 
scale), the smallest p-value when comparing means in either the PS ID or ID sets with the folded 
set (from a structure-based hydrophobicity scale), and the β-turn propensity scale used in ParSe. 
D, bidimensional plot from PCA showing the modes of variance in the combined ID set (PS ID 
and ID) arising from conformation- (blue arrows) and physicochemical-based (green arrows) 
scales relative to the two principal components of variance, given as Dimension 1 and Dimension 
2. E, scree plot showing the percent of the total variance in the combined set of ID sequences that 
is captured by each principal component (i.e., dimension). F, sequence calculated vmodel, α-helix 
propensity, and hydrophobicity for the sequences in the PS ID (blue), ID (red), and folded (black) 
sets; spheres show the set mean ± σ. 
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Figure 3. Predicting protein regions from sequence using the ParSe v2 algorithm. A, a sliding 
window algorithm is used to identify from sequence regions within a protein that match the PS ID, 
ID, and folded classes. Hydrophobicity (ϕ), α-helix propensity (α), and vmodel are calculated for 
each contiguous stretch of 25-residues, or “window”, in the primary sequence. B, each window is 
assigned a label, F, P, or D, depending on the values of ϕ, α, and vmodel. In the left figure, open 
circles are ϕ and vmodel calculated for each 25-residue window in the Sup35 sequence (UniProt ID 
P05453); filled circles are the mean ± σ in ϕ and vmodel in the ID (red), PS ID (blue), and folded 
(black) sequence sets. Windows with ϕ ≥ the folded set mean - 2σ (dashed line) are labeled F. For 
windows with ϕ < the folded set mean - 2σ, the label is determined by α and vmodel; P for low α 
with low vmodel, or D for high α with high vmodel, as shown in the right figure. Filled circles show 
the mean ± σ in α and vmodel in the ID (red) and PS ID (blue) sets. C, contiguous regions (N ≥20) 
in the Sup35 primary sequence that were 90% of only one label P, D, or F are colored blue, red, 
or black, respectively, to represent predicted PS, ID, or folded regions. Predictions from the 
original ParSe and ParSe v2 are compared to the reported regions identified by experiment. D, 
classifier distance of each window, assigned to the central residue of the window and then colored 
according to its label P (blue), D (red), or F (black). 
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Figure 4. ParSe predicted PS regions are rarely found in the human proteome. A, ParSe 
(stippled lines) and ParSe v2 (solid lines) were used to identify regions in proteins that were ≥90% 
labeled P, which are referred to as phase-separating, PS, regions. Shown by the y-axis is the percent 
of proteins in a set with PS regions at least as long as the length indicated by the x-axis. The human 
proteome (UniProt reference proteome UP000005640) is given by black lines; DisProt (minus 
LLPS annotated entries) by red lines; SCOPe (version 2.07) by grey lines; a set of in vitro sufficient 
homotypic LLPS proteins by blue lines; and the full sequences of the proteins in the PS ID set by 
light blue lines. B, the summed P classifier distance was calculated by ParSe v2 for the protein sets 
in panel A. Shown by the y-axis is the percent of proteins in a set with a summed P classifier 
distance at least as much as the value indicated by the x-axis. Lines were colored using the same 
coloring scheme as in panel A. C, reproduction of the results in panel B wherein each set was 
directly compared to the human proteome result. Here, lines show the % of a set (using the same 
coloring scheme) plotted against the human proteome % of set for values of the summed P 
classifier distance.   
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Figure 5. Predicting mutation effects on phase separation behavior. A, the summed classifier 
distance of P-labeled windows was used to calculate a phase-separating (PS) potential from 
sequence. Mutants were grouped by experimental study and colored grey for wildtype (WT), 
yellow for mutants with both NCPR and SCD identical to the WT values, and green otherwise 
(non-WT NCPR and SCD). Placement left-to-right within a study follows the reported PS potential 
in rank, from high-to-low, for comparison to the predicted PS potential. A1-LCD mutants used 
∆h° and not csat to establish rank. B, A1-LCD mutants with NCPR and SCD matching the WT 
values were used to fix a in Equation 3 by optimizing the correlation of Parse-calculated PS 
potential (including Uπ) to ∆h°; the right figure shows the optimal correlation. C, similarly, all A1-
LCD and Ddx4 mutants with experimental ∆h° were then used to fix b and c in Equation 4 by 
optimizing the correlation of ParSe-calculated PS potential (including Uπ and Uq) to ∆h°; the right 
figure shows the optimal correlation. D, ParSe-calculated PS potentials (including Uπ and Uq 
optimized to ∆h°) for the mutant and WT sequences. E, percent of mutants correctly predicting an 
increase or decrease in PS potential relative to the WT before and after including Uπ and Uq in the 
calculations. Results are binned according to experimental value that was used to fix a, b, and c in 
Uπ and Uq. 
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Supporting Tables 
 
Table S1. List of folded protein regions. 
 

Name Database a 
UniProt 
accession 
number 

folded regions (N) b PDB entries 

 PPP5C Wang et al P53041 19-177 (159) 1a17.pdb 

Galectin-3  Wang et al P17931** 114-250 (137) 1a3k.pdb 

RB1 Wang et al P06400 378-562 (185) 1ad6.pdb 

CD40LG Wang et al P29965 116-261 (146) 1aly.pdb 

FABP5 Wang et al Q01469 3-135 (133) 1b56.pdb 

LALBA Wang et al P00709 20-142 (123) 1b9o.pdb 

CDKN2D Wang et al P55273 7-162 (156) 1bd8.pdb 

AMBP Wang et al P02760 230-339 (110) 1bik.pdb 

FKBP1A Wang et al P62942 2-108 (107) 1bkf.pdb 

SPTBN1 Wang et al Q01082 173-280 (108) 1bkr.pdb 

TIMP2 Wang et al P16035 27-208 (182) 1br9.pdb 

ZBTB16 Wang et al Q05516 6-126 (121) 1buo.pdb 

LGALS3BP Wang et al Q08380 19-127 (111) 1by2.pdb 

HSO90AA1 Wang et al P07900 11-223 (213) 1byq.pdb 

CRABP2 Wang et al P29373 2-138 (137) 1cbs.pdb 

CD4 Wang et al P01730 26-203 (178) 1cdy.pdb 

CALM1 Wang et al P0DP23 5-148 (144) 1cll.pdb 

HRAS Wang et al P01112 1-166 (166) 1ctq.pdb 

APAF1 Wang et al O14727 1-93 (93) 1cy5.pdb 

F5 Wang et al P12259 2066-2224 (159) 1czt.pdb 

F8 Wang et al P00451 2190-2348 (159) 1d7p.pdb 

ASGR1 Wang et al P07306 154-281 (128) 1dv8.pdb 

RNASE1 Wang et al P07998 35-154 (120) 1e21.pdb 

CD69 Wang et al Q07108 83-199 (117) 1e87.pdb 

PLEKHA1 Wang et al Q9HB21 190-293 (104) 1eaz.pdb 
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CCL8 Wang et al P80075 25-99 (75) 1esr.pdb 

DAPP1 Wang et al Q9UN19 162-261 (100) 1fao.pdb 

PFN1 Wang et al P07737 2-140 (139) 1fil.pdb 

AIMP1 Wang et al Q12904 150-313 (164) 1fl0.pdb 

FN1 Wang et al P02751 1543-1633 (91) 1fna.pdb 

FCGR3B Wang et al O75015 21-193 (173) 1fnl.pdb 

IGHE Wang et al P01854 217-424 (208) 1fp5.pdb 

GSTZ1 Wang et al O43708 5-212 (208) 1fw1.pdb 

SELE Wang et al P16581 22-178 (157) 1g1t.pdb 

CST3 Wang et al P01034* 36-146 (111) 1g96.pdb 

MMP2 Wang et al P08253 461-660 (200) 1gen.pdb 

CALML3 Wang et al P27482 5-148 (144) 1ggz.pdb 

TXNL1 Wang et al O43396 2-108 (107) 1gh2.pdb 

CTSS Wang et al P25774 115-331 (217) 1glo.pdb 

GABARAP Wang et al O95166* 1-117 (117) 1gnu.pdb 

IGF2R Wang et al P11717 1515-1647 (133) 1gp0.pdb 

RNASE2 Wang et al P10153 28-161 (134) 1gqv.pdb 

COL10A1 Wang et al Q03692 549-680 (132) 1gr3.pdb 

MADCAM1 Wang et al Q13477** 23-227 (206) 1gsm.pdb 

NCF4 Wang et al Q15080 2-144 (143) 1h6h.pdb 

BLVRB Wang et al P30043 1-205 (205) 1hdo.pdb 

QDPR Wang et al P09417 9-244 (236) 1hdr.pdb 

FABP3 Wang et al P05413 2-132 (131) 1hmt.pdb 

GSTM2 Wang et al P28161 2-218 (217) 1hna.pdb 

MBL2 Wang et al P11226 108-248 (141) 1hup.pdb 

IL4 Wang et al P05112 25-153 (129) 1hzi.pdb 

PCMT1 Wang et al P22061 3-226 (224) 1i1n.pdb 

GTF2F1 Wang et al P35269 449-517 (73) 1i27.pdb 

UBR5 Wang et al O95071 2393-2453 (61) 1i2t.pdb 
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PRNP Wang et al P04156** 119-226 (108) 1i4m.pdb 

LPA Wang et al P08519 1274-1355 (82) 1i71.pdb 

MMP8 Wang et al P22894 100-262 (163) 1i76.pdb 

ICAM1 Wang et al P05362 28-212 (185) 1iam.pdb 

ARHGEF1 Wang et al Q92888* 44-233 (190) 1iap.pdb 

LMNA Wang et al P02545 436-544 (113) 1ifr.pdb 

FGF9 Wang et al P31371 52-208 (157) 1ihk.pdb 

LCK Wang et al P06239 123-226 (104) 1ijr.pdb 

FGF4 Wang et al P08620 79-206 (128) 1ijt.pdb 

HSD17B4 Wang et al P51659 622-736 (115) 1ikt.pdb 

ABHD14B Wang et al Q96IU4 2-209 (208) 1imj.pdb 

UBE2V2 Wang et al Q15819 7-145 (139) 1j74.pdb 

ANAPC10 Wang et al Q9UM13 2-162 (161) 1jhj.pdb 

MMP12 Wang et al P39900 106-263 (158) 1jk3.pdb 

LYZ Wang et al P61626 19-148 (130) 1jsf.pdb 

TCL1A Wang et al P56279 4-114 (111) 1jsg.pdb 

GGA1 Wang et al Q9UJY5 7-145 (139) 1jwf.pdb 

MATK Wang et al P42679 117-213 (97) 1jwo.pdb 

PTK2 Wang et al Q05397 908-1049 (142) 1k04.pdb 

BCL3 Wang et al P20749 133-360 (228) 1k1b.pdb 

ANG Wang et al P03950 26-147 (122) 1k59.pdb 

RAP2A Wang et al P10114 1-167 (167) 1kao.pdb 

GSN Wang et al P06396 185-288 (104) 1kcq.pdb 

NRP1 Wang et al O14786 273-427 (155) 1kex.pdb 

DHFR Wang et al P00374 2-187 (186) 1kmv.pdb 

HINT1 Wang et al P49773 16-126 (111) 1kpf.pdb 

COL6A3 Wang et al P12111 3108-3165 (58) 1kth.pdb 

PROCR Wang et al Q9UNN8 25-194 (170) 1l8j.pdb 

GNLY Wang et al P22749 63-136 (74) 1l9l.pdb 
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CLC Wang et al Q05315 2-142 (141) 1lcl.pdb 

B2M Wang et al P61769** 21-116 (96) 1lds.pdb 

PCTP Wang et al Q9UKL6 8-210 (203) 1ln1.pdb 

RBP7 Wang et al Q96R05 2-134 (133) 1lpj.pdb 

THBS1 Wang et al P07996 434-546 (113) 1lsl.pdb 

RND3 Wang et al P61587 22-200 (179) 1m7b.pdb 

TGFBR2 Wang et al P37173 49-153 (105) 1m9z.pdb 

SOD1 Wang et al P00441* 2-154 (153) 1mfm.pdb 

RAC1 Wang et al P63000 2-181 (183) 1mh1.pdb 

NT5M Wang et al Q9NPB1 34-227 (194) 1mh9.pdb 

SUOX Wang et al P51687 81-160 (80) 1mj4.pdb 

APP Wang et al P05067** 28-123 (96) 1mwp.pdb 

RAB5A Wang et al P20339 15-181 (167) 1n6h.pdb 

KIR2DL1 Wang et al P43626 27-221 (195) 1nkr.pdb 

FKBP3 Wang et al Q00688 109-224 (116) 1pbk.pdb 

CYTH2 Wang et al Q99418 52-246 (195) 1pbv.pdb 

PIK3R1 Wang et al P27986 3-85 (83) 1pht.pdb 

PLA2GRA Wang et al P14555 21-144 (124) 1pod.pdb 

CDC25B Wang et al P30305 388-565 (178) 1qb0.pdb 

REG1A Wang et al P05451 23-166 (144) 1qdd.pdb 

ESR1 Wang et al P03372** 304-551 (248) 1qkt.pdb 

ACTN2 Wang et al P35609 391-635 (248) 1quu.pdb 

RBP4 Wang et al P02753 19-193 (175) 1rbp.pdb 

PLA2G4A Wang et al P47712 17-141 (126) 1rlw.pdb 

SPARC Wang et al P09486 153-303 (151) 1sra.pdb 

TNC Wang et al P24821 802-891 (90) 1ten.pdb 

CLEC3B Wang et al P05452 66-202 (137) 1tn3.pdb 

ITGAL Wang et al P20701 153-333 (181) 1zon.pdb 

ICAM2 Wang et al P13598 25-216 (192) 1zxq.pdb 
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ABL1 Wang et al P00519 57-218 (163) 2abl.pdb 

PPIA Wang et al P62937 2-165 (164) 2cpl.pdb 

FCGR2B Wang et al P31994 46-218 (173) 2fcb.pdb 

FTH1 Wang et al P02794 6-177 (172) 2fha.pdb 

IL10 Wang et al P22301 24-178 (155) 2ilk.pdb 

S100A7 Wang et al P31151 2-97 (96) 2psr.pdb 

TGFB2 Wang et al P61812 303-414 (112) 2tgi.pdb 

FGG Wang et al P02679 170-418 (249) 3fib.pdb 

CXCL8 Wang et al P10145 32-99 (68) 3il8.pdb 

ACP1 Wang et al P24666 2-158 (157) 5pnt.pdb 

VIL1 Fitzkee & Rose P02640 792-826 (36) 1vii.pdb 

Prkcd Fitzkee & Rose P28867 231-280 (50) 1ptq.pdb 

spg Fitzkee & Rose P06654 228-282 (56) 2gb1.pdb 

FYN Fitzkee & Rose P06241 84-142 (59) 1shfA.pdb 

cspB Fitzkee & Rose P32081 1-67 (67) 1csp.pdb 

UBC Fitzkee & Rose P0CG48 609-684 (76) 1ubq.pdb 

cI Fitzkee & Rose P03034 7-93 (87) 1lmb.pdb 

Barstar Fitzkee & Rose P11540 2-90 (89) 1a19A.pdb 

ACYP1 Fitzkee & Rose P41500 4-101 (98) 2acy.pdb 

PETE Fitzkee & Rose P00299 70-168 (99) 2pcy.pdb 

CYCS Fitzkee & Rose P00004 2-105 (104) 1hrc.pdb 

Pik3r1 Fitzkee & Rose Q63787 321-431 (111) 1fu6A.pdb 

Hemerythrin Fitzkee & Rose P02246 1-113 (113) 2hmqA.pdb 

LALBA Fitzkee & Rose P00711 20-141 (122) 1f6sA.pdb 

RNASE1 Fitzkee & Rose P61823 27-150 (124) 1xptA.pdb 

cheY Fitzkee & Rose P0AE67 2-129 (128) 1ehc.pdb 

LYZ  Fitzkee & Rose P00698 19-147 (129) 1hel.pdb 

Fabp2 Fitzkee & Rose P02693 2-132 (131) 1ifb.pdb 

nuc Fitzkee & Rose P00644 83-223 (141) 2sns.pdb 
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CALM  Fitzkee & Rose P62157 5-147 (143) 1cm1A.pdb 

MB Fitzkee & Rose P02185 2-154 (153) 1mbo.pdb 

rnhA Fitzkee & Rose P0A7Y4 1-155 (155) 2rn2.pdb 

gag-pol Fitzkee & Rose O92956 1331-1487 (162) 1asu.pdb 

E (endolysin) Fitzkee & Rose P00720 1-164 (164) 2lzm.pdb 

DFR1  Fitzkee & Rose P22906 1-192 (192) 1ai9A.pdb 

mutY Fitzkee & Rose P17802 1-225 (225) 1mun.pdb 

Triosephosphate 
isomerase Fitzkee & Rose P04789 2-250 (249) 5timA.pdb 

HAGH Fitzkee & Rose Q16775 49-308 (260) 1qh3A.pdb 

ecoRIR Fitzkee & Rose P00642 17-277 (261) 1eriA.pdb 

galE Fitzkee & Rose P09147 1-338 (338) 1nah.pdb 

CKMT1A Fitzkee & Rose P12532 39-417 (379) 1qk1A.pdb 

PGK1 Fitzkee & Rose P00560 2-415 (415) 3pgk.pdb 

apr Panja et al P00782 108-382 (274) 1a2q.pdb 

adk Panja et al P69441 1-214 (214) 1ake.pdb 

amy Panja et al P29957 25-472 (448) 1aqm.pdb 

hip Panja et al P00260 38-122 (85) 1b0y.pdb 

amyE Panja et al P00691 42-466 (425) 1bag.pdb 

FGF2 Panja et al P09038 161-285 (125) 1bas.pdb 

amyS Panja et al P06278 32-512 (481) 1bli.pdb 

axe-2 Panja et al O59893 28-234 (207) 1bs9.pdb 

sodB Panja et al Q9X6W9 3-213 (211) 1coj.pdb 

fer1 Panja et al P00217 2-129 (128) 1doi.pdb 

phnA Panja et al Q51782 2-407 (404) 1ei6.pdb 

cyp119 Panja et al Q55080 1-367 (367) 1f4t.pdb 

atsA Panja et al P51691 3-527 (524) 1hdh.pdb 

hip2 Panja et al P38524 1-71 (71) 1hpi.pdb 

katG2 Panja et al O59651 18-731 (707) 1itk.pdb 

aspC Panja et al Q8RR70 1-388 (388) 1j32.pdb 
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SSO2706 Panja et al P50389 3-236 (226) 1jds.pdb 

mtnN Panja et al P0AF12 1-230 (226) 1jys.pdb 

rpiA Panja et al O50083 1-229 (229) 1lk5.pdb 

VNG_1446H Panja et al Q9HPW4 11-77 (67) 1mog.pdb 

speE Panja et al Q5SK28 1-312 (309) 1uir.pdb 

Endoglucanase Panja et al P06564 578-761 (181) 1uww.pdb 

acyP Panja et al P84142 2-91 (90) 1v3z.pdb 

mdh Panja et al O59028 2-360 (337) 1v9n.pdb 

serC Panja et al Q9RME2 2-361 (360) 1w23.pdb 

amyA Panja et al Q8GPL8 28-515 (488) 1wza.pdb 

APE_2278 Panja et al Q9Y9L0 2-245 (240) 1x0r.pdb 

mvaS Panja et al Q9FD71 1-383 (383) 1x9e.pdb 

Rv1264 Panja et al P9WMU9 14-376 (360) 1y10.pdb 

adk Panja et al P27142 1-217 (217) 1zin.pdb 

Rv1885c Panja et al P9WIB9 35-199 (165) 2ao2.pdb 

ndk Panja et al P61136 4-158 (155) 2az1.pdb 

gdh Panja et al Q977U7 1-357 (355) 2b5v.pdb 

tdh Panja et al O58389 3-347 (327) 2d8a.pdb 

Lysozyme 1 Panja et al Q7YT16 20-141 (122) 2fbd.pdb 

Cat-1 Panja et al Q24940 17-326 (306) 2o6x.pdb 

oxc Panja et al P0AFI0 5-551 (547) 2q27.pdb 

Thioredoxin-
dependent 
peroxiredoxin 

Panja et al G1K3P1 1-76 (156) 2xhf.pdb 

sod Panja et al Q9Y8H8 1-212 (212) 3ak1.pdb 

Alkaline serine 
protease ver112 Panja et al Q68GV9 104-382 (279) 3f7m.pdb 

dapE Panja et al P44514 1-376 (370) 3ic1.pdb 

pepQ Panja et al Q44238 1-440 (425) 3l24.pdb 

sodB Panja et al P84612 1-192 (192) 3lio.pdb 

Enpp2 Panja et al Q9R1E6 51-855 (805) 3nkm.pdb 
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phoK Panja et al A1YYW7 31-556 (526) 3q3q.pdb 

cheC1 Panja et al Q5V4K4 2-206 (200) 3qta.pdb 

FOXG_17421 Panja et al B3A0S5 1-327 (327) 3u7b.pdb 

Alkaline 
phosphatase Panja et al B5BP20 31-527 (497) 3wbh.pdb 

LGMN Panja et al Q99538 26-288 (267) 4aw9.pdb 

LMRG_02624 Panja et al A0A0H3GD84 39-526 (488) 4cdb.pdb 

bop Panja et al Q5UXY6 3-238 (236) 4pxk.pdb 

mdh Panja et al A9W386 2-320 (319) 4ror.pdb 

patA Panja et al P42588 7-459 (453) 4uox.pdb 

cysQ Panja et al P9WKJ1 10-267 (266) 5djf.pdb 

F Chen et al P11209 480-515 (36) 1g2cF.pdb 

HA Chen et al P03437 385-498 (114) 1htmB.pdb 

SERPINB14 Chen et al P01012 2-386 (381) 1jtiB.pdb 

Plk4 Chen et al Q64702 845-919 (75) 1mbyA.pdb 

PVC01_130047600 Chen et al O60989 76-450 (375) 1miqB.pdb 

MATALPHA2 Chen et al P0CY08 113-189 (77) 1mnmC.pdb 

colG Chen et al Q9X721 1005-1118 (111) 1nqdA.pdb 

SRP102 Chen et al P36057 36-244 (191) 1nrjB.pdb 

PDE5A Chen et al O76074 535-860 (311) 1rkpA.pdb 

cobB Chen et al P75960 40-274 (225) 1s5pA.pdb 

F Chen et al P04849 122-183 (62) 1svfC.pdb 

SOD1 Chen et al P00441** 2-154 (153) 1uxmK.pdb 

F Chen et al O89342 143-205 (63) 1wp8C.pdb 

S Chen et al P59594 892-981 (124) 1wyyB.pdb 

tll0464 Chen et al Q8DLM0 1-112 (102) 1x0gA.pdb 

hlyA Chen et al P09545 46-741 (663) 1xezA.pdb 

SAR-endolysin Chen et al Q37875 9-185 (170) 1xjtA.pdb 

Relb Chen et al Q04863 276-378 (110) 1zk9A.pdb 

ftsH Chen et al Q9WZ49 150-606 (421) 2ce7C.pdb 
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suhB Chen et al O33832 1-254 (254) 2p3vA.pdb 

Polyprotein Chen et al O36607 3-230 (227) 2pbk.pdb 

NRP2 Chen et al O60462 276-595 (315) 2qqjA.pdb 

MAD2L1 Chen et al Q13257 1-205 (202) 2vfxL.pdb 

prgI Chen et al P41784 19-80 (62) 2x9cA.pdb 

FN1 Chen et al P02751 516-606 (91) 3ejhA.pdb 

CST3 Chen et al P01034** 38-146 (107) 3gaxA.pdb 

R Chen et al P27359 1-165 (165) 3hdeA.pdb 

FBP2 Chen et al O00757 9-337 (326) 3ifaA.pdb 

PRIM2 Chen et al P49643 272-457 (167) 3l9qB.pdb 

B2M Chen et al P61769* 21-119 (99) 3lowA.pdb 

gag-pol Chen et al P04585 588-1139 (552) 3meeA.pdb 

gp-C Chen et al Q9ICW1 313-422 (103) 3mkoA.pdb 

rsmH Chen et al P60390 8-313 (283) 3tkaA.pdb 

CWC2 Chen et al Q12046 3-227 (225) 3tp2A.pdb 

PR Chen et al Q3L181 1-336 (311) 3uyiA.pdb 

macA Chen et al Q74FY6** 23-346 (320) 4aalA.pdb 

Diphtheria toxin Chen et al P00588 37-567 (499) 4ae0A.pdb 

SUN2 Chen et al Q9UH99 522-717 (196) 4dxrA.pdb 

bcp Chen et al Q9YA14 2-160 (160) 4gqcB.pdb 

PRNP Chen et al Q95211 125-221 (97) 4hlsA.pdb 

Grem2 Chen et al O88273 50-160 (111) 4jphB.pdb 

pimA Chen et al A0QWG6 1-373 (359) 4n9wA.pdb 

plyB Chen et al Q5W9E8 53-519 (465) 4ov8A.pdb 

KWL1 Chen et al P85261 48-213 (158) 4pmkA.pdb 

COMT Chen et al P21964 54-266 (207) 4pyiA.pdb 

MJ1213 Chen et al Q58610 1-109 (109) 4qhfA.pdb 

gbs1529 Chen et al Q8E473 494-642 (141) 4rmbA.pdb 

OAS1 Chen et al Q29599 1-349 (349) 4rwnA.pdb 
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ply Chen et al Q7ZAK5 1-471 (471) 5aoeB.pdb 

malE Chen et al P0AEX9 27-393 (402) 5b3zA.pdb 

TRAP1 Chen et al Q12931 82-294 (205) 5f3kA.pdb 

G Chen et al P0C2X0 1-409 (409) 5i2mA.pdb 

DVL2 Chen et al O14641 416-509 (92) 5suzA.pdb 

MADCAM1 membrane protein Q13477* 23-231 (209) 1bqsA.pdb 

MSN membrane protein P26038 4-297 (289) 1ef1A.pdb 

FCGR2A membrane protein P12318 37-207 (171) 1fcgA.pdb 

SELP membrane protein P16109 42-199 (158) 1g1sA.pdb 

EEA1 membrane protein Q15075 1289-1411 (123) 1jocA.pdb 

GGA1 membrane protein Q9UJY5 494-639 (146) 1na8A.pdb 

SDCBP membrane protein O00560 197-273 (82) 1r6jA.pdb 

CLIC1 membrane protein O00299 22-234 (213) 1rk4A.pdb 

NGF membrane protein P01138 132-236 (99) 1sg1A.pdb 

ANTXR2 membrane protein P58335 38-218 (181) 1shuX.pdb 

IL1RAPL1 membrane protein Q9NZN1 403-561 (147) 1t3gA.pdb 

PGLYRP3 membrane protein Q96LB9 177-341 (165) 1twqA.pdb 

CD3E membrane protein P07766 33-123 (91) 1xiwA.pdb 

CFTR membrane protein P13569 388-671 (267) 1xmiA.pdb 

TRPV2 membrane protein Q9Y5S1 71-318 (244) 2f37A.pdb 

SYNJ2BP membrane protein P57105 5-98 (100) 2jikA.pdb 

GRIP1 membrane protein Q9Y3R0 148-239 (94) 2jilA.pdb 

SELENOS membrane protein Q9BQE4 52-121 (69) 2q2fA.pdb 

CD59 membrane protein P13987 26-102 (78) 2uwrA.pdb 

RAMP2 membrane protein O60895 58-135 (78) 2xvtA.pdb 

ARHGEF1 membrane protein Q92888** 22-233 (165) 3ab3D.pdb 

CNKSR2 membrane protein Q8WXI2 6-80 (74) 3bs5B.pdb 

HLA-DRA membrane protein P01903 28-205 (178) 3c5jA.pdb 

AGER membrane protein Q15109 23-240 (219) 3cjjA.pdb 
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IQGAP1 membrane protein P46940 962-1339 (369) 3fayA.pdb 

GRIK1 membrane protein P39086 445-820 (256) 3fvoA.pdb 

ADAM22 membrane protein Q9P0K1 233-718 (486) 3g5cA.pdb 

AQP4 membrane protein P55087 32-254 (223) 3gd8A.pdb 

RHCG membrane protein Q9UBD6 2-443 (403) 3hd6A.pdb 

TRIM72 membrane protein Q6ZMU5 278-470 (193) 3kb5A.pdb 

MPP1 membrane protein Q00013 282-458 (180) 3neyA.pdb 

GLIPR1 membrane protein P48060 22-214 (193) 3q2uA.pdb 

PLXNA2 membrane protein O75051 1490-1600 (102) 3q3jA.pdb 

GORASP2 membrane protein Q9H8Y8 7-208 (200) 3rleA.pdb 

MAPKAP1 membrane protein Q9BPZ7 372-490 (116) 3voqA.pdb 

PILRA membrane protein Q9UKJ1 32-150 (120) 3wuzA.pdb 

macA membrane protein Q74FY6* 24-346 (323) 4aanA.pdb 

PMP2 membrane protein P02689 1-132 (132) 4bvmA.pdb 

DYSF membrane protein O75923 1-124 (127) 
943-1051 (109) 

4iqhA.pdb 
4caiA.pdb 

BECN1 membrane protein Q14457 248-447 (195) 4ddpA.pdb 

STING1 membrane protein Q86WV6 155-337 (173) 4emtA.pdb 

DLG1 membrane protein Q12959 310-406 (97) 4g69A.pdb 

FOLR1 membrane protein P15328 30-233 (206) 4km6A.pdb 

SLC4A1 membrane protein P02730 57-350 (276) 4ky9A.pdb 

MR1 membrane protein Q95460 23-291 (262) 4l4vA.pdb 

HLA-B membrane protein P01889 25-298 (274) 4lcyA.pdb 

PRNP membrane protein P04156** 118-224 (107) 4n9oA.pdb 

ESYT2 membrane protein A0FGR8 363-659 (292) 4npjA.pdb 

PVDR membrane protein P22290 211-508 (282) 4nuuA.pdb 

LGR4 - fusion membrane protein Q9BXB1 27-399 (443) 4qxeA.pdb 

PLK1 membrane protein P53350 372-599 (223) 4rcpA.pdb 

TOR1AIP1 membrane protein Q5JTV8 360-583 (224) 4tvsA.pdb 

VAMP8 membrane protein Q9BV40 11-74 (64) 4wy4A.pdb 
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PGRMC1 membrane protein O00264 72-179 (112) 4x8yA.pdb 

GPC1 membrane protein P35052 25-473 (411) 4ywtA.pdb 

GLP1R membrane protein P43220 29-128 (100) 5e94H.pdb 

SCN2B membrane protein O60939 30-148 (122) 5febA.pdb 

ADORA2A - fusion membrane protein P29274 2-305 (387) 5iu4A.pdb 

ADIPOR2 membrane protein Q86V24 99-380 (282) 5lx9A.pdb 

ZMPSTE24 membrane protein O75844 10-474 (444) 5sytA.pdb 

PTGES membrane protein O14684 5-152 (147) 5tl9A.pdb 

CHRM2 - fusion membrane protein P08172 16-458 (384) 5zkcA.pdb 

SLMAP membrane protein Q14BN4 2-135 (134) 6ar2A.pdb 

FZD4 - fusion membrane protein Q9ULV1 181-513 (379) 6bd4A.pdb 

C5AR1 - fusion membrane protein P21730 30-327 (370) 6c1rB.pdb 

GRM5 - fusion membrane protein P41594 569-836 (409) 6ffiA.pdb 

CCDC90B - fusion membrane protein Q9GZT6 62-126 (94) 6h9mA.pdb 

TACR1 - fusion membrane protein P25103 27-327 (483) 6hlpA.pdb 

MCOLN2 membrane protein Q8IZK6 92-282 (173) 6hrrA.pdb 

KDELR2 membrane protein Q5ZKX9 1-207 (207) 6i6hA.pdb 

DHODH membrane protein Q02127 29-395 (367) 6idjA.pdb 

MPLZL1 membrane protein O95297 38-158 (119) 6igwA.pdb 

MFN2 membrane protein O95140 24-418 (428) 6jfkA.pdb 

GPR52 - fusion membrane protein Q9Y2T5 21-338 (441) 6li0A.pdb 

AQP7 membrane protein O14520 33-279 (247) 6qziA.pdb 

LTC4S membrane protein Q16873 2-144 (143) 6r7dA.pdb 

PTCH1 membrane protein Q13635 149-423 (277) 
842-935 (94) 

6rtwA.pdb 
6rvcA.pdb 

ERVW-1 membrane protein Q9UQF0 345-433 (89) 6rx1A.pdb 

ERVFRD-1 membrane protein P60508 380-468 (89) 6rx3A.pdb 

CYSLTR2 - fusion membrane protein Q9NS75 29-322 (365) 6rz6A.pdb 

SLC2A1 membrane protein P11166 8-455 (448) 6thaA.pdb 

HCRTR1 membrane protein O43613 45-346 (301) 6todA.pdb 
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KCNMA1 membrane protein Q12791 408-1121 (594) 6v5aA.pdb 

SCN4B membrane protein Q8IWT1 37-154 (115) 6vsvA.pdb 

JAGN1 - fusion membrane protein Q8N5M9 2-183 (397) 6wvdA.pdb 

malE - fusion membrane protein P0AEX9 26-392 (571) 6zhoA.pdb 

DDR2 - fusion membrane protein Q16832 561-849 (275) 7aymA.pdb 

GABARAP - fusion membrane protein O95166** 1-116 (132) 7brqA.pdb 

 
a The Protein Data Bank (1) was used to identify folded regions within proteins. Originally, we 
searched for folded regions within proteins known to exhibit phase separation behavior, finding 
82 folded regions (2). The phase-separating proteins were obtained from lists compiled by 
Vernon et al (3), the PhaSePro database (4), and the DisProt database (5). A complete list of these 
82 folded regions has been published elsewhere (2). To that list, we added folded regions from 
122 human proteins with nonhomologous structures obtained from Wang et al (6), 32 proteins 
with small to large structures obtained from Fitzkee and Rose (7), 54 extremophile proteins 
obtained from Panja et al (8), 53 metamorphic proteins obtained from Chen et al (9), and 90 
membrane proteins that were found by searching the Protein Data Bank for the phrase 
“membrane protein.” Duplicate entries were removed from the combined list. For example, 
human Galectin-3 (UniProt accession number P17931) is found in both the PhaSePro database of 
phase-separating proteins and the list of human proteins with nonhomologous structures from 
Wang et al. Duplicate entries in the combined list are identified by an asterisk at the end of the 
UniProt accession number; two asterisks indicate the duplicate that was removed from the final 
folded set. Protein names with “- fusion” indicate a protein that is fused to another protein in the 
crystallographic structure, which is found among a few classified as “membrane protein”. 
b Residue positions with resolved atomic coordinates in a PDB structure (x-ray or NMR) were used 
to verify regions (N≥20) that fold. Unresolved residues were not included in folded regions. 
Protein sequences were extracted from the referenced PDB file and thus may contain 
substitutions, deletions, and/or insertions (excluding histidine affinity tags) compared to the 
UniProt sequence. The value of N in parenthesis is the length of the extracted sequence. 
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Table S2. Summary of mean vmodel in the ID and folded sequence subsets. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a Mean ± standard deviation. 
b One-tail p-value, where values <0.05 indicate the compared sets are statistically different in 
their means. Comparisons are to the previous set; BMRB & DisProt to the Previous ID, and 
Human, Small-to-large, Extremophile, Membrane, and Metamorphic to the Previous Folded. 
  

   

Set Number vmodel a t-test b U-test b 

Previous ID 23 0.558 ± 0.019 - - 
BMRB & DisProt 98 0.558 ± 0.023 0.44 0.48 
 
Previous Folded 82 0.536 ± 0.008 - - 
Human  122 0.536 ± 0.007 0.40 0.32 
Small-to-large  32 0.537 ± 0.009 0.36 0.41 
Extremophile  54 0.542 ± 0.011 1.2e-4 2.4e-4 
Membrane  90 0.537 ± 0.006 0.17 0.21 
Metamorphic  53 0.537 ± 0.006 0.15 0.18 
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Table S3. Summary of mean β-turn propensity in the ID and folded sequence subsets. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
a Mean ± standard deviation.  
b One-tail p-value, where values <0.05 indicate the compared sets are statistically different in 
their means. Comparisons are to the previous set; BMRB & DisProt to the Previous ID, and 
Human, Small-to-large, Extremophile, Membrane, and Metamorphic to the Previous Folded. 
  

  β-turn 
propensity a 

 

Set Number t-test b U-test b 

Previous ID 23 1.062 ± 0.082 - - 
BMRB & DisProt 98 1.110 ± 0.071 6.5e-3 9.3e-4 
 
Previous Folded Set 82 0.969 ± 0.039 - - 
Human  122 0.980 ± 0.039 0.03 0.07 
Small-to-large  32 0.968 ± 0.027 0.42 0.34 
Extremophile  54 0.983 ± 0.030 0.01 0.03 
Membrane  90 0.956 ± 0.046 0.02 0.02 
Metamorphic  53 0.972 ± 0.040 0.30 0.48 
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Table S4. List of IDRs not known to exhibit phase separation behavior. 
 

Name Database a Entry number UniProt accession 
number ID region (N) 

pknG BMRB 26027 P9WI73 1-75 (75) 

HCK BMRB 27554 P08631 2-79 

SIC1 BMRB 16657 P38634 1-90 (90) 

SLC9A1 BMRB 26557 P19634 680-815 (136) 

ERD14 BMRB 16876 P42763 1-185 (185) 

Spp1 DisProt DP01448 P10923 17-294 (278) 

PAGE4 DisProt DP01435 O60829 1-102 (102) 

MAP2K4 DisProt DP01400 P45985 1-86 (86) 

Sufu DisProt DP01397 Q9Z0P7 279-359 (81) 

HCN1 DisProt DP01317 O60741 1-93 (93) 

SUFU DisProt DP01312 Q9UMX1 279-360 (82) 

PQBP1 DisProt DP01308 O60828 82-265 (184) 

HIRD11 DisProt DP01300 Q9SLJ2 1-98 (98) 

LEA18 DisProt DP01299 Q96273 1-97 (97) 

PSEN1 DisProt DP01292 P49768 1-77 (77) 

Prothymosin a14 DisProt DP01228 Q9UMZ1 1-101 (101) 

Ppp1r10 DisProt DP01202 O55000 309-433 (125) 

NOLC1 DisProt DP01178 Q14978 1-699 (699) 

Gja4 DisProt DP01175 P28235 233-333 (101) 

DCLRE1C DisProt DP01162 Q96SD1 480-575 (96) 

ptkA DisProt DP01160 P9WPI9 1-81 (81) 

H1-0 DisProt DP01156 P07305 105-194 (90) 

CHZ1 DisProt DP01135 P40019 1-153 (153) 

Caskin1 DisProt DP01127 Q8VHK2 603-1430 (828) 

Ttn-1 DisProt DP01090 A0A2I2LG13 2793-6678 (3886) 

PM28 DisProt DP01088 Q9XES8 1-89 (89) 

YRB2 DisProt DP01079 P40517 1-203 (203) 
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Ahn-1 DisProt DP01074 Q7YUB9 1-86 (86) 

MSA2 DisProt DP01067 P19599 21-238 (218) 

LMP2A DisProt DP01060 A8CDV5 1-118 (118) 

Omega gliadin 
storage protein DisProt DP01040 Q9FUW7 1-280 (280) 

SLE2 DisProt DP01036 I1JLC8 1-105 (105) 

pscP DisProt DP00993 Q9I332 1-253 (253) 

Small delta antigen DisProt DP00965 P0C6L3 60-195 (136) 

SBDS-like protein DisProt DP00957 C0J347 264-464 (201) 

GAP43 DisProt DP00955 P06836 1-242 (242) 

N DisProt DP00948 P59595 182-259 (78) 

Ppp1r9b DisProt DP00943 O35274 1-154 (154) 

BASP1 DisProt DP00930 P80723 1-227 (227) 

NABP2 DisProt DP00864 Q9BQ15 110-211 (102) 

trm10 DisProt DP00798 O14214 1-83 (83) 

CNGB1 DisProt DP00768 Q28181-4 14-99 (86) 
272-590 (319) 

Smtnl1 DisProt DP00742 Q99LM3 1-341 (341) 

dre4 DisProt DP00721 Q8IRG6 889-1044 (156) 

Ssrp DisProt DP00720 Q05344 437-554 (118) 
625-723 (99) 

N DisProt DP00698 O89339 400-532 (133) 

RYBP DisProt DP00694 Q8N488 1-228 (228) 

L1CAM DisProt DP00666 P32004 1144-1257 (114) 

GMPM1 DisProt DP00664 Q01417 1-173 (173) 

ALB3 DisProt DP00662 Q8LBP4 339-462 (124) 

MAC-41A DisProt DP00659 P16458 233-385 (153) 

COR47 DisProt DP00657 P31168 1-265 (265) 

N DisProt DP00640 Q89933 400-525 (126) 

ERD10 DisProt DP00606 P42759 1-260 (260) 

Genome polyprotein DisProt DP00588 P27958 1-82 (82) 

stm DisProt DP00584 A2VD23 1-613 (613) 
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SEPTIN4 DisProt DP00537 O43236 1-119 (119) 

DHN1 DisProt DP00530 P12950 1-168 (168) 

MYOM1 DisProt DP00517 P52179 836-931 (96) 

NUPR1 DisProt DP00510 O60356 1-82 (82) 

UBA2 DisProt DP00486 Q9UBT2 551-640 (90) 

HY5 DisProt DP00469 O24646 1-77 (77) 

cna DisProt DP00461 P08083 1-90 (90) 

Chm DisProt DP00458 P37727 108-208 (101) 

PPP1R1B DisProt DP00421 P07516 1-202 (202) 

JAG1 DisProt DP00418 P78504 1094-1218 (125) 

URE1 DisProt DP00353 P23202 1-90 (90) 

DNAJC6 DisProt DP00351 Q27974 547-813 (267) 

col DisProt DP00342 P09883 1-83 (83) 

Trl DisProt DP00328 Q08605 368-444 (77) 

PPP1R1A DisProt DP00325 P01099 1-166 (166) 

ADD2 DisProt DP00241 P35612 409-726 (318) 

ADD1 DisProt DP00240 P35611 430-737 (308) 

SSB DisProt DP00229 P05455 326-408 (83) 

Nucleoplasmin DisProt DP00217 P05221 120-200 (81) 

CAST DisProt DP00196 P20810 137-277 (141) 

HMGN2 DisProt DP00195 P02313 1-89 (89) 

Late embryogenesis 
abundant protein 1 DisProt DP00186 Q95V77 1-143 (143) 

CTDP1 DisProt DP00177 Q9Y5B0 879-961 (83) 

TCF7L2 DisProt DP00175 Q9NQB0 1-130 (130) 

zipA DisProt DP00161 P77173 86-185 (100) 

RAD23A DisProt DP00156 P54725 79-160 (82) 

NEFL DisProt DP00151 P02547 444-549 (106) 

Slbp DisProt DP00144 Q9VAN6 97-175 (79) 

PTHLH DisProt DP00138 P12272 68-144 (77) 
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H1-4 DisProt DP00136 P15865 1-217 (217) 

PRB4 DisProt DP00119 P10163 17-310 (294) 

Desiccation-related 
protein clone PCC6-
19 

DisProt DP00112 P22239 1-155 (155) 

H1-0 DisProt DP00097 P10922 96-193 (98) 

TOP2 DisProt DP00076 P06786 1178-1428 (251) 

TOP1 DisProt DP00075 P11387 1-214 (214) 

Structural 
polyprotein DisProt DP03350 P03316 1-113 (113) 

RPA1 DisProt DP00061 P27694 105-180 (76) 

HMGA1 DisProt DP00040 P17096 1-107 (107) 

HMGN2 DisProt DP00039 P05204 1-90 (90) 

RAP1 DisProt DP00020 P11938 1-123 (123) 

 
a The Biological Magnetic Resonance Data Bank (BMRB) (10) and DisProt (5) databases were used 
to identify IDRs that are not known to exhibit phase separation behavior. This list of verified IDRs, 
wherein duplicates have been removed, was combined with a list of 23 IDRs that have been 
identified and reported elsewhere (2). 
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Table S5. Enthalpy, entropy, and free energy of phase separation of A1-LCD and Ddx4 mutants. 
 

IDR Mutant Primary Sequence ∆h° a ∆s°/R b ∆g° c 

Ddx4 CS 

MGDRDWRAEINPHMSSYVPIFEKDRYSGENGRNFNDTP

ASSSEMRDGPSERDHFMKSGFASGDNFGNRDAGKCNER

DNTSTMGGFGVGKSFGNEGFSNSRFERGDSSGFWRESS

NDCRDNPTRNDGFSDRGGYEKGNNSEASGPYERGGRGS

FDGCRGGFGLGSPNNRLDPRECMQRTGGLFGSDRPVLS

GTGNGDTSQSRSGSGSERGGYKGLNEKVITGSGENSWK

SEARGGES 

-23.09 38.82 -44.16 

Ddx4 WT 

MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNFNRTP

ASSSEMDDGPSRRDHFMKSGFASGRNFGNRDAGECNKR

DNTSTMGGFGVGKSFGNRGFSNSRFEDGDSSGFWRESS

NDCEDNPTRNRGFSKRGGYRDGNNSEASGPYRRGGRGS

FRGCRGGFGLGSPNNDLDPDECMQRTGGLFGSRRPVLS

GTGNGDTSQSRSGSGSERGGYKGLNEEVITGSGKNSWK

SEAEGGES 

-5.43 8.47 -10.03 

A1-LCD Aro+ 

GSMAFASSFQRGRYGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSGGSYGGGQYFA

KPRNQGGYGGSSFSSSYGSGRRF 

-30.58 43.50 -54.18 

A1-LCD Aro- 

GSMASASSSQRGRSGSGNSGGGRGGGFGGNDNFGRGGN

SSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNSGGGGS

SNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYSA

KPRNQGGYGGSSSSSSSGSGRRF 

-17.44 27.00 -32.10 

A1-LCD -12F+12Y 
GSMASASSSQRGRSGSGNYGGGRGGGYGGNDNYGRGGN

YSGRGGYGGSRGGGGYGGSGDGYNGYGNDGSNYGGGGS

YNDYGNYNNQSSNYGPMKGGNYGGRSSGGSGGGGQYYA

KPRNQGGYGGSSSSSSYGSGRRY 

-27.55 40.89 -49.74 

A1-LCD -9F+6Y 
GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNYGRGGN

YSGRGGFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS

YNDSGNYNNQSSNFGPMKGGNYGGRSSGGSGGGGQYGA

KPRNQGGYGGSSSSSSYGSGRRY 

-25.16 38.78 -46.21 

A1-LCD -4D 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNGNFGRGGN

FSGRGGFGGSRGGGGYGGSGGGYNGFGNSGSNFGGGGS

YNGFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRRF 

-25.05 39.72 -46.61 

A1-LCD -9F+3Y 

GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNGGRGGN

YSGRGGFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS

YNDSGNGNNQSSNFGPMKGGNYGGRSSGGSGGGGQYGA

KPRNQGGYGGSSSSSSYGSGRRS 

-24.51 38.89 -45.62 

A1-LCD -6R+6K 

GSMASASSSQKGKSGSGNFGGGRGGGFGGNDNFGKGGN

FSGRGGFGGSKGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGKSSGGSGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRKF 

-24.29 39.95 -45.98 

A1-LCD -8F+4Y 

GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNGGRGGN

YSGRGGFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS

YNDSGNYNNQSSNFGPMKGGNYGGRSSGGSGGGGQYGA

KPRNQGGYGGSSSSSSYGSGRRF 

-23.91 37.37 -44.19 

A1-LCD +7R+12D 

GSMASADSSQRDRDDRGNFGDGRGGGFGGNDNFGRGGN

FSDRGGFGGSRGDGRYGGDGDRYNGFGNDGRNFGGGGS

YNDFGNYNNQSSNFDPMKGGNFRDRSSGPYDRGGQYFA

KPRNQGGYGGSSSSRSYGSDRRF 

-22.45 30.44 -38.97 

A1-LCD +2R 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFRNDGSNFGGGGR

YNDFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRRF 

-21.74 31.96 -39.09 

A1-LCD -2R-2K+3D GSMASASSSQDGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
-20.92 29.85 -37.12 
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YNDFGNYNNQSSNFGPMDGGNFGGRSSGPYGGGGQYFA

DPRNQGGYGGSSSSSSYGSGGRF 

A1-LCD WT+NLS 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRRF 

-20.27 28.79 -35.90 

A1-LCD +8D 

GSMASASSSQRDRSGSGNFGGGRDGGFGGNDNFGRGDN

FSGRGDFGGSRDGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSDPYGGGGQYFA

KPRNQDGYGGSSSSSSYDSGRRF 

-20.27 29.50 -36.28 

A1-LCD WT 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRRF 

-20.22 28.91 -35.91 

A1-LCD -3R+3K 

GSMASASSSQRGKSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSKGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYFA

KPRNQGGYGGSSSSSSYGSGRKF 

-19.95 30.44 -36.47 

A1-LCD -2K 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMGGGNFGGRSSGPYGGGGQYFA

GPRNQGGYGGSSSSSSYGSGRRF 

-19.62 26.09 -33.78 

A1-LCD +4D 

GSMASASSSQRDRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGDFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGRSSDPYGGGGQYFA

KPRNQGGYGGSSSSSSYDSGRRF 

-17.88 23.62 -30.70 

A1-LCD +7K+12D 
GSMASADSSQRDRDDKGNFGDGRGGGFGGNDNFGRGGN

FSDRGGFGGSRGDGKYGGDGDKYNGFGNDGKNFGGGGS

YNDFGNYNNQSSNFDPMKGGNFKDRSSGPYDKGGQYFA

KPRNQGGYGGSSSSKSYGSDRRF 

-17.55 25.50 -31.39 

A1-LCD +12D 
GSMASADSSQRDRDDSGNFGDGRGGGFGGNDNFGRGGN

FSDRGGFGGSRGDGGYGGDGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFDPMKGGNFGDRSSGPYDGGGQYFA

KPRNQGGYGGSSSSSSYGSDRRF 

-17.01 25.15 -30.66 

A1-LCD -6R 

GSMASASSSQGGRSGSGNFGGGRGGGFGGNDNFGGGGN

FSGSGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGSSSGPYGGGGQYFA

KPGNQGGYGGSSSSSSYGSGGRF 

-16.90 22.33 -29.02 

A1-LCD +7F-7Y 

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN

FSGRGGFGGSRGGGGFGGSGDGFNGFGNDGSNFGGGGS

FNDFGNFNNQSSNFGPMKGGNFGGRSSGGSGGGGQFFA

KPRNQGGFGGSSSSSSFGSGRRF 

-16.47 23.39 -29.17 

A1-LCD +12E 

GSMASAESSQREREESGNFGEGRGGGFGGNDNFGRGGN

FSERGGFGGSRGEGGYGGEGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFEPMKGGNFGERSSGPYEGGGQYFA

KPRNQGGYGGSSSSSSYGSERRF 

-15.76 23.62 -28.58 

A1-LCD +7R+10D 

GSMASADSSQRDRDGRGNFGDGRGGGFGGNDNFGRGGN

FSDRGGFGGSRGGGRYGGDGDRYNGFGNDGRNFGGGGS

YNDFGNYNNQSSNFDPMKGGNFRDRSSGPYDRGGQYFA

KPRNQGGYGGSSSSRSYGSDRRF 

-14.18 17.05 -23.43 

A1-LCD -10R 

GSMASASSSQGGSSGSGNFGGGGGGGFGGNDNFGGGGN

FSGSGGFGGSGGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMKGGNFGGSSSGPYGGGGQYFA

KPGNQGGYGGSSSSSSYGSGGGF 

-13.53 19.16 -23.93 

A1-LCD -4R-2K+5D 

GSMASASSSQDGRSGSGNFGGGDGGGFGGNDNFGRGGN

FSGGGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS

YNDFGNYNNQSSNFGPMDGGNFGGRSSGPYGGGGQYFA

DPRNQGGYGGSSSSSSYGSGDRF 

-12.83 17.63 -22.40 

 
a Standard molar enthalpy (∆h°) in units of kcal/mol. Values for Ddx4 CS, Ddx4 WT, A1-LCD Aro+, 
and A1-LCD Aro- were calculated from the temperature dependence to csat (see Methods) using 
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csat values digitally extracted from Figures 1C-D in Brady et al (11) and Figure 3F in Martin et al 
(12). Values for all other IDRs in this table were digitally extracted from Supplementary Figure 7D 
in Bremer et al (13). 
b Standard molar entropy (∆s°) divided by the universal gas constant (R), and thus dimensionless. 
Values for Ddx4 CS, Ddx4 WT, A1-LCD Aro+, and A1-LCD Aro- were calculated from the 
temperature dependence to csat (see Methods) using csat values digitally extracted from Figures 
1C-D in Brady et al (11) and Figure 3F in Martin et al (12). Values for all other IDRs in this table 
were digitally extracted from Supplementary Figure 7E in Bremer et al (13). 
c Standard molar free energy (∆g°) in units of kcal/mol. Values were calculated from ∆h° and ∆s° 
using the equation, ∆g° = ∆h° - T∆s°, where T is the standard temperature (273.15 K). 
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Table S6. Saturation concentration (at 4 °C) of A1-LCD mutants. 
 

Mutant Primary Sequence csat a 

+23G-23S-12F+12Y 
GSMAGAGGGQRGRGGGGNYGGGRGGGYGGNDNYGRGGNYGGRGGYGGGRG

GGGYGGGGDGYNGYGNDGGNYGGGGGYNDYGNYNNQGGNYGPMKGGNYGG

RGGGGGGGGGQYYAKPRNQGGYGGGGGGGGYGGGRRY 
4.86E-07 

+7R+12D 
GSMASADSSQRDRDDRGNFGDGRGGGFGGNDNFGRGGNFSDRGGFGGSRG

DGRYGGDGDRYNGFGNDGRNFGGGGSYNDFGNYNNQSSNFDPMKGGNFRD

RSSGPYDRGGQYFAKPRNQGGYGGSSSSRSYGSDRRF 
7.49E-07 

-12F+12Y 
GSMASASSSQRGRSGSGNYGGGRGGGYGGNDNYGRGGNYSGRGGYGGSRG

GGGYGGSGDGYNGYGNDGSNYGGGGSYNDYGNYNNQSSNYGPMKGGNYGG

RSSGGSGGGGQYYAKPRNQGGYGGSSSSSSYGSGRRY 

2.74E-06 

+4D 
GSMASASSSQRDRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGDFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

RSSDPYGGGGQYFAKPRNQGGYGGSSSSSSYDSGRRF 
4.04E-06 

-6R 
GSMASASSSQGGRSGSGNFGGGRGGGFGGNDNFGGGGNFSGSGGFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

SSSGPYGGGGQYFAKPGNQGGYGGSSSSSSYGSGGRF 

7.34E-06 

-2R-2K+3D 
GSMASASSSQDGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMDGGNFGG

RSSGPYGGGGQYFADPRNQGGYGGSSSSSSYGSGGRF 

9.91E-06 

-20G+20S-12F+12Y 
GSMASASSSQRSRSGSGNYSGSRSGSYSGNDNYGRSGNYSGRSGYGGSRS

GGGYSGSGDSYNSYGNDGSNYSGSGSYNDYGNYNNQSSNYGPMKSGNYGG

RSSGSSGGSGQYYAKPRNQGSYSGSSSSSSYGSSRRY 
1.22E-05 

WT+NLS 
GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF 
1.25E-05 

WT 
GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

RSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF 
1.25E-05 

-30G+30S-12F+12Y 
GSMASASSSQRSRSSSGNYSGSRSGSYSGNDNYGRSGNYSGRSGYSGSRS

GSGYSGSSDSYNSYGNDSSNYSGSSSYNDYGNYNNQSSNYGPMKSGNYSG

RSSSSSGSSGQYYAKPRNQGSYSGSSSSSSYSSSRRY 
1.47E-05 

+2R 
GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGGYGGSGDGYNGFRNDGSNFGGGGRYNDFGNYNNQSSNFGPMKGGNFGG

RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF 
1.81E-05 

+8D 
GSMASASSSQRDRSGSGNFGGGRDGGFGGNDNFGRGDNFSGRGDFGGSRD

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

RSSDPYGGGGQYFAKPRNQDGYGGSSSSSSYDSGRRF 
1.84E-05 

-10G+10S 
GSMASASSSQRSRSGSGNFGGGRSGGFGGNDNFGRSGNFSGRGGFGGSRG

GGGYGGSGDSYNGFGNDGSNFGGSGSYNDFGNYNNQSSNFGPMKSGNFGG

RSSGSSGGSGQYFAKPRNQGSYSGSSSSSSYGSGRRF 
2.76E-05 

-9F+6Y 
GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNYGRGGNYSGRGGFGGSRG

GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNYNNQSSNFGPMKGGNYGG

RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRY 
2.80E-05 

+7K+12D 
GSMASADSSQRDRDDKGNFGDGRGGGFGGNDNFGRGGNFSDRGGFGGSRG

DGKYGGDGDKYNGFGNDGKNFGGGGSYNDFGNYNNQSSNFDPMKGGNFKD

RSSGPYDKGGQYFAKPRNQGGYGGSSSSKSYGSDRRF 
4.31E-05 

+7F-7Y 
GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGGFGGSGDGFNGFGNDGSNFGGGGSFNDFGNFNNQSSNFGPMKGGNFGG

RSSGGSGGGGQFFAKPRNQGGFGGSSSSSSFGSGRRF 
4.94E-05 

-20G+20S 
GSMASASSSQRSRSGSGNFSGSRSGSFSGNDNFGRSGNFSGRSGFGGSRS

GGGYSGSGDSYNSFGNDGSNFSGSGSYNDFGNYNNQSSNFGPMKSGNFGG

RSSGSSGGSGQYFAKPRNQGSYSGSSSSSSYGSSRRF 
5.39E-05 

-8F+4Y 
GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNGGRGGNYSGRGGFGGSRG

GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNYNNQSSNFGPMKGGNYGG

RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRF 
6.26E-05 

+23G-23S+7F-7Y 
GSMAGAGGGQRGRGGGGNFGGGRGGGFGGNDNFGRGGNFGGRGGFGGGRG

GGGFGGGGDGFNGFGNDGGNFGGGGGFNDFGNFNNQGGNFGPMKGGNFGG

RGGGGGGGGGQFFAKPRNQGGFGGGGGGGGFGGGRRF 
7.63E-05 
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-3R+3K 
GSMASASSSQRGKSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSKG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

RSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRKF 
8.30E-05 

-4D 
GSMASASSSQRGRSGSGNFGGGRGGGFGGNGNFGRGGNFSGRGGFGGSRG

GGGYGGSGGGYNGFGNSGSNFGGGGSYNGFGNYNNQSSNFGPMKGGNFGG

RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF 
8.69E-05 

-30G+30S+7F-7Y 
GSMASASSSQRSRSSSGNFSGSRSGSFSGNDNFGRSGNFSGRSGFSGSRS

GSGFSGSSDSFNSFGNDSSNFSGSSSFNDFGNFNNQSSNFGPMKSGNFSG

RSSSSSGSSGQFFAKPRNQGSFSGSSSSSSFSSSRRF 
8.98E-05 

-20G+20S+7F-7Y 
GSMASASSSQRSRSGSGNFSGSRSGSFSGNDNFGRSGNFSGRSGFGGSRS

GGGFSGSGDSFNSFGNDGSNFSGSGSFNDFGNFNNQSSNFGPMKSGNFGG

RSSGSSGGSGQFFAKPRNQGSFSGSSSSSSFGSSRRF 
9.87E-05 

+12D 
GSMASADSSQRDRDDSGNFGDGRGGGFGGNDNFGRGGNFSDRGGFGGSRG

DGGYGGDGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFDPMKGGNFGD

RSSGPYDGGGQYFAKPRNQGGYGGSSSSSSYGSDRRF 
9.96E-05 

-4R-2K+5D 
GSMASASSSQDGRSGSGNFGGGDGGGFGGNDNFGRGGNFSGGGGFGGSRG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMDGGNFGG

RSSGPYGGGGQYFADPRNQGGYGGSSSSSSYGSGDRF 
1.06E-04 

-9F+3Y 
GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNGGRGGNYSGRGGFGGSRG

GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNGNNQSSNFGPMKGGNYGG

RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRS 
1.13E-04 

-10R 
GSMASASSSQGGSSGSGNFGGGGGGGFGGNDNFGGGGNFSGSGGFGGSGG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

SSSGPYGGGGQYFAKPGNQGGYGGSSSSSSYGSGGGF 
1.34E-04 

+7R 
GSMASASSSQRGRSGRGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG

GGRYGGSGDRYNGFGNDGRNFGGGGSYNDFGNYNNQSSNFGPMKGGNFRG

RSSGPYGRGGQYFAKPRNQGGYGGSSSSRSYGSGRRF 
1.78E-04 

+12E 
GSMASAESSQREREESGNFGEGRGGGFGGNDNFGRGGNFSERGGFGGSRG

EGGYGGEGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFEPMKGGNFGE

RSSGPYEGGGQYFAKPRNQGGYGGSSSSSSYGSERRF 
2.12E-04 

Aro- 
GSMASASSSQRGRSGSGNSGGGRGGGFGGNDNFGRGGNSSGRGGFGGSRG

GGGYGGSGDGYNGFGNDGSNSGGGGSSNDFGNYNNQSSNFGPMKGGNFGG

RSSGGSGGGGQYSAKPRNQGGYGGSSSSSSSGSGRRF 
3.01E-04 

-6R+6K 
GSMASASSSQKGKSGSGNFGGGRGGGFGGNDNFGKGGNFSGRGGFGGSKG

GGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG

KSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRKF 
4.96E-04 

 
a Saturation concentration (csat) in molarity (M). Values were digitally extracted from Figures 1-5 
and Supplementary Figures 2, 4, 6, in Bremer et al (13) and Figure 3F in Martin et al (12). 
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Table S7. List of 500 proteins with the highest summed P classifier distance in the human 
proteome. 
 

∑ P class. 
dist. 

longest 
PS IDR 

first 
residue 

last 
residue 

UniProt ID and protein 

14249.16 2913 1714 4626 
Q7Z5P9|MUC19_HUMAN Mucin-19 OS=Homo sapiens OX=9606 
GN=MUC19 PE=1 

10117.86 5705 995 6699 
A0A0G2JR97|A0A0G2JR97_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10109.08 5693 995 6687 
A0A0G2JS65|A0A0G2JS65_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10099.64 5441 995 6435 
A0A0G2JR46|A0A0G2JR46_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10092.09 5693 995 6687 
A0A0G2JQK9|A0A0G2JQK9_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10045.46 5453 995 6447 
A0A0G2JRD8|A0A0G2JRD8_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10040.92 5455 995 6449 
A0A0G2JRY3|A0A0G2JRY3_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10030.54 5469 995 6463 
A0A0G2JRJ6|A0A0G2JRJ6_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10021.77 5411 995 6405 
A0A0G2JRS2|A0A0G2JRS2_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

10021.77 5521 995 6515 
A0A0G2JQI2|A0A0G2JQI2_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

9926.97 2689 161 2849 
Q86YZ3|HORN_HUMAN Hornerin OS=Homo sapiens OX=9606 
GN=HRNR PE=1 SV 

7899.66 222 8676 8897 
Q8WXI7|MUC16_HUMAN Mucin-16 OS=Homo sapiens OX=9606 
GN=MUC16 PE=1 

7632.47 5095 251 5345 
Q9UKN1|MUC12_HUMAN Mucin-12 OS=Homo sapiens OX=9606 
GN=MUC12 PE=1 

6761.51 3574 963 4536 
A0A0G2JQT8|A0A0G2JQT8_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6752.73 3571 963 4533 
A0A0G2JRA1|A0A0G2JRA1_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6744.49 3441 963 4403 
A0A0G2JS91|A0A0G2JS91_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6735.74 3571 963 4533 
A0A0G2JQC6|A0A0G2JQC6_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6690.45 3453 963 4415 
A0A0G2JSB4|A0A0G2JSB4_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6685.78 3455 963 4417 
A0A0G2JSD9|A0A0G2JSD9_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6676.71 2716 1884 4599 
Q02817|MUC2_HUMAN Mucin-2 OS=Homo sapiens OX=9606 
GN=MUC2 PE=1 SV= 

6675.41 3469 963 4431 
A0A0G2JS19|A0A0G2JS19_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6666.63 3521 963 4483 
A0A0G2JR43|A0A0G2JR43_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6666.63 3411 963 4373 
A0A0G2JRE6|A0A0G2JRE6_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6658.20 3565 990 4554 
E7ENC5|E7ENC5_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6649.42 3562 990 4551 
E9PDY6|E9PDY6_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6649.42 3565 963 4527 
A0A0G2JMX1|A0A0G2JMX1_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6642.42 3556 891 4446 
A0A0G2JM16|A0A0G2JM16_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

6640.64 3562 963 4524 
A0A0G2JNM3|A0A0G2JNM3_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6633.80 3440 990 4429 
E7EQG8|E7EQG8_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 
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6632.43 3562 990 4551 
E7EWN1|E7EWN1_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6626.06 3562 964 4525 
A0A0G2JN54|A0A0G2JN54_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

6625.01 3430 963 4392 
A0A0G2JQA9|A0A0G2JQA9_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6625.01 3440 963 4402 
A0A0G2JS42|A0A0G2JS42_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6623.64 3562 963 4524 
A0A0G2JRT1|A0A0G2JRT1_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6585.80 3452 990 4441 
E7ERK0|E7ERK0_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6581.26 3454 990 4443 
E7EUL9|E7EUL9_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6577.01 3452 963 4414 
A0A0G2JRW6|A0A0G2JRW6_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6572.47 3454 963 4416 
A0A0G2JRV5|A0A0G2JRV5_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6570.88 3468 990 4457 
E7EQT2|E7EQT2_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6562.10 3520 990 4509 
E7ETT5|E7ETT5_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6562.10 3410 990 4399 
E7EW47|E7EW47_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 S 

6562.10 3468 963 4430 
A0A0G2JQN9|A0A0G2JQN9_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6553.32 3520 963 4482 
A0A0G2JRK4|A0A0G2JRK4_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6553.32 3410 963 4372 
A0A0G2JRW3|A0A0G2JRW3_HUMAN Mucin-4 (Fragment) OS=Homo 
sapiens OX= 

6366.10 1339 2223 3561 
P98088|MUC5A_HUMAN Mucin-5AC OS=Homo sapiens OX=9606 
GN=MUC5AC PE= 

6226.32 2259 132 2390 
Q5D862|FILA2_HUMAN Filaggrin-2 OS=Homo sapiens OX=9606 
GN=FLG2 PE= 

5454.25 3764 297 4060 
P20930|FILA_HUMAN Filaggrin OS=Homo sapiens OX=9606 GN=FLG 
PE=1 SV 

4726.82 689 4233 4921 
Q9HC84|MUC5B_HUMAN Mucin-5B OS=Homo sapiens OX=9606 
GN=MUC5B PE=1 

4219.06 477 2087 2563 
Q02505|MUC3A_HUMAN Mucin-3A OS=Homo sapiens OX=9606 
GN=MUC3A PE=1 

4033.40 857 442 1298 
Q685J3|MUC17_HUMAN Mucin-17 OS=Homo sapiens OX=9606 
GN=MUC17 PE=1 

4032.16 857 442 1298 
E7EPM4|E7EPM4_HUMAN Mucin-17 OS=Homo sapiens OX=9606 
GN=MUC17 PE=1 

2867.01 1659 1254 2912 
Q02388|CO7A1_HUMAN Collagen alpha-1(VII) chain OS=Homo sapiens 
OX= 

2854.13 1531 54 1584 
P02462|CO4A1_HUMAN Collagen alpha-1(IV) chain OS=Homo sapiens 
OX=9 

2815.86 1565 33 1597 
P29400|CO4A5_HUMAN Collagen alpha-5(IV) chain OS=Homo sapiens 
OX=9 

2778.12 30 4145 4174 
P08519|APOA_HUMAN Apolipoprotein(a) OS=Homo sapiens OX=9606 
GN=LPA 

2585.77 596 933 1528 
A8MXH5|A8MXH5_HUMAN Collagen alpha-6(IV) chain OS=Homo 
sapiens OX= 

2562.66 596 917 1512 
Q14031|CO4A6_HUMAN Collagen alpha-6(IV) chain OS=Homo sapiens 
OX=9 

2532.07 582 916 1497 
F5H851|F5H851_HUMAN Collagen alpha-6(IV) chain OS=Homo sapiens 
OX= 

2521.38 1215 337 1551 
P53420|CO4A4_HUMAN Collagen alpha-4(IV) chain OS=Homo sapiens 
OX=9 

2514.09 581 916 1496 
A0A087WZY5|A0A087WZY5_HUMAN Collagen alpha-6(IV) chain 
OS=Homo sap 

2504.77 1256 302 1557 
P08572|CO4A2_HUMAN Collagen alpha-2(IV) chain OS=Homo sapiens 
OX=9 

2457.82 544 916 1459 
F5H3Q5|F5H3Q5_HUMAN Collagen alpha-6(IV) chain OS=Homo 
sapiens OX= 
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2405.02 1265 91 1355 
P02461|CO3A1_HUMAN Collagen alpha-1(III) chain OS=Homo sapiens 
OX= 

2372.37 1056 492 1547 
Q01955|CO4A3_HUMAN Collagen alpha-3(IV) chain OS=Homo sapiens 
OX=9 

2262.45 244 435 678 
A0A1B0GU24|A0A1B0GU24_HUMAN Trinucleotide repeat-containing 
gene 6 

2231.96 325 391 715 
Q8NDV7|TNR6A_HUMAN Trinucleotide repeat-containing gene 6A 
protein 

2231.54 1302 92 1393 
P05997|CO5A2_HUMAN Collagen alpha-2(V) chain OS=Homo sapiens 
OX=96 

2194.23 712 355 1066 
Q8N7X1|RMXL3_HUMAN RNA-binding motif protein, X-linked-like-3 
OS=H 

2129.73 1220 28 1247 
P08123|CO1A2_HUMAN Collagen alpha-2(I) chain OS=Homo sapiens 
OX=96 

2126.77 1214 31 1244 
A0A087WTA8|A0A087WTA8_HUMAN Collagen alpha-2(I) chain 
OS=Homo sapi 

2068.48 426 212 637 
Q9UPQ9|TNR6B_HUMAN Trinucleotide repeat-containing gene 6B 
protein 

2064.13 243 1188 1430 
Q12816|TROP_HUMAN Trophinin OS=Homo sapiens OX=9606 
GN=TRO PE=1 SV 

2023.20 380 1309 1688 
A0A6Q8NVI4|A0A6Q8NVI4_HUMAN AT-rich interactive domain-
containing 

2009.55 244 225 468 
Q9HCJ0|TNR6C_HUMAN Trinucleotide repeat-containing gene 6C 
protein 

1956.85 1232 106 1337 
P02452|CO1A1_HUMAN Collagen alpha-1(I) chain OS=Homo sapiens 
OX=96 

1956.80 1263 93 1355 
P02458|CO2A1_HUMAN Collagen alpha-1(II) chain OS=Homo sapiens 
OX=9 

1921.32 531 564 1094 
Q9UMD9|COHA1_HUMAN Collagen alpha-1(XVII) chain OS=Homo 
sapiens OX 

1910.96 593 1011 1603 
Q07092|COGA1_HUMAN Collagen alpha-1(XVI) chain OS=Homo 
sapiens OX= 

1909.43 380 1269 1648 
A0A3F2YNW7|A0A3F2YNW7_HUMAN AT-rich interactive domain-
containing 

1890.60 1125 490 1614 
A0A0G2JL35|A0A0G2JL35_HUMAN COL11A2 OS=Homo sapiens 
OX=9606 GN=COL 

1890.43 1125 490 1614 
A0A140TA43|A0A140TA43_HUMAN COL11A2 OS=Homo sapiens 
OX=9606 GN=COL 

1884.98 1125 490 1614 
P13942|COBA2_HUMAN Collagen alpha-2(XI) chain OS=Homo sapiens 
OX=9 

1884.14 1125 490 1614 
A0A0C4DFS1|A0A0C4DFS1_HUMAN COL11A2 OS=Homo sapiens 
OX=9606 GN=COL 

1880.29 1125 377 1501 
A0A140T9I7|A0A140T9I7_HUMAN Collagen alpha-2(XI) chain 
(Fragment) 

1880.29 1125 404 1528 
Q4VXY6|Q4VXY6_HUMAN Collagen alpha-2(XI) chain OS=Homo 
sapiens OX= 

1880.12 1125 404 1528 
A0A140T9N1|A0A140T9N1_HUMAN Collagen alpha-2(XI) chain 
OS=Homo sap 

1879.97 1125 383 1507 
H0YIS1|H0YIS1_HUMAN Collagen alpha-2(XI) chain OS=Homo sapiens 
OX= 

1879.80 1125 383 1507 
A0A140TA54|A0A140TA54_HUMAN Collagen alpha-2(XI) chain 
OS=Homo sap 

1877.32 380 1173 1552 
Q8NFD5|ARI1B_HUMAN AT-rich interactive domain-containing protein 
1 

1872.94 405 595 999 
O14497|ARI1A_HUMAN AT-rich interactive domain-containing protein 
1 

1830.52 338 1752 2089 
P35658|NU214_HUMAN Nuclear pore complex protein Nup214 
OS=Homo sap 

1827.89 338 1740 2077 
A0A494C1F2|A0A494C1F2_HUMAN Nuclear pore complex protein 
Nup214 OS 

1813.71 311 1 311 
P23490|LORI_HUMAN Loricrin OS=Homo sapiens OX=9606 
GN=LORICRIN PE= 

1812.15 1105 476 1580 
P25940|CO5A3_HUMAN Collagen alpha-3(V) chain OS=Homo sapiens 
OX=96 

1809.72 1103 562 1664 
P20908|CO5A1_HUMAN Collagen alpha-1(V) chain OS=Homo sapiens 
OX=96 
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1798.87 1127 532 1658 
P12107|COBA1_HUMAN Collagen alpha-1(XI) chain OS=Homo sapiens 
OX=9 

1789.69 1143 483 1625 
Q8NFW1|COMA1_HUMAN Collagen alpha-1(XXII) chain OS=Homo 
sapiens OX 

1777.68 554 1311 1864 
A0A0G2JN42|A0A0G2JN42_HUMAN Mucin-6 OS=Homo sapiens 
OX=9606 GN=MUC 

1776.98 554 1311 1864 
Q6W4X9|MUC6_HUMAN Mucin-6 OS=Homo sapiens OX=9606 
GN=MUC6 PE=1 SV= 

1768.42 266 326 591 
Q92804|RBP56_HUMAN TATA-binding protein-associated factor 2N 
OS=Ho 

1767.36 213 1650 1862 
A0A0G2JNJ8|A0A0G2JNJ8_HUMAN Mucin-6 OS=Homo sapiens 
OX=9606 GN=MUC 

1705.57 338 1181 1518 
A0A0A0MSW3|A0A0A0MSW3_HUMAN Nuclear pore complex protein 
Nup214 OS 

1666.66 963 1 963 
A0A087WYX9|A0A087WYX9_HUMAN Collagen alpha-2(V) chain 
OS=Homo sapi 

1665.08 1071 489 1559 
Q17RW2|COOA1_HUMAN Collagen alpha-1(XXIV) chain OS=Homo 
sapiens OX 

1662.48 606 29 634 
E2RYF6|MUC22_HUMAN Mucin-22 OS=Homo sapiens OX=9606 
GN=MUC22 PE=1 

1657.27 171 1 171 
P35527|K1C9_HUMAN Keratin, type I cytoskeletal 9 OS=Homo sapiens 
O 

1657.11 375 1 375 
H0Y720|H0Y720_HUMAN Trinucleotide repeat-containing gene 6B 
protei 

1593.26 314 1 314 
P35637|FUS_HUMAN RNA-binding protein FUS OS=Homo sapiens 
OX=9606 G 

1588.95 313 1 313 
H3BPE7|H3BPE7_HUMAN RNA-binding protein FUS OS=Homo sapiens 
OX=960 

1571.71 338 578 915 
B7ZAV2|B7ZAV2_HUMAN Nuclear pore complex protein Nup214 
OS=Homo sa 

1566.62 163 1 163 
P13645|K1C10_HUMAN Keratin, type I cytoskeletal 10 OS=Homo 
sapiens 

1517.96 385 512 896 
A0A0U1RQI7|KLF18_HUMAN Kruppel-like factor 18 OS=Homo sapiens 
OX=9 

1506.20 787 625 1411 
Q8IZC6|CORA1_HUMAN Collagen alpha-1(XXVII) chain OS=Homo 
sapiens O 

1431.95 157 1 157 P04264|K2C1_HUMAN Keratin, type II cytoskeletal 1 OS=Homo sapiens 

1401.00 94 1455 1548 
Q9UPA5|BSN_HUMAN Protein bassoon OS=Homo sapiens OX=9606 
GN=BSN PE 

1390.15 290 605 894 
H0Y837|H0Y837_HUMAN Nuclear pore complex protein Nup214 
(Fragment) 

1374.30 130 2108 2237 
Q8NEZ4|KMT2C_HUMAN Histone-lysine N-methyltransferase 2C 
OS=Homo s 

1352.52 291 1184 1474 
P49790|NU153_HUMAN Nuclear pore complex protein Nup153 
OS=Homo sap 

1347.59 274 467 740 
A0A0G2JNL3|A0A0G2JNL3_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

1343.38 581 27 607 
A0A140T8X8|A0A140T8X8_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

1342.89 405 214 618 
A0A1B0GTU5|A0A1B0GTU5_HUMAN AT-rich interactive domain-
containing 

1342.05 274 467 740 
A0A0G2JPA4|A0A0G2JPA4_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

1339.93 405 212 616 
H0Y488|H0Y488_HUMAN AT-rich interactive domain-containing 
protein 

1339.80 207 137 343 
Q99102|MUC4_HUMAN Mucin-4 OS=Homo sapiens OX=9606 
GN=MUC4 PE=1 SV= 

1323.56 475 1495 1969 
P24928|RPB1_HUMAN DNA-directed RNA polymerase II subunit RPB1 
OS=H 

1317.29 791 510 1300 
Q9NZW4|DSPP_HUMAN Dentin sialophosphoprotein OS=Homo 
sapiens OX=96 

1298.72 193 1 193 
P52948|NUP98_HUMAN Nuclear pore complex protein Nup98-Nup96 
OS=Hom 

1293.42 119 2552 2670 
O14686|KMT2D_HUMAN Histone-lysine N-methyltransferase 2D 
OS=Homo s 
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1281.04 606 1397 2002 
A0A0G2JR65|A0A0G2JR65_HUMAN Mucin-2 OS=Homo sapiens 
OX=9606 GN=MUC 

1279.85 626 69 694 
Q49AM6|Q49AM6_HUMAN COL4A5 protein OS=Homo sapiens 
OX=9606 GN=COL4 

1273.45 210 1512 1721 
Q5H9R4|ARMX4_HUMAN Armadillo repeat-containing X-linked 
protein 4 

1264.84 404 212 615 
A0A087WUV6|A0A087WUV6_HUMAN AT-rich interactive domain-
containing 

1264.40 627 417 1043 
Q14993|COJA1_HUMAN Collagen alpha-1(XIX) chain OS=Homo sapiens 
OX= 

1263.12 755 728 1482 
P39060|COIA1_HUMAN Collagen alpha-1(XVIII) chain OS=Homo 
sapiens O 

1259.34 547 27 573 
A0A0G2JKD1|A0A0G2JKD1_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

1243.81 113 1 113 
Q03164|KMT2A_HUMAN Histone-lysine N-methyltransferase 2A 
OS=Homo s 

1238.63 193 1 193 
A0A3B3ITD8|A0A3B3ITD8_HUMAN Nuclear pore complex protein 
Nup98-Nup 

1238.18 273 39 311 
Q15517|CDSN_HUMAN Corneodesmosin OS=Homo sapiens OX=9606 
GN=CDSN P 

1231.60 157 1 157 
P35908|K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal 
OS=Hom 

1231.48 477 26 502 
A0A182DWF7|A0A182DWF7_HUMAN Mucin-3A (Fragment) OS=Homo 
sapiens OX 

1225.83 273 39 311 
G8JLG2|G8JLG2_HUMAN Corneodesmosin OS=Homo sapiens OX=9606 
GN=CDSN 

1223.35 380 695 1074 
H0Y7H8|H0Y7H8_HUMAN AT-rich interactive domain-containing 
protein 

1223.15 273 39 311 
Q2L6G8|Q2L6G8_HUMAN Corneodesmosin OS=Homo sapiens 
OX=9606 GN=CDSN 

1209.74 114 642 755 
Q9UGU0|TCF20_HUMAN Transcription factor 20 OS=Homo sapiens 
OX=9606 

1199.54 82 2246 2327 
Q96JG9|ZN469_HUMAN Zinc finger protein 469 OS=Homo sapiens 
OX=9606 

1192.65 82 2274 2355 
H3BS19|H3BS19_HUMAN Zinc finger protein 469 OS=Homo sapiens 
OX=960 

1185.46 485 27 511 
A0A0G2JJF7|A0A0G2JJF7_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

1180.20 485 27 511 
Q5SSG8|MUC21_HUMAN Mucin-21 OS=Homo sapiens OX=9606 
GN=MUC21 PE=1 

1178.88 487 27 513 
A0A0G2JHX4|A0A0G2JHX4_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

1177.93 109 597 705 
A0A0A0MTL4|A0A0A0MTL4_HUMAN Neuron navigator 2 OS=Homo 
sapiens OX= 

1164.24 487 27 513 
A0A140TA38|A0A140TA38_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

1160.96 109 620 728 
Q8IVL1|NAV2_HUMAN Neuron navigator 2 OS=Homo sapiens 
OX=9606 GN=NA 

1160.96 109 620 728 
A0A0A0MTE8|A0A0A0MTE8_HUMAN Neuron navigator 2 OS=Homo 
sapiens OX= 

1141.13 374 1 374 
Q01844|EWS_HUMAN RNA-binding protein EWS OS=Homo sapiens 
OX=9606 G 

1132.79 157 863 1019 
Q10571|MN1_HUMAN Transcriptional activator MN1 OS=Homo 
sapiens OX= 

1131.54 61 388 448 
A0A0J9YXN7|A0A0J9YXN7_HUMAN Perilipin-4 OS=Homo sapiens 
OX=9606 GN 

1129.72 337 100 436 
A0A494C0Y1|A0A494C0Y1_HUMAN Nuclear pore complex protein 
Nup214 (F 

1127.65 61 373 433 
Q96Q06|PLIN4_HUMAN Perilipin-4 OS=Homo sapiens OX=9606 
GN=PLIN4 PE 

1102.34 84 1157 1240 
Q9Y566|SHAN1_HUMAN SH3 and multiple ankyrin repeat domains 
protein 

1102.34 84 1165 1248 
H9KV90|H9KV90_HUMAN SH3 and multiple ankyrin repeat domains 
protei 

1099.42 109 519 627 P12035|K2C3_HUMAN Keratin, type II cytoskeletal 3 OS=Homo sapiens 
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1098.30 114 642 755 
A0A6Q8PH68|A0A6Q8PH68_HUMAN Transcription factor 20 
(Fragment) OS= 

1097.91 70 1571 1640 
Q68DE3|USF3_HUMAN Basic helix-loop-helix domain-containing 
protein 

1081.47 352 1 352 
B0QYK0|B0QYK0_HUMAN RNA-binding protein EWS OS=Homo sapiens 
OX=960 

1072.95 1034 93 1126 
A0A087WWM1|A0A087WWM1_HUMAN Mucin-1 OS=Homo sapiens 
OX=9606 GN=MUC 

1067.22 262 1 262 
H3BNZ4|H3BNZ4_HUMAN RNA-binding protein FUS OS=Homo sapiens 
OX=960 

1060.10 64 3492 3555 
A2VEC9|SSPO_HUMAN SCO-spondin OS=Homo sapiens OX=9606 
GN=SSPOP PE= 

1058.36 341 1495 1835 
A0A6Q8PGB0|A0A6Q8PGB0_HUMAN DNA-directed RNA polymerase 
subunit OS 

1056.51 140 1073 1212 
Q15648|MED1_HUMAN Mediator of RNA polymerase II transcription 
subu 

1047.86 1039 93 1131 
P15941|MUC1_HUMAN Mucin-1 OS=Homo sapiens OX=9606 
GN=MUC1 PE=1 SV= 

1044.87 130 366 495 
Q9Y6Q9|NCOA3_HUMAN Nuclear receptor coactivator 3 OS=Homo 
sapiens 

1041.03 120 518 637 
Q01546|K22O_HUMAN Keratin, type II cytoskeletal 2 oral OS=Homo 
sap 

1040.79 662 27 688 
Q14055|CO9A2_HUMAN Collagen alpha-2(IX) chain OS=Homo sapiens 
OX=9 

1040.11 304 462 765 
P20849|CO9A1_HUMAN Collagen alpha-1(IX) chain OS=Homo sapiens 
OX=9 

1034.45 115 2011 2125 
O75179|ANR17_HUMAN Ankyrin repeat domain-containing protein 17 
OS= 

1034.23 242 133 374 
Q6E0U4|DMKN_HUMAN Dermokine OS=Homo sapiens OX=9606 
GN=DMKN PE=1 S 

1030.70 652 32 683 
Q14050|CO9A3_HUMAN Collagen alpha-3(IX) chain OS=Homo sapiens 
OX=9 

1024.56 284 529 812 
Q14157|UBP2L_HUMAN Ubiquitin-associated protein 2-like OS=Homo 
sap 

1016.98 153 189 341 
Q92793|CBP_HUMAN CREB-binding protein OS=Homo sapiens 
OX=9606 GN=C 

1014.49 67 4936 5002 
Q9Y6V0|PCLO_HUMAN Protein piccolo OS=Homo sapiens OX=9606 
GN=PCLO 

1012.35 244 426 669 
Q14686|NCOA6_HUMAN Nuclear receptor coactivator 6 OS=Homo 
sapiens 

1002.13 64 4088 4151 
Q2LD37|K1109_HUMAN Transmembrane protein KIAA1109 OS=Homo 
sapiens 

999.38 174 831 1004 
Q86UU0|BCL9L_HUMAN B-cell CLL/lymphoma 9-like protein OS=Homo 
sapi 

999.37 190 1039 1228 
O00512|BCL9_HUMAN B-cell CLL/lymphoma 9 protein OS=Homo 
sapiens OX 

996.58 174 794 967 
A0A087WZX0|A0A087WZX0_HUMAN B-cell CLL/lymphoma 9-like 
protein OS= 

993.55 70 1034 1103 
Q8IVL0|NAV3_HUMAN Neuron navigator 3 OS=Homo sapiens 
OX=9606 GN=NA 

986.36 284 540 823 
F8W726|F8W726_HUMAN Ubiquitin-associated protein 2-like 
OS=Homo sa 

985.36 278 616 893 
Q12906|ILF3_HUMAN Interleukin enhancer-binding factor 3 OS=Homo 
sa 

976.33 115 1048 1162 
Q9UQ35|SRRM2_HUMAN Serine/arginine repetitive matrix protein 2 
OS= 

975.22 319 1 319 
C9JGE3|C9JGE3_HUMAN EWS RNA-binding protein variant 6 OS=Homo 
sapi 

973.33 184 1038 1221 
A8CG34|P121C_HUMAN Nuclear envelope pore membrane protein 
POM 121C 

971.05 182 2733 2914 
Q99715|COCA1_HUMAN Collagen alpha-1(XII) chain OS=Homo sapiens 
OX= 

958.46 177 2733 2909 
D6RGG3|D6RGG3_HUMAN Collagen alpha-1(XII) chain OS=Homo 
sapiens OX 

958.16 459 245 703 
Q6XPR3|RPTN_HUMAN Repetin OS=Homo sapiens OX=9606 GN=RPTN 
PE=1 SV= 
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952.77 54 2383 2436 
Q9P2P6|STAR9_HUMAN StAR-related lipid transfer protein 9 
OS=Homo s 

951.29 102 656 757 
P35568|IRS1_HUMAN Insulin receptor substrate 1 OS=Homo sapiens 
OX= 

946.89 106 883 988 
A0A2R8Y4T1|A0A2R8Y4T1_HUMAN Tensin-1 OS=Homo sapiens 
OX=9606 GN=TN 

946.05 200 607 806 
Q5T6F2|UBAP2_HUMAN Ubiquitin-associated protein 2 OS=Homo 
sapiens 

945.89 106 837 942 
A0A494C067|A0A494C067_HUMAN Tensin-1 (Fragment) OS=Homo 
sapiens OX 

932.70 225 77 301 
Q09472|EP300_HUMAN Histone acetyltransferase p300 OS=Homo 
sapiens 

931.41 72 1629 1700 
Q15911|ZFHX3_HUMAN Zinc finger homeobox protein 3 OS=Homo 
sapiens 

930.65 317 623 939 
Q96QC0|PP1RA_HUMAN Serine/threonine-protein phosphatase 1 
regulato 

930.13 380 476 855 
A0A1B0GVK1|A0A1B0GVK1_HUMAN AT-rich interactive domain-
containing 

930.02 130 1815 1944 
Q2M2H8|MGAL_HUMAN Probable maltase-glucoamylase 2 OS=Homo 
sapiens 

929.68 293 1 293 
A0A0D9SFL3|A0A0D9SFL3_HUMAN RNA-binding protein EWS 
OS=Homo sapien 

929.14 238 20 257 
Q17RH7|TPRXL_HUMAN Putative protein TPRXL OS=Homo sapiens 
OX=9606 

923.64 54 1238 1291 
P98160|PGBM_HUMAN Basement membrane-specific heparan sulfate 
prote 

918.36 608 1 608 
A0A0G2JNG3|A0A0G2JNG3_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

918.13 580 245 824 
Q2UY09|COSA1_HUMAN Collagen alpha-1(XXVIII) chain OS=Homo 
sapiens 

917.35 569 35 603 
A0A0G2JLU8|A0A0G2JLU8_HUMAN Mucin-4 OS=Homo sapiens 
OX=9606 GN=MUC 

911.60 225 77 301 
A0A669KB12|A0A669KB12_HUMAN Histone acetyltransferase 
OS=Homo sapi 

909.19 158 232 389 
K7EQQ3|K7EQQ3_HUMAN Keratin, type I cytoskeletal 9 OS=Homo 
sapiens 

906.71 33 2560 2592 
O60494|CUBN_HUMAN Cubilin OS=Homo sapiens OX=9606 GN=CUBN 
PE=1 SV= 

905.15 106 737 842 
E9PGF5|E9PGF5_HUMAN Tensin-1 OS=Homo sapiens OX=9606 
GN=TNS1 PE=1 

904.25 62 1430 1491 
I3L2J0|I3L2J0_HUMAN Protein capicua homolog OS=Homo sapiens 
OX=960 

904.15 106 737 842 
Q9HBL0|TENS1_HUMAN Tensin-1 OS=Homo sapiens OX=9606 
GN=TNS1 PE=1 S 

904.14 106 737 842 
E9PF55|E9PF55_HUMAN Tensin-1 OS=Homo sapiens OX=9606 
GN=TNS1 PE=1 

903.24 55 194 248 
P48634|PRC2A_HUMAN Protein PRRC2A OS=Homo sapiens OX=9606 
GN=PRRC2 

900.93 63 5827 5889 
Q09666|AHNK_HUMAN Neuroblast differentiation-associated protein 
AH 

900.11 106 388 493 
A0A087WWW7|A0A087WWW7_HUMAN Tensin-1 OS=Homo sapiens 
OX=9606 GN=TN 

896.87 287 195 481 
A0A6I8PTU7|A0A6I8PTU7_HUMAN AT-rich interactive domain-
containing 

895.36 132 653 784 
Q9H4A3|WNK1_HUMAN Serine/threonine-protein kinase WNK1 
OS=Homo sap 

892.75 119 2323 2441 
P25054|APC_HUMAN Adenomatous polyposis coli protein OS=Homo 
sapien 

887.57 115 1895 2009 
H0YM23|H0YM23_HUMAN Ankyrin repeat domain-containing protein 
17 (F 

885.26 178 36 213 
A0A075B7F4|A0A075B7F4_HUMAN TATA-binding protein-associated 
factor 

880.06 129 432 560 
Q9Y4H2|IRS2_HUMAN Insulin receptor substrate 2 OS=Homo sapiens 
OX= 

878.19 182 1544 1725 
A0A087X0A8|A0A087X0A8_HUMAN Collagen alpha-1(XII) chain 
OS=Homo sa 
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875.82 157 1059 1215 
Q96HA1|P121A_HUMAN Nuclear envelope pore membrane protein 
POM 121 

871.82 296 650 945 
A6NCT7|A6NCT7_HUMAN Collagen alpha-1(XVI) chain OS=Homo 
sapiens OX 

869.26 210 422 631 
Q9ULL5|PRR12_HUMAN Proline-rich protein 12 OS=Homo sapiens 
OX=9606 

868.87 31 34 64 
A0A3B3ISX9|A0A3B3ISX9_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

865.35 539 55 593 
Q03692|COAA1_HUMAN Collagen alpha-1(X) chain OS=Homo sapiens 
OX=96 

861.45 61 2132 2192 
Q5JSZ5|PRC2B_HUMAN Protein PRRC2B OS=Homo sapiens OX=9606 
GN=PRRC2 

861.04 181 191 371 
P09651|ROA1_HUMAN Heterogeneous nuclear ribonucleoprotein A1 
OS=Ho 

855.43 521 80 600 
P25067|CO8A2_HUMAN Collagen alpha-2(VIII) chain OS=Homo 
sapiens OX 

854.14 92 910 1001 
Q5VT52|RPRD2_HUMAN Regulation of nuclear pre-mRNA domain-
containin 

850.48 516 578 1093 
Q9C0J8|WDR33_HUMAN pre-mRNA 3' end processing protein WDR33 
OS=Hom 

848.95 382 1397 1778 
A0A0G2JM87|A0A0G2JM87_HUMAN Mucin-2 OS=Homo sapiens 
OX=9606 GN=MUC 

841.89 145 653 797 
F5GWT4|F5GWT4_HUMAN Non-specific serine/threonine protein 
kinase O 

839.73 35 917 951 
A0A140T902|A0A140T902_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

838.59 35 917 951 
A0A140T9C0|A0A140T9C0_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

836.87 521 15 535 
E9PP49|E9PP49_HUMAN Collagen alpha-2(VIII) chain OS=Homo 
sapiens O 

833.67 380 432 811 
A0A1B0GTJ8|A0A1B0GTJ8_HUMAN AT-rich interactive domain-
containing 

833.45 37 2223 2259 
Q9Y6R7|FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens 
OX=9606 G 

833.44 98 492 589 P13647|K2C5_HUMAN Keratin, type II cytoskeletal 5 OS=Homo sapiens 

831.79 176 234 409 
Q99081|HTF4_HUMAN Transcription factor 12 OS=Homo sapiens 
OX=9606 

828.84 510 436 945 
Q96P44|COLA1_HUMAN Collagen alpha-1(XXI) chain OS=Homo 
sapiens OX= 

827.75 35 917 951 
A0A140T8Y3|A0A140T8Y3_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

824.81 219 1010 1228 
A0A2R8Y651|A0A2R8Y651_HUMAN PDZ domain-containing protein 
GIPC3 OS 

824.62 30 843 872 
Q8TCU4|ALMS1_HUMAN Alstrom syndrome protein 1 OS=Homo 
sapiens OX=9 

824.07 141 39 179 
A0A1B0GVR6|A0A1B0GVR6_HUMAN Transcription factor 4 OS=Homo 
sapiens 

821.72 169 209 377 
P51991|ROA3_HUMAN Heterogeneous nuclear ribonucleoprotein A3 
OS=Ho 

821.72 101 475 575 
Q9BVL2|NUP58_HUMAN Nucleoporin p58/p45 OS=Homo sapiens 
OX=9606 GN= 

821.66 212 387 598 
Q15596|NCOA2_HUMAN Nuclear receptor coactivator 2 OS=Homo 
sapiens 

820.61 205 1143 1347 
Q15788|NCOA1_HUMAN Nuclear receptor coactivator 1 OS=Homo 
sapiens 

820.52 35 917 951 
A0A140TA33|A0A140TA33_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

820.51 141 131 271 
E9PH57|E9PH57_HUMAN Transcription factor 4 OS=Homo sapiens 
OX=9606 

820.08 505 439 943 
F5GZK2|F5GZK2_HUMAN Collagen alpha-1(XXI) chain OS=Homo 
sapiens OX 

819.38 35 917 951 
A0A140TA41|A0A140TA41_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

817.56 141 29 169 
P15884|ITF2_HUMAN Transcription factor 4 OS=Homo sapiens 
OX=9606 G 
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815.38 35 917 951 
P22105|TENX_HUMAN Tenascin-X OS=Homo sapiens OX=9606 
GN=TNXB PE=1 

812.92 30 801 830 
A0A087WTU9|A0A087WTU9_HUMAN Alstrom syndrome protein 1 
OS=Homo sap 

812.30 141 29 169 
H3BTP3|H3BTP3_HUMAN Transcription factor 4 OS=Homo sapiens 
OX=9606 

809.01 41 3038 3078 
Q7Z407|CSMD3_HUMAN CUB and sushi domain-containing protein 3 
OS=Ho 

808.53 35 917 951 
A0A140TA52|A0A140TA52_HUMAN Tenascin-X OS=Homo sapiens 
OX=9606 GN= 

807.15 110 416 525 
A0A2R8YDL9|A0A2R8YDL9_HUMAN Methyl-CpG-binding domain 
protein 5 OS 

801.91 145 1 145 
H3BPJ7|H3BPJ7_HUMAN Transcription factor 4 OS=Homo sapiens 
OX=9606 

799.98 380 416 795 
A0A1B0GWJ2|A0A1B0GWJ2_HUMAN AT-rich interactive domain-
containing 

798.99 127 2560 2686 
O15417|TNC18_HUMAN Trinucleotide repeat-containing gene 18 
protein 

798.99 127 2560 2686 
H9KVB4|H9KVB4_HUMAN Trinucleotide repeat-containing gene 18 
protei 

791.12 237 126 362 
Q96F45|ZN503_HUMAN Zinc finger protein 503 OS=Homo sapiens 
OX=9606 

791.12 93 165 257 
O15027|SC16A_HUMAN Protein transport protein Sec16A OS=Homo 
sapien 

789.84 149 579 727 
A0A2R8YGI3|A0A2R8YGI3_HUMAN Collagen alpha-1(XIII) chain 
OS=Homo s 

788.40 323 27 349 
A0A0G2JMC4|A0A0G2JMC4_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

787.13 142 483 624 
O14654|IRS4_HUMAN Insulin receptor substrate 4 OS=Homo sapiens 
OX= 

786.68 141 29 169 
A0A1B0GVB8|A0A1B0GVB8_HUMAN Transcription factor 4 OS=Homo 
sapiens 

784.58 216 465 680 
A0A6E1W314|A0A6E1W314_HUMAN Collagen alpha-1(XIII) chain 
OS=Homo s 

784.23 205 992 1196 
B5MCN7|B5MCN7_HUMAN Nuclear receptor coactivator 1 OS=Homo 
sapiens 

783.69 149 568 716 
Q5TAT6|CODA1_HUMAN Collagen alpha-1(XIII) chain OS=Homo 
sapiens OX 

779.79 30 843 872 
A0A087WV20|A0A087WV20_HUMAN Alstrom syndrome protein 1 
OS=Homo sap 

779.07 144 61 204 
Q9UI36|DACH1_HUMAN Dachshund homolog 1 OS=Homo sapiens 
OX=9606 GN= 

776.51 321 27 347 
A0A140TA51|A0A140TA51_HUMAN Mucin-21 OS=Homo sapiens 
OX=9606 GN=MU 

775.34 161 643 803 
A6NF01|P121B_HUMAN Putative nuclear envelope pore membrane 
protein 

774.85 124 713 836 
Q5SYE7|NHSL1_HUMAN NHS-like protein 1 OS=Homo sapiens 
OX=9606 GN=N 

772.87 67 27 93 
Q8IWZ3|ANKH1_HUMAN Ankyrin repeat and KH domain-containing 
protein 

771.21 47 2226 2272 
O15018|PDZD2_HUMAN PDZ domain-containing protein 2 OS=Homo 
sapiens 

771.17 188 1273 1460 
E7EWN3|E7EWN3_HUMAN Histone-lysine N-methyltransferase SETD5 
OS=Ho 

770.13 216 383 598 
A0A669KB55|A0A669KB55_HUMAN Collagen alpha-1(XIII) chain 
(Fragment 

768.26 107 907 1013 
Q8IZL2|MAML2_HUMAN Mastermind-like protein 2 OS=Homo sapiens 
OX=96 

768.25 516 120 635 
P27658|CO8A1_HUMAN Collagen alpha-1(VIII) chain OS=Homo 
sapiens OX 

764.83 202 672 873 
Q92585|MAML1_HUMAN Mastermind-like protein 1 OS=Homo 
sapiens OX=96 

764.69 70 534 603 
A0A2R8YFX5|A0A2R8YFX5_HUMAN Neuron navigator 3 OS=Homo 
sapiens OX= 

764.55 137 327 463 
P55197|AF10_HUMAN Protein AF-10 OS=Homo sapiens OX=9606 
GN=MLLT10 
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764.39 54 352 405 
Q9H195|MUC3B_HUMAN Mucin-3B (Fragments) OS=Homo sapiens 
OX=9606 GN 

761.93 157 196 352 
P22626|ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins 
A2/B1 O 

761.72 91 46 136 
Q2KJY2|KI26B_HUMAN Kinesin-like protein KIF26B OS=Homo sapiens 
OX= 

758.09 285 2119 2403 
P12111|CO6A3_HUMAN Collagen alpha-3(VI) chain OS=Homo sapiens 
OX=9 

757.78 156 716 871 
Q9NTZ6|RBM12_HUMAN RNA-binding protein 12 OS=Homo sapiens 
OX=9606 

755.58 126 75 200 
Q6L8H1|KRA54_HUMAN Keratin-associated protein 5-4 OS=Homo 
sapiens 

752.27 93 165 257 
F1T0I1|F1T0I1_HUMAN Protein transport protein sec16 OS=Homo 
sapien 

748.32 194 781 974 
O94913|PCF11_HUMAN Pre-mRNA cleavage complex 2 protein Pcf11 
OS=Ho 

744.20 149 1691 1839 
P16112|PGCA_HUMAN Aggrecan core protein OS=Homo sapiens 
OX=9606 GN 

744.20 149 1691 1839 
H0YMF1|H0YMF1_HUMAN Aggrecan core protein OS=Homo sapiens 
OX=9606 

744.18 149 1672 1820 
A0A087X1T7|A0A087X1T7_HUMAN Aggrecan core protein OS=Homo 
sapiens 

743.54 155 1 155 
Q2M2I5|K1C24_HUMAN Keratin, type I cytoskeletal 24 OS=Homo 
sapiens 

738.90 188 1254 1441 
Q9C0A6|SETD5_HUMAN Histone-lysine N-methyltransferase SETD5 
OS=Hom 

738.12 33 325 357 
A0A087X0K4|A0A087X0K4_HUMAN CUB and sushi domain-containing 
protei 

736.93 126 1718 1843 
Q8IZD2|KMT2E_HUMAN Inactive histone-lysine N-methyltransferase 
2E 

736.65 203 408 610 
A0A669KB28|A0A669KB28_HUMAN Collagen alpha-1(XIII) chain 
(Fragment 

736.00 110 416 525 
Q9P267|MBD5_HUMAN Methyl-CpG-binding domain protein 5 
OS=Homo sapi 

736.00 110 416 525 
A0A1B0GW10|A0A1B0GW10_HUMAN Methyl-CpG-binding domain 
protein 5 OS 

734.22 167 229 395 
P15923|TFE2_HUMAN Transcription factor E2-alpha OS=Homo sapiens 
OX 

732.11 73 88 160 
A0A2R8Y5P9|A0A2R8Y5P9_HUMAN Protein Shroom3 OS=Homo 
sapiens OX=960 

731.60 171 1455 1625 
Q05707|COEA1_HUMAN Collagen alpha-1(XIV) chain OS=Homo 
sapiens OX= 

730.82 463 182 644 
A8MWQ5|A8MWQ5_HUMAN Collagen alpha-1(XXV) chain OS=Homo 
sapiens OX 

730.29 111 1287 1397 
A0A6Q8PFM0|A0A6Q8PFM0_HUMAN Serine/threonine-protein kinase 
WNK1 ( 

729.57 149 1215 1363 
A0A5K1VW97|A0A5K1VW97_HUMAN Aggrecan core protein 
(Fragment) OS=Ho 

728.34 474 196 669 
A0A2R8Y760|A0A2R8Y760_HUMAN Collagen alpha-1(XXV) chain 
OS=Homo sa 

727.41 174 230 403 
B4DGI9|B4DGI9_HUMAN Transcription factor 12 (Fragment) OS=Homo 
sap 

727.02 107 175 281 
Q3L8U1|CHD9_HUMAN Chromodomain-helicase-DNA-binding protein 
9 OS=H 

725.68 115 815 929 
Q9H2D6|TARA_HUMAN TRIO and F-actin-binding protein OS=Homo 
sapiens 

725.42 285 1512 1796 
E7ENL6|E7ENL6_HUMAN Collagen alpha-3(VI) chain OS=Homo sapiens 
OX= 

725.23 95 360 454 
Q96JK9|MAML3_HUMAN Mastermind-like protein 3 OS=Homo sapiens 
OX=96 

725.18 62 733 794 
Q9C0C2|TB182_HUMAN 182 kDa tankyrase-1-binding protein 
OS=Homo sap 

718.21 145 401 545 
Q9ULJ6|ZMIZ1_HUMAN Zinc finger MIZ domain-containing protein 1 
OS= 

717.59 94 484 577 
Q7Z794|K2C1B_HUMAN Keratin, type II cytoskeletal 1b OS=Homo 
sapien 
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717.14 76 1145 1220 O43166|SI1L1_HUMAN Signal-induced proliferation-associated 1-like 

715.72 125 365 489 
P54259|ATN1_HUMAN Atrophin-1 OS=Homo sapiens OX=9606 
GN=ATN1 PE=1 

714.37 73 169 241 
Q8TF72|SHRM3_HUMAN Protein Shroom3 OS=Homo sapiens 
OX=9606 GN=SHRO 

711.74 71 944 1014 
Q8IZF6|AGRG4_HUMAN Adhesion G-protein coupled receptor G4 
OS=Homo 

710.77 193 325 517 
Q8NCA5|FA98A_HUMAN Protein FAM98A OS=Homo sapiens OX=9606 
GN=FAM98 

710.25 49 2698 2746 
Q15751|HERC1_HUMAN Probable E3 ubiquitin-protein ligase HERC1 
OS=H 

707.49 216 409 624 
A0A669KB16|A0A669KB16_HUMAN Collagen alpha-1(XIII) chain 
OS=Homo s 

707.14 41 2384 2424 
Q7Z7M0|MEGF8_HUMAN Multiple epidermal growth factor-like 
domains p 

706.93 87 14 100 
P08047|SP1_HUMAN Transcription factor Sp1 OS=Homo sapiens 
OX=9606 

702.59 87 408 494 
E9PNV5|E9PNV5_HUMAN Neuron navigator 2 (Fragment) OS=Homo 
sapiens 

702.45 236 406 641 
E7ES50|E7ES50_HUMAN Collagen alpha-1(XIII) chain OS=Homo 
sapiens O 

701.61 122 993 1114 
Q5TGY3|AHDC1_HUMAN AT-hook DNA-binding motif-containing 
protein 1 

701.31 137 819 955 
Q8IWN7|RP1L1_HUMAN Retinitis pigmentosa 1-like 1 protein 
OS=Homo s 

700.85 126 638 763 
Q5T1Z8|Q5T1Z8_HUMAN Pumilio homolog 1 OS=Homo sapiens 
OX=9606 GN=P 

699.46 167 258 424 
X6REB3|X6REB3_HUMAN Transcription factor E2-alpha OS=Homo 
sapiens 

697.77 210 448 657 
A0A669KAZ4|A0A669KAZ4_HUMAN Collagen alpha-1(XIII) chain 
OS=Homo s 

696.33 37 2779 2815 
O75592|MYCB2_HUMAN E3 ubiquitin-protein ligase MYCBP2 
OS=Homo sapi 

696.21 72 1290 1361 
O15021|MAST4_HUMAN Microtubule-associated serine/threonine-
protein 

693.40 413 1 413 
A0A3B3ITG7|A0A3B3ITG7_HUMAN Collagen alpha-1(IV) chain 
(Fragment) 

691.43 233 291 523 
P0CG12|DERPC_HUMAN Decreased expression in renal and prostate 
canc 

689.68 93 325 417 
Q8NF64|ZMIZ2_HUMAN Zinc finger MIZ domain-containing protein 2 
OS= 

689.68 93 325 417 
A0A087X127|A0A087X127_HUMAN Zinc finger MIZ domain-containing 
prot 

689.34 119 1540 1658 
Q71F56|MD13L_HUMAN Mediator of RNA polymerase II transcription 
sub 

689.34 119 1540 1658 
A0A3B3IRX3|A0A3B3IRX3_HUMAN Mediator of RNA polymerase II 
transcri 

685.05 33 325 357 
Q7Z408|CSMD2_HUMAN CUB and sushi domain-containing protein 2 
OS=Ho 

684.01 62 514 575 
A0A3B3IRW6|A0A3B3IRW6_HUMAN Glutamine and serine-rich 
protein 1 OS 

683.54 263 100 362 
H0Y2R3|H0Y2R3_HUMAN AT-rich interactive domain-containing 
protein 

683.38 401 489 889 
F8WDM8|F8WDM8_HUMAN Collagen alpha-1(XXIV) chain OS=Homo 
sapiens O 

682.85 126 602 727 
Q14671|PUM1_HUMAN Pumilio homolog 1 OS=Homo sapiens 
OX=9606 GN=PUM 

682.85 126 603 728 
Q5T1Z4|Q5T1Z4_HUMAN Pumilio homolog 1 OS=Homo sapiens 
OX=9606 GN=P 

682.66 97 2039 2135 
Q96RV3|PCX1_HUMAN Pecanex-like protein 1 OS=Homo sapiens 
OX=9606 G 

680.87 59 1206 1264 
P10071|GLI3_HUMAN Transcriptional activator GLI3 OS=Homo sapiens 
O 

677.41 94 2461 2554 
Q12830|BPTF_HUMAN Nucleosome-remodeling factor subunit BPTF 
OS=Hom 
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677.13 65 1 65 
A0A088AWL3|A0A088AWL3_HUMAN Nuclear receptor corepressor 1 
OS=Homo 

676.89 458 196 653 
Q9BXS0|COPA1_HUMAN Collagen alpha-1(XXV) chain OS=Homo 
sapiens OX= 

676.19 56 2338 2393 
O75376|NCOR1_HUMAN Nuclear receptor corepressor 1 OS=Homo 
sapiens 

676.14 193 261 453 
P02671|FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens 
OX=9606 G 

674.88 37 2741 2777 
A0A499FJI4|A0A499FJI4_HUMAN RCR-type E3 ubiquitin transferase 
OS=H 

671.51 34 270 303 
P02751|FINC_HUMAN Fibronectin OS=Homo sapiens OX=9606 
GN=FN1 PE=1 

671.21 85 45 129 
O94916|NFAT5_HUMAN Nuclear factor of activated T-cells 5 
OS=Homo s 

670.98 63 65 127 
Q6L8H4|KRA51_HUMAN Keratin-associated protein 5-1 OS=Homo 
sapiens 

670.25 140 334 473 
A0A6Q8PH46|A0A6Q8PH46_HUMAN Mucin-19 (Fragment) OS=Homo 
sapiens OX 

670.05 107 737 843 
A0A087X0G5|A0A087X0G5_HUMAN Mastermind-like protein 2 
OS=Homo sapi 

667.88 84 2268 2351 
Q9Y520|PRC2C_HUMAN Protein PRRC2C OS=Homo sapiens OX=9606 
GN=PRRC2 

667.59 77 1077 1153 
P49792|RBP2_HUMAN E3 SUMO-protein ligase RanBP2 OS=Homo 
sapiens OX 

667.39 89 1984 2072 
Q8WYB5|KAT6B_HUMAN Histone acetyltransferase KAT6B OS=Homo 
sapiens 

667.04 359 305 663 
A0A0U1RRA7|A0A0U1RRA7_HUMAN Collagen alpha-1(XI) chain 
(Fragment) 

665.90 84 2270 2353 
E7EPN9|E7EPN9_HUMAN Protein PRRC2C OS=Homo sapiens OX=9606 
GN=PRRC 

665.83 59 1147 1205 
A0A2R8YGX0|A0A2R8YGX0_HUMAN Transcriptional activator GLI3 
OS=Homo 

663.48 36 2997 3032 
Q96JQ0|PCD16_HUMAN Protocadherin-16 OS=Homo sapiens 
OX=9606 GN=DCH 

663.44 62 521 582 
A0A0A0MQR4|A0A0A0MQR4_HUMAN Protein capicua homolog 
OS=Homo sapien 

661.18 76 809 884 
P10070|GLI2_HUMAN Zinc finger protein GLI2 OS=Homo sapiens 
OX=9606 

660.58 62 521 582 
Q96RK0|CIC_HUMAN Protein capicua homolog OS=Homo sapiens 
OX=9606 G 

658.62 77 1 77 
A0A3F2YNZ0|A0A3F2YNZ0_HUMAN Protein transport protein sec16 
OS=Hom 

656.28 110 416 525 
A0A0D9SG23|A0A0D9SG23_HUMAN Methyl-CpG-binding domain 
protein 5 OS 

656.18 50 3262 3311 
Q9NYQ7|CELR3_HUMAN Cadherin EGF LAG seven-pass G-type 
receptor 3 O 

656.10 77 1266 1342 
Q68CP9|ARID2_HUMAN AT-rich interactive domain-containing protein 
2 

656.10 77 1240 1316 
F8WCU9|F8WCU9_HUMAN AT-rich interactive domain-containing 
protein 

654.13 69 552 620 
Q86YV5|PRAG1_HUMAN Inactive tyrosine-protein kinase PRAG1 
OS=Homo 

650.98 84 240 323 
Q15714|T22D1_HUMAN TSC22 domain family protein 1 OS=Homo 
sapiens O 

648.63 179 572 750 
A0A087X0K0|A0A087X0K0_HUMAN Collagen alpha-1(XV) chain 
OS=Homo sap 

647.08 77 876 952 
F8W108|F8W108_HUMAN AT-rich interactive domain-containing 
protein 

646.71 66 774 839 
P55198|AF17_HUMAN Protein AF-17 OS=Homo sapiens OX=9606 
GN=MLLT6 P 

646.50 77 1 77 
Q92945|FUBP2_HUMAN Far upstream element-binding protein 2 
OS=Homo 

645.31 36 4719 4754 
Q96RW7|HMCN1_HUMAN Hemicentin-1 OS=Homo sapiens OX=9606 
GN=HMCN1 P 

644.29 182 371 552 
H0Y5N9|H0Y5N9_HUMAN Collagen alpha-1(XII) chain (Fragment) 
OS=Homo 
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643.38 29 1393 1421 
E5RIG2|E5RIG2_HUMAN CUB and sushi domain-containing protein 1 
OS=H 

642.98 122 906 1027 
A0A669KBM4|A0A669KBM4_HUMAN DNA-binding protein RFX7 
OS=Homo sapie 

642.06 77 1 77 
A0A3F2YNX0|A0A3F2YNX0_HUMAN Protein transport protein sec16 
OS=Hom 

640.12 29 1392 1420 
Q96PZ7|CSMD1_HUMAN CUB and sushi domain-containing protein 1 
OS=Ho 

639.00 179 586 764 
P39059|COFA1_HUMAN Collagen alpha-1(XV) chain OS=Homo sapiens 
OX=9 

637.56 91 109 199 
P31942|HNRH3_HUMAN Heterogeneous nuclear ribonucleoprotein H3 
OS=H 

636.90 66 1 66 
Q6ZRS2|SRCAP_HUMAN Helicase SRCAP OS=Homo sapiens OX=9606 
GN=SRCAP 

635.17 29 1393 1421 
F8W9C3|F8W9C3_HUMAN CUB and sushi domain-containing protein 1 
OS=H 

635.14 244 426 669 
F6M2K2|F6M2K2_HUMAN Nuclear receptor coactivator 6 OS=Homo 
sapiens 

635.13 41 728 768 
E7EVZ1|E7EVZ1_HUMAN Zinc finger homeobox protein 4 OS=Homo 
sapiens 

631.47 171 416 586 
A0A0A0MQT7|A0A0A0MQT7_HUMAN Collagen alpha-1(XIV) chain 
OS=Homo sa 

630.89 227 163 389 
Q96E39|RMXL1_HUMAN RNA binding motif protein, X-linked-like-1 
OS=H 

630.73 354 1403 1756 
A8TX70|CO6A5_HUMAN Collagen alpha-5(VI) chain OS=Homo sapiens 
OX=9 

630.73 354 1403 1756 
E9PAL5|E9PAL5_HUMAN Collagen alpha-5(VI) chain OS=Homo sapiens 
OX= 

630.59 40 874 913 
C9JG08|C9JG08_HUMAN Uncharacterized protein C2orf16 OS=Homo 
sapien 

630.14 41 728 768 
Q86UP3|ZFHX4_HUMAN Zinc finger homeobox protein 4 OS=Homo 
sapiens 

628.75 103 1275 1377 
O14513|NCKP5_HUMAN Nck-associated protein 5 OS=Homo sapiens 
OX=960 

628.75 103 1275 1377 
A0A0A0MS79|A0A0A0MS79_HUMAN Nck-associated protein 5 
OS=Homo sapie 

628.64 63 382 444 
G3V5H7|G3V5H7_HUMAN SKI family transcriptional corepressor 1 
OS=Ho 

628.47 74 54 127 
H7C269|H7C269_HUMAN Trinucleotide repeat-containing gene 6A 
protei 

625.32 63 410 472 
P84550|SKOR1_HUMAN SKI family transcriptional corepressor 1 
OS=Hom 

625.11 244 426 669 
F6M2K4|F6M2K4_HUMAN Nuclear receptor coactivator 6 OS=Homo 
sapiens 

624.99 122 809 930 
Q2KHR2|RFX7_HUMAN DNA-binding protein RFX7 OS=Homo sapiens 
OX=9606 

624.64 114 844 957 
Q8NET4|RTL9_HUMAN Retrotransposon Gag-like protein 9 OS=Homo 
sapie 

624.48 87 875 961 
A0A2R8YDS2|A0A2R8YDS2_HUMAN Ras/Rap GTPase-activating 
protein SynG 

623.57 462 32 493 
A0A087X1E1|A0A087X1E1_HUMAN Collagen alpha-1(XXV) chain 
OS=Homo sa 

620.50 110 507 616 
Q6AI39|BICRL_HUMAN BRD4-interacting chromatin-remodeling 
complex-a 

620.35 64 788 851 
Q9ULM3|YETS2_HUMAN YEATS domain-containing protein 2 
OS=Homo sapie 

620.16 77 1 77 
A0A087WTP3|A0A087WTP3_HUMAN Far upstream element-binding 
protein 2 

619.50 104 267 370 
Q96PE2|ARHGH_HUMAN Rho guanine nucleotide exchange factor 17 
OS=Ho 

618.95 35 917 951 
A0A140T956|A0A140T956_HUMAN Tenascin-X (Fragment) OS=Homo 
sapiens 

618.51 379 294 672 
A0A1B0GV63|A0A1B0GV63_HUMAN AT-rich interactive domain-
containing 

616.85 71 713 783 
A0A669KBC5|A0A669KBC5_HUMAN Protein unc-80 homolog 
OS=Homo sapiens 
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616.16 90 194 283 
H0Y4U1|H0Y4U1_HUMAN Tensin-1 OS=Homo sapiens OX=9606 
GN=TNS1 PE=1 

615.33 87 920 1006 
B7ZCA0|B7ZCA0_HUMAN Ras/Rap GTPase-activating protein SynGAP 
OS=Ho 

614.92 37 2223 2259 
A0A087WXI2|A0A087WXI2_HUMAN IgGFc-binding protein OS=Homo 
sapiens 

614.79 71 713 783 
Q8N2C7|UNC80_HUMAN Protein unc-80 homolog OS=Homo sapiens 
OX=9606 

614.79 71 713 783 
A0A669KAW8|A0A669KAW8_HUMAN Protein unc-80 homolog 
OS=Homo sapiens 

614.14 167 178 344 
A0A0A0MRB7|A0A0A0MRB7_HUMAN Transcription factor E2-alpha 
OS=Homo 

613.57 291 1 291 
F8WC90|F8WC90_HUMAN RNA-binding protein EWS (Fragment) 
OS=Homo sap 

612.12 87 934 1020 
Q96PV0|SYGP1_HUMAN Ras/Rap GTPase-activating protein SynGAP 
OS=Hom 

611.74 87 934 1020 
A0A2R8Y6T2|A0A2R8Y6T2_HUMAN Ras/Rap GTPase-activating protein 
SynG 

611.53 83 179 261 
Q9P2D1|CHD7_HUMAN Chromodomain-helicase-DNA-binding protein 
7 OS=H 

611.28 87 919 1005 
A0A0A0MQZ2|A0A0A0MQZ2_HUMAN Ras/Rap GTPase-activating 
protein SynG 

610.35 174 64 237 
F5GY10|F5GY10_HUMAN Transcription factor 12 OS=Homo sapiens 
OX=960 

610.21 63 371 433 
G3V3E1|G3V3E1_HUMAN SKI family transcriptional corepressor 1 
OS=Ho 

610.13 94 203 296 
Q5JU85|IQEC2_HUMAN IQ motif and SEC7 domain-containing protein 
2 O 

608.34 61 1364 1424 
A0A494C0D3|A0A494C0D3_HUMAN Protein PRRC2B (Fragment) 
OS=Homo sapi 

608.25 122 119 240 
E7EX21|E7EX21_HUMAN Collagen alpha-1(XIII) chain OS=Homo 
sapiens O 

607.09 37 331 367 
Q9UGM3|DMBT1_HUMAN Deleted in malignant brain tumors 1 
protein OS= 

606.34 60 1153 1212 
A0A1U9X989|A0A1U9X989_HUMAN NOTCH4 OS=Homo sapiens 
OX=9606 GN=NOTC 

604.97 60 1154 1213 
Q99466|NOTC4_HUMAN Neurogenic locus notch homolog protein 4 
OS=Hom 

604.29 59 2398 2456 
F5GXF5|F5GXF5_HUMAN Nucleosome-remodeling factor subunit BPTF 
(Fra 

604.18 100 7935 8034 
A6NGQ3|A6NGQ3_HUMAN Non-specific serine/threonine protein 
kinase O 

603.98 29 1254 1282 
F5GZ18|F5GZ18_HUMAN CUB and sushi domain-containing protein 1 
OS=H 

603.98 114 966 1079 
Q9NZP6|NPAP1_HUMAN Nuclear pore-associated protein 1 OS=Homo 
sapie 

603.41 60 1156 1215 
A0A140T9R5|A0A140T9R5_HUMAN NOTCH4 OS=Homo sapiens 
OX=9606 GN=NOTC 

603.14 37 331 367 
A0A590UJ76|A0A590UJ76_HUMAN Deleted in malignant brain tumors 
1 pr 

603.11 50 104 153 
P15502|ELN_HUMAN Elastin OS=Homo sapiens OX=9606 GN=ELN 
PE=1 SV=4 

602.98 228 163 390 
P38159|RBMX_HUMAN RNA-binding motif protein, X chromosome 
OS=Homo 

600.93 122 809 930 
H0YLX2|H0YLX2_HUMAN DNA-binding protein RFX7 OS=Homo sapiens 
OX=96 

600.77 93 293 385 
E7EWM3|E7EWM3_HUMAN Zinc finger MIZ domain-containing 
protein 2 OS 

600.11 133 1 133 
A0A2R8YET7|A0A2R8YET7_HUMAN Eyes absent homolog OS=Homo 
sapiens OX 

599.91 41 2308 2348 
H7BXX0|H7BXX0_HUMAN CUB and sushi domain-containing protein 3 
(Fra 

599.66 65 499 563 
P04259|K2C6B_HUMAN Keratin, type II cytoskeletal 6B OS=Homo 
sapien 

597.89 65 499 563 
P02538|K2C6A_HUMAN Keratin, type II cytoskeletal 6A OS=Homo 
sapien 
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597.69 96 1291 1386 
A6NEM2|A6NEM2_HUMAN Host cell factor 1 OS=Homo sapiens 
OX=9606 GN= 

597.42 66 126 191 
Q9ULD9|ZN608_HUMAN Zinc finger protein 608 OS=Homo sapiens 
OX=9606 

597.34 84 203 286 
A0A6Q8PFR7|A0A6Q8PFR7_HUMAN IQ motif and SEC7 domain-
containing pr 

597.13 303 49 351 
A0A2R8Y6K8|A0A2R8Y6K8_HUMAN Mucin-19 (Fragment) OS=Homo 
sapiens OX 

596.79 69 940 1008 
A0A590UJ96|A0A590UJ96_HUMAN Uncharacterized protein 
OS=Homo sapien 

596.13 94 2322 2415 
A0A2R8Y7Q1|A0A2R8Y7Q1_HUMAN Nucleosome-remodeling factor 
subunit B 

595.61 97 1519 1615 
Q9UHV7|MED13_HUMAN Mediator of RNA polymerase II transcription 
sub 

594.85 30 2415 2444 
P46531|NOTC1_HUMAN Neurogenic locus notch homolog protein 1 
OS=Hom 

594.48 260 1 260 
H7BXV5|H7BXV5_HUMAN Collagen alpha-1(XVIII) chain (Fragment) 
OS=Ho 

594.14 65 499 563 
P48668|K2C6C_HUMAN Keratin, type II cytoskeletal 6C OS=Homo 
sapien 

593.71 56 122 177 
P08151|GLI1_HUMAN Zinc finger protein GLI1 OS=Homo sapiens 
OX=9606 

592.95 129 164 292 
A0A2R8YGM9|A0A2R8YGM9_HUMAN Eyes absent homolog OS=Homo 
sapiens OX 

592.50 224 261 484 
A0A669KB39|A0A669KB39_HUMAN Collagen alpha-1(XIII) chain 
(Fragment 

590.14 96 1291 1386 
P51610|HCFC1_HUMAN Host cell factor 1 OS=Homo sapiens OX=9606 
GN=H 

589.63 101 467 567 
Q9ULI3|HEG1_HUMAN Protein HEG homolog 1 OS=Homo sapiens 
OX=9606 GN 

589.16 103 2461 2563 
O75962|TRIO_HUMAN Triple functional domain protein OS=Homo 
sapiens 

589.08 40 2269 2308 
Q5T1R4|ZEP3_HUMAN Transcription factor HIVEP3 OS=Homo sapiens 
OX=9 

588.79 77 146 222 
Q9UIF8|BAZ2B_HUMAN Bromodomain adjacent to zinc finger domain 
prot 

587.63 119 1350 1468 
H0YHC1|H0YHC1_HUMAN Mediator of RNA polymerase II 
transcription su 

587.09 74 600 673 
Q8N2Y8|RUSC2_HUMAN Iporin OS=Homo sapiens OX=9606 
GN=RUSC2 PE=1 SV 

586.73 29 4680 4708 
Q6V0I7|FAT4_HUMAN Protocadherin Fat 4 OS=Homo sapiens 
OX=9606 GN=F 

586.72 109 981 1089 
H7BY37|H7BY37_HUMAN Histone-lysine N-methyltransferase 2C 
(Fragmen 

586.39 100 1407 1506 
Q8NEV8|EXPH5_HUMAN Exophilin-5 OS=Homo sapiens OX=9606 
GN=EXPH5 PE 

586.29 97 124 220 
Q9HCD6|TANC2_HUMAN Protein TANC2 OS=Homo sapiens OX=9606 
GN=TANC2 

585.86 74 1790 1863 
Q5HYC2|K2026_HUMAN Uncharacterized protein KIAA2026 OS=Homo 
sapien 

584.09 61 206 266 
Q7Z5J4|RAI1_HUMAN Retinoic acid-induced protein 1 OS=Homo 
sapiens 

583.26 60 1154 1213 
A0A140T8Y6|A0A140T8Y6_HUMAN NOTCH4 OS=Homo sapiens 
OX=9606 GN=NOTC 

581.94 29 4682 4710 
A0A6Q8JR05|A0A6Q8JR05_HUMAN Protocadherin Fat 4 OS=Homo 
sapiens OX 

581.32 99 480 578 
Q99700|ATX2_HUMAN Ataxin-2 OS=Homo sapiens OX=9606 
GN=ATXN2 PE=1 S 

580.27 62 385 446 
Q2KHR3|QSER1_HUMAN Glutamine and serine-rich protein 1 
OS=Homo sap 

579.45 72 247 318 
O60299|LZTS3_HUMAN Leucine zipper putative tumor suppressor 3 
OS=H 

577.86 81 1549 1629 
Q6N021|TET2_HUMAN Methylcytosine dioxygenase TET2 OS=Homo 
sapiens 

577.86 81 1570 1650 
E7EQS8|E7EQS8_HUMAN Methylcytosine dioxygenase TET OS=Homo 
sapiens 
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577.43 71 64 134 
Q96T58|MINT_HUMAN Msx2-interacting protein OS=Homo sapiens 
OX=9606 

577.02 184 347 530 
Q86VE3|SATL1_HUMAN Spermidine/spermine N(1)-acetyltransferase-
like 

577.02 184 347 530 
A0A2R8YFQ0|A0A2R8YFQ0_HUMAN Spermidine/spermine N(1)-
acetyltransfe 

575.93 119 935 1053 
A0A3B3IS46|A0A3B3IS46_HUMAN Mediator of RNA polymerase II 
transcri 

575.60 307 51 357 
O95429|BAG4_HUMAN BAG family molecular chaperone regulator 4 
OS=Ho 

575.27 64 657 720 
P15822|ZEP1_HUMAN Zinc finger protein 40 OS=Homo sapiens 
OX=9606 G 

575.13 77 833 909 
A0A590UJW6|A0A590UJW6_HUMAN Zinc finger CCHC domain-
containing pro 

573.38 132 173 304 
Q13151|ROA0_HUMAN Heterogeneous nuclear ribonucleoprotein A0 
OS=Ho 

573.38 143 1 143 
O15534|PER1_HUMAN Period circadian protein homolog 1 OS=Homo 
sapie 
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Supporting Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Comparing means in the sequence sets using a nonparametric test. A-C, p-values 
calculated by the Mann-Whitney U-test, shown as -log(p-value), compares set means in 567 
amino acid scales and vmodel. Here, the use of colors and symbols are identical to that used in 
Figure 2, where conformation-based scales are grouped by type and highlighted by blue boxplots, 
and physicochemical-based scales are grouped by type and highlighted by green boxplots. Scales 
(e.g., refractivity, crystal melting point) that did not easily map into a conformation-based or 
physicochemical-based group were combined separately (Other; orange boxplot). Boxplots show 
the dataset median (50th percentile) with the central bar, and the vertical width spans the 25th to 
75th percentiles. Open triangles highlight the smallest p-value from Welch’s t-test when 
comparing means in the PS ID and ID sets, which was from an α-helix propensity scale, the 
smallest p-value from Welch’s t-test when comparing means in either ID set with the folded set, 
which was from a structure-based hydrophobicity scale, and the β-turn propensity scale used in 
ParSe (also provided for reference). 
  



 74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Modes of variance in the sequence sets arising from different amino acid property 
scales. A-C, bidimensional plots (top figures) from PCA showing the modes of variance in the 
human proteome and the combined ID sets (PS ID and ID) arising from conformation- (blue 
arrows) and physicochemical-based (green arrows) scales relative to the two principal 
components of variance, given as Dimension 1 and Dimension 2. Scree plots (bottom figures) 
showing the percent of the total variance in the human proteome and in the combined set of ID 
sequences that is captured by each principal component (i.e., dimension). 
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Figure S3. Comparing hydrophobicity, α-helix propensity, and vmodel in homopolymers. 
Hydrophobicity (ϕ) and α-helix propensity (α) were calculated using the scales from Vendruscolo 
and coworkers (14) and Tanaka and Scheraga (15), respectively, in homopolymers (N = 100) 
where amino acid type is identified by its one-letter code. Filled circles show the mean and 
standard deviation in ϕ, α, and vmodel in the PS ID (blue), ID (red), and folded sets (black). 
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Figure S4. Predicting protein regions that drive LLPS. ParSe v2 was applied to the whole 
sequences of proteins with diverse reported mechanisms driving LLPS. The proteins are identified 
by name and UniProt accession number. Contiguous regions (N ≥20) that were 90% of only one 
label, P, D, or F were colored blue, red, or black, respectively, to represent predicted PS, ID, or 
folded regions. Striped represents ≥50% identity to a known PS IDR (blue) or folded protein 
(black).  
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Figure S5. LLPS driver sequences have AUC >0.8 when compared against the human proteome. 
AUC calculations used the human proteome as the comparison set, and recall was based on the 
summed P classifier distance, as described in Figure 4. AUC values for SCOPe (grey) and DisProt 
(red) are reproduced from Figure 4C. LLPS driver sets (blue) are from Vernon et al (3), 
representing a set of proteins that have been verified in vitro to exhibit homotypic phase 
separation behavior (referred to as “in vitro sufficient” by Vernon), the parent proteins of the PS 
ID sequence set from the current study, and LLPS driver sets from Saar et al (16), Chen et al (17), 
Farahi et al (18), and Cai et al (19), where the sets are identified by the names used for these sets 
in each study. For comparison, light blue shows AUC for protein sets thought to have lower 
potential for phase separation (compared to the driver sets) because these proteins require 
partners (Vernon (3) and Chen sets (17)) and/or relatively high protein concentrations (>100 µM; 
Saar set (16)) for LLPS. 
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Figure S6. ParSe v2 shows improved recall compared to the original version. Homotypic LLPS is 
the Vernon et al set of proteins that have been verified in vitro to exhibit homotypic phase 
separation behavior (3). Solid lines are ParSe v2 results, while stippled lines are from the original 
ParSe algorithm. Data in this figure is a reproduction of the results in Figure 4A. Calculated AUC 
values are indicated to the right of the figure.  
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Figure S7. ParSe v2 shows reduced recall when using scales with weaker predictive value. A, 
the structure-based hydrophobicity scale from Vendruscolo and coworkers (14) was substituted 
for a solution-based hydrophobicity scale from Wilce et al (20) with t-test p-values of 3.4E-21 and 
1.7E-18 when comparing means in the folded and PS ID and folded and ID sets, respectively. This 
solution-based hydrophobicity scale was used to identify F windows from P or D. A composition-
based scale from Jukes et al (21), with a t-test p-value of 7.4E-08 when comparing means in the 
PS ID and ID sets, and a coil propensity scale from Isogai et al (22), with a t-test p-value of 4.6E-
08 when comparing means in the PS ID and ID sets, were used to identify P windows from D. B, 
when using these weaker scales with ParSe v2 (dashed lines), the overall predictive value, as 
judged by AUC (left-most figure), decreased relative to ParSe v2 when using the top-performing 
scales (solid lines).  
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Figure S8. ParSe v2 shows similar predictive accuracy as other LLPS predictors. AUC values for 
PLAAC, PScore, catGranule, FuzDrop, SaPS, SaPS-8, SaPS-10 are reproduced from the scores given 
in Figures 1D, 2E, and S2B in Chen et al (17). AUC values for ParSe v2 used recall based on the 
summed P classifier distance, as described in Figure 4. A, SaPS, B, SaPS-test, and C, hSaPS-test 
sets were evaluated against the NoPS set. These sequence sets were obtained from Chen et al 
(17). D, recall in the NoPS set compared to the human proteome gives AUC >0.5, indicating that 
ParSe v2 predicts the NoPS set is enriched in PS. 
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Figure S9. Predicting mutation effects on phase separation behavior by training against csat. A, 
the summed classifier distance of P-labeled positions was used to calculate a phase-separating 
(PS) potential from sequence. Mutants were grouped by experimental study and colored grey for 
wildtype (WT), yellow for mutants with both NCPR and SCD identical to the WT values, and green 
otherwise (non-WT NCPR and SCD). Placement left-to-right within a study follows the reported 
PS potential in rank, from high-to-low, for comparison to the predicted PS potential. A1-LCD 
mutants used csat to establish rank. B, A1-LCD mutants with NCPR and SCD matching the WT 
values were used to fix a in Equation 3 by optimizing the correlation of Parse-calculated PS 
potential (including Uπ) to -log10(csat); the right figure shows the optimal correlation. C, similarly, 
all A1-LCD mutants with experimental csat were then used to fix b and c in Equation 4 by 
optimizing the correlation of ParSe-calculated PS potential (including Uπ and Uq) to -log10(csat); 
the right figure shows the optimal correlation. D, ParSe-calculated PS potentials (including Uπ and 
Uq optimized to -log10(csat)) for the mutant and WT sequences.  
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Figure S10. ParSe v2 and other LLPS predictors show similar accuracy for predicting mutation 
effects. Each predictor was used to rank the mutant sequences in order of phase separation 
potential, for the set of mutants shown in Figures 5 (rank determined by ∆h°) and S9 (rank 
determined by csat). Percent correct is the number of mutant sequences that correctly predicted 
an increase or decrease relative to the wildtype sequence, divided by the total number of 
mutants and given as a percentage. Granule propensity was used for the catGranule score and 
LLR was used for the PLAAC score. “ParSe v2 corrected” refers to PS potential (sum of P-labeled 
windows) including Uπ and Uq. 
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Figure S11. Uπ and Uq effects on ParSe predicted PS regions and potential. A, ParSe v2 (solid 
lines) and ParSe v2 including Uπ and Uq in the calculations (dashed lines) were used to identify 
regions in proteins that were ≥90% labeled P, which are referred to as phase-separating, PS, 
regions. Shown by the y-axis is the percent of proteins in a set with PS regions at least as long as 
the length indicated by the x-axis. The human proteome (UniProt reference proteome 
UP000005640) is given by black lines; a set of in vitro sufficient homotypic LLPS proteins by blue 
lines; and the full sequences of the proteins in the PS ID set by light blue lines. B, the summed P 
classifier distance was calculated for the proteins sets in panel A, using both ParSe v2 (solid lines) 
and ParSe v2 including Uπ and Uq (dashed lines). Shown by the y-axis is the percent of proteins in 
a set with a summed P classifier distance at least as much as the value indicated by the x-axis. 
Lines were colored using the same coloring scheme as in panel A.  
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