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Abstract

Liquid-liquid phase separation (LLPS) of proteins is thought to be a primary driving force for the
formation of membraneless organelles, which control a wide range of biological functions from
stress response to ribosome biogenesis. LLPS of proteins in cells is primarily, though not
exclusively, driven by intrinsically disordered (ID) domains. Accurate identification of ID regions
(IDRs) that drive phase separation is important for testing the underlying mechanisms of phase
separation, identifying biological processes that rely on phase separation, and designing sequences
that modulate phase separation. To identify IDRs that drive phase separation, we first curated
datasets of folded, ID, and phase-separating (PS) ID sequences. We then used these sequence sets
to examine how broadly existing amino acids scales can be used to distinguish between the three
classes of protein regions. We found that there are robust property differences between the classes
and, consequently, that numerous combinations of amino acid property scales can be used to make
robust predictions of LLPS. This result indicates that multiple, redundant mechanisms contribute
to the formation of phase-separated droplets from IDRs. The top-performing scales were used to
further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe
to account for interactions between amino acids and obtained reasonable predictive power for
mutations that have been designed to test the role of amino acid interactions in driving LLPS.



Introduction

Many intracellular reactions occur within membrane-free compartments that form spontaneously
from the cellular milieu (1). Examples of such compartments include P-bodies, Cajal bodies, the
nucleolus, paraspeckles, and germ granules (2—4). The formation of membraneless organelles is
facilitated primarily, though not exclusively (5, 6), by proteins that are intrinsically disordered (ID)
or contain large ID regions (IDRs), collectively termed intrinsically disordered proteins (IDPs) (4,
7). Because these protein-rich droplets typically exist in dynamic, liquid-like states rather than as
fixed complexes (1, 2), this transition is referred to as liquid-liquid phase separation (LLPS). By
forming specific compartments and micro-environments, LLPS exerts control over the spatial
organization and biochemical reactivity within cells (8, 9). Indeed, LLPS has been found to
modulate chemical and biochemical reactions (10-12) and LLPS dysregulation has been
associated with several human diseases (13-15).

Due to the critical role of protein LLPS in cell function and disease, significant efforts have been
made to determine the physical mechanisms responsible for driving phase separation. Mutation
and sequence analysis have demonstrated the importance of cation-n, n-, n/sp?, and hydrophobic
interactions (16-21). Groups of amino acids driving cohesive interactions are often characterized
as “stickers” and are frequently interspaced with small polar residues acting as “spacers” (22-25).
In addition, charge composition and patterning appear to contribute to the regulation of LLPS by
IDRs (20, 26-29). Successfully predicting the relationship between primary sequence and phase
separation behavior is key to understanding the molecular mechanisms underlying LLPS and to
identifying the cellular processes that rely on LLPS. Effective predictive algorithms might also
reveal how mutations affect LLPS-associated disease states.

Several methods have been developed to predict which protein sequences drive LLPS (30, 31).
Algorithms including PLAAC, PSPredictor, and PSPer are based on the composition of databases
of proteins that are known to drive LLPS (28, 32, 33). Others, including catGRANULE and
CRAPome, are associated with cellular structures (34, 35). Uniquely, PScore was developed based
on a specific mechanism thought to drive LLPS: the propensity of cation-r and n-7 interactions to
drive cohesive protein interactions (16, 36). Simulation models of IDRs have also been used to
identify which protein domains drive LLPS as well as how mutations will affect LLPS behavior
of those proteins (37—41). The diversity of successful approaches for predicting LLPS indicates
that multiple complementary mechanisms may be responsible for this phenomenon.

We previously developed a predictive model of LLPS behavior, ParSe (“Partition Sequence”),
that identifies phase-separating (PS) IDRs starting from predictions of hydrodynamic size, which
is indicative of the relative strength of intramolecular as compared to solvent interactions (42). The
ParSe algorithm uses a sequence-calculated polymer scaling exponent, Vmodel, to quantify
hydrodynamic size (43, 44). When vmoder 1s combined with a second sequence-based parameter,
the intrinsic propensity for a sequence to form B-turns (45), the algorithm can distinguish between
sequences belonging to one of three classes of protein regions: folded, ID, and PS ID (42). We
proposed a physical mechanism whereby transient -turn structures reduce the desolvation penalty
of forming a protein-rich phase and increase exposure of atoms involved in nt/sp? valence electron
interactions. In this mechanism, B-turns could act as energetically favored nucleation points,



potentially explaining the observed higher propensity for turns in IDRs that drive phase separation
in vivo (42, 45).

However, the prior study did not test whether the combination of vmoder and -turn propensity was
uniquely able to distinguish folded, ID, and PS ID sequences, as would be required if this putative
mechanism is necessary for LLPS. In the current study, we first curated the sequence training sets
to expand the folded and ID categories. Our curated list of proteins that are ID but not thought to
drive LLPS acts as a key negative control, enabling us to distinguish which features of IDRs in
particular drive LLPS (31). Using the expanded sequence sets, we exhaustively tested all amino
acid property scales found in the Amino Acid Index Database (46) for their ability to separate
folded, ID, and PS ID sequences. We show that the three sequence sets are distinct in their means
when quantified by the majority of amino acid scales, revealing that there are robust property
differences between ID and PS ID sequences, not unlike the differences between folded and ID
sequences.

We applied principal component analysis (PCA) to identify the extent of variability between our
sequence sets and the optimal combinations of property scales that maximize the distinction
between ID and PS ID sequences. The resulting predictor, ParSe version 2 (v2), uses sequence
hydrophobicity to distinguish folded from ID, and, subsequently, vmoder and a conformational
parameter to distinguish ID from PS ID. In general, PS ID sequences exhibit enriched -turn and
depleted a-helix propensities. ParSe v2 more accurately predicts these regions from the amino acid
sequence than the original version. We then compared our predicted propensity for LLPS with
experimental results on mutant sequences designed to test the role of m- and charge-based
interactions in LLPS behavior. We found that only by including effects representing interactions
between amino acids could we accurately predict LLPS behavior of these mutants. Given the high
fidelity of ParSe even in the absence of these interaction terms, it appears there are multiple diverse
mechanisms that can drive LLPS and that PS ID sequences can be successfully identified through
simple combinations of amino acid property scales.

Results

Construction of Protein Sequence Datasets. A limitation of the previous work, including our
own (42), has been the relatively small set of sequences used to train predictors. We first sought
to alleviate this problem by identifying additional sequences in our two negative control categories,
folded proteins and IDRs, which are not thought to phase separate. The importance of well-defined
negative control sets has been highlighted recently by Pansca et al (31) and Cai et al (47). For
example, some negative control sets like the human proteome are known to contain many false
negatives, which can lead to misassignments by the predictor.

We first expanded the set of folded proteins. Previously, we selected only folded regions found
within known LLPS proteins. However, this selection may not be justified because it is not known
whether folded regions within phase-separating proteins are biased differently in vimoder and p-turn
propensity compared to folded proteins in general. Subsequently, we expanded the previous folded
set (comprised of 82 sequences) to include sequences from 122 human proteins with
nonhomologous folded structures (48), 32 proteins with small (N = 36) to large (N = 415) folded



structures (49), 54 folded extremophile proteins (50), 53 folded metamorphic proteins (51), and 90
folded membrane proteins (Table S1). Combined, these folded protein regions represent 421
unique sequences after removing duplicate entries. The folded sets were, overall, similar in both
mean vmodel (Figure 1A, Table 1) and mean B-turn propensity (Table 2) to the previous folded set
obtained from known LLPS proteins (Tables S2, S3), indicating that folded regions within LLPS
proteins are indeed similar to folded regions more generally.

Similarly, we expanded the set of IDR sequences not enriched for LLPS potential, called the “ID”
set, by adding ID sequences found in the Biological Magnetic Resonance Bank (BMRB) (52) and
DisProt (53, 54) databases. NMR experiments are typically performed at relatively high
concentrations (=100 pM), and so BMRB entries that do not explicitly address LLPS likely have
a low propensity to phase separate. In addition, proteins known to drive LLPS are now annotated
in DisProt; therefore, DisProt entries lacking such annotation are at least nominally depleted in
LLPS drivers. Moreover, we only selected IDRs from DisProt that were both predicted to be
disordered by MetaPredict (55) and were not highly homologous to proteins with folded structures
in the Protein Data Bank (PDB) (56) using seqatoms (57). The combined ID set contains 121
unique protein domains (Table S4).

While these expanded datasets show slight differences in mean predicted vimoder Or B-turn propensity
from the datasets used in our previous work (Tables 1, 2, S2, S3), the expanded sets reinforce our
previous findings that there exist significant differences in vmoder or B-turn propensity between the
three classes of protein regions: folded, ID, and PS ID (Figure 1A). These results, as such, confirm
that the two sequence-calculated metrics, vmodel and B-turn propensity, can be used in combination,
as done previously, to predict phase separating regions within proteins (42). Additionally, when
Vmodel and B-turn propensity are calculated for homopolymers of the common amino acids and then
presented in a B-turn propensity versus vmodel plot (Figure 1B), the values obtained are consistent
with previous characterizations of “order promoting” as compared to “disorder promoting” amino
acids (Figure 1B). In particular, we find that homopolymers of Trp, Cys, Phe, Ile, Tyr, Val, Leu,
Ala, His, Met, and Thr fall within the “folded” region of the B-turn versus vmoder plot, and so are
predicted to act as “order promoting” amino acids, while by similar analysis Arg, Gln, Pro, Glu,
Lys, and Asp are “disorder promoting”, and Asn, Ser, and Gly are “phase separation promoting”.
This result is similar to conclusions from analyses of protein structures (58, 59), where Trp, Cys,
Phe, Ile, Tyr, Val, Leu, and Asn are enriched in folded proteins (“order promoting”), while Ala,
Arg, GIn Pro, Glu, Lys, Gly, and Ser are enriched in IDPs (“disorder promoting™), and His, Met,
Thr, and Asp are “ambiguous”.

The clear segregation of some amino acids into the PS ID sector of the B-turn propensity versus
vmodel plot motivated us to consider whether an approach as simple as color coding of the amino
acids would enable identification of PS regions in proteins known to phase separate. Indeed, the
PS driving regions of many proteins are visually apparent by our simple visualization tool based
on the location of homopolymers in the B-turn propensity versus vmoder plot (Figure 1B). The
magnitude is related to the propensity and the color indicates the quadrant of the plot; therefore, a
shaded bar chart predicts the propensity for a sequence to promote order, disorder, or phase
separation. The rapid identification of PS regions in proteins (Figure 1C) such as Ddx4, FUS, and
Sup35 (3, 17, 22, 60) led us to conclude that PS regions in proteins are distinctly different than



other ID regions. We therefore sought to determine whether these classes of proteins were
distinguishable by other amino acid property scales.

Most amino acids property scales find significant differences between folded, ID, and phase-
separating protein regions. We sought to determine if additional sequence-based intrinsic
properties were significantly different between protein regions that are folded, ID, or ID with high
potential for driving LLPS. To explore this idea, 566 scales of amino acid properties were obtained
from the Amino Acid Index Database (46), which is a curated set of numerical indices representing
various physicochemical and biochemical properties of the amino acids. This approach is similar
to work done to improve coarse-grained models by testing multiple hydrophobicity scales (40).
We added to these scales a newly developed hydrophobicity scale designed to predict sequences
that drive protein LLPS (19), as well as vmoqer. For each scale and for each sequence, we summed
the amino acid scale for amino acids in the sequence, and divided by the length, N. Welch’s
unequal variances f-test (61), given as a one-tail p-value, was used to find scales that show a
statistical difference in the means of the sequence sets. Using the nonparametric Mann-Whitney
U-test (62) gave overall similar results (Figure S1).

Figures 2A-C show that the different sequence sets have significantly different mean values for
most scales when compared. For example, 81% of scales give p-values <0.05 (indicating means
that are statistically different), when comparing ID and PS ID sequences (Figure 2A). Moreover,
13% and 22% of scales yield p-values smaller (thus showing a more significant difference) than
the p-values obtained from vmoder and B-turn propensity, respectively, used in ParSe (42). Each
scale type (e.g., a-helix propensity, B-turn propensity, hydrophobicity, etc.) had some scales with
very low p-values and some with p-values >0.05, suggesting that, overall, most, but not all,
conformational and physicochemical based scales could substitute for vmoeder Or B-turn propensity
in ParSe and likely exhibit some ability for identifying PS IDRs from sequence. This analysis
reveals that the physical differences between PS and conventional IDRs are robust across many
different scales of amino acid properties (Figure 2A). We conclude that PS regions likely contain
a variety of complementary, redundant sequence features that drive LLPS.

The differences between folded and ID (both ID and PS ID) datasets are also robust to different
scales of amino acid properties (Figures 2B-C). 95% and 93% of scales produced p-values <0.05
when means were compared between the folded and PS ID, and folded and ID sets, respectively.
Almost all amino acid property scales yield statistically different means when comparing ID and
folded sequences; the best performing scales were based on hydrophobicity. Those hydrophobicity
scales with the lowest p-values when comparing means in the folded and ID sets had among the
highest p-values when comparing means in the ID and PS ID sets (and vice versa), consistent with
our previous findings that a single metric was insufficient to separate the three datasets.

PCA identifies two principal modes of variation between proteins. We next sought to
determine the degree to which amino acid scales could be combined without significant
redundancy when comparing protein sequences. To do so, we used principal component analysis
(PCA), which characterizes the variability in a dataset (63), in this case variability arising from
different scales being applied to our sequences. Our primary focus is on distinguishing PS IDRs
from conventional IDRs because many disordered predictors already exist to separate folded from
disordered domains (55, 64, 65). We first selected the scale in each scale type (listed in Figure 2A)



with the smallest p-value when comparing the ID and PS ID sets; that is representative scales from
each type that are best able to separate ID and PS ID sequences. We additionally included vinode,
which we found previously to give complementary information to B-turn propensity. Each scale
was then used to calculate sequence properties via a sliding 25-residue window applied to protein
domains in a combined set including both the ID and PS ID datasets or the human proteome. We
used a sliding window to avoid averaging properties between regions of proteins with different
characteristics (42).

The results of the PCA indicate that most of the variability measured by high-performing scales
within these datasets can be captured by 2-3 parameters (Figures 2D-E, S2). For both the combined
ID dataset including ID and PS ID sequences and the human proteome, approximately 70% of the
variability is captured by the first two principal components. Moreover, 58% of the variability in
the combined ID set is captured by a single component. The variance arising from conformational
propensity scales tend to cluster, as do those with physicochemical metrics like charge,
hydrophobicity, and other compositional details. These results are robust to both the number of
top-performing scales chosen and to the choice of reference set; we saw similar clustering when
we extended this analysis to include the top three performing scales in each type and to the entire
human proteome (Figure S2).

Within these two categories (conformational propensity and physicochemical metrics), high-
performing scales function very similarly. As such, the predictive capabilities of amino acid scale
combinations within each category are limited. In particular, turn and coil scales applied to protein
sequences yield strongly correlated modes of variation that also are mostly anti-correlated with the
variance produced from o-helix propensity scales (Figures 2D, S2). In our previous work, we
proposed that B-turns could serve as a site for cohesive interactions between protein chains, driving
LLPS (42). Our current results, while consistent with this hypothesis, show that this hypothesis
cannot easily be distinguished from other structural hypotheses, e.g., that coils drive LLPS or helix
inhibits LLPS, because the variation between these scales when applied to our datasets are all
highly correlated. In contrast, the variances arising from hydrophobicity, charge, or vmoder in our
datasets have patterns that, in general, are different from the variances arising from turn, coil, and
a-helix conformational propensities.

To illustrate the separation obtained when using complementary top-performing scales, we
selected three scales to best separate our three datasets: 1) the top performing hydrophobicity scale
for separating folded from either ID set (from Vendruscolo and coworkers (66)), 2) the top
performing conformational scale in separating ID from PS ID sets, in this case one predicting o-
helical propensity (from Tanaka and Scheraga (67)), and 3) vmoder because it was most orthogonal
to the latter helix scale in the PCA of our combined ID datasets. As can be seen in Figure 2F,
significant separation is observed between our different datasets using these three intrinsic
sequence properties. In general, the folded domains occupy a region with ¢ >0.08, and the greatest
separation between the two disordered sets is observed in the a-heliX/vimoder plane.

When this approach is used to assess homopolymers of the common amino acids by their
placement into a plot of hydrophobicity, a-helix propensity, and vmode, the homopolymer results
predict that Trp, Cys, Phe, Ile, Tyr, Val, Leu, His, and Met are “order promoting” amino acids,



while Ala, Arg, Gln, Pro, Glu, Lys, and Asp are “disorder promoting”, and Asn, Ser, Thr, and Gly
are “phase separation promoting” (Figure S3), similar to what we found previously (Figure 1B).

Predicting folded, ID, and phase-separating protein regions from sequence. Next, we used the
separation obtained from this method to identify protein sequences belonging to folded, ID or PS
ID categories, analogous to what we did for ParSe. Our aim was to see if using these top-
performing scales would provide better predictions of PS ID domains. We modified the algorithm
making a second-generation version, ParSe version 2 (v2). In this version, as with the original (42),
we apply a 25-residue window and then slide this window across a whole sequence in 1-residue
steps (Figure 3A) to label individual amino acids as either P (for PS ID), D (for ID) or F (for
folded), and then to regions that are at least 90% of any one of these labels (see Methods, Figure
3C). Both ParSe v1 and v2 accurately delineate regions of Sup35 that have been experimentally
determined (60) to behave as ID, PS ID, or folded regions (Figure 3C), and good accuracy is
similarly found for other well-studied proteins (3, 17, 22, 68-72) utilizing diverse reported
mechanisms driving LLPS (Figure S4).

One advantage of our algorithm is that it is very fast, and so can easily be applied to large datasets,
e.g., the human proteome. We measured the prevalence of protein regions predicted by ParSe v2
to have LLPS potential in the human proteome (Figure 4) by two methods. First, as previously, we
measured the longest predicted region with high LLPS potential (contiguous regions that are at
least 90% labeled P). The results from ParSe v2 are mostly identical to results obtained previously
using ParSe (42), whereby only ~5% of proteins in the human proteome have a predicted P-labeled
region that is at least 50 residues in length. Disordered regions taken from DisProt (minus the
LLPS annotated IDPs) (53, 54) and folded regions taken from SCOPe (Structural Classification of
Proteins extended, version 2.07) (73, 74) gave results mirroring the human proteome result in the
sense that these sequences are mostly devoid of long regions predicted to have high LLPS
potential. In contrast, the 43 proteins assembled by Vernon et al/ (16) that have been verified in
vitro to exhibit homotypic phase separation behavior tend to contain long stretches labeled P by
ParSe v2, with ~90% of this set having predicted PS regions >50 residues in length. Only ~63%
of the 98 parent proteins from which the PS ID set was derived have predicted PS regions >50
residues, wherein not all in this set have been shown to phase separate as purified components.

Second, we developed a numerical score to give a quantitative measure of the confidence of our
assignment of P, F and D labels, and to give a single metric to define the LLPS potential of every
protein. Our justification for using a single numerical score is, in part, the dominance of a single
principal component in the PCA of the combined ID set (Figure 2E), although we generalized this
approach to F-labeled positions as well. In the combined ID datasets, most of the variability was
in a single direction nearly orthogonal to the line separating P and D sectors in our plot. As such,
we used the linear distance of a 25 amino-acid window into its classifier sector (i.e., F, D, or P
sector), relative to the cutoff boundary and normalized by the distance to the boundary of the
training set mean (Figure 3B). Values greater than 1 in this classifier distance indicate a window
located at a distance further from the sector boundary than the distance of the training set mean,
whereas values less than 1 indicate a window closer to the cutoff boundary than the training set
mean and, as such, possibly with some uncertainty for its classifier label. Classifier distances
calculated from the Sup35 sequence are shown in Figure 3D, wherein window values have been
assigned to the central residue of the window, as we did with the window label.



We used the summed classifier distance for every window labeled P to obtain an overall score for
each protein. This method is more robust to situations where multiple smaller regions drive phase
separation (Figure S4), as compared to, e.g., Sup35, where a single domain drives phase separation.
Windows labeled either F or D do not contribute to this sum. The assumption we are making is
that single regions that promote phase separation are sufficient to drive phase separation of larger
proteins. This is consistent with the observation that many PS proteins still undergo LLPS when
they contain other protein regions or GFP tags (2, 75). As before, we found that only a small
fraction of the human proteome consists of proteins with IDRs driving phase separation (42).
Indeed, using a cutoff for the summed classifier distance of 100 retains 100% and 76% of the
proteins in the Vernon et al in vitro sufficient set and the parent proteins of our PS ID set,
respectively. In contrast, only 10% of human proteins are predicted to drive phase separation
through their IDRs by this cutoff (Figure 4B). Because we are focused solely on IDRs which drive
phase separation, excluding multivalent interactions that involve ordered domains, nucleic acids,
or other drivers of LLPS, the total number of LLPS drivers is somewhat larger than this.

We used this whole protein metric (the summed classifier distance of P-labeled windows) to create
a recall plot, used to assess prediction performance, for multiple datasets (Figures 4C, S5). The
success in recall plots is typically quantified using the area under the curve (AUC), when
comparing a test dataset to a comparison dataset (47, 76, 77). Here, in all cases, we used the human
proteome as the comparison dataset. The SCOPe database and DisProt (excluding LLPS annotated
entries) both have AUC values < 0.5 (Figure 4C), indicating that the human proteome does contain
more proteins predicted to drive LLPS than these negative control groups. As a result, this
approach likely gives a lower bound on the success of a predictor. As expected, our calculated
AUC using ParSe v2 is highest on the in vitro sufficient LLPS drivers from Vernon ef a/ (AUC =
0.99, Figure 4C), which constitute a significant fraction of our positive control dataset (i.e., the
parent proteins of the PS ID set). This is likely both because this is the dataset we used for training
and because it is also the most highly curated dataset. To further test its efficacy, we measured
AUC values for ParSe v2 on datasets of LLPS drivers curated by other groups (16, 47, 76-78),
and found it to perform quite well, with AUC values >0.8 (Figure S5).

Figures 4A and S6 suggest ParSe v2 is an improvement (i.e., slightly higher recall), albeit
marginally, compared to the original ParSe. The strong performance of ParSe v1 is, in part, because
even in the original version, we used scales that gave strong separation between datasets. Utilizing
scales with weaker predictive value leads to a less efficient predictor, as expected (Figure S7).

We then sought to compare ParSe to other published predictors. Although their data are not as
highly curated as others, recent published work by Chen et al included predictions from multiple
predictors on a publicly available dataset, facilitating comparison to other LLPS predictors (76).
Of note, the negative control set in Chen et al contains, by our prediction, a higher fraction of IDRs
driving phase separation than the human proteome (Figure S8D), although whether this is a
problem with the database or with our prediction method is unclear. On their datasets, ParSe
performs similarly as measured by AUC scores, to PScore (16), CatGranule (34), and PLAAC (32)
in identifying proteins that drive LLPS (Figure S8A-C). The quality of the test one can make of
these predictors depends significantly on the quality of the datasets, and so a true test of these



predictors will require significantly more experimental data from both positive and negative
controls (31, 47).

Predicting the effects from mutation on phase separation behavior. Despite its simplicity,
ParSe can predict the IDR(s) driving phase separation for a wide range of known phase-separating
proteins, including FUS, Ddx4, LAF1, and A1l. Several of these proteins have been the targets of
mutagenesis studies implicating specific interactions between amino acids (i.e., cation-m or cation-
anion) in the formation of phase-separated droplets. Cation-m interactions are thought to occur
between different amino acids in the chain, and the balance of residues, e.g., Arg and Tyr, is
thought to be important for LLPS (16, 22, 36). Similarly, net charge per residue, as opposed to
simply the number of negative or positive charges (39), as well as the specific charge pattern (27),
are also thought the be key determinants of LLPS.

Because ParSe is based only on the amino acid composition, and so does not include these higher-
order effects involving combinations of amino acid types, we hypothesize that ParSe will have
little predictive value for mutations that specifically alter the ratio of these pairwise interactions.
More generally, we sought to determine if ParSe v2 could model the effects on phase separation
behavior arising from mutations in the protein sequence. We hypothesize that sequence changes
targeting P-labeled positions would have the greatest ability to modulate phase separation
behavior. To assess this idea, we used the classifier distance whereby a phase separation
“potential” was modeled as the summed classifier distance of P-labeled windows in the protein, as
we did above in the recall plots. We compared the summed classifier distance with quantitative
measures of LLPS behavior from four mutational studies involving three IDRs that individually
exhibit LLPS behavior in vitro as purified components (3, 18, 27, 39) with sets of published
mutations modulating either charge patterning or n-based interactions (Figures 5, S9).

As the different studies used different metrics to quantitatively assess phase separation, we first
began by simply asking whether the summed classifier distance could accurately reproduce the
rank ordering of variants. In Figure 5A, we ordered, from left-to-right, in decreasing phase
separation “potential” as reported within each individual study the mutant and wild type sequences.
Shown is the summed classifier distance of P-labeled windows. In the LAF-1 RGG study (27),
mutants forming phase separated droplets at elevated temperatures indicated increased phase
separation potential, whereas changes in the saturation concentration, csar, at a given temperature
was used in studies with A1-LCD (18, 39). However, the mutant rank order in cs« can change with
the temperature; caused by differences in the standard molar enthalpy associated with phase
separation, Ak°, which reflects the temperature dependence to csar. To manage this issue, mutant
data were separated into two sets. One set corresponding to those mutants with experimental csar
at 4 °C (Table S6), and a second corresponding to those mutants with experimental AA°, As®, and
Ag® (Table S5). Figure 5A shows rank order in A4 ° for the A1-LCD mutants. Figure S9 ranks the
A1-LCD mutants according to csar at 4 °C. The summed classifier distance (i.e., ParSe v2 predicted
PS potential) of each mutant trended somewhat with the experimental rank order, correctly
predicting an increase or decrease relative to the wild type in ~60% of the mutants as presented in
Figure 5 (i.e., with A1-LCD mutants ranked by A%°) and ~65% in Figure S9 (i.e., with A1-LCD
mutants ranked by csa). Thus, ParSe is only moderately able to predict the effects of mutations
designed to disrupt pairwise interactions between amino acids such as those arising from aromatic,
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cation-m, and charge-based interactions. This performance is similar to the performance of PScore,
PLAAC, and catGranule (Figure S10).

To test the importance of pairwise interactions, we explicitly included different types of
interactions in our model to try to account for these contributions and possibly improve the trend
of calculated potential versus observed phase separation behavior. We expanded our calculation
of LLPS potential to include both the summed P classifier distance and terms quantifying the
effects of interactions between amino acids, termed U, for -t and cation-7 interactions, and Uy
for charge-based effects. The contribution of these terms toward predicting the effects of mutations
can give information on the relative importance of the individual terms. We used csar, AR®, As®,
and Ag°® separately to train this calculation; via 31 A1-LCD variants with c¢sar and 27 A1-LCD and
Ddx4 variants with A, As®, and Ag® (Figures 5, S9). As csa 1s highly sensitive to the temperature
(39), we expected the thermodynamic properties to be the more reliable metrics of LLPS. Indeed,
we were best able to predict the effects of sequence changes on the measured A4° (Figure SE). The
predicted PS potential combining summed classifier distance with Ur and U, correctly predicts the
directional change relative to wild type in ~90% of the mutants when Uz and U; were trained
against A/°, and the correlation between experimentally measured A%° and ParSe-calculated PS
potential was reasonably high (R=0.76; Figure 5C). Thus, explicit consideration of interactions
between amino acid types is important for determining PS potential in these mutational studies. It
remains to be seen whether ParSe is able to accurately predict PS potential of mutants designed to
test other aspects of LLPS, such as its dependence on the presence of partner molecules or on a
specific set of solution conditions (e.g., pH, ionic strength, temperature).

Finally, we sought to determine what effect including these corrections to ParSe had on the
identification of proteins driving phase separation. Overall, including U and U, into ParSe
increases the number of proteins identified that drive phase separation in both the PS sets and the
human proteome (Figure S11). As a result, the AUC when comparing either our PS ID set or the
Vernon highly curated set to the human proteome is slightly reduced. However, whether this is a
result of correctly classifying more human proteins as driving LLPS, or whether we have simply
increased the false negative rate remains to be seen.

Discussion

In this work, we focused on identifying IDRs that drive phase separation, with a particular focus
on separating PS IDRs from conventional IDRs that do not drive phase separation. Using carefully
curated datasets of ID, PS ID and folded domains (Figures 1, 2), we developed a sequence-based
predictor of phase separation (ParSe; Figure 3) which is fast enough to scan the entire human
proteome in minutes on a single computer, and as or more accurate than other published predictors
in identifying both proteins and regions within proteins that drive phase separation (Figures 2, 3,
S5, S8, S10). We recognized that a wide variety of amino acid scales show significant differences
between the ID and PS ID datasets, indicating that PS IDRs are a robustly different class of protein
region than non-phase separating IDRs (Figure 2). We conclude that a redundant combination of
molecular mechanisms driving cohesive interactions between amino acids is likely at play. This
helps to explain why our general predictor of IDR hydrodynamic size (Vmoder) is a strong indicator
of LLPS potential, as we found previously (42). Moreover, by including interactions between
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amino acids thought to drive phase separation, we were able to match existing data on mutant
sequences (Figure 5). This extension highlights the importance of pair-wise interactions in
modulating phase separation.

While our approach has proved very successful, it, like other approaches to this problem, has
significant limitations, including limitations in predicting responses to changes in solvent,
limitations of the datasets, and limitations of the constraints of the approach chosen. The formation
of phase separated droplets by polymer chains is a result, very generally, of interactions between
chains that are stronger than the interactions of the chain with the solvent. As a result, LLPS is
strongly dependent on the solution environment. Within cells, there are many proteins which
assemble into membraneless organelles only within specific cellular conditions, e.g., upon
lowering of pH (60). To accurately predict which solution conditions drive phase separation of any
individual protein domain would require a detailed understanding of which mechanisms proteins
use to drive phase separation, how those mechanisms are modulated by solutions conditions, and
how cells modulate solution conditions in different cellular states. As a first step in this process,
our aim is to simply improve identification of which IDRs and which potential mechanisms are
used by IDRs to drive phase separation in a variety of cellular and solution conditions. Thus,
although our predictor has high success in identifying proteins that have been seen experimentally
to drive phase separation, we do not yet distinguish between responses to different cellular
conditions, or, e.g., upper- versus lower-critical temperature. The temperature dependence of
hydrophobicity scales as used by Dignon et al (79) could be a potential future approach to do this.

A primary limitation of our work, as well as others, is that even our well curated datasets have
misidentified regions. For example, because the IDR in a protein that is responsible for phase
separation has not always been identified, we simply used all IDRs from known phase-separating
proteins. As a result, our PS ID set likely includes some IDRs which are not involved in phase
separation. Similarly, our ID set was curated from proteins that have not yet been identified to
phase separate, including those with experiments done at high protein concentration. However, the
lack of observation of phase separation at any one experimental condition does not preclude its
formation. Indeed, a long history of solution screening for crystallography would indicate that
protein behavior can vary dramatically based on solution conditions (80). However, it appears that
our PS ID and ID datasets are sufficiently enriched or depleted for PS IDRs for us to identify key
properties of IDRs that drive phase separation. For example, the performance of our predictor is
improved as the rigor with which the dataset was curated improves. ParSe gives the highest AUC
on the dataset from Vernon et al containing only those proteins shown to drive homotypic LLPS
in vitro, compared to datasets containing PS drivers more generally, and weaker still on datasets
including both LLPS drivers and proteins recruited to existing droplets (Figure S5) (16, 76, 77).

Our approach is based primarily on sequence composition and not on sequence patterning or
combinations of amino acids. It is surprising how effective this strategy is and how many different
scales can be used to distinguish PS IDRs successfully. Nevertheless, our approach, while fast and
effective, is unable to identify pairwise protein interactions that contribute to LLPS. In our analysis
of mutants, we introduced a simple potential whereby amino acid pairs are counted, and this clearly
improves the ability to predict the effects of mutation on phase separation (Figure 5). Pairwise
interaction patterns are probably better identified by machine learning algorithms or simulation
(27, 28,40, 41,47, 77). However, the efficacy of our approach appears to indicate that the primary
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determinant of whether any one sequence will phase separate depends on the overall amino
composition, whereas rearrangements, mutations, or post-translational modifications of that base
sequence will modulate that propensity for phase separation. Thus, it appears that the identification
of sequences that have the potential to phase separate is an easier problem than identifying how
mutation of a few residues will impact that phase separation potential. This result is not specific to
our predictor, as none of the predictors tested here showed significantly better correlation with
changes in phase separation potential upon mutation (Figure S10). We additionally note that
different experimental measurements of LLPS potential give different ordering of mutants (Figures
5, S9), further compounding the issue.

Finally, our approach differs from several others in that we are focused solely on the problem of
separating PS IDRs from IDRs that do not phase separate (47, 76). We are thus not able to identify
proteins that utilize multivalent interactions between folded domains and other folded, ID, or
nucleic acid binding domains as a primary mechanism for driving phase separation (5, 6, 24, 25).
Moreover, we are primarily focused on IDRs that drive phase separation, as opposed to those that
are recruited to existing phase separated droplets, a case which has been recently considered by
Chen et al (76). Our motivation for this narrow focus is that a broader focus might obscure
mechanisms used only by PS IDRs, and that interactions between folded domains are, in general,
better understood than those between disordered domains.

The strong performance of ParSe on existing datasets, the robust nature of differences between PS
IDRs and conventional IDRs, and the high correlation between ParSe and other predictors on
databases of phase separating proteins all give confidence that ParSe is able to identify PS IDRs
with significant accuracy. Because of its speed, ParSe can easily be applied to datasets of arbitrarily
large size. As an example, we measured the summed classifier distance for the human proteome
and found that only a small fraction of the human proteome is likely to drive phase separation
(Figure 4B). Moreover, we identified the 500 proteins with the highest summed classifier distance
in the human proteome, as well as their longest predicted PS ID region (Table S7). Many proteins
involved in stress granule formation, RNA processing, and other functions known to be associated
with membraneless organelles are identified in this process. However, many proteins are also
identified that are not yet associated with a biological process driven by phase separation. This
suggests that, while the fraction of human proteins driving phase separation may be small, not all
of the biological processes relying on phase separation have yet been identified.

Experimental procedures
Protein databases

A set of 224 IDRs from proteins that exhibit LLPS behavior, used for the PS ID set, was obtained
from our prior work (42). For the ID set, we started with 23 IDR sequences used previously (42),
and then added all DisProt consensus ID sequences not having the disorder function ontology
identifier for LLPS, IDPO:00041 (54). Protein sequences in the BMRB (52) with “disordered” or
“IDP” as a keyword or in the entry title were also added to the ID set. BMRB obtained sequences
were restricted to those with >70% of residue positions classified as disordered by Wishart’s
random coil index, using an S? cutoff of 0.6 (81). DisProt and BMRB sequences were culled by
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Metapredict (55), keeping only those predicted to be ID, and seqatoms (57), excluding those that
were highly homologous to folded regions of proteins in the PDB. The folded set started with the
82 folded sequences used previously (42), and then added a set of human proteins with
nonhomologous structures (48), proteins with small to large structures (49), extremophile proteins
(50), metamorphic proteins (51), and membrane proteins that were found by searching the PDB
(56) for the phrase “membrane protein.” Using the PISCES Server (82), the human, extremophile,
metamorphic, and membrane proteins had a maximum of 50% sequence identity within each
folded subset and only X-ray structures with a resolution better than 2.5 A.

Calculation of B-turn propensity and vmode

The propensity to form B-turn structures was calculated by Y| scalei/N, where scalei is the value
for amino acid type 7 in the normalized frequencies for B-turn from Levitt (83). The summation is
over the protein sequence containing N number of amino acids. vmoedel Was introduced previously
(42) as a phenomenological substitute to the polymer scaling exponent (84, 85) and used to
normalize protein hydrodynamic size to the chain length,

Vmodel = log(Rh/Ro)/log(N)a [1]

where R, is a constant set to 2.16 A, and the hydrodynamic radius, R, is calculated from sequence
using an equation found to be accurate for monomeric IDPs (43, 44, 86—88). The equation to
calculate R, for a disordered sequence is,

Ry, = 2.16A - N(0503-0111n(fepD) 4 0.26 - | Qe | — 0.29 - NO, [2]

where fppir is the fractional number of residues in the PPII conformation, and Qe is the net charge.
fpri is estimated from | Prrii/N, where Preii is the experimental PPII propensity determined for
amino acid type i in unfolded peptides (89) and the summation is over the protein sequence. Qner
is determined from the number of lysine and arginine residues minus the number of glutamic acid
and aspartic acid.

Principal component analysis

The statistical program R (90) was used to perform PCA on the sequence sets, and the packages
gefortify, ggplot2, factoextra, MetBrewer, and tidyverse were used to render the results. In the
PCA, the variables were shifted to be zero centered and scaled to unit variance.

ParSe v2 algorithm

For an input primary sequence, whereby the amino acids are restricted to the 20 common types,
ParSe v2 first reads the sequence to determine its length, N. Next, the algorithm uses a sliding

window scheme (Figure 3A) to calculate vmoder, a-helix propensity, and ¢ for every 25-residue
segment of the primary sequence. This window scheme can be applied to proteins with N >25. R
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is calculated by Equation 2, which in turn is used to determine vmode: by Equation 1, by the same
method used in the original ParSe described previously (42). a-helix propensity is calculated as
the sequence sum divided by N using the scale by Tanaka and Scheraga (67). ¢ is calculated as the
sequence sum divided by N using the hydrophobicity scale by Vendrusculo and coworkers (66).
A window is labeled F if ¢ >0.08 (Figure 3B). If ¢ <0.08, a window is labeled P or D depending
on the values of vmoder and a-helix propensity. Windows with high a-helix propensity and high
vmodel are labeled D, while those with low a-helix propensity and low vmoder are labeled P. The P/D
boundary was determined by the line that bisects the overlapping distributions of vioder and a-helix
propensity in the PS ID and ID sets, given by vmoder = -0.244+0-helix propensity + 0.789. The
window label is assigned to the central residue in that window. N- and C-terminal residues not
belonging to a central window position are assigned the label of the central residue in the first and
last window, respectively, of the whole sequence. Protein regions predicted by ParSe v2 to be PS,
ID, or folded are determined by finding contiguous residue positions of length >20 that are >90%
of only one label P, D, or F, respectively. When overlap occurs between adjacent predicted regions,
owing to the up to 10% label mixing allowed, this overlap is split evenly between the two adjacent
regions.

Classifier distance calculation

The classifier distance is the normalized distance of a ParSe v2 generated window into its classifier
sector (i.e., F, D, or P sector) and relative to the cutoff boundary (Figure 3B). For F labeled
windows, the classifier distance is ¢ (of the window) minus the cutoff value of 0.08, and then
normalized to distance of the folded set mean ¢ (0.1164) to the cutoff. Specifically, this is (¢ —
0.08)/(0.1164 — 0.08). For P or D labeled windows, first we find the point on the P/D boundary
(Vmodet = -0.244 - a-helix propensity + 0.789) that makes a perpendicular bisector when paired with
the window values of vmoder and a-helix propensity. Then the distance between this point and the
point defined by the window values of vmoder and a-helix propensity is determined. Specifically,
this distance 1s sqrt((o — x)* (ot — X) + (Vmodel — y) - (Vmodel — y)) Where a 1s the a-helix propensity, x
is (0/0.244 + 0.789 — Vimode)/(0.244 + 1/0.244) and y is (x — )/0.244 + vmoder. This distance is
normalized by dividing by 0.019 (the distance from the boundary to either of the set means).

PSCORE calculation
PSCORE, which is a phase separation propensity predictor (16), was calculated by computer

algorithm wusing the Python script and associated database files available at
https://doi.org/10.7554/eLife.31486.022.

Granule propensity calculation

Granule propensity was calculated by using the catGranule (34) webtool available at
http://www.tartaglialab.com.
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PLAAC LLR calculation

LLR score, which identifies prion-containing sequences (91), was calculated by using the webtool
available at http://plaac.wi.mit.edu.

Metapredict calculation

Metapredict score (55), which predicts the presence of ID in a sequence, was calculated by
computer algorithm using the Python script available at http://metapredict.net.

Calculation of U

The relative contributions of aromatic and cation-m interactions to LLPS in our calculations
followed the observed rank order by Wang et al: Tyr-Arg > Tyr-Lys ~ Phe-Arg > Phe-Lys (22).
To mimic this ranking, we assumed 3:2:1 weighting and, also, that Phe-Tyr interactions would
contribute comparably to Phe-Lys interactions,

Ur=a (3-(#Y x #R / (#Y — #R)sy ##Rr)
+2-(#HY x #K / (#Y — #K)#y 24Kk) + 2-(#F X #R / (#F — #R)#r +#R)
+1-(#F x #K / (#F — #K)#r 24x) + 1-(#F X #Y / (#F — #Y )ur 2#v)). [3]

In Equation 3, #Y, #R, #F, and #K represent the number of Tyr, Arg, Phe, and Lys residues,
respectively, in a sequence, calculated on a per-window basis, and a is a fitting parameter (see
below). Thus, Ur increases with increasing Tyr, Arg, Phe, and Lys content, and more so when
interaction partners are present at similar levels. When the divisor is zero (e.g., when #Y = #R), it
is changed to 1 to avoid infinite potentials.

Window-specific Ur was added to the classifier distance at windows labeled P. Moreover, Ur was
applied to D-labeled windows, allowing for the possibility of labels changing from D to P. This
would occur when the value for Ur was larger than the classifier distance at a D-labeled window.
Thus, protein regions that otherwise have characteristics more like the ID set, in vimoder and a-helix
propensity, could be labeled P if U, was large enough. When this occurs, the given classifier
distance was determined by the difference between Uz and the original classifier distance of the
window formerly labeled D.

The parameter a in Equation 3 was determined by finding the optimal correlation of ParSe-
calculated PS potential to A/° (finding a = 0.14; Figure 5B), As® (finding a = 0.08), Ag® (finding
a=0.11), or ¢csa (finding a = 0.28). In each case, the mutants used to fit @ were limited to the subset
with identical charge and charge patterns, determined by calculating the net charge per residue,
NCPR, and sequence charge decoration, SCD, of each sequence. NCPR is the number of Lys and
Arg residues minus the number of Glu and Asp residues, divided by N. SCD is calculated by N
N >iqig))|j-i]V?, where g is the amino acid specific charge (92).
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Calculation of U,.

To model the contributions of charge-based interactions to LLPS, we build upon the observations
by Schuster et al (27) and Bremer et al (39) that changes in SCD and NCPR, respectively, can
affect phase separation potential. Accordingly, a simple charge-based potential was defined,

U, =b-SCD + c-|NCPR], [4]

where b and c are fitting parameters, and Uy is calculated on a per-window basis. Uy is added to
the classifier distance at each window labeled P, and is applied to windows labeled D, following
the scheme described above for Uz, again allowing for the possibility of labels changing from D
to P. As with a, the parameters b and ¢ were fixed by finding the optimal correlation of calculated
PS potential and A#° (finding 8.4 and 5.6, respectively; Figure 5C), As® (finding 4.6 and 7.0,
respectively), Ag° (finding 5.2 and 5.4, respectively), or csa (finding -16.0 and 33, respectively).

Calculation of Ah°, As®, and Ag® from temperature dependence to csar.

For some Ddx4 and A1-LCD sequences, A#° and As® (and thus Ag®) were not available, but csa
measured at different temperatures has been reported (3, 18). For these proteins, the standard molar
chemical potential, x°, was used to relate cs« in the dilute and dense phases, caine and cdense,
respectively, to the standard molar enthalpy and entropy associated with phase separation (39),

A= Ag®=Ah° — T As®
= U %dense — U °dilute
= Wdense — R T In(Cdense/ Cref) — (Uditute — R - T In(Cditute/ Crer))
= R T In(cditute/Cdense),

where tidense — Wdilute 1S zero at equilibrium, R is the universal gas constant, and 7 is temperature.
By plotting the natural logarithm of csar at different temperatures, a linear fit versus 1/7 yields A#°
and As°. For A1-LCD mutants, 0.03 M was used for cdense (39). For Ddx4 mutants, 0.01 M was
used for cdense (3). Ag® was calculated from Ah° — T As® and the standard temperature (273.15 K).

Data availability

The Parse v2 algorithm written in Fortran, Parse v2.f, can be downloaded at
https://github.com/stevewhitten/ParSe v2. A  webtool version can be used at
https://stevewhitten.github.io/Parse_v2_web.
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Table

Table 1. Summary of mean vmodel in protein sequence sets.

Set Number Vodel * t-test®  U-test?
PSID 224 0.542 +0.020 - -
1D 121 0.558 +0.022 2.5¢10 1.6e!!
Folded 421 0.537 +£0.008 1.2¢3 1.5¢3

@ Mean + standard deviation.

b One-tail p-value, where p-value <0.05 indicates the compared sets are statistically different in

their means. Comparisons are to the PS ID sequence set.
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Table 2: Summary of mean f-turn propensity in the protein sequence sets.

B-turn
Set Number propensity * t-test®  U-test?
PS ID 224 1.152 +£0.087 - -
ID 121 1.101 £0.075 4.6¢e8 4.9¢”
Folded 421 0.971 £0.040 2.0e 1.1e®

¢ Mean + standard deviation.
b One-tail p-value, where p-value <0.05 indicates the compared sets are statistically different in

their means. Comparisons are to the PS ID sequence set.
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Figure 1. Sequence-calculated vmodes and B-turn propensity separate protein regions by class.
A, comparing vmoedel and B-turn propensity in each sequence set. Filled circles show the mean and
standard deviation in vmoeder and B-turn propensity in the PS ID (blue), ID (red), and folded (black)
sets. Open and dashed circles show the mean and standard deviation in individual subsets: previous
ID and BMRB & DisProt (red); previous folded, human, small-to-large, extremophile, membrane,
and metamorphic (black). B, comparing vmodes and B-turn propensity in homopolymers (N = 100)
where amino acid type is identified by its one-letter code. A centralized origin was mapped into
this plot at the B-turn propensity and vmoeder values of 1.101 and 0.558, respectively, which are the
means in the ID set. From this origin, every amino acid type can be represented by a distance
magnitude and angular displacement; as shown for proline. A color wheel is used to convey
angular displacement. C, magnitude/color plots are compared to the ParSe (original version)
predictions for Sup35 (UniProt ID P05453), FUS (UniProt ID P35637), and Ddx4 (UniProt ID
QONQIO), and to regions reported (i.e., identified) by experiment. Each figure shows the
magnitude (y-axis) and color (angular displacement) by residue number (x-axis), as determined by
amino acid type and its magnitude/color from panel B. ParSe predictions use blue (PS), red (ID),
and black (folded). Striped represents >50% identity to a known folded protein.
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Figure 2. Robust differences in intrinsic sequence-calculated properties are found when
comparing means by protein region class. 4-C, p-values calculated by Welch’s unequal
variances ¢-test, shown as -log(p-value), compares set means in 567 amino acid scales and vmodel.
Conformation-based scales, highlighted by blue boxplots, are grouped by type according to a-helix
(Helix), sheet or strand (Sheet), B-turn, tight turn, or reverse turn (Turn), coil or loop (Coil), and
aperiodic (Aper) propensities. Physicochemical-based scales, highlighted by green box plots, are
grouped by type according to flexibility (Flex), size (Size), composition (Comp), negative charge,
positive charge, or net charge (Charge), and hydrophobicity (¢). Hydrophobicity scales were
separated into two types: structure-based (¢ _struct), where the scale is derived from a structural
metric like burial or contact frequency in surveys of high-resolution protein structures, and
solution-based (¢ sol), where the scale is obtained from solution studies like measuring the
transfer free energy of the amino acids from water to an organic solvent. Scales (e.g., refractivity,
crystal melting point) that did not easily map into a conformation- or physicochemical-based group
were combined separately (Other). Boxplots show the dataset median (50" percentile) with the
central bar, and the vertical width spans the 25" to 75" percentiles. Open triangles highlight the
smallest p-value when comparing means in the PS ID and ID sets (from an a-helix propensity
scale), the smallest p-value when comparing means in either the PS ID or ID sets with the folded
set (from a structure-based hydrophobicity scale), and the B-turn propensity scale used in ParSe.
D, bidimensional plot from PCA showing the modes of variance in the combined ID set (PS ID
and ID) arising from conformation- (blue arrows) and physicochemical-based (green arrows)
scales relative to the two principal components of variance, given as Dimension 1 and Dimension
2. E, scree plot showing the percent of the total variance in the combined set of ID sequences that
is captured by each principal component (i.e., dimension). F, sequence calculated vimoder, 0-helix
propensity, and hydrophobicity for the sequences in the PS ID (blue), ID (red), and folded (black)
sets; spheres show the set mean + c.
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Figure 3. Predicting protein regions from sequence using the ParSe v2 algorithm. 4, a sliding
window algorithm is used to identify from sequence regions within a protein that match the PS ID,
ID, and folded classes. Hydrophobicity (¢), a-helix propensity (), and vmoder are calculated for
each contiguous stretch of 25-residues, or “window”, in the primary sequence. B, each window is
assigned a label, F, P, or D, depending on the values of @, a, and vmoder. In the left figure, open
circles are ¢ and vmoder calculated for each 25-residue window in the Sup35 sequence (UniProt ID
P05453); filled circles are the mean + ¢ in ¢ and vmoder in the ID (red), PS ID (blue), and folded
(black) sequence sets. Windows with ¢ > the folded set mean - 20 (dashed line) are labeled F. For
windows with ¢ < the folded set mean - 2o, the label is determined by o and vmoder; P for low a
with low Vmoder, or D for high a with high vmoder, as shown in the right figure. Filled circles show
the mean + ¢ in o and vmoder in the ID (red) and PS ID (blue) sets. C, contiguous regions (N >20)
in the Sup35 primary sequence that were 90% of only one label P, D, or F are colored blue, red,
or black, respectively, to represent predicted PS, ID, or folded regions. Predictions from the
original ParSe and ParSe v2 are compared to the reported regions identified by experiment. D,
classifier distance of each window, assigned to the central residue of the window and then colored
according to its label P (blue), D (red), or F (black).
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Figure 4. ParSe predicted PS regions are rarely found in the human proteome. 4, ParSe
(stippled lines) and ParSe v2 (solid lines) were used to identify regions in proteins that were >90%
labeled P, which are referred to as phase-separating, PS, regions. Shown by the y-axis is the percent
of proteins in a set with PS regions at least as long as the length indicated by the x-axis. The human
proteome (UniProt reference proteome UP000005640) is given by black lines; DisProt (minus
LLPS annotated entries) by red lines; SCOPe (version 2.07) by grey lines; a set of in vitro sufficient
homotypic LLPS proteins by blue lines; and the full sequences of the proteins in the PS ID set by
light blue lines. B, the summed P classifier distance was calculated by ParSe v2 for the protein sets
in panel A. Shown by the y-axis is the percent of proteins in a set with a summed P classifier
distance at least as much as the value indicated by the x-axis. Lines were colored using the same
coloring scheme as in panel A. C, reproduction of the results in panel B wherein each set was
directly compared to the human proteome result. Here, lines show the % of a set (using the same

coloring scheme) plotted against the human proteome % of set for values of the summed P
classifier distance.
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Figure 5. Predicting mutation effects on phase separation behavior. 4, the summed classifier
distance of P-labeled windows was used to calculate a phase-separating (PS) potential from
sequence. Mutants were grouped by experimental study and colored grey for wildtype (WT),
yellow for mutants with both NCPR and SCD identical to the WT values, and green otherwise
(non-WT NCPR and SCD). Placement left-to-right within a study follows the reported PS potential
in rank, from high-to-low, for comparison to the predicted PS potential. A1-LCD mutants used
Ah° and not csa to establish rank. B, A1-LCD mutants with NCPR and SCD matching the WT
values were used to fix a in Equation 3 by optimizing the correlation of Parse-calculated PS
potential (including Uxr) to Ak °; the right figure shows the optimal correlation. C, similarly, all A1-
LCD and Ddx4 mutants with experimental A4° were then used to fix b and ¢ in Equation 4 by
optimizing the correlation of ParSe-calculated PS potential (including Uz and Uy) to AA°; the right
figure shows the optimal correlation. D, ParSe-calculated PS potentials (including Ur and U,
optimized to A4 °) for the mutant and WT sequences. E, percent of mutants correctly predicting an
increase or decrease in PS potential relative to the WT before and after including Uz and Uy in the
calculations. Results are binned according to experimental value that was used to fix a, b, and ¢ in
Uz and U,
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Supporting Tables

Table S1. List of folded protein regions.

UniProt
Name Database “ accession folded regions (NV)?® PDB entries
number
PPP5C Wang et al P53041 19-177 (159) lal7.pdb
Galectin-3 Wang et al P17931%** 114-250 (137) la3k.pdb
RBI1 Wang et al P06400 378-562 (185) 1ad6.pdb
CD40LG Wang et al P29965 116-261 (146) laly.pdb
FABP5 Wang et al Q01469 3-135 (133) 1b56.pdb
LALBA Wang et al P00709 20-142 (123) 1690.pdb
CDKN2D Wang et al P55273 7-162 (156) 1bd8.pdb
AMBP Wang et al P02760 230-339 (110) Ibik.pdb
FKBP1A Wang et al P62942 2-108 (107) 1bkf.pdb
SPTBN1 Wang et al Q01082 173-280 (108) 1bkr.pdb
TIMP2 Wang et al P16035 27-208 (182) 1br9.pdb
ZBTB16 Wang et al Q05516 6-126 (121) 1buo.pdb
LGALS3BP Wang et al Q08380 19-127 (111) 1by2.pdb
HSO90AA1 Wang et al P07900 11-223 (213) 1byq.pdb
CRABP2 Wang et al P29373 2-138 (137) Icbs.pdb
CD4 Wang et al P01730 26-203 (178) ledy.pdb
CALMI1 Wang et al PODP23 5-148 (144) Lcll.pdb
HRAS Wang et al PO1112 1-166 (166) lctq.pdb
APAF1 Wang et al 014727 1-93 (93) IcyS.pdb
F5 Wang et al P12259 2066-2224 (159) lezt.pdb
F8 Wang et al P00451 2190-2348 (159) 1d7p.pdb
ASGRI1 Wang et al P07306 154-281 (128) 1dv8.pdb
RNASEI1 Wang et al P07998 35-154 (120) le21.pdb
CD69 Wang et al Q07108 83-199 (117) 1e87.pdb
PLEKHAI Wang et al QO9HB21 190-293 (104) leaz.pdb
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CCLS Wang et al P80075 25-99 (75) lesr.pdb
DAPP1 Wang et al Q9UNI19 162-261 (100) 1fao.pdb
PFN1 Wang et al P07737 2-140 (139) fil.pdb

AIMP1 Wang et al Q12904 150-313 (164) 1110.pdb

FN1 Wang et al P02751 1543-1633 (91) 1fna.pdb
FCGR3B Wang et al 075015 21-193 (173) 1fnl.pdb

IGHE Wang et al P01854 217-424 (208) 1fp5.pdb
GSTZ1 Wang et al 043708 5-212 (208) 1fwl.pdb
SELE Wang et al P16581 22-178 (157) lglt.pdb
CST3 Wang et al P01034* 36-146 (111) 1g96.pdb
MMP2 Wang et al P08253 461-660 (200) 1gen.pdb
CALML3 Wang et al P27482 5-148 (144) 1ggz.pdb
TXNLI1 Wang et al 043396 2-108 (107) 1gh2.pdb
CTSS Wang et al P25774 115-331 (217) 1glo.pdb
GABARAP Wang et al 095166* 1-117 (117) 1gnu.pdb
IGF2R Wang et al P11717 1515-1647 (133) 1gp0.pdb
RNASE2 Wang et al P10153 28-161 (134) lgqv.pdb
COL10A1 Wang et al Q03692 549-680 (132) 1gr3.pdb
MADCAMI1 Wang et al Q13477** 23-227 (206) 1gsm.pdb
NCF4 Wang et al Q15080 2-144 (143) 1h6h.pdb
BLVRB Wang et al P30043 1-205 (205) 1hdo.pdb
QDPR Wang et al P09417 9-244 (236) 1hdr.pdb
FABP3 Wang et al P05413 2-132 (131) 1hmt.pdb
GSTM2 Wang et al P28161 2-218 (217) lhna.pdb
MBL2 Wang et al P11226 108-248 (141) lhup.pdb
L4 Wang et al P0O5112 25-153 (129) 1hzi.pdb
PCMT1 Wang et al P22061 3-226 (224) liln.pdb
GTF2F1 Wang et al P35269 449-517 (73) 1i27.pdb
UBRS5 Wang et al 095071 2393-2453 (61) 1i2t.pdb

34



PRNP Wang et al P04156%* 119-226 (108) 1i4m.pdb
LPA Wang et al P08519 1274-1355 (82) 1i71.pdb
MMPS Wang et al P22894 100-262 (163) 1i76.pdb
ICAM1 Wang et al P05362 28-212 (185) liam.pdb
ARHGEF1 Wang et al Q92888* 44-233 (190) liap.pdb
LMNA Wang et al P02545 436-544 (113) lifr.pdb
FGF9 Wang et al P31371 52-208 (157) lihk.pdb
LCK Wang et al P06239 123-226 (104) lijr.pdb
FGF4 Wang et al P08620 79-206 (128) lijt.pdb
HSD17B4 Wang et al P51659 622-736 (115) likt.pdb
ABHD14B Wang et al Q961U4 2-209 (208) limj.pdb
UBE2V2 Wang et al Q15819 7-145 (139) 1j74.pdb
ANAPCI10 Wang et al Q9UM13 2-162 (161) 1jhj.pdb
MMP12 Wang et al P39900 106-263 (158) 1jk3.pdb
LYZ Wang et al P61626 19-148 (130) 1jsf.pdb
TCL1A Wang et al P56279 4-114 (111) 1jsg.pdb
GGAl Wang et al QoUJYS5 7-145 (139) Ijwf.pdb
MATK Wang et al P42679 117-213 (97) 1jwo.pdb
PTK2 Wang et al Q05397 908-1049 (142) 1k04.pdb
BCL3 Wang et al P20749 133-360 (228) 1k1b.pdb
ANG Wang et al P03950 26-147 (122) 1k59.pdb
RAP2A Wang et al P10114 1-167 (167) 1kao.pdb
GSN Wang et al P06396 185-288 (104) lkcq.pdb
NRP1 Wang et al 014786 273-427 (155) lkex.pdb
DHFR Wang et al P00374 2-187 (186) 1kmv.pdb
HINT1 Wang et al P49773 16-126 (111) 1kpf.pdb
COL6A3 Wang et al P12111 3108-3165 (58) 1kth.pdb
PROCR Wang et al Q9UNNS 25-194 (170) 118j.pdb
GNLY Wang et al P22749 63-136 (74) 119L.pdb
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CLC Wang et al Q05315 2-142 (141) llcl.pdb
B2M Wang et al P61769%* 21-116 (96) 11ds.pdb
PCTP Wang et al QIUKL6 8-210 (203) lInl.pdb
RBP7 Wang et al Q96R05 2-134 (133) 11pj.pdb
THBSI Wang et al P07996 434-546 (113) 11sl.pdb
RND3 Wang et al P61587 22-200 (179) Im7b.pdb
TGFBR2 Wang et al P37173 49-153 (105) 1m9z.pdb
SOD1 Wang et al P00441* 2-154 (153) Imfm.pdb
RAC1 Wang et al P63000 2-181 (183) Imhl.pdb
NT5M Wang et al QINPBI1 34-227 (194) 1mh9.pdb
SUOX Wang et al P51687 81-160 (80) 1mj4.pdb
APP Wang et al P05067** 28-123 (96) Imwp.pdb
RABSA Wang et al P20339 15-181 (167) In6h.pdb
KIR2DL1 Wang et al P43626 27-221 (195) Inkr.pdb
FKBP3 Wang et al Q00688 109-224 (116) 1pbk.pdb
CYTH2 Wang et al Q99418 52-246 (195) Ipbv.pdb
PIK3R1 Wang et al P27986 3-85(83) 1pht.pdb
PLA2GRA Wang et al P14555 21-144 (124) Ipod.pdb
CDC25B Wang et al P30305 388-565 (178) 1qb0.pdb
REG1A Wang et al P05451 23-166 (144) 1qdd.pdb
ESR1 Wang et al P03372%%* 304-551 (248) 1gkt.pdb
ACTN2 Wang et al P35609 391-635 (248) 1quu.pdb
RBP4 Wang et al P02753 19-193 (175) Lrbp.pdb
PLA2G4A Wang et al P47712 17-141 (126) Irlw.pdb
SPARC Wang et al P09486 153-303 (151) Isra.pdb
TNC Wang et al P24821 802-891 (90) Iten.pdb
CLEC3B Wang et al P05452 66-202 (137) 1tn3.pdb
ITGAL Wang et al P20701 153-333 (181) 1zon.pdb
ICAM2 Wang et al P13598 25-216 (192) 1zxq.pdb
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ABLI Wang et al P00519 57-218 (163) 2abl.pdb
PPIA Wang et al P62937 2-165 (164) 2cpl.pdb
FCGR2B Wang et al P31994 46-218 (173) 2fcb.pdb
FTHI Wang et al P02794 6-177 (172) 2fha.pdb
IL10 Wang et al P22301 24-178 (155) 2ilk.pdb
S100A7 Wang et al P31151 2-97 (96) 2psr.pdb
TGFB2 Wang et al P61812 303-414 (112) 2tgi.pdb
FGG Wang et al P02679 170-418 (249) 3fib.pdb
CXCL8 Wang et al P10145 32-99 (68) 3il8.pdb
ACP1 Wang et al P24666 2-158 (157) Spnt.pdb
VIL1 Fitzkee & Rose P02640 792-826 (36) 1vii.pdb
Prked Fitzkee & Rose P28867 231-280 (50) Iptq.pdb
spg Fitzkee & Rose P06654 228-282 (56) 2gbl.pdb
FYN Fitzkee & Rose P06241 84-142 (59) 1shfA.pdb
cspB Fitzkee & Rose P32081 1-67 (67) lcsp.pdb
UBC Fitzkee & Rose POCG48 609-684 (76) lubq.pdb
cl Fitzkee & Rose P03034 7-93 (87) 1Imb.pdb
Barstar Fitzkee & Rose P11540 2-90 (89) 1al9A.pdb
ACYP1 Fitzkee & Rose P41500 4-101 (98) 2acy.pdb
PETE Fitzkee & Rose P00299 70-168 (99) 2pcy.pdb
CYCS Fitzkee & Rose P00004 2-105 (104) lhre.pdb
Pik3rl Fitzkee & Rose Q63787 321-431 (111) 1fu6A.pdb
Hemerythrin Fitzkee & Rose P02246 1-113 (113) 2hmgA.pdb
LALBA Fitzkee & Rose P00711 20-141 (122) 1f6sA.pdb
RNASEI1 Fitzkee & Rose P61823 27-150 (124) 1xptA.pdb
cheY Fitzkee & Rose POAE67 2-129 (128) lehc.pdb
LYZ Fitzkee & Rose P00698 19-147 (129) lhel.pdb
Fabp2 Fitzkee & Rose P02693 2-132 (131) lifb.pdb
nuc Fitzkee & Rose P00644 83-223 (141) 2sns.pdb
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CALM Fitzkee & Rose P62157 5-147 (143) lem1A.pdb
MB Fitzkee & Rose P02185 2-154 (153) Imbo.pdb
mhA Fitzkee & Rose POA7Y4 1-155 (155) 2rn2.pdb
gag-pol Fitzkee & Rose 092956 1331-1487 (162) lasu.pdb
E (endolysin) Fitzkee & Rose P00720 1-164 (164) 21zm.pdb
DFR1 Fitzkee & Rose P22906 1-192 (192) 1ai9A.pdb
mutY Fitzkee & Rose P17802 1-225 (225) Imun.pdb
Triosephosphate Fitzkee & Rose P04789 2-250 (249) 5timA.pdb
isomerase

HAGH Fitzkee & Rose Q16775 49-308 (260) 1gh3A.pdb
ecoRIR Fitzkee & Rose P00642 17-277 (261) leriA.pdb
galE Fitzkee & Rose P09147 1-338 (338) Inah.pdb
CKMTI1A Fitzkee & Rose P12532 39-417 (379) 1qk1A.pdb
PGK1 Fitzkee & Rose P00560 2-415 (415) 3pgk.pdb
apr Panja et al P00782 108-382 (274) la2q.pdb
adk Panja et al P69441 1-214 (214) lake.pdb
amy Panja et al P29957 25-472 (448) lagm.pdb
hip Panja et al P00260 38-122 (85) 1b0y.pdb
amyE Panja et al P00691 42-466 (425) Ibag.pdb
FGF2 Panja et al P09038 161-285 (125) 1bas.pdb
amyS Panja et al P06278 32-512 (481) 1bli.pdb
axe-2 Panja et al 059893 28-234 (207) 1bs9.pdb
sodB Panja et al QI9X6W9 3-213 (211) Icoj.pdb
ferl Panja et al P00217 2-129 (128) 1doi.pdb
phnA Panja et al Q51782 2-407 (404) lei6.pdb
cypl19 Panja et al Q55080 1-367 (367) 1f4t.pdb
atsA Panja et al P51691 3-527 (524) 1hdh.pdb
hip2 Panja et al P38524 1-71 (71) lhpi.pdb
katG2 Panja et al 059651 18-731 (707) litk.pdb
aspC Panja et al Q8RR70 1-388 (388) 1332.pdb
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SS02706 Panja et al P50389 3-236 (226) 1jds.pdb

mtnN Panja et al POAF12 1-230 (226) ljys.pdb

rpiA Panja et al 050083 1-229 (229) 11kS.pdb

VNG_1446H Panja et al Q9HPW4 11-77 (67) Imog.pdb
speE Panja et al Q5SK28 1-312 (309) luir.pdb

Endoglucanase Panja et al P06564 578-761 (181) luww.pdb
acyP Panja et al P84142 2-91 (90) 1v3z.pdb
mdh Panja et al 059028 2-360 (337) 1v9n.pdb
serC Panja et al QI9RME2 2-361 (360) 1w23.pdb
amyA Panja et al Q8GPL8 28-515 (488) Iwza.pdb
APE 2278 Panja et al Q9Y9LO 2-245 (240) 1x0r.pdb

mvaS Panja et al QI9FD71 1-383 (383) 1x9e.pdb
Rv1264 Panja et al POWMU9 14-376 (360) 1y10.pdb
adk Panja et al P27142 1-217 (217) 1zin.pdb

Rv1885c¢c Panja et al POWIB9 35-199 (165) 2a02.pdb
ndk Panja et al P61136 4-158 (155) 2azl.pdb
gdh Panja et al Q977U7 1-357 (355) 2b5v.pdb
tdh Panja et al 058389 3-347 (327) 2d8a.pdb
Lysozyme 1 Panja et al Q7YTI16 20-141 (122) 2fbd.pdb

Cat-1 Panja et al Q24940 17-326 (306) 206x.pdb
oxc Panja et al POAFIO 5-551 (547) 2q27.pdb
Thioredoxin-

dependent Panja et al G1K3P1 1-76 (156) 2xhf.pdb

peroxiredoxin

sod Panja et al QI9Y8HS 1-212 (212) 3akl.pdb
I‘?rloktaegg: iZﬂriZ Panja et al Q68GV9 104-382 (279) 3f7m.pdb
dapE Panja et al P44514 1-376 (370) 3icl.pdb

pepQ Panja et al Q44238 1-440 (425) 3124.pdb

sodB Panja et al P84612 1-192 (192) 3lio.pdb

Enpp2 Panja et al QO9RI1E6 51-855 (805) 3nkm.pdb
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phoK Panja et al AIYYW7 31-556 (526) 3q3q.pdb
cheCl Panja et al Q5V4K4 2-206 (200) 3qta.pdb
FOXG 17421 Panja et al B3AO0SS 1-327 (327) 3u7b.pdb
I‘;“&l;zggstase Panja et al B5BP20 31-527 (497) 3wbh.pdb
LGMN Panja et al Q99538 26-288 (267) 4aw9.pdb
LMRG 02624 Panja et al AO0AOH3GD84 39-526 (488) 4cdb.pdb
bop Panja et al Q5UXY6 3-238 (236) 4pxk.pdb
mdh Panja et al A9W386 2-320 (319) 4ror.pdb
patA Panja et al P42588 7-459 (453) 4uox.pdb
cysQ Panja et al POWKIJ1 10-267 (266) 5djf.pdb
F Chen et al P11209 480-515 (36) 1g2cF.pdb
HA Chen et al P03437 385-498 (114) 1htmB.pdb
SERPINB14 Chen et al P01012 2-386 (381) 1tiB.pdb
Plk4 Chen et al Q64702 845-919 (75) IlmbyA.pdb
PVCO01 130047600 Chen et al 060989 76-450 (375) ImigB.pdb
MATALPHA2 Chen et al POCY08 113-189 (77) ImnmC.pdb
colG Chen et al Q9X721 1005-1118 (111) InqdA.pdb
SRP102 Chen et al P36057 36-244 (191) InrjB.pdb
PDESA Chen et al 076074 535-860 (311) 1rkpA.pdb
cobB Chen et al P75960 40-274 (225) 1s5pA.pdb
F Chen et al P04849 122-183 (62) 1svfC.pdb
SODI Chen et al P00441%* 2-154 (153) luxmK.pdb
F Chen et al 089342 143-205 (63) 1wp8C.pdb
S Chen et al P59594 892-981 (124) IwyyB.pdb
t110464 Chen et al Q8DLMO 1-112 (102) 1x0gA.pdb
hlyA Chen et al P09545 46-741 (663) 1xezA.pdb
SAR-endolysin Chen et al Q37875 9-185 (170) 1xjtA.pdb
Relb Chen et al Q04863 276-378 (110) 1zk9A.pdb
ftsH Chen et al QIWZ49 150-606 (421) 2¢e7C.pdb
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suhB Chen et al 033832 1-254 (254) 2p3vA.pdb
Polyprotein Chen et al 036607 3-230 (227) 2pbk.pdb
NRP2 Chen et al 060462 276-595 (315) 2qqjA.pdb
MAD2LI1 Chen et al Q13257 1-205 (202) 2vixL.pdb
prgl Chen et al P41784 19-80 (62) 2x9cA.pdb
FN1 Chen et al P02751 516-606 (91) 3ejhA.pdb
CST3 Chen et al P01034** 38-146 (107) 3gaxA.pdb
R Chen et al P27359 1-165 (165) 3hdeA.pdb
FBP2 Chen et al 000757 9-337 (326) 3ifaA.pdb
PRIM2 Chen et al P49643 272-457 (167) 319gB.pdb
B2M Chen et al P61769* 21-119 (99) 3lowA.pdb
gag-pol Chen et al P04585 588-1139 (552) 3meeA.pdb
gp-C Chen et al QIoICW1 313-422 (103) 3mkoA.pdb
rsmH Chen et al P60390 8-313 (283) 3tkaA.pdb
CcwceC2 Chen et al Q12046 3-227 (225) 3tp2A.pdb
PR Chen et al Q3L181 1-336 (311) 3uyiA.pdb
macA Chen et al Q74FY6** 23-346 (320) 4aalA.pdb
Diphtheria toxin Chen et al P00588 37-567 (499) 4ae0A.pdb
SUN2 Chen et al Q9UH99 522-717 (196) 4dxrA.pdb
bep Chen et al Q9YA14 2-160 (160) 4gqcB.pdb
PRNP Chen et al Q95211 125-221 (97) 4hlsA.pdb
Grem?2 Chen et al 088273 50-160 (111) 4jphB.pdb
pimA Chen et al AOQWG6 1-373 (359) 4n9wA .pdb
plyB Chen et al Q5WIES 53-519 (465) 40v8A.pdb
KWL1 Chen et al P85261 48-213 (158) 4pmkA.pdb
COMT Chen et al P21964 54-266 (207) 4pyiA.pdb
MJ1213 Chen et al Q58610 1-109 (109) 4qhfA.pdb
gbs1529 Chen et al Q8E473 494-642 (141) 4rmbA.pdb
OASI Chen et al Q29599 1-349 (349) 4rwnA.pdb
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ply Chen et al Q7ZAKS5 1-471 (471) 5aoeB.pdb
malE Chen et al POAEX9 27-393 (402) 5b3zA.pdb
TRAPI Chen et al Q12931 82-294 (205) 5£3kA.pdb
G Chen et al POC2X0 1-409 (409) 512mA.pdb
DVL2 Chen et al 014641 416-509 (92) 5suzA.pdb
MADCAMI1 membrane protein Q13477* 23-231 (209) 1bgsA.pdb
MSN membrane protein P26038 4-297 (289) leflA.pdb
FCGR2A membrane protein P12318 37-207 (171) 1fcgA.pdb
SELP membrane protein P16109 42-199 (158) 1glsA.pdb
EEA1 membrane protein Q15075 1289-1411 (123) 1jocA.pdb
GGA1 membrane protein QIUJYS5 494-639 (146) Ina8A.pdb
SDCBP membrane protein 000560 197-273 (82) 1r6jA.pdb

CLIC1 membrane protein 000299 22-234 (213) 1rk4A.pdb
NGF membrane protein PO1138 132-236 (99) IsglA.pdb
ANTXR2 membrane protein P58335 38-218 (181) IshuX.pdb
IL1IRAPL1 membrane protein QINZNI1 403-561 (147) 1t3gA.pdb
PGLYRP3 membrane protein Q96LB9 177-341 (165) 1twgA.pdb
CD3E membrane protein P07766 33-123 (91) IxiwA.pdb
CFTR membrane protein P13569 388-671 (267) I1xmiA.pdb
TRPV2 membrane protein Q9Y5S1 71-318 (244) 2137A.pdb
SYNIJ2BP membrane protein P57105 5-98 (100) 2jikA.pdb

GRIP1 membrane protein Q9Y3R0 148-239 (94) 2jilA.pdb

SELENOS membrane protein QI9BQE4 52-121 (69) 2q2fA.pdb
CD59 membrane protein P13987 26-102 (78) 2uwrA.pdb
RAMP2 membrane protein 060895 58-135 (78) 2xvtA.pdb
ARHGEF1 membrane protein Q92888** 22-233 (165) 3ab3D.pdb
CNKSR2 membrane protein Q8WXI2 6-80 (74) 3bs5B.pdb
HLA-DRA membrane protein P01903 28-205 (178) 3c5jA.pdb
AGER membrane protein Q15109 23-240 (219) 3cjjA.pdb
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IQGAP1 membrane protein P46940 962-1339 (369) 3fayA.pdb
GRIK 1 membrane protein P39086 445-820 (256) 3fvoA.pdb
ADAM?22 membrane protein QI9POK1 233-718 (486) 3g5cA.pdb
AQP4 membrane protein P55087 32-254 (223) 3gd8A.pdb
RHCG membrane protein QI9UBD6 2-443 (403) 3hd6A.pdb
TRIM72 membrane protein Q6ZMUS5 278-470 (193) 3kb5A.pdb
MPP1 membrane protein Q00013 282-458 (180) 3neyA.pdb
GLIPR1 membrane protein P48060 22-214 (193) 3q2uA.pdb
PLXNA2 membrane protein 075051 1490-1600 (102) 3q3jA.pdb
GORASP2 membrane protein QI9HRY?8 7-208 (200) 3rleA.pdb
MAPKAPI1 membrane protein Q9BPZ7 372-490 (116) 3voqA.pdb
PILRA membrane protein QI9UKIJ1 32-150 (120) 3wuzA.pdb
macA membrane protein Q74FY6* 24-346 (323) 4aanA.pdb
PMP2 membrane protein P02689 1-132 (132) 4bvmA.pdb
DYSF membrane protein 075923 9 413_ _112; 5(11(2170) 9) jgl:ﬁggg
BECNI1 membrane protein Q14457 248-447 (195) 4ddpA.pdb
STING1 membrane protein Q86WV6 155-337 (173) 4emtA.pdb
DLG1 membrane protein Q12959 310-406 (97) 4g69A.pdb
FOLRI1 membrane protein P15328 30-233 (206) 4kmo6A.pdb
SLC4Al membrane protein P02730 57-350 (276) 4ky9A.pdb
MRI1 membrane protein Q95460 23-291 (262) 414vA.pdb
HLA-B membrane protein P01889 25-298 (274) 41cyA.pdb
PRNP membrane protein P04156** 118-224 (107) 4n90A.pdb
ESYT2 membrane protein AOFGR& 363-659 (292) 4npjA.pdb
PVDR membrane protein P22290 211-508 (282) 4nuuA.pdb
LGR4 - fusion membrane protein QI9BXBI1 27-399 (443) 4qgxeA.pdb
PLK1 membrane protein P53350 372-599 (223) 4rcpA.pdb
TORI1AIPI membrane protein Q5JTVS 360-583 (224) 4tvsA.pdb
VAMPS membrane protein Q9BV40 11-74 (64) 4wy4A.pdb
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PGRMCl1 membrane protein 000264 72-179 (112) 4x8yA.pdb
GPC1 membrane protein P35052 25-473 (411) 4ywtA.pdb
GLPIR membrane protein P43220 29-128 (100) 5e94H.pdb
SCN2B membrane protein 060939 30-148 (122) 5febA.pdb
ADORAZ2A - fusion | membrane protein P29274 2-305 (387) S5iu4A.pdb
ADIPOR2 membrane protein Q86V24 99-380 (282) SIx9A.pdb
ZMPSTE24 membrane protein 075844 10-474 (444) SsytA.pdb
PTGES membrane protein 014684 5-152 (147) 5tI9A.pdb

CHRM2 - fusion membrane protein P08172 16-458 (384) S5zkcA.pdb
SLMAP membrane protein Q14BN4 2-135 (134) 6ar2A.pdb
FZD4 - fusion membrane protein QI9ULV1 181-513 (379) 6bd4A.pdb
C5ARI - fusion membrane protein P21730 30-327 (370) 6¢1rB.pdb
GRMS - fusion membrane protein P41594 569-836 (409) 6ftiA.pdb

CCDC90B - fusion membrane protein Q9GZT6 62-126 (94) 6h9mA.pdb
TACRI - fusion membrane protein P25103 27-327 (483) 6hlpA.pdb
MCOLN?2 membrane protein Q8IZK6 92-282 (173) 6hrrA.pdb

KDELR?2 membrane protein Q5ZKX9 1-207 (207) 6i6hA.pdb
DHODH membrane protein Q02127 29-395 (367) 6idjA.pdb

MPLZL1 membrane protein 095297 38-158 (119) 6igwA.pdb
MFN2 membrane protein 095140 24-418 (428) 6jfkA.pdb

GPR52 - fusion membrane protein QI9Y2TS5 21-338 (441) 61i0A.pdb

AQP7 membrane protein 014520 33-279 (247) 6qziA.pdb
LTC4S membrane protein Q16873 2-144 (143) 6r7dA.pdb
PTCH1 membrane protein Q13635 184 492_ 5‘92335 ((29747)) gitvvzﬁg g};
ERVW-1 membrane protein Q9UQFO0 345-433 (89) 6rx1A.pdb
ERVFRD-1 membrane protein P60508 380-468 (89) 6rx3A.pdb
CYSLTR?2 - fusion membrane protein QINS75 29-322 (365) 6rz6A.pdb
SLC2A1 membrane protein P11166 8-455 (448) 6thaA.pdb

HCRTRI1 membrane protein 043613 45-346 (301) 6todA.pdb
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KCNMAL membrane protein Q12791 408-1121 (594) 6v5aA.pdb
SCN4B membrane protein Q8IWTI 37-154 (115) 6vsvA.pdb
JAGNI - fusion membrane protein Q8N5M9 2-183 (397) 6wvdA.pdb
malE - fusion membrane protein POAEX9 26-392 (571) 6zhoA.pdb
DDR2 - fusion membrane protein Q16832 561-849 (275) 7aymA.pdb
GABARAP - fusion | membrane protein 095166** 1-116 (132) 7brqA.pdb

9 The Protein Data Bank (1) was used to identify folded regions within proteins. Originally, we
searched for folded regions within proteins known to exhibit phase separation behavior, finding
82 folded regions (2). The phase-separating proteins were obtained from lists compiled by
Vernon et al (3), the PhaSePro database (4), and the DisProt database (5). A complete list of these
82 folded regions has been published elsewhere (2). To that list, we added folded regions from
122 human proteins with nonhomologous structures obtained from Wang et al (6), 32 proteins
with small to large structures obtained from Fitzkee and Rose (7), 54 extremophile proteins
obtained from Panja et al (8), 53 metamorphic proteins obtained from Chen et al (9), and 90
membrane proteins that were found by searching the Protein Data Bank for the phrase
“membrane protein.” Duplicate entries were removed from the combined list. For example,
human Galectin-3 (UniProt accession number P17931) is found in both the PhaSePro database of
phase-separating proteins and the list of human proteins with nonhomologous structures from
Wang et al. Duplicate entries in the combined list are identified by an asterisk at the end of the
UniProt accession number; two asterisks indicate the duplicate that was removed from the final
folded set. Protein names with “- fusion” indicate a protein that is fused to another protein in the
crystallographic structure, which is found among a few classified as “membrane protein”.

b Residue positions with resolved atomic coordinates in a PDB structure (x-ray or NMR) were used
to verify regions (N>20) that fold. Unresolved residues were not included in folded regions.
Protein sequences were extracted from the referenced PDB file and thus may contain
substitutions, deletions, and/or insertions (excluding histidine affinity tags) compared to the
UniProt sequence. The value of N in parenthesis is the length of the extracted sequence.
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Table S2. Summary of mean Vmoder in the ID and folded sequence subsets.

Set Number Vmodel ° t-test® U-test”

Previous ID 23 0.558 £ 0.019 - -

BMRB & DisProt 98 0.558 + 0.023 0.44 0.48
Previous Folded 82 0.536 + 0.008 - -

Human 122 0.536 £ 0.007 0.40 0.32
Small-to-large 32 0.537 £ 0.009 0.36 0.41
Extremophile 54 0.542 +0.011 1.2e* 2.4e*
Membrane 20 0.537 + 0.006 0.17 0.21
Metamorphic 53 0.537 + 0.006 0.15 0.18

9 Mean * standard deviation.

b One-tail p-value, where values <0.05 indicate the compared sets are statistically different in
their means. Comparisons are to the previous set; BMRB & DisProt to the Previous ID, and
Human, Small-to-large, Extremophile, Membrane, and Metamorphic to the Previous Folded.
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Table $3. Summary of mean B-turn propensity in the ID and folded sequence subsets.

B-turn
Set Number propensity ¢ t-test? U-test?

Previous ID 23 1.062 + 0.082 - -

BMRB & DisProt 98 1.110 £ 0.071 6.5e3 9.3e*
Previous Folded Set 82 0.969 + 0.039 - -

Human 122 0.980 £ 0.039 0.03 0.07
Small-to-large 32 0.968 + 0.027 0.42 0.34
Extremophile 54 0.983 £ 0.030 0.01 0.03
Membrane 90 0.956 £ 0.046 0.02 0.02
Metamorphic 53 0.972 £ 0.040 0.30 0.48

9 Mean * standard deviation.

b One-tail p-value, where values <0.05 indicate the compared sets are statistically different in
their means. Comparisons are to the previous set; BMRB & DisProt to the Previous ID, and
Human, Small-to-large, Extremophile, Membrane, and Metamorphic to the Previous Folded.



Table S4. List of IDRs not known to exhibit phase separation behavior.

Name Database “ Entry number UniP;?ltI;‘lc):SSion ID region (V)
pknG BMRB 26027 POWI73 1-75 (75)
HCK BMRB 27554 P08631 2-79
SIC1 BMRB 16657 P38634 1-90 (90)
SLC9A1 BMRB 26557 P19634 680-815 (136)
ERD14 BMRB 16876 P42763 1-185 (185)
Sppl DisProt DP01448 P10923 17-294 (278)
PAGE4 DisProt DP01435 060829 1-102 (102)
MAP2K4 DisProt DP01400 P45985 1-86 (86)
Sufu DisProt DP01397 Q9Z0P7 279-359 (81)
HCNI1 DisProt DPO1317 060741 1-93 (93)
SUFU DisProt DP01312 QIUMXI1 279-360 (82)
PQBP1 DisProt DP01308 060828 82-265 (184)
HIRDI11 DisProt DP01300 Q9SLJ2 1-98 (98)
LEA18 DisProt DP01299 Q96273 1-97 (97)
PSEN1 DisProt DP01292 P49768 1-77 (77)
Prothymosin al4 DisProt DP01228 QoUMZ1 1-101 (101)
Ppplrl0 DisProt DP01202 055000 309-433 (125)
NOLC1 DisProt DP01178 Q14978 1-699 (699)
Gja4 DisProt DPO01175 P28235 233-333 (101)
DCLREIC DisProt DP01162 Q96SD1 480-575 (96)
ptkA DisProt DP01160 POWPI9 1-81 (81)
H1-0 DisProt DP01156 P07305 105-194 (90)
CHZ1 DisProt DPO1135 P40019 1-153 (153)
Caskinl DisProt DP01127 Q8VHK2 603-1430 (828)
Ttn-1 DisProt DP01090 AO0A2I2LGI13 2793-6678 (3886)
PM28 DisProt DP01088 QI9XESS 1-89 (89)
YRB2 DisProt DP01079 P40517 1-203 (203)




Ahn-1 DisProt DP01074 Q7YUB9 1-86 (86)
MSA2 DisProt DP01067 P19599 21-238 (218)
LMP2A DisProt DP01060 A8CDV5 1-118 (118)
Omega gliadin DisProt DP01040 QIFUW7 1-280 (280)
storage protein

SLE2 DisProt DP01036 I1JLC8 1-105 (105)
pscP DisProt DP00993 Q91332 1-253 (253)
Small delta antigen DisProt DP00965 POC6L3 60-195 (136)
SBDS-like protein DisProt DP00957 C0J347 264-464 (201)
GAP43 DisProt DP00955 P06836 1-242 (242)
N DisProt DP00948 P59595 182-259 (78)
Ppp1r9b DisProt DP00943 035274 1-154 (154)
BASP1 DisProt DP00930 P80723 1-227 (227)
NABP2 DisProt DP00864 Q9BQI15 110-211 (102)
trm10 DisProt DP00798 014214 1-83 (83)
CNGBI DisProt DP00768 Q28181-4 271;'_ '59990((8361)9)
Smtnll DisProt DP00742 Q99LM3 1-341 (341)
dre4 DisProt DP00721 Q8IRG6 889-1044 (156)
Ssrp DisProt DP00720 Q05344 463275_—575243 ((19198))
N DisProt DP00698 089339 400-532 (133)
RYBP DisProt DP00694 Q8N488 1-228 (228)
LICAM DisProt DP00666 P32004 1144-1257 (114)
GMPM1 DisProt DP00664 Q01417 1-173 (173)
ALB3 DisProt DP00662 QS8LBP4 339-462 (124)
MAC-41A DisProt DP00659 P16458 233-385 (153)
COR47 DisProt DP00657 P31168 1-265 (265)
N DisProt DP00640 Q89933 400-525 (126)
ERDI10 DisProt DP00606 P42759 1-260 (260)
Genome polyprotein DisProt DP00588 P27958 1-82 (82)
stm DisProt DP00584 A2VD23 1-613 (613)
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SEPTIN4 DisProt DP00537 043236 1-119 (119)
DHNI1 DisProt DP00530 P12950 1-168 (168)
MYOMI DisProt DP00517 P52179 836-931 (96)
NUPRI DisProt DP00510 060356 1-82 (82)
UBA2 DisProt DP00486 QYUBT2 551-640 (90)
HYS DisProt DP00469 024646 1-77 (77)
cna DisProt DP00461 P08083 1-90 (90)
Chm DisProt DP00458 P37727 108-208 (101)
PPPIRIB DisProt DP00421 PO7516 1-202 (202)
JAG1 DisProt DP00418 P78504 1094-1218 (125)
UREI DisProt DP00353 P23202 1-90 (90)
DNAIC6 DisProt DP00351 Q27974 547-813 (267)
col DisProt DP00342 P09883 1-83 (83)
Trl DisProt DP00328 Q08605 368-444 (77)
PPPIRIA DisProt DP00325 P01099 1-166 (166)
ADD2 DisProt DP00241 P35612 409-726 (318)
ADDI DisProt DP00240 P35611 430-737 (308)
SSB DisProt DP00229 P05455 326-408 (83)
Nucleoplasmin DisProt DP00217 P05221 120-200 (81)
CAST DisProt DP00196 P20810 137-277 (141)
HMGN2 DisProt DP00195 P02313 1-89 (89)
{;Sffl’lg::ﬁrg;%:?;slis DisProt DP00186 Q95V77 1-143 (143)
CTDP1 DisProt DP00177 Q9Y5BO 879-961 (83)
TCF7L2 DisProt DP00175 QYNQBO 1-130 (130)
zipA DisProt DP00161 P77173 86-185 (100)
RAD23A DisProt DP00156 P54725 79-160 (82)
NEFL DisProt DP00151 P02547 444-549 (106)
Sibp DisProt DP00144 QIVAN6 97-175 (79)
PTHLH DisProt DP00138 P12272 68-144 (77)
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H1-4 DisProt DP00136 P15865 1-217 (217)
PRB4 DisProt DP00119 P10163 17-310 (294)
Desiccation-related

protein clone PCC6- DisProt DP00112 P22239 1-155 (155)
19

H1-0 DisProt DP00097 P10922 96-193 (98)
TOP2 DisProt DP00076 P06786 1178-1428 (251)
TOP1 DisProt DP00075 P11387 1-214 (214)
Structural DisProt DP03350 P03316 1-113 (113)
polyprotein

RPA1 DisProt DP00061 P27694 105-180 (76)
HMGALI DisProt DP00040 P17096 1-107 (107)
HMGN2 DisProt DP00039 P05204 1-90 (90)
RAPI1 DisProt DP00020 P11938 1-123 (123)

9The Biological Magnetic Resonance Data Bank (BMRB) (10) and DisProt (5) databases were used
to identify IDRs that are not known to exhibit phase separation behavior. This list of verified IDRs,
wherein duplicates have been removed, was combined with a list of 23 IDRs that have been
identified and reported elsewhere (2).
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Table S5. Enthalpy, entropy, and free energy of phase separation of A1-LCD and Ddx4 mutants.

IDR

Mutant

Primary Sequence

Aho a

As/R®

Ago c

Ddx4

CS

MGDRDWRAEINPHMSSYVPIFEKDRYSGENGRNENDTP
ASSSEMRDGPSERDHFMKSGFASGDNEFGNRDAGKCNER
DNTSTMGGFGVGKSFGNEGEFSNSRFERGDSSGFWRESS
NDCRDNPTRNDGEFSDRGGYEKGNNSEASGPYERGGRGS
FDGCRGGEFGLGSPNNRLDPRECMQRTGGLEGSDRPVLS
GTGNGDTSQSRSGSGSERGGYKGLNEKVITGSGENSWK
SEARGGES

-23.09

38.82

44.16

Ddx4

WT

MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNEFNRTP
ASSSEMDDGPSRRDHFMKSGFASGRNEFGNRDAGECNKR
DNTSTMGGFGVGKSFGNRGESNSRFEDGDSSGFWRESS
NDCEDNPTRNRGEFSKRGGYRDGNNSEASGPYRRGGRGS
FRGCRGGFGLGSPNNDLDPDECMQRTGGLEGSRRPVLS
GTGNGDTSQSRSGSGSERGGYKGLNEEVITGSGKNSWK
SEAEGGES

-5.43

8.47

-10.03

A1-LCD

Aro+

GSMAFASSFQRGRYGSGNFGGGRGGGEFGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGEFGNDGSNEGGGGS
YNDEGNYNNQSSNEFGPMKGGNFGGRSSGGSYGGGQYFA
KPRNQGGYGGSSFSSSYGSGRRF

-30.58

43.50

-54.18

A1-LCD

Aro-

GSMASASSSQRGRSGSGNSGGGRGGGEGGNDNFGRGGN
SSGRGGFGGSRGGGGYGGSGDGYNGEFGNDGSNSGGGGS
SNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYSA
KPRNQGGYGGSSSSSSSGSGRRF

-17.44

27.00

-32.10

Al1-LCD

-12F+12Y

GSMASASSSQRGRSGSGNYGGGRGGGYGGNDNYGRGGN
YSGRGGYGGSRGGGGYGGSGDGYNGYGNDGSNYGGGGS
YNDYGNYNNQSSNYGPMKGGNYGGRSSGGSGGGGQYYA
KPRNQGGYGGSSSSSSYGSGRRY

-27.55

40.89

-49.74

Al1-LCD

-9F+6Y

GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNYGRGGN
YSGRGGEFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS
YNDSGNYNNQSSNEFGPMKGGNYGGRSSGGSGGGGQYGA
KPRNQGGYGGSSSSSSYGSGRRY

-25.16

38.78

-46.21

Al1-LCD

GSMASASSSQRGRSGSGNFGGGRGGGEGGNGNFGRGGN
FSGRGGFGGSRGGGGYGGSGGGYNGEFGNSGSNEFGGGGS
YNGEGNYNNQSSNEFGPMKGGNFGGRSSGPYGGGGQYFA
KPRNQGGYGGSSSSSSYGSGRRF

-25.05

39.72

-46.61

Al1-LCD

-OF+3Y

GSMASASSSQRGRSGSGNEFGGGRGGGYGGNDNGGRGGN
YSGRGGEFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS
YNDSGNGNNQSSNEFGPMKGGNYGGRSSGGSGGGGQYGA
KPRNQGGYGGSSSSSSYGSGRRS

-24.51

38.89

-45.62

Al1-LCD

-6R+6K

GSMASASSSQKGKSGSGNEFGGGRGGGEGGNDNFGKGGN
FSGRGGFGGSKGGGGYGGSGDGYNGEFGNDGSNEFGGGGS
YNDEGNYNNQSSNEFGPMKGGNFGGKSSGGSGGGGQYFA
KPRNQGGYGGSSSSSSYGSGRKE

-24.29

39.95

-45.98

Al1-LCD

-8F+4Y

GSMASASSSQRGRSGSGNEFGGGRGGGY GGNDNGGRGGN
YSGRGGFGGSRGGGGYGGSGDGYNGGGNDGSNYGGGGS
YNDSGNYNNQSSNFGPMKGGNYGGRSSGGSGGGGQYGA
KPRNQGGYGGSSSSSSYGSGRRF

-23.91

37.37

-44.19

Al1-LCD

+7R+12D

GSMASADSSQRDRDDRGNEGDGRGGGEGGNDNFGRGGN
FSDRGGFGGSRGDGRYGGDGDRYNGFGNDGRNFGGGGS
YNDFGNYNNQSSNFDPMKGGNFRDRSSGPYDRGGQYFA
KPRNQGGYGGSSSSRSYGSDRRF

-22.45

30.44

-38.97

Al1-LCD

+2R

GSMASASSSQRGRSGSGNEFGGGRGGGEFGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGEFRNDGSNEFGGGGR
YNDFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFA
KPRNQGGYGGSSSSSSYGSGRRFE

-21.74

31.96

-39.09

Al1-LCD

-2R-2K+3D

GSMASASSSQDGRSGSGNEFGGGRGGGEGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGEFGNDGSNEGGGGS

-20.92

29.85

-37.12
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YNDFGNYNNQSSNFGPMDGGNFGGRSSGPYGGGGQYFA
DPRNQGGYGGSSSSSSYGSGGRF

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
YNDFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFA
KPRNQGGYGGSSSSSSYGSGRRFE

GSMASASSSQRDRSGSGNFGGGRDGGFGGNDNFGRGDN
FSGRGDFGGSRDGGGYGGSGDGYNGFGNDGSNFGGGGS
YNDFGNYNNQSSNFGPMKGGNFGGRSSDPYGGGGQYFA
KPRNQDGYGGSSSSSSYDSGRRF

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD WT YNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYFA -20.22 28.91 -35.91
KPRNQGGYGGSSSSSSYGSGRRFE

GSMASASSSQRGKSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGGFGGSKGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD -3R+3K YNDFGNYNNQSSNFGPMKGGNFGGRSSGGSGGGGQYFA -19.95 30.44 -36.47
KPRNQGGYGGSSSSSSYGSGRKE

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD 2K YNDFGNYNNQSSNFGPMGGGNFGGRSSGPYGGGGQYFA -19.62 26.09 -33.78
GPRNQGGYGGSSSSSSYGSGRRFE

GSMASASSSQRDRSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGDFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD +4D YNDFGNYNNQSSNFGPMKGGNFGGRSSDPYGGGGQYFA -17.88 23.62 -30.70
KPRNQGGYGGSSSSSSYDSGRRFE

GSMASADSSQRDRDDKGNFGDGRGGGFGGNDNFGRGGN
FSDRGGFGGSRGDGKYGGDGDKYNGFGNDGKNFGGGGS
Al-LCD +7K+12D YNDFGNYNNQSSNFDPMKGGNFKDRSSGPYDKGGQYFA -17.55 25.50 -31.39
KPRNQGGYGGSSSSKSYGSDRRFE

GSMASADSSQRDRDDSGNFGDGRGGGFGGNDNFGRGGN
FSDRGGFGGSRGDGGYGGDGDGYNGFGNDGSNFGGGGS
Al-LCD +12D YNDFGNYNNQSSNFDPMKGGNFGDRSSGPYDGGGQYFA -17.01 25.15 -30.66
KPRNQGGYGGSSSSSSYGSDRRF

GSMASASSSQGGRSGSGNFGGGRGGGFGGNDNFGGGGN
FSGSGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
YNDFGNYNNQSSNFGPMKGGNFGGSSSGPYGGGGQYFA
KPGNQGGYGGSSSSSSYGSGGRFEF

GSMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGN
FSGRGGFGGSRGGGGFGGSGDGFNGFGNDGSNFGGGGS
FNDFGNEFNNQSSNFGPMKGGNFGGRSSGGSGGGGQFFA
KPRNQGGFGGSSSSSSFGSGRRFE

GSMASAESSQREREESGNFGEGRGGGFGGNDNFGRGGN
FSERGGFGGSRGEGGYGGEGDGYNGFGNDGSNFGGGGS
Al-LCD +12E YNDFGNYNNQSSNFEPMKGGNFGERSSGPYEGGGQYFA -15.76 23.62 -28.58
KPRNQGGYGGSSSSSSYGSERRF

GSMASADSSQRDRDGRGNFGDGRGGGFGGNDNFGRGGN
FSDRGGFGGSRGGGRYGGDGDRYNGFGNDGRNFGGGGS
Al-LCD +7R+10D YNDFGNYNNQSSNFDPMKGGNFRDRSSGPYDRGGQYFA -14.18 17.05 2343
KPRNQGGYGGSSSSRSYGSDRRF

GSMASASSSQGGSSGSGNFGGGGGGGFGGNDNFGGGGN
FSGSGGFGGSGGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD -10R YNDFGNYNNQSSNFGPMKGGNFGGSSSGPYGGGGQYFA -13.53 19.16 -23.93
KPGNQGGYGGSSSSSSYGSGGGF

GSMASASSSQDGRSGSGNFGGGDGGGFGGNDNFGRGGN
FSGGGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGS
Al-LCD -4R-2K+5D YNDFGNYNNQSSNFGPMDGGNFGGRSSGPYGGGGQYFA -12.83 17.63 -22.40
DPRNQGGYGGSSSSSSYGSGDRFE

A1-LCD WT+NLS -20.27 28.79 -35.90

A1-LCD +8D -20.27 29.50 -36.28

Al1-LCD -6R -16.90 22.33 -29.02

Al1-LCD +7F-TY -16.47 23.39 -29.17

@ Standard molar enthalpy (Ah°) in units of kcal/mol. Values for Ddx4 CS, Ddx4 WT, A1-LCD Aro+,
and A1-LCD Aro- were calculated from the temperature dependence to cs.: (see Methods) using
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Csat Values digitally extracted from Figures 1C-D in Brady et al (11) and Figure 3F in Martin et al
(12). Values for all other IDRs in this table were digitally extracted from Supplementary Figure 7D
in Bremer et al (13).

b Standard molar entropy (As®) divided by the universal gas constant (R), and thus dimensionless.
Values for Ddx4 CS, Ddx4 WT, A1-LCD Aro+, and A1l-LCD Aro- were calculated from the
temperature dependence to cs: (see Methods) using cs.: values digitally extracted from Figures
1C-D in Brady et al (11) and Figure 3F in Martin et al (12). Values for all other IDRs in this table
were digitally extracted from Supplementary Figure 7E in Bremer et al (13).

¢ Standard molar free energy (Ag°) in units of kcal/mol. Values were calculated from Ah° and As®
using the equation, Ag°®= Ah°- TAs°, where T is the standard temperature (273.15 K).
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Table S6. Saturation concentration (at 4 °C) of A1-LCD mutants.

Mutant

Primary Sequence

a
Csat

+23G-23S-12F+12Y

GSMAGAGGGQRGRGGGGNYGGGRGGGYGGNDNYGRGGNYGGRGGYGGGRG
GGGYGGGGDGYNGYGNDGGNYGGGGGYNDYGNYNNQGGNYGPMKGGNYGG
RGGGGGGGGGQYYAKPRNQGGYGGGGGGGGYGGGRRY

4.86E-07

+7R+12D

GSMASADSSQRDRDDRGNFGDGRGGGEFGGNDNFGRGGNFSDRGGFGGSRG
DGRYGGDGDRYNGEFGNDGRNEFGGGGSYNDEGNYNNQSSNEDPMKGGNERD
RSSGPYDRGGQYFAKPRNQGGYGGSSSSRSYGSDRREFE

7.49E-07

-12F+12Y

GSMASASSSQRGRSGSGNYGGGRGGGYGGNDNYGRGGNYSGRGGYGGSRG
GGGYGGSGDGYNGYGNDGSNYGGGGSYNDYGNYNNQSSNYGPMKGGNYGG
RSSGGSGGGGQYYAKPRNQGGYGGSSSSSSYGSGRRY

2.74E-06

+4D

GSMASASSSQRDRSGSGNEFGGGRGGGEGGNDNFGRGGNEFSGRGDFGGSRG
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDEFGNYNNQSSNFGPMKGGNEGG
RSSDPYGGGGQYFAKPRNQGGYGGSSSSSSYDSGRRFE

4.04E-06

-6R

GSMASASSSQGGRSGSGNFGGGRGGGEFGGNDNFGGGGNESGSGGFGGSRG
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDFGNYNNQSSNEFGPMKGGNEGG
SSSGPYGGGGQYFAKPGNQGGYGGSSSSSSYGSGGRE

7.34E-06

-2R-2K+3D

GSMASASSSQDGRSGSGNFGGGRGGGEFGGNDNFGRGGNEFSGRGGFGGSRG
GGGYGGSGDGYNGFGNDGSNFGGGGSYNDEFGNYNNQSSNFGPMDGGNEGG
RSSGPYGGGGQYFADPRNQGGYGGSSSSSSYGSGGRE

9.91E-06

-20G+20S-12F+12Y

GSMASASSSQRSRSGSGNYSGSRSGSYSGNDNYGRSGNYSGRSGYGGSRS
GGGYSGSGDSYNSYGNDGSNYSGSGSYNDYGNYNNQSSNYGPMKSGNYGG
RSSGSSGGSGQYYAKPRNQGSYSGSSSSSSYGSSRRY

1.22E-05

WT+NLS

GSMASASSSQRGRSGSGNEFGGGRGGGEGGNDNFGRGGNEFSGRGGFGGSRG
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDEFGNYNNQSSNFGPMKGGNEGG
RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRE

1.25E-05

WT

GSMASASSSQRGRSGSGNEFGGGRGGGEGGNDNFGRGGNEFSGRGGFGGSRG
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDEFGNYNNQSSNFGPMKGGNEGG
RSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRE

1.25E-05

-30G+30S-12F+12Y

GSMASASSSQRSRSSSGNYSGSRSGSYSGNDNYGRSGNYSGRSGYSGSRS
GSGYSGSSDSYNSYGNDSSNYSGSSSYNDYGNYNNQSSNYGPMKSGNYSG
RSSSSSGSSGQYYAKPRNQGSYSGSSSSSSYSSSRRY

1.47E-05

+2R

GSMASASSSQRGRSGSGNFGGGRGGGEFGGNDNFGRGGNFSGRGGFGGSRG
GGGYGGSGDGYNGEFRNDGSNFGGGGRYNDEFGNYNNQS SNEGPMKGGNEGG
RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRE

1.81E-05

+8D

GSMASASSSQRDRSGSGNFGGGRDGGFGGNDNFGRGDNEFSGRGDFGGSRD
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDEGNYNNQS SNEGPMKGGNEGG
RSSDPYGGGGQYFAKPRNQDGYGGSSSSSSYDSGRRE

1.84E-05

-10G+10S

GSMASASSSQRSRSGSGNEFGGGRSGGEGGNDNFGRSGNEFSGRGGFGGSRG
GGGYGGSGDSYNGEFGNDGSNFGGSGSYNDEFGNYNNQSSNEFGPMKSGNEGG
RSSGSSGGSGQYFAKPRNQGSYSGSSSSSSYGSGRRE

2.76E-05

-OF+6Y

GSMASASSSQRGRSGSGNFGGGRGGGYGGNDNYGRGGNYSGRGGEFGGSRG
GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNYNNQSSNEFGPMKGGNYGG
RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRY

2.80E-05

+7K+12D

GSMASADSSQRDRDDKGNEGDGRGGGEFGGNDNFGRGGNFSDRGGFGGSRG
DGKYGGDGDKYNGEFGNDGKNEFGGGGSYNDEGNYNNQSSNEDPMKGGNEKD
RSSGPYDKGGQYFAKPRNQGGYGGSSSSKSYGSDRRF

4.31E-05

+7F-7Y

GSMASASSSQRGRSGSGNFGGGRGGGEFGGNDNFGRGGNFSGRGGFGGSRG
GGGFGGSGDGENGEGNDGSNFGGGGSENDEGNEFNNQS SNEGPMKGGNEGG
RSSGGSGGGGQFFAKPRNQGGFGGSSSSSSFGSGRRE

4.94E-05

-20G+20S

GSMASASSSQRSRSGSGNESGSRSGSEFSGNDNFGRSGNEFSGRSGFGGSRS
GGGYSGSGDSYNSEFGNDGSNFSGSGSYNDEFGNYNNQSSNEGPMKSGNEGG
RSSGSSGGSGQYFAKPRNQGSYSGSSSSSSYGSSRRE

5.39E-05

-8F+4Y

GSMASASSSQRGRSGSGNEFGGGRGGGYGGNDNGGRGGNYSGRGGFGGSRG
GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNYNNQSSNFGPMKGGNYGG
RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRE

6.26E-05

+23G-23S+7F-7Y

GSMAGAGGGQRGRGGGGNFGGGRGGGEFGGNDNFGRGGNFGGRGGEFGGGRG
GGGFGGGGDGEFNGFGNDGGNFGGGGGENDEFGNEFNNQGGNFGPMKGGNEGG
RGGGGGGGGGQFFAKPRNQGGFGGGGGGGGFGGGRRE

7.63E-05
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-3R+3K

GSMASASSSQRGKSGSGNFGGGRGGGFGGNDNFGRGGNF SGRGGEFGGSKG
GGGYGGSGDGYNGEGNDGSNFGGGGSYNDEFGNYNNQSSNEGPMKGGNEGG
RSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRKE

8.30E-05

4D

GSMASASSSQRGRSGSGNEFGGGRGGGEGGNGNFGRGGNEFSGRGGFGGSRG
GGGYGGSGGGYNGEFGNSGSNFGGGGSYNGEFGNYNNQSSNFGPMKGGNEGG
RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRFE

8.69E-05

-30G+30S+7F-7Y

GSMASASSSQRSRSSSGNFSGSRSGSESGNDNFGRSGNESGRSGEFSGSRS
GSGFSGSSDSEFNSEFGNDSSNFSGSSSENDEFGNFNNQSSNEGPMKSGNESG
RSSSSSGSSGQFFAKPRNQGSFSGSSSSSSFSSSRRE

8.98E-05

-20G+20S+7F-7Y

GSMASASSSQRSRSGSGNFSGSRSGSEFSGNDNFGRSGNEFSGRSGFGGSRS
GGGFSGSGDSENSFGNDGSNEFSGSGSENDEGNENNQSSNEFGPMKSGNEGG
RSSGSSGGSGQFFAKPRNQGSFSGSSSSSSFGSSRRFE

9.87E-05

+12D

GSMASADSSQRDRDDSGNEFGDGRGGGEFGGNDNFGRGGNFSDRGGFGGSRG
DGGYGGDGDGYNGEFGNDGSNFGGGGSYNDEFGNYNNQSSNEFDPMKGGNEGD
RSSGPYDGGGQYFAKPRNQGGYGGSSSSSSYGSDRRFE

9.96E-05

-4R-2K+5D

GSMASASSSQDGRSGSGNEFGGGDGGGEGGNDNFGRGGNEFSGGGGFGGSRG
GGGYGGSGDGYNGEFGNDGSNFGGGGSYNDEFGNYNNQSSNEFGPMDGGNEGG
RSSGPYGGGGQYFADPRNQGGYGGSSSSSSYGSGDRE

1.06E-04

OF+3Y

GSMASASSSQRGRSGSGNEFGGGRGGGYGGNDNGGRGGNYSGRGGFGGSRG
GGGYGGSGDGYNGGGNDGSNYGGGGSYNDSGNGNNQSSNFGPMKGGNYGG
RSSGGSGGGGQYGAKPRNQGGYGGSSSSSSYGSGRRS

1.13E-04

-10R

GSMASASSSQGGSSGSGNFGGGGGGGEFGGNDNEFGGGGNESGSGGFGGSGG
GGGYGGSGDGYNGFGNDGSNFGGGGSYNDEGNYNNQSSNFGPMKGGNEGG
SSSGPYGGGGQYFAKPGNQGGYGGSSSSSSYGSGGGE

1.34E-04

+7R

GSMASASSSQRGRSGRGNFGGGRGGGFGGNDNFGRGGNFSGRGGFGGSRG
GGRYGGSGDRYNGFGNDGRNFGGGGSYNDEFGNYNNQSSNFGPMKGGNERG
RSSGPYGRGGQYFAKPRNQGGYGGSSSSRSYGSGRRFE

1.78E-04

+12E

GSMASAESSQREREESGNFGEGRGGGEFGGNDNFGRGGNFSERGGFGGSRG
EGGYGGEGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFEPMKGGNEGE
RSSGPYEGGGQYFAKPRNQGGYGGSSSSSSYGSERREFE

2.12E-04

Aro-

GSMASASSSQRGRSGSGNSGGGRGGGEGGNDNFGRGGNSSGRGGFGGSRG
GGGYGGSGDGYNGEFGNDGSNSGGGGSSNDEGNYNNQSSNFGPMKGGNEGG
RSSGGSGGGGQYSAKPRNQGGYGGSSSSSSSGSGRRE

3.01E-04

-6R+6K

GSMASASSSQKGKSGSGNEFGGGRGGGEGGNDNFGKGGNEFSGRGGEFGGSKG
GGGYGGSGDGYNGFGNDGSNFGGGGSYNDEGNYNNQSSNFGPMKGGNEGG
KSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRKFE

4.96E-04

9 Saturation concentration (csqt) in molarity (M). Values were digitally extracted from Figures 1-5
and Supplementary Figures 2, 4, 6, in Bremer et al (13) and Figure 3F in Martin et al (12).
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Table S7. List of 500 proteins with the highest summed P classifier distance in the human

proteome.

3 P class.

dist.
14249.16
10117.86
10109.08
10099.64
10092.09
10045.46
10040.92
10030.54
10021.77
10021.77
9926.97
7899.66
7632.47
6761.51
6752.73
6744.49
6735.74
6690.45
6685.78
6676.71
6675.41
6666.63
6666.63
6658.20
6649.42
6649.42
6642.42
6640.64

6633.80

longest
PS IDR

2913
5705
5693
5441
5693
5453
5455
5469
5411
5521
2689
222
5095
3574
3571
3441
3571
3453
3455
2716
3469
3521
3411
3565
3562
3565
3556
3562

3440

first
residue

1714
995
995
995
995
995
995
995
995
995
161

8676
251
963
963
963
963
963
963

1884
963
963
963
990
990
963
891
963
990

last

residue

4626
6699
6687
6435
6687
6447
6449
6463
6405
6515
2849
8897
5345
4536
4533
4403
4533
4415
4417
4599
4431
4483
4373
4554
4551
4527
4446
4524

4429

UniProt ID and protein

Q7Z5P9|MUC19_HUMAN Mucin-19 OS=Homo sapiens OX=9606
GN=MUC19 PE=1

AOAO0G2JR97| AOA0G2JR97_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JS65| AOA0G2JS65_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JR46| AOAO0G2JR46_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JQK9|AOA0G2JQK9_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOAOG2JRD8| AOAOG2JRD8_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JRY3| AOAO0G2JRY3_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JRJ6|AOAO0G2JRI6_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOAOG2JRS2|AOA0G2JRS2_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JQI2|A0A0G2JQI2_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

Q86YZ3|HORN_HUMAN Hornerin OS=Homo sapiens OX=9606
GN=HRNR PE=1 SV

Q8WXI7|MUC16_HUMAN Mucin-16 OS=Homo sapiens OX=9606
GN=MUC16 PE=1

Q9UKN1|MUC12_HUMAN Mucin-12 OS=Homo sapiens OX=9606
GN=MUC12 PE=1

AOA0G2JQT8| A0OA0G2JQT8_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOAO0G2JRA1|AOAOG2JRA1_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JS91|AOA0G2JS91_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JQC6|AOA0G2)QC6_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JSB4|AOA0G2JSB4_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JSD9|AOA0G2JSD9_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

Q02817 |MUC2_HUMAN Mucin-2 OS=Homo sapiens OX=9606
GN=MUC2 PE=1SV=

AOA0G2JS19|AOA0G2JS19_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JR43| AOAO0G2JR43_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOAO0G2JRE6|AOAOG2JRE6_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

E7ENC5|E7ENC5_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

E9PDY6|E9PDY6_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

AOA0G2JMX1|AOAOG2JMX1_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JM16| AOA0G2IJM16_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JNM3|AOA0G2JNM3_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

E7EQG8|E7EQG8_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S
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6632.43
6626.06
6625.01
6625.01
6623.64
6585.80
6581.26
6577.01
6572.47
6570.88
6562.10
6562.10
6562.10
6553.32
6553.32
6366.10
6226.32
5454.25
4726.82
4219.06
4033.40
4032.16
2867.01
2854.13
2815.86
2778.12
2585.77
2562.66
2532.07
2521.38
2514.09
2504.77

2457.82

3562
3562
3430
3440
3562
3452
3454
3452
3454
3468
3520
3410
3468
3520
3410
1339
2259
3764
689
477
857
857
1659
1531
1565
30
596
596
582
1215
581
1256
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990
964
963
963
963
990
990
963
963
990
990
990
963
963
963
2223
132
297
4233
2087
442
442
1254
54
33
4145
933
917
916
337
916
302
916

4551
4525
4392
4402
4524
4441
4443
4414
4416
4457
4509
4399
4430
4482
4372
3561
2390
4060
4921
2563
1298
1298
2912
1584
1597
4174
1528
1512
1497
1551
1496
1557

1459

E7EWN1|E7EWN1_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

AOA0G2JN54| AOA0OG2IN54_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA0G2JQA9|A0A0G2JQA9_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOA0G2JS42| A0A0G2JS42_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOAO0G2JRT1|AOAO0G2JRT1_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

E7ERKO|E7ERKO_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

E7EUL9|E7EUL9_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

AOAO0G2JRW6 | AOAOG2JRW6_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOAO0G2JRV5|AOAOG2JRV5_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

E7EQT2|E7EQT2_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

E7ETTS5|E7ETT5_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

E7EW47|E7EW47_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1S

AOA0G2JON9|AOA0G2JQN9_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

AOAOG2JRK4| AOAOG2JRK4_HUMAN Mucin-4 (Fragment) 0S=Homo
sapiens OX=

AOAO0G2JRW3|ADA0G2JRW3_HUMAN Mucin-4 (Fragment) OS=Homo
sapiens OX=

P98088 | MUC5A_HUMAN Mucin-5AC OS=Homo sapiens OX=9606
GN=MUCS5AC PE=

Q5D862 | FILA2_HUMAN Filaggrin-2 OS=Homo sapiens OX=9606
GN=FLG2 PE=

P20930| FILA_HUMAN Filaggrin OS=Homo sapiens OX=9606 GN=FLG
PE=1SV

Q9HC84 | MUC5B_HUMAN Mucin-5B OS=Homo sapiens OX=9606
GN=MUC5B PE=1

Q02505 |MUC3A_HUMAN Mucin-3A OS=Homo sapiens OX=9606
GN=MUC3A PE=1

Q685J3|MUC17_HUMAN Mucin-17 OS=Homo sapiens OX=9606
GN=MUC17 PE=1

E7EPM4|E7EPM4_HUMAN Mucin-17 OS=Homo sapiens OX=9606
GN=MUC17 PE=1

Q02388|CO7A1_HUMAN Collagen alpha-1(VII) chain OS=Homo sapiens
OX=

P02462|CO4A1_HUMAN Collagen alpha-1(1V) chain OS=Homo sapiens
0X=9

P29400| CO4A5_HUMAN Collagen alpha-5(1V) chain OS=Homo sapiens
0X=9

P08519|APOA_HUMAN Apolipoprotein(a) OS=Homo sapiens OX=9606
GN=LPA

A8MXH5| ABMXH5_HUMAN Collagen alpha-6(I1V) chain 0S=Homo
sapiens OX=

Q14031|CO4A6_HUMAN Collagen alpha-6(1V) chain OS=Homo sapiens
0X=9

F5H851|F5H851_HUMAN Collagen alpha-6(IV) chain OS=Homo sapiens
OX=

P53420|CO4A4_HUMAN Collagen alpha-4(1V) chain OS=Homo sapiens
0OX=9

AOA087W?ZY5|AOA087WZY5_HUMAN Collagen alpha-6(1V) chain
0OS=Homo sap

P08572| CO4A2_HUMAN Collagen alpha-2(1V) chain OS=Homo sapiens
0X=9

F5H3Q5|F5H3Q5_HUMAN Collagen alpha-6(IV) chain 0S=Homo
sapiens OX=
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2405.02
2372.37
2262.45
2231.96
2231.54
2194.23
2129.73
2126.77
2068.48
2064.13
2023.20
2009.55
1956.85
1956.80
1921.32
1910.96
1909.43
1890.60
1890.43
1884.98
1884.14
1880.29
1880.29
1880.12
1879.97
1879.80
1877.32
1872.94
1830.52
1827.89
1813.71
1812.15

1809.72

1265
1056
244
325
1302
712
1220
1214
426
243
380
244
1232
1263
531
593
380
1125
1125
1125
1125
1125
1125
1125
1125
1125
380
405
338
338
311
1105
1103

91
492
435
391
92
355
28
31
212
1188
1309
225
106
93
564
1011
1269
490
490
490
490
377
404
404
383
383
1173
595
1752

1740

476

562

1355
1547
678
715
1393
1066
1247
1244
637
1430
1688
468
1337
1355
1094
1603
1648
1614
1614
1614
1614
1501
1528
1528
1507
1507
1552
999
2089
2077
311
1580
1664

P02461|CO3A1_HUMAN Collagen alpha-1(lll) chain OS=Homo sapiens
OX=

Q01955|CO4A3_HUMAN Collagen alpha-3(IV) chain OS=Homo sapiens
0X=9

AOA1BOGU24|A0A1BOGU24_HUMAN Trinucleotide repeat-containing
gene 6

Q8NDV7|TNR6A_HUMAN Trinucleotide repeat-containing gene 6A
protein

P05997| CO5A2_HUMAN Collagen alpha-2(V) chain 0S=Homo sapiens
0X=96

Q8N7X1|RMXL3_HUMAN RNA-binding motif protein, X-linked-like-3
0S=H

P08123|CO1A2_HUMAN Collagen alpha-2(1) chain OS=Homo sapiens
0X=96

AOA087WTAS8| AOA087WTA8_HUMAN Collagen alpha-2(1) chain
0OS=Homo sapi

Q9UPQI|TNR6B_HUMAN Trinucleotide repeat-containing gene 6B
protein

Q12816 TROP_HUMAN Trophinin OS=Homo sapiens OX=9606
GN=TRO PE=1 SV

AOA6Q8NVI4| AOA6Q8NVI4_HUMAN AT-rich interactive domain-
containing

Q9HCJO| TNR6C_HUMAN Trinucleotide repeat-containing gene 6C
protein

P02452|CO1A1_HUMAN Collagen alpha-1(1) chain OS=Homo sapiens
0X=96

P02458| CO2A1_HUMAN Collagen alpha-1(1l) chain OS=Homo sapiens
0X=9

Q9UMD9|COHA1_HUMAN Collagen alpha-1(XVIl) chain OS=Homo
sapiens OX

Q07092 | COGA1_HUMAN Collagen alpha-1(XVI) chain 0S=Homo
sapiens OX=

AOA3F2YNW?7|AOA3F2YNW7_HUMAN AT-rich interactive domain-
containing

AOA0G2JL35|A0A0G2JL35_HUMAN COL11A2 OS=Homo sapiens
0X=9606 GN=COL

AOA140TA43|AOA140TA43_HUMAN COL11A2 OS=Homo sapiens
0X=9606 GN=COL

P13942|COBA2_HUMAN Collagen alpha-2(Xl) chain 0S=Homo sapiens
0X=9

AOAOCADFS1|AOAOC4ADFS1_HUMAN COL11A2 OS=Homo sapiens
0X=9606 GN=COL

AOA140T9I7| AOA140T9I7_HUMAN Collagen alpha-2(X) chain
(Fragment)

Q4VXY6|Q4VXY6_HUMAN Collagen alpha-2(XI) chain 0S=Homo
sapiens OX=

AOA140T9N1|AOA140T9N1_HUMAN Collagen alpha-2(XI) chain
0OS=Homo sap

HOYIS1|HOYIS1_HUMAN Collagen alpha-2(XI) chain OS=Homo sapiens
OX=

AOA140TA54 | AOA140TA54_HUMAN Collagen alpha-2(XI) chain
0OS=Homo sap

Q8NFD5|ARI1B_HUMAN AT-rich interactive domain-containing protein
1

014497 | ARIZA_HUMAN AT-rich interactive domain-containing protein
1

P35658 | NU214_HUMAN Nuclear pore complex protein Nup214
0OS=Homo sap

AOA494C1F2|A0A494C1F2_HUMAN Nuclear pore complex protein
Nup214 0S

P23490| LORI_HUMAN Loricrin OS=Homo sapiens OX=9606
GN=LORICRIN PE=

P25940| CO5A3_HUMAN Collagen alpha-3(V) chain 0S=Homo sapiens
0X=96

P20908| CO5A1_HUMAN Collagen alpha-1(V) chain 0S=Homo sapiens
0X=96
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1798.87
1789.69
1777.68
1776.98
1768.42
1767.36
1705.57
1666.66
1665.08
1662.48
1657.27
1657.11
1593.26
1588.95
1571.71
1566.62
1517.96

1506.20
1431.95

1401.00
1390.15
1374.30
1352.52
1347.59
1343.38
1342.89
1342.05
1339.93
1339.80
1323.56
1317.29
1298.72

1293.42

1127
1143
554
554
266
213
338
963
1071
606
171
375
314
313
338
163
385

787
157

94
290
130
291
274
581
405
274
405
207
475
791
193

119

532
483
1311
1311
326
1650

1181

489

29

578

512

625

1455
605
2108
1184
467
27
214
467
212
137
1495
510

2552

1658
1625
1864
1864
591
1862
1518
963
1559
634
171
375
314
313
915
163
896

1411
157

1548
894
2237
1474
740
607
618
740
616
343
1969
1300
193

2670

P12107|COBA1_HUMAN Collagen alpha-1(Xl) chain 0S=Homo sapiens
0X=9

Q8NFW1|COMA1_HUMAN Collagen alpha-1(XXIl) chain OS=Homo
sapiens OX

AOAO0G2JN42 | AOAOG2JN42_HUMAN Mucin-6 OS=Homo sapiens
0X=9606 GN=MUC

Q6W4X9|MUC6_HUMAN Mucin-6 OS=Homo sapiens OX=9606
GN=MUC6 PE=1SV=

Q92804 |RBP56_HUMAN TATA-binding protein-associated factor 2N
0OS=Ho

AOA0G2JNJ8| AOAOG2JNJ8_HUMAN Mucin-6 OS=Homo sapiens
0X=9606 GN=MUC

AOAOAOMSW3|AOAOAOMSW3_HUMAN Nuclear pore complex protein
Nup214 OS

AOA087WYX9|AOA087WYX9_HUMAN Collagen alpha-2(V) chain
0OS=Homo sapi

Q17RW2|COOA1_HUMAN Collagen alpha-1(XXIV) chain OS=Homo
sapiens OX

E2RYF6|MUC22_HUMAN Mucin-22 OS=Homo sapiens OX=9606
GN=MUC22 PE=1

P35527|K1C9_HUMAN Keratin, type | cytoskeletal 9 OS=Homo sapiens
(0]

HOY720|HOY720_HUMAN Trinucleotide repeat-containing gene 6B
protei

P35637| FUS_HUMAN RNA-binding protein FUS OS=Homo sapiens
0X=9606 G

H3BPE7|H3BPE7_HUMAN RNA-binding protein FUS OS=Homo sapiens
0X=960

B7ZAV2|B7ZAV2_HUMAN Nuclear pore complex protein Nup214
OS=Homo sa

P13645|K1C10_HUMAN Keratin, type | cytoskeletal 10 0S=Homo
sapiens

AOAQU1RQI7|KLF18_HUMAN Kruppel-like factor 18 OS=Homo sapiens
0X=9

Q8IZC6|CORA1_HUMAN Collagen alpha-1(XXVIl) chain 0S=Homo
sapiens O

P04264|K2C1_HUMAN Keratin, type Il cytoskeletal 1 OS=Homo sapiens
Q9UPAS5|BSN_HUMAN Protein bassoon OS=Homo sapiens OX=9606
GN=BSN PE

HOY837|HOY837_HUMAN Nuclear pore complex protein Nup214
(Fragment)

Q8NEZ4|KMT2C_HUMAN Histone-lysine N-methyltransferase 2C
0OS=Homo s

P49790|NU153_HUMAN Nuclear pore complex protein Nup153
0OS=Homo sap

AOAO0G2JNL3|AOA0G2JNL3_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA140T8X8|AOA140T8X8_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

AOA1BOGTU5|AOA1BOGTUS_HUMAN AT-rich interactive domain-
containing

AOAO0G2JPA4| AOA0G2JPA4_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

HOY488|HOY488_HUMAN AT-rich interactive domain-containing
protein

Q99102 | MUC4_HUMAN Mucin-4 OS=Homo sapiens OX=9606
GN=MUC4 PE=1 SV=

P24928|RPB1_HUMAN DNA-directed RNA polymerase Il subunit RPB1
0S=H

Q9NZW4|DSPP_HUMAN Dentin sialophosphoprotein OS=Homo
sapiens OX=96

P52948 | NUP98_HUMAN Nuclear pore complex protein Nup98-Nup96
OS=Hom

014686 |KMT2D_HUMAN Histone-lysine N-methyltransferase 2D
0OS=Homo s
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1281.04
1279.85
1273.45
1264.84
1264.40
1263.12
1259.34
1243.81
1238.63
1238.18
1231.60
1231.48
1225.83
1223.35
1223.15
1209.74
1199.54
1192.65
1185.46
1180.20
1178.88
1177.93
1164.24
1160.96
1160.96
1141.13
1132.79
1131.54
1129.72
1127.65
1102.34

1102.34
1099.42

606
626
210
404
627
755
547
113
193
273
157
477
273
380
273
114
82
82
485
485
487
109
487
109
109
374
157
61
337
61
84

84
109

1397
69
1512
212
417
728

27

39

26
39
695
39
642
2246
2274
27
27
27
597
27
620

620

863
388
100
373
1157

1165
519

2002
694
1721
615
1043
1482
573
113
193
311
157
502
311
1074
311
755
2327
2355
511
511
513
705
513
728
728
374
1019
448
436
433
1240

1248
627

AOA0G2JR65| AOA0G2JR65_HUMAN Mucin-2 OS=Homo sapiens
0X=9606 GN=MUC

Q49AM6| Q49AM6_HUMAN COL4AS protein OS=Homo sapiens
0X=9606 GN=COL4

Q5H9R4 | ARMX4_HUMAN Armadillo repeat-containing X-linked
protein 4

AOA087WUV6| AOA087WUV6E_HUMAN AT-rich interactive domain-
containing

Q14993|COJA1_HUMAN Collagen alpha-1(XIX) chain OS=Homo sapiens
OX=

P39060| COIA1_HUMAN Collagen alpha-1(XVIIl) chain 0S=Homo
sapiens O

AOA0G2JKD1|AOA0G2JKD1_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

Q03164|KMT2A_HUMAN Histone-lysine N-methyltransferase 2A
0OS=Homo s

AOA3B3ITD8| AOA3B3ITD8_HUMAN Nuclear pore complex protein
Nup98-Nup

Q15517|CDSN_HUMAN Corneodesmosin OS=Homo sapiens OX=9606
GN=CDSN P

P35908| K22E_HUMAN Keratin, type Il cytoskeletal 2 epidermal
0S=Hom

AOA182DWF7|A0A182DWF7_HUMAN Mucin-3A (Fragment) OS=Homo
sapiens OX

G8JLG2|G8JLG2_HUMAN Corneodesmosin OS=Homo sapiens OX=9606
GN=CDSN

HOY7H8|HOY7H8_HUMAN AT-rich interactive domain-containing
protein

Q2L6G8|Q2L6G8_HUMAN Corneodesmosin OS=Homo sapiens
0X=9606 GN=CDSN

Q9UGUO|TCF20_HUMAN Transcription factor 20 0S=Homo sapiens
0X=9606

Q96JG9|ZN469_HUMAN Zinc finger protein 469 OS=Homo sapiens
0X=9606

H3BS19|H3BS19_HUMAN Zinc finger protein 469 OS=Homo sapiens
0X=960

AOA0G2JJF7| AOAOG2JJF7_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

Q5SSG8|MUC21_HUMAN Mucin-21 OS=Homo sapiens OX=9606
GN=MUC21 PE=1

AOA0G2JHX4|AOA0G2JHX4_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

AOAOAOMTL4 | AOAOAOMTL4_HUMAN Neuron navigator 2 0S=Homo
sapiens OX=

AOA140TA38|AOA140TA38_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

Q8IVL1|NAV2_HUMAN Neuron navigator 2 0S=Homo sapiens
0X=9606 GN=NA

AOAOAOMTES8|AOAOAOMTE8_HUMAN Neuron navigator 2 0S=Homo
sapiens OX=

Q01844|EWS_HUMAN RNA-binding protein EWS OS=Homo sapiens
0X=9606 G

Q10571|MN1_HUMAN Transcriptional activator MN1 OS=Homo
sapiens OX=

AOAOQJ9YXN7|AOAO0J9YXN7_HUMAN Perilipin-4 OS=Homo sapiens
0X=9606 GN

AOA494C0Y1|AOA494COY1_HUMAN Nuclear pore complex protein
Nup214 (F

Q96Q06 | PLINA_HUMAN Perilipin-4 0S=Homo sapiens OX=9606
GN=PLIN4 PE

Q9Y566 | SHAN1_HUMAN SH3 and multiple ankyrin repeat domains
protein

HI9KVI0|H9KVI0_HUMAN SH3 and multiple ankyrin repeat domains
protei

P12035|K2C3_HUMAN Keratin, type Il cytoskeletal 3 OS=Homo sapiens
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1098.30
1097.91
1081.47
1072.95
1067.22
1060.10
1058.36
1056.51
1047.86
1044.87
1041.03
1040.79
1040.11
1034.45
1034.23
1030.70
1024.56
1016.98
1014.49
1012.35
1002.13
999.38
999.37
996.58
993.55
986.36
985.36
976.33
975.22
973.33
971.05
958.46

958.16

114
70
352
1034
262
64
341
140
1039
130
120
662
304
115
242
652
284
153
67
244
64
174
190
174
70
284
278
115
319
184
182
177

459

642

1571

93

3492
1495
1073
93
366
518
27
462
2011
133
32
529
189
4936
426
4088
831
1039
794
1034
540
616

1048

1038
2733
2733

245

755
1640
352
1126
262
3555
1835
1212
1131
495
637
688
765
2125
374
683
812
341
5002
669
4151
1004
1228
967
1103
823
893
1162
319
1221
2914
2909

703

AOA6Q8PH68 | AOA6Q8PHE8_HUMAN Transcription factor 20
(Fragment) OS=

Q68DE3| USF3_HUMAN Basic helix-loop-helix domain-containing
protein

BOQYKO|BOQYKO_HUMAN RNA-binding protein EWS OS=Homo sapiens
0X=960

AOAO87WWM1|AOAO87WWM1_HUMAN Mucin-1 OS=Homo sapiens
0X=9606 GN=MUC

H3BNZ4|H3BNZ4_HUMAN RNA-binding protein FUS OS=Homo sapiens
0X=960

A2VEC9|SSPO_HUMAN SCO-spondin OS=Homo sapiens OX=9606
GN=SSPOP PE=

AOA6Q8PGB0O|A0A6Q8PGBO_HUMAN DNA-directed RNA polymerase
subunit OS

Q15648 | MED1_HUMAN Mediator of RNA polymerase Il transcription
subu

P15941|MUC1_HUMAN Mucin-1 OS=Homo sapiens OX=9606
GN=MUC1 PE=1SV=

Q9Y6Q9|NCOA3_HUMAN Nuclear receptor coactivator 3 0S=Homo
sapiens

Q01546|K220_HUMAN Keratin, type Il cytoskeletal 2 oral 0S=Homo
sap

Q14055|CO9A2_HUMAN Collagen alpha-2(IX) chain 0S=Homo sapiens
0OX=9

P20849|CO9A1_HUMAN Collagen alpha-1(IX) chain OS=Homo sapiens
0X=9

075179|ANR17_HUMAN Ankyrin repeat domain-containing protein 17
0s=

Q6EOU4 | DMKN_HUMAN Dermokine OS=Homo sapiens OX=9606
GN=DMKN PE=1S

Q14050| CO9A3_HUMAN Collagen alpha-3(IX) chain OS=Homo sapiens
0X=9

Q14157|UBP2L_HUMAN Ubiquitin-associated protein 2-like 0S=Homo
sap

Q92793|CBP_HUMAN CREB-binding protein OS=Homo sapiens
0X=9606 GN=C

Q9Y6VO|PCLO_HUMAN Protein piccolo 0S=Homo sapiens OX=9606
GN=PCLO

Q14686 | NCOA6_HUMAN Nuclear receptor coactivator 6 0S=Homo
sapiens

Q2LD37|K1109_HUMAN Transmembrane protein KIAA1109 OS=Homo
sapiens

Q86UUO0|BCLIL_HUMAN B-cell CLL/lymphoma 9-like protein 0S=Homo
sapi

000512 |BCL9_HUMAN B-cell CLL/lymphoma 9 protein OS=Homo
sapiens OX

AOA087WZX0|AOA087WZX0_HUMAN B-cell CLL/lymphoma 9-like
protein OS=

Q8IVLO|NAV3_HUMAN Neuron navigator 3 OS=Homo sapiens
0X=9606 GN=NA

F8W726|F8W726_HUMAN Ubiquitin-associated protein 2-like
OS=Homo sa

Q12906 | ILF3_HUMAN Interleukin enhancer-binding factor 3 0S=Homo
sa

Q9UQ35|SRRM2_HUMAN Serine/arginine repetitive matrix protein 2
0s=

C9JGE3|C9JGE3_HUMAN EWS RNA-binding protein variant 6 0S=Homo
sapi

A8CG34|P121C_HUMAN Nuclear envelope pore membrane protein
POM 121C

Q99715|COCA1_HUMAN Collagen alpha-1(XIl) chain 0S=Homo sapiens
OX=

D6RGG3|D6RGG3_HUMAN Collagen alpha-1(XIl) chain 0S=Homo
sapiens OX

Q6XPR3|RPTN_HUMAN Repetin OS=Homo sapiens OX=9606 GN=RPTN
PE=1SV=
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952.77
951.29
946.89
946.05
945.89
932.70
931.41
930.65
930.13
930.02
929.68
929.14
923.64
918.36
918.13
917.35
911.60
909.19
906.71
905.15
904.25
904.15
904.14
903.24
900.93
900.11
896.87
895.36
892.75
887.57
885.26
880.06

878.19

54
102
106
200
106
225
72
317
380
130
293
238
54
608
580
569
225
158
33
106
62
106
106
55
63
106
287
132
119
115
178
129
182

2383
656
883
607
837
77
1629
623
476

1815

20

1238

245
35
77

232

2560

737

1430

737

737

194

5827

388

195

653

2323
1895
36
432

1544

2436
757
988
806
942
301
1700
939
855
1944
293
257
1291
608
824
603
301
389
2592
842
1491
842
842
248
5889
493
481
784
2441
2009
213
560

1725

Q9P2P6|STAR9_HUMAN StAR-related lipid transfer protein 9
0OS=Homo s

P35568|IRS1_HUMAN Insulin receptor substrate 1 0S=Homo sapiens
OX=

AOA2R8Y4T1|AOA2R8Y4AT1_HUMAN Tensin-1 OS=Homo sapiens
0X=9606 GN=TN

Q5T6F2 | UBAP2_HUMAN Ubiquitin-associated protein 2 0S=Homo
sapiens

AOA494C067 | AOA494C067_HUMAN Tensin-1 (Fragment) OS=Homo
sapiens OX

Q09472 | EP300_HUMAN Histone acetyltransferase p300 OS=Homo
sapiens

Q15911 |ZFHX3_HUMAN Zinc finger homeobox protein 3 0S=Homo
sapiens

Q96QCO|PP1RA_HUMAN Serine/threonine-protein phosphatase 1
regulato

AOA1BOGVK1|AOA1BOGVK1_HUMAN AT-rich interactive domain-
containing

Q2M2H8| MGAL_HUMAN Probable maltase-glucoamylase 2 0S=Homo
sapiens

AOAODISFL3| AOAOD9SFL3_HUMAN RNA-binding protein EWS
0OS=Homo sapien

Q17RH7|TPRXL_HUMAN Putative protein TPRXL OS=Homo sapiens
0X=9606

P98160| PGBM_HUMAN Basement membrane-specific heparan sulfate
prote

AOAOG2JNG3|AOA0G2JNG3_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

Q2UY09|COSA1_HUMAN Collagen alpha-1(XXVIIl) chain OS=Homo
sapiens

AOA0G2JLU8|AOAO0G2JLUS_HUMAN Mucin-4 OS=Homo sapiens
0X=9606 GN=MUC

AOA669KB12| AOA669KB12_HUMAN Histone acetyltransferase
0OS=Homo sapi

K7EQQ3|K7EQQ3_HUMAN Keratin, type | cytoskeletal 9 0S=Homo
sapiens

060494 | CUBN_HUMAN Cubilin 0S=Homo sapiens OX=9606 GN=CUBN
PE=1SV=

E9PGF5|E9PGF5_HUMAN Tensin-1 OS=Homo sapiens OX=9606
GN=TNS1 PE=1

13L2J0|13L2J0_HUMAN Protein capicua homolog OS=Homo sapiens
0X=960

Q9HBLO|TENS1_HUMAN Tensin-1 OS=Homo sapiens OX=9606
GN=TNS1 PE=1S

E9PF55|E9PF55_HUMAN Tensin-1 OS=Homo sapiens OX=9606
GN=TNS1 PE=1

P48634|PRC2A_HUMAN Protein PRRC2A OS=Homo sapiens OX=9606
GN=PRRC2

Q09666 | AHNK_HUMAN Neuroblast differentiation-associated protein
AH

AOAO87WWW?7 | AOAO87WWW?7_HUMAN Tensin-1 OS=Homo sapiens
0X=9606 GN=TN

AOA6I8PTU7|ADAGIS8PTU7_HUMAN AT-rich interactive domain-
containing

Q9H4A3|WNK1_HUMAN Serine/threonine-protein kinase WNK1
OS=Homo sap

P25054 | APC_HUMAN Adenomatous polyposis coli protein OS=Homo
sapien

HOYM23 |HOYM23_HUMAN Ankyrin repeat domain-containing protein
17 (F

AOA075B7F4| AOA075B7F4_HUMAN TATA-binding protein-associated
factor

Q9Y4H2|IRS2_HUMAN Insulin receptor substrate 2 0OS=Homo sapiens
OX=

AOA087X0A8| AOA087X0A8_HUMAN Collagen alpha-1(XIl) chain
OS=Homo sa
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875.82
871.82
869.26
868.87
865.35
861.45
861.04
855.43
854.14
850.48
848.95
841.89
839.73
838.59
836.87
833.67

833.45
833.44

831.79
828.84
827.75
824.81
824.62
824.07
821.72
821.72
821.66
820.61
820.52
820.51
820.08
819.38

817.56

157
296
210
31
539
61
181
521
92
516
382
145
35
35
521
380

37
98

176
510
35
219
30
141
169
101
212
205
35
141
505
35
141

1059
650
422

34
55

2132

191
80
910
578

1397
653
917
917

15

432

2223
492

234
436
917
1010
843
39

209
475
387
1143
917
131
439
917

29

1215
945
631

64
593

2192
371
600

1001

1093

1778
797
951
951
535
811

2259
589

409
945
951
1228
872
179
377
575
598
1347
951
271
943
951

169

Q96HA1|P121A_HUMAN Nuclear envelope pore membrane protein
POM 121

ABNCT7|A6NCT7_HUMAN Collagen alpha-1(XVI) chain 0S=Homo
sapiens OX

Q9ULL5|PRR12_HUMAN Proline-rich protein 12 0S=Homo sapiens
0X=9606

AOA3B3ISX9| AOA3B3ISX9_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

Q03692 | COAA1_HUMAN Collagen alpha-1(X) chain OS=Homo sapiens
0X=96

Q5JSZ5|PRC2B_HUMAN Protein PRRC2B OS=Homo sapiens OX=9606
GN=PRRC2

P09651|ROA1_HUMAN Heterogeneous nuclear ribonucleoprotein Al
0S=Ho

P25067| CO8A2_HUMAN Collagen alpha-2(VIII) chain OS=Homo
sapiens OX

Q5VT52|RPRD2_HUMAN Regulation of nuclear pre-mRNA domain-
containin

Q9C0J8| WDR33_HUMAN pre-mRNA 3' end processing protein WDR33
0S=Hom

AOA0G2JM87|A0A0G2IJM87_HUMAN Mucin-2 OS=Homo sapiens
0X=9606 GN=MUC

FSGWT4|F5GWT4_HUMAN Non-specific serine/threonine protein
kinase O

AOA140T902|A0A140T902_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

AOA140T9CO|AOA140T9CO_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

E9PP49|E9PP49_HUMAN Collagen alpha-2(VIll) chain 0S=Homo
sapiens O

AOA1BOGTJ8| AOA1BOGTJ8_HUMAN AT-rich interactive domain-
containing

Q9Y6R7|FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens
0X=9606 G

P13647|K2C5_HUMAN Keratin, type Il cytoskeletal 5 0S=Homo sapiens
Q99081 |HTF4_HUMAN Transcription factor 12 OS=Homo sapiens
0X=9606

Q96P44|COLA1_HUMAN Collagen alpha-1(XXI) chain OS=Homo
sapiens OX=

AOA140T8Y3|AOA140T8Y3_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

AOA2R8Y651| AOA2R8Y651_HUMAN PDZ domain-containing protein
GIPC3 OS

Q8TCU4|ALMS1_HUMAN Alstrom syndrome protein 1 0S=Homo
sapiens OX=9

AOA1BOGVR6|AOA1BOGVR6_HUMAN Transcription factor 4 0S=Homo
sapiens

P51991|ROA3_HUMAN Heterogeneous nuclear ribonucleoprotein A3
0OS=Ho

Q9BVL2|NUP58_HUMAN Nucleoporin p58/p45 OS=Homo sapiens
0X=9606 GN=

Q15596 | NCOA2_HUMAN Nuclear receptor coactivator 2 0S=Homo
sapiens

Q15788 | NCOA1_HUMAN Nuclear receptor coactivator 1 0S=Homo
sapiens

AOA140TA33|A0A140TA33_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

E9PH57|E9PH57_HUMAN Transcription factor 4 0S=Homo sapiens
0X=9606

F5GZK2|F5GZK2_HUMAN Collagen alpha-1(XXI) chain 0S=Homo
sapiens OX

AOA140TA41|AOA140TA41_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

P15884|ITF2_HUMAN Transcription factor 4 OS=Homo sapiens
0X=9606 G
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815.38
812.92
812.30
809.01
808.53
807.15
801.91
799.98
798.99
798.99
791.12
791.12
789.84
788.40
787.13
786.68
784.58
784.23
783.69
779.79
779.07
776.51
775.34
774.85
772.87
771.21
771.17
770.13
768.26
768.25
764.83
764.69

764.55

35
30
141
41
35
110
145
380
127
127
237
93
149
323
142
141
216
205
149
30
144
321
161
124
67
47
188
216
107
516
202
70

137

917
801
29
3038
917

416

416
2560
2560

126

165

579

27

483

29

465

992

568

843

61
27
643
713
27
2226

1273

383

907

120

672

534

327

951
830
169
3078
951
525
145
795
2686
2686
362
257
727
349
624
169
680
1196
716
872
204
347
803
836
93
2272
1460
598
1013
635
873
603
463

P22105| TENX_HUMAN Tenascin-X OS=Homo sapiens OX=9606
GN=TNXB PE=1

AOA087WTU9| AOAO87WTU9_HUMAN Alstrom syndrome protein 1
0OS=Homo sap

H3BTP3|H3BTP3_HUMAN Transcription factor 4 OS=Homo sapiens
0X=9606

Q72407 | CSMD3_HUMAN CUB and sushi domain-containing protein 3
0S=Ho

AOA140TA52|A0A140TA52_HUMAN Tenascin-X OS=Homo sapiens
0X=9606 GN=

AOA2R8YDL9| AOA2R8YDL9_HUMAN Methyl-CpG-binding domain
protein 5 OS

H3BPJ7|H3BPJ7_HUMAN Transcription factor 4 0S=Homo sapiens
0X=9606

AOA1BOGWJ2|AOA1BOGWIJ2_HUMAN AT-rich interactive domain-
containing

015417 |TNC18_HUMAN Trinucleotide repeat-containing gene 18
protein

HI9KVB4|H9KVB4_HUMAN Trinucleotide repeat-containing gene 18
protei

Q96F45|ZN503_HUMAN Zinc finger protein 503 OS=Homo sapiens
0X=9606

015027 |SC16A_HUMAN Protein transport protein Sec16A OS=Homo
sapien

AOA2R8YGI3| AOA2R8YGI3_HUMAN Collagen alpha-1(XIll) chain
0OS=Homo s

AOAO0G2JMC4|AOA0G2)MC4_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

014654 |IRS4_HUMAN Insulin receptor substrate 4 0S=Homo sapiens
OX=

AOA1BOGVB8|AOA1BOGVB8_HUMAN Transcription factor 4 0S=Homo
sapiens

AOAGE1W314 | AOAGE1IW314_HUMAN Collagen alpha-1(XIll) chain
0OS=Homo s

B5MCN7|B5MCN7_HUMAN Nuclear receptor coactivator 1 0S=Homo
sapiens

Q5TAT6|CODA1_HUMAN Collagen alpha-1(XIll) chain 0S=Homo
sapiens OX

AOA087WV20|A0A087WV20_HUMAN Alstrom syndrome protein 1
0OS=Homo sap

Q9UI136| DACH1_HUMAN Dachshund homolog 1 OS=Homo sapiens
0X=9606 GN=

AOA140TA51|AOA140TA51_HUMAN Mucin-21 OS=Homo sapiens
0X=9606 GN=MU

A6NF01|P121B_HUMAN Putative nuclear envelope pore membrane
protein

Q5SYE7 |NHSL1_HUMAN NHS-like protein 1 0S=Homo sapiens
0X=9606 GN=N

Q8IWZ3|ANKH1_HUMAN Ankyrin repeat and KH domain-containing
protein

015018|PDZD2_HUMAN PDZ domain-containing protein 2 0S=Homo
sapiens

E7EWN3|E7EWN3_HUMAN Histone-lysine N-methyltransferase SETD5
0S=Ho

AOAB69KB55 | AOA669KB55_HUMAN Collagen alpha-1(XI11) chain
(Fragment

Q8IZL2| MAML2_HUMAN Mastermind-like protein 2 0S=Homo sapiens
0X=96

P27658| CO8A1_HUMAN Collagen alpha-1(VIIl) chain 0S=Homo
sapiens OX

Q92585| MAML1_HUMAN Mastermind-like protein 1 0S=Homo
sapiens OX=96

AOA2R8YFX5|A0A2R8YFX5_HUMAN Neuron navigator 3 0S=Homo
sapiens OX=

P55197|AF10_HUMAN Protein AF-10 OS=Homo sapiens OX=9606
GN=MLLT10
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764.39
761.93
761.72
758.09
757.78
755.58
752.27
748.32
744.20
744.20
744.18
743.54
738.90
738.12
736.93
736.65
736.00
736.00
734.22
732.11
731.60
730.82
730.29
729.57
728.34
727.41
727.02
725.68
725.42
725.23
725.18
718.21

717.59

54
157
91
285
156
126
93
194
149
149
149
155
188
33
126
203
110
110
167
73
171
463
111
149
474
174
107
115
285
95
62
145
94

352
196
46
2119
716
75
165
781
1691
1691

1672

1254
325
1718
408
416
416
229
88
1455
182
1287
1215
196
230
175
815
1512
360
733
401
484

405
352
136
2403
871
200
257
974
1839
1839
1820
155
1441
357
1843
610
525
525
395
160
1625
644
1397
1363
669
403
281
929
1796
454
794
545

577

Q9H195|MUC3B_HUMAN Mucin-3B (Fragments) OS=Homo sapiens
0X=9606 GN

P22626|ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins
A2/B10

Q2KJY2|KI26B_HUMAN Kinesin-like protein KIF26B OS=Homo sapiens
OX=

P12111|CO6A3_HUMAN Collagen alpha-3(VI) chain OS=Homo sapiens
0X=9

Q9INTZ6|RBM12_HUMAN RNA-binding protein 12 OS=Homo sapiens
0X=9606

Q6L8H1|KRA54_HUMAN Keratin-associated protein 5-4 OS=Homo
sapiens

F1TOI1|F1TOI1_HUMAN Protein transport protein sec16 OS=Homo
sapien

094913 |PCF11_HUMAN Pre-mRNA cleavage complex 2 protein Pcf11l
0OS=Ho

P16112|PGCA_HUMAN Aggrecan core protein OS=Homo sapiens
0X=9606 GN

HOYMF1|HOYMF1_HUMAN Aggrecan core protein OS=Homo sapiens
0X=9606

AOA087X1T7|AOA087X1T7_HUMAN Aggrecan core protein 0S=Homo
sapiens

Q2M2I5|K1C24_HUMAN Keratin, type | cytoskeletal 24 OS=Homo
sapiens

Q9CO0A6|SETD5_HUMAN Histone-lysine N-methyltransferase SETD5
0S=Hom

AOAO087X0K4| AOA087X0K4_HUMAN CUB and sushi domain-containing
protei

Q8IZD2|KMT2E_HUMAN Inactive histone-lysine N-methyltransferase
2E

AOA669KB28| AOA669KB28_HUMAN Collagen alpha-1(XIll) chain
(Fragment

Q9P267|MBD5_HUMAN Methyl-CpG-binding domain protein 5
0OS=Homo sapi

AOA1BOGW10|AOA1BOGW10_HUMAN Methyl-CpG-binding domain
protein 5 0S

P15923| TFE2_HUMAN Transcription factor E2-alpha OS=Homo sapiens
OX

AOA2R8Y5P9| AOA2R8Y5P9_HUMAN Protein Shroom3 OS=Homo
sapiens OX=960

Q05707| COEA1_HUMAN Collagen alpha-1(XIV) chain 0S=Homo
sapiens OX=

ABMWQ5|A8MWQ5_HUMAN Collagen alpha-1(XXV) chain 0S=Homo
sapiens OX

AOA6Q8PFMO|AOA6Q8PFMO_HUMAN Serine/threonine-protein kinase
WNK1 (

AOA5K1VW9I7 | AOASK1VW97_HUMAN Aggrecan core protein
(Fragment) OS=Ho

AOA2R8Y760| AOA2R8Y760_HUMAN Collagen alpha-1(XXV) chain
0S=Homo sa

B4DGI9|B4DGI9_HUMAN Transcription factor 12 (Fragment) OS=Homo
sap

Q3L8U1|CHD9_HUMAN Chromodomain-helicase-DNA-binding protein
9 0S=H

Q9H2D6|TARA_HUMAN TRIO and F-actin-binding protein OS=Homo
sapiens

E7ENL6|E7ENL6_HUMAN Collagen alpha-3(VI) chain OS=Homo sapiens
OX=

Q96JK9|MAML3_HUMAN Mastermind-like protein 3 0S=Homo sapiens
0X=96

Q9C0C2|TB182_HUMAN 182 kDa tankyrase-1-binding protein
0OS=Homo sap

Q9UL6|ZMIZ1_HUMAN Zinc finger MIZ domain-containing protein 1
0s=

Q7Z794|K2C1B_HUMAN Keratin, type Il cytoskeletal 1b OS=Homo
sapien
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717.14
715.72
714.37
711.74
710.77
710.25
707.49
707.14
706.93
702.59
702.45
701.61
701.31
700.85
699.46
697.77
696.33
696.21
693.40
691.43
689.68
689.68
689.34
689.34
685.05
684.01
683.54
683.38
682.85
682.85
682.66
680.87

677.41

76
125
73
71
193
49
216
41
87
87
236
122
137
126
167
210
37
72
413
233
93
93
119
119
33
62
263
401
126
126
97
59

94

1145
365
169
944
325

2698
409

2384

14
408
406
993
819
638
258
448
2779
1290

291
325
325
1540
1540
325
514
100
489
602
603
2039
1206

2461

1220
489
241

1014
517

2746
624

2424
100
494
641

1114
955
763
424
657

2815

1361
413
523
417
417

1658

1658
357
575
362
889
727
728

2135

1264

2554

043166 |SI1L1_HUMAN Signal-induced proliferation-associated 1-like
P54259|ATN1_HUMAN Atrophin-1 OS=Homo sapiens OX=9606
GN=ATN1 PE=1
Q8TF72|SHRM3_HUMAN Protein Shroom3 OS=Homo sapiens
0X=9606 GN=SHRO

Q8IZF6| AGRG4_HUMAN Adhesion G-protein coupled receptor G4
0S=Homo

Q8NCAS5|FA98A_HUMAN Protein FAM98A OS=Homo sapiens OX=9606
GN=FAM98

Q15751|HERC1_HUMAN Probable E3 ubiquitin-protein ligase HERC1
0S=H

AOA669KB16| AOA669KB16_HUMAN Collagen alpha-1(XIll) chain
0S=Homo s

Q7Z7MO| MEGF8_HUMAN Multiple epidermal growth factor-like
domains p

P08047|SP1_HUMAN Transcription factor Spl OS=Homo sapiens
0X=9606

E9PNV5|E9PNV5_HUMAN Neuron navigator 2 (Fragment) OS=Homo
sapiens

E7ES50|E7ES50_HUMAN Collagen alpha-1(XIll) chain OS=Homo
sapiens O

Q5TGY3|AHDC1_HUMAN AT-hook DNA-binding motif-containing
protein 1

Q8IWN7|RP1L1_HUMAN Retinitis pigmentosa 1-like 1 protein
0S=Homo s

Q5T128|Q5T1Z8_HUMAN Pumilio homolog 1 OS=Homo sapiens
0X=9606 GN=P

X6REB3|X6REB3_HUMAN Transcription factor E2-alpha OS=Homo
sapiens

AOAG69KAZ4| AOA669KAZ4_HUMAN Collagen alpha-1(XI11) chain
0S=Homo s

075592 | MYCB2_HUMAN E3 ubiquitin-protein ligase MYCBP2
0OS=Homo sapi

015021| MAST4_HUMAN Microtubule-associated serine/threonine-
protein

AOA3B3ITG7|A0A3B3ITG7_HUMAN Collagen alpha-1(IV) chain
(Fragment)

POCG12 | DERPC_HUMAN Decreased expression in renal and prostate
canc

Q8NF64|ZMI1Z2_HUMAN Zinc finger MIZ domain-containing protein 2
0S=

AOA087X127| AOA087X127_HUMAN Zinc finger MIZ domain-containing
prot

Q71F56|MD13L_HUMAN Mediator of RNA polymerase Il transcription
sub

AOA3B3IRX3 | AOA3B3IRX3_HUMAN Mediator of RNA polymerase Il
transcri

Q72408|CSMD2_HUMAN CUB and sushi domain-containing protein 2
0OS=Ho

AOA3B3IRW6|AOA3B3IRW6_HUMAN Glutamine and serine-rich
protein 1 OS

HOY2R3|HOY2R3_HUMAN AT-rich interactive domain-containing
protein

FEWDMS8|F8WDMS8_HUMAN Collagen alpha-1(XXIV) chain 0S=Homo
sapiens O

Q14671|PUM1_HUMAN Pumilio homolog 1 OS=Homo sapiens
0X=9606 GN=PUM

Q5T124|Q5T1Z4_HUMAN Pumilio homolog 1 OS=Homo sapiens
0X=9606 GN=P

Q96RV3|PCX1_HUMAN Pecanex-like protein 1 0S=Homo sapiens
0X=9606 G

P10071|GLI3_HUMAN Transcriptional activator GLI3 OS=Homo sapiens
o]

Q12830|BPTF_HUMAN Nucleosome-remodeling factor subunit BPTF
0S=Hom
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677.13
676.89
676.19
676.14
674.88
671.51
671.21
670.98
670.25
670.05
667.88
667.59
667.39
667.04
665.90
665.83
663.48
663.44
661.18
660.58
658.62
656.28
656.18
656.10
656.10
654.13
650.98
648.63
647.08
646.71
646.50
645.31

644.29

65
458
56
193
37
34
85
63
140
107
84
77
89
359
84
59
36
62
76
62
77
110
50
77
77
69
84
179
77
66
77
36
182

196
2338
261
2741
270
45
65
334
737
2268
1077
1984
305
2270
1147
2997
521
809

521

416
3262
1266
1240

552

240

572

876

774

4719

371

65
653
2393
453
2777
303
129
127
473
843
2351
1153
2072
663
2353
1205
3032
582
884
582
77
525
3311
1342
1316
620
323
750
952
839
77
4754

552

AOAO88AWL3 | AOAO8SAWL3_HUMAN Nuclear receptor corepressor 1
OS=Homo

Q9BXS0|COPA1_HUMAN Collagen alpha-1(XXV) chain 0S=Homo
sapiens OX=

075376|NCOR1_HUMAN Nuclear receptor corepressor 1 0S=Homo
sapiens

P02671|FIBA_HUMAN Fibrinogen alpha chain 0S=Homo sapiens
0X=9606 G

AOA499FJ14| AOA499FJI4_HUMAN RCR-type E3 ubiquitin transferase
0OS=H

P02751| FINC_HUMAN Fibronectin OS=Homo sapiens OX=9606
GN=FN1 PE=1

094916 | NFAT5_HUMAN Nuclear factor of activated T-cells 5
0S=Homo s

Q6L8H4|KRA51_HUMAN Keratin-associated protein 5-1 0S=Homo
sapiens

AOA6Q8PH46|A0A6Q8PH46_HUMAN Mucin-19 (Fragment) OS=Homo
sapiens OX

AOA087X0G5 | AOA087X0G5_HUMAN Mastermind-like protein 2
0OS=Homo sapi

Q9Y520| PRC2C_HUMAN Protein PRRC2C OS=Homo sapiens OX=9606
GN=PRRC2

P49792 | RBP2_HUMAN E3 SUMO-protein ligase RanBP2 OS=Homo
sapiens OX

Q8WYB5|KAT6B_HUMAN Histone acetyltransferase KAT6B OS=Homo
sapiens

AOAOU1RRA7|AOAOU1RRA7_HUMAN Collagen alpha-1(XI) chain
(Fragment)

E7EPN9|E7EPN9_HUMAN Protein PRRC2C OS=Homo sapiens OX=9606
GN=PRRC

AOA2R8YGX0|ADA2R8YGX0_HUMAN Transcriptional activator GLI3
0S=Homo

Q96JQ0|PCD16_HUMAN Protocadherin-16 OS=Homo sapiens
0X=9606 GN=DCH

AOAOAOMQR4| AOAOAOMQR4_HUMAN Protein capicua homolog
0OS=Homo sapien

P10070| GLI2_HUMAN Zinc finger protein GLI2 OS=Homo sapiens
0X=9606

Q96RKO0| CIC_HUMAN Protein capicua homolog OS=Homo sapiens
0X=9606 G

AOA3F2YNZO|AOA3F2YNZO_HUMAN Protein transport protein sec16
0S=Hom

AOAOD9SG23 | AOAODI9SG23_HUMAN Methyl-CpG-binding domain
protein 5 0S

QINYQ7|CELR3_HUMAN Cadherin EGF LAG seven-pass G-type
receptor 30

Q68CP9|ARID2_HUMAN AT-rich interactive domain-containing protein
2

F8BWCU9|F8WCU9_HUMAN AT-rich interactive domain-containing
protein

Q86YV5|PRAG1_HUMAN Inactive tyrosine-protein kinase PRAG1
0OS=Homo

Q15714|T22D1_HUMAN TSC22 domain family protein 1 0S=Homo
sapiens O

AOA087X0K0| ADAO87X0KO_HUMAN Collagen alpha-1(XV) chain
OS=Homo sap

F8W108 | F8W108_HUMAN AT-rich interactive domain-containing
protein

P55198| AF17_HUMAN Protein AF-17 OS=Homo sapiens OX=9606
GN=MLLT6 P

Q92945 | FUBP2_HUMAN Far upstream element-binding protein 2
0S=Homo

Q96RW7|HMCN1_HUMAN Hemicentin-1 OS=Homo sapiens OX=9606
GN=HMCN1 P

HOY5N9|HOY5N9_HUMAN Collagen alpha-1(XIl) chain (Fragment)
OS=Homo
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643.38
642.98
642.06
640.12
639.00
637.56
636.90
635.17
635.14
635.13
631.47
630.89
630.73
630.73
630.59
630.14
628.75
628.75
628.64
628.47
625.32
625.11
624.99
624.64
624.48
623.57
620.50
620.35
620.16
619.50
618.95
618.51

616.85

29
122
77
29
179
91
66
29
244
41
171
227
354
354
40
41
103
103
63
74
63
244
122
114
87
462
110
64
77
104
35
379

71

1393
906

1392
586

109

1393
426
728
416
163
1403
1403
874
728
1275
1275
382
54
410
426
809
844
875
32
507
788

267
917
294

713

1421
1027
77
1420
764
199
66
1421
669
768
586
389
1756
1756
913
768
1377
1377
444
127
472
669
930
957
961
493
616
851
77
370
951
672

783

ESRIG2|E5RIG2_HUMAN CUB and sushi domain-containing protein 1
0OS=H

AOA669KBM4 | AOA669KBM4_HUMAN DNA-binding protein RFX7
0OS=Homo sapie

AOA3F2YNXO|AOA3F2YNXO_HUMAN Protein transport protein sec16
0S=Hom

Q96PZ7|CSMD1_HUMAN CUB and sushi domain-containing protein 1
0S=Ho

P39059| COFA1_HUMAN Collagen alpha-1(XV) chain 0S=Homo sapiens
0OX=9

P31942|HNRH3_HUMAN Heterogeneous nuclear ribonucleoprotein H3
0S=H

Q6ZRS2 | SRCAP_HUMAN Helicase SRCAP OS=Homo sapiens OX=9606
GN=SRCAP

F8W9C3|F8W9C3_HUMAN CUB and sushi domain-containing protein 1
0OS=H

FEM2K2|F6EM2K2_HUMAN Nuclear receptor coactivator 6 0S=Homo
sapiens

E7EVZ1|E7EVZ1_HUMAN Zinc finger homeobox protein 4 0S=Homo
sapiens

AOAOAOMQT7|AOAOAOMQT7_HUMAN Collagen alpha-1(XIV) chain
0S=Homo sa

Q96E39|RMXL1_HUMAN RNA binding motif protein, X-linked-like-1
0OS=H

A8TX70| CO6A5_HUMAN Collagen alpha-5(VI) chain 0S=Homo sapiens
0X=9

E9PALS|E9PALS5_HUMAN Collagen alpha-5(VI) chain 0S=Homo sapiens
OX=

C9JG08|C9JG08_HUMAN Uncharacterized protein C2orf16 OS=Homo
sapien

Q86UP3|ZFHX4_HUMAN Zinc finger homeobox protein 4 0S=Homo
sapiens

014513 |NCKP5_HUMAN Nck-associated protein 5 0S=Homo sapiens
0X=960

AOAOAOMS79| AOAOAOMS79_HUMAN Nck-associated protein 5
0OS=Homo sapie

G3V5H7|G3V5H7_HUMAN SKI family transcriptional corepressor 1
0OS=Ho

H7C269|H7C269_HUMAN Trinucleotide repeat-containing gene 6A
protei

P84550| SKOR1_HUMAN SKI family transcriptional corepressor 1
0S=Hom

FEM2K4|F6EM2K4_HUMAN Nuclear receptor coactivator 6 0S=Homo
sapiens

Q2KHR2 | RFX7_HUMAN DNA-binding protein RFX7 OS=Homo sapiens
0X=9606

Q8NET4|RTL9_HUMAN Retrotransposon Gag-like protein 9 0S=Homo
sapie

AOA2R8YDS2 | AOA2R8YDS2_HUMAN Ras/Rap GTPase-activating
protein SynG

AOAO087X1E1|AOAO87X1E1_HUMAN Collagen alpha-1(XXV) chain
OS=Homo sa

Q6AI39|BICRL_HUMAN BRD4-interacting chromatin-remodeling
complex-a

Q9ULM3|YETS2_HUMAN YEATS domain-containing protein 2
OS=Homo sapie

AOAO87WTP3|AOA087WTP3_HUMAN Far upstream element-binding
protein 2

Q96PE2 | ARHGH_HUMAN Rho guanine nucleotide exchange factor 17
0OS=Ho

AOA140T956|A0A140T956_HUMAN Tenascin-X (Fragment) OS=Homo
sapiens

AOA1BOGV63|AOA1BOGV63_HUMAN AT-rich interactive domain-
containing

AOA669KBC5| AOA669KBC5_HUMAN Protein unc-80 homolog
0OS=Homo sapiens
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616.16
615.33
614.92
614.79
614.79
614.14
613.57
612.12
611.74
611.53
611.28
610.35
610.21
610.13
608.34
608.25
607.09
606.34
604.97
604.29
604.18
603.98
603.98
603.41
603.14
603.11
602.98
600.93
600.77
600.11
599.91
599.66

597.89

90
87
37
71
71
167
291
87
87
83
87
174
63
94
61
122
37
60
60
59
100
29
114
60
37
50
228
122
93
133
41
65

65

194
920
2223
713
713

178

934
934
179
919
64
371
203
1364
119
331
1153
1154
2398
7935
1254
966
1156
331
104
163
809
293

2308
499
499

283
1006
2259
783
783
344
291
1020
1020
261
1005
237
433
296
1424
240
367
1212
1213
2456
8034
1282
1079
1215
367
153
390
930
385
133
2348
563

563

HOY4U1|HOY4U1_HUMAN Tensin-1 OS=Homo sapiens OX=9606
GN=TNS1 PE=1

B7ZCA0|B7ZCA0_HUMAN Ras/Rap GTPase-activating protein SynGAP
0S=Ho

AOA087WXI2 | AOA087WXI2_HUMAN IgGFc-binding protein 0S=Homo
sapiens

Q8N2C7|UNC80_HUMAN Protein unc-80 homolog OS=Homo sapiens
0X=9606

AOA669KAWS| AOA669KAWS8_HUMAN Protein unc-80 homolog
0OS=Homo sapiens

AOAOAOMRB7 | AOAOAOMRB7_HUMAN Transcription factor E2-alpha
0S=Homo

F8WC90| FBWC90_HUMAN RNA-binding protein EWS (Fragment)
0OS=Homo sap

Q96PV0O|SYGP1_HUMAN Ras/Rap GTPase-activating protein SynGAP
0OS=Hom

AOA2R8Y6T2| AOA2R8Y6T2_HUMAN Ras/Rap GTPase-activating protein
SynG

Q9P2D1|CHD7_HUMAN Chromodomain-helicase-DNA-binding protein
7 0S=H

AOAOAOMQZ2 | AOAOAOMQZ2_HUMAN Ras/Rap GTPase-activating
protein SynG

F5GY10|F5GY10_HUMAN Transcription factor 12 OS=Homo sapiens
0X=960

G3V3E1|G3V3E1_HUMAN SKI family transcriptional corepressor 1
0S=Ho

Q5JU85|IQEC2_HUMAN IQ motif and SEC7 domain-containing protein
20

AO0A494C0D3 | AOA494C0OD3_HUMAN Protein PRRC2B (Fragment)
0OS=Homo sapi

E7EX21|E7EX21_HUMAN Collagen alpha-1(XIll) chain OS=Homo
sapiens O

Q9UGM3|DMBT1_HUMAN Deleted in malignant brain tumors 1
protein OS=

AOA1U9X989| A0A1U9X989_HUMAN NOTCH4 OS=Homo sapiens
0X=9606 GN=NOTC

Q99466 | NOTC4_HUMAN Neurogenic locus notch homolog protein 4
OS=Hom

F5GXF5|F5GXF5_HUMAN Nucleosome-remodeling factor subunit BPTF
(Fra

ABNGQ3|A6NGQ3_HUMAN Non-specific serine/threonine protein
kinase O

F5GZ18|F5GZ18 HUMAN CUB and sushi domain-containing protein 1
0S=H

Q9NZP6|NPAP1_HUMAN Nuclear pore-associated protein 1 0S=Homo
sapie

AOA140T9R5|AOA140T9R5_HUMAN NOTCH4 OS=Homo sapiens
0X=9606 GN=NOTC

AOA590UJ76| AOA590UJ76_HUMAN Deleted in malignant brain tumors
1pr

P15502 | ELN_HUMAN Elastin OS=Homo sapiens OX=9606 GN=ELN
PE=1SV=4

P38159|RBMX_HUMAN RNA-binding motif protein, X chromosome
OS=Homo

HOYLX2 | HOYLX2_HUMAN DNA-binding protein RFX7 OS=Homo sapiens
0X=96

E7EWM3|E7EWM3_HUMAN Zinc finger MIZ domain-containing
protein 2 OS

AOA2R8YET7|AOA2R8YET7_HUMAN Eyes absent homolog OS=Homo
sapiens OX

H7BXXO0|H7BXX0_HUMAN CUB and sushi domain-containing protein 3
(Fra

P04259|K2C6B_HUMAN Keratin, type Il cytoskeletal 6B OS=Homo
sapien

P02538| K2C6A_HUMAN Keratin, type Il cytoskeletal 6A OS=Homo
sapien
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597.69
597.42
597.34
597.13
596.79
596.13
595.61
594.85
594.48
594.14
593.71
592.95
592.50
590.14
589.63
589.16
589.08
588.79
587.63
587.09
586.73
586.72
586.39
586.29
585.86
584.09
583.26
581.94
581.32
580.27
579.45
577.86

577.86

9%
66
84

303
69
94
97
30

260
65
56

129

224
9%

101

103
40
77

119
74
29

109

100
97
74
61
60
29
99
62
72
81
81

1291
126
203
49
940
2322
1519

2415

499
122
164
261
1291
467
2461
2269
146
1350
600
4680
981
1407
124
1790
206
1154
4682
480
385
247
1549

1570

1386
191
286
351

1008

2415

1615

2444
260
563
177
292
484

1386
567

2563

2308
222

1468
673

4708

1089

1506
220

1863
266

1213

4710
578
446
318

1629

1650

A6NEM2 | ABNEM2_HUMAN Host cell factor 1 0S=Homo sapiens
0X=9606 GN=

Q9ULD9|ZN608_HUMAN Zinc finger protein 608 OS=Homo sapiens
0X=9606

AOA6Q8PFR7|AOA6Q8PFR7_HUMAN IQ motif and SEC7 domain-
containing pr

AOA2R8Y6K8| AOA2R8Y6EK8_HUMAN Mucin-19 (Fragment) OS=Homo
sapiens OX

AOA590UJ96 | AOA590UJ96_HUMAN Uncharacterized protein
OS=Homo sapien

AOA2R8Y7Q1|A0A2R8Y7Q1_HUMAN Nucleosome-remodeling factor
subunit B

Q9UHV7|MED13_HUMAN Mediator of RNA polymerase Il transcription
sub

P46531|NOTC1_HUMAN Neurogenic locus notch homolog protein 1
0OS=Hom

H7BXV5|H7BXV5_HUMAN Collagen alpha-1(XVIIl) chain (Fragment)
0S=Ho

P48668|K2C6C_HUMAN Keratin, type Il cytoskeletal 6C OS=Homo
sapien

P08151|GLI1_HUMAN Zinc finger protein GLI1 OS=Homo sapiens
0X=9606

AOA2R8YGM9|AOA2R8YGM9_HUMAN Eyes absent homolog OS=Homo
sapiens OX

AOA669KB39| AOA669KB39_HUMAN Collagen alpha-1(XIll) chain
(Fragment

P51610|HCFC1_HUMAN Host cell factor 1 0S=Homo sapiens OX=9606
GN=H

Q9ULI3|HEG1_HUMAN Protein HEG homolog 1 OS=Homo sapiens
0X=9606 GN

075962 | TRIO_HUMAN Triple functional domain protein OS=Homo
sapiens

Q5T1R4|ZEP3_HUMAN Transcription factor HIVEP3 OS=Homo sapiens
0X=9

Q9UIF8|BAZ2B_HUMAN Bromodomain adjacent to zinc finger domain
prot

HOYHC1|HOYHC1_HUMAN Mediator of RNA polymerase Il
transcription su

Q8N2Y8|RUSC2_HUMAN Iporin OS=Homo sapiens OX=9606
GN=RUSC2 PE=1 SV

Q6VO0I7|FAT4_HUMAN Protocadherin Fat 4 0S=Homo sapiens
0X=9606 GN=F

H7BY37|H7BY37_HUMAN Histone-lysine N-methyltransferase 2C
(Fragmen

Q8NEV8|EXPH5_HUMAN Exophilin-5 OS=Homo sapiens OX=9606
GN=EXPH5 PE

Q9HCD6| TANC2_HUMAN Protein TANC2 OS=Homo sapiens OX=9606
GN=TANC2

Q5HYC2|K2026_HUMAN Uncharacterized protein KIAA2026 OS=Homo
sapien

Q725J4|RAI1_HUMAN Retinoic acid-induced protein 1 0S=Homo
sapiens

AOA140T8Y6|A0A140T8Y6_HUMAN NOTCH4 OS=Homo sapiens
0X=9606 GN=NOTC

AOA6Q8JR0O5 | AOA6Q8IRO5_HUMAN Protocadherin Fat 4 0S=Homo
sapiens OX

Q99700| ATX2_HUMAN Ataxin-2 OS=Homo sapiens OX=9606
GN=ATXN2 PE=1S

Q2KHR3|QSER1_HUMAN Glutamine and serine-rich protein 1
0OS=Homo sap

060299 | LZTS3_HUMAN Leucine zipper putative tumor suppressor 3
0S=H

Q6NO021|TET2_HUMAN Methylcytosine dioxygenase TET2 OS=Homo
sapiens

E7EQS8|E7EQS8_HUMAN Methylcytosine dioxygenase TET OS=Homo
sapiens
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577.43
577.02
577.02
575.93
575.60
575.27
575.13
573.38

573.38

71
184
184
119
307
64
77
132

143

64
347
347
935

51
657
833

173

134

530

530
1053
357

720

909

304

143

Q96T58| MINT_HUMAN Msx2-interacting protein OS=Homo sapiens
0X=9606

Q86VE3|SATL1_HUMAN Spermidine/spermine N(1)-acetyltransferase-
like

AOA2R8YFQO|AOA2R8YFQO_HUMAN Spermidine/spermine N(1)-
acetyltransfe

AOA3B31S46 | AOA3B31S46_HUMAN Mediator of RNA polymerase II
transcri

095429 |BAG4_HUMAN BAG family molecular chaperone regulator 4
0OS=Ho

P15822|ZEP1_HUMAN Zinc finger protein 40 OS=Homo sapiens
0X=9606 G

AOA590UJW6 | AOA590UJW6E_HUMAN Zinc finger CCHC domain-
containing pro

Q13151|ROAO_HUMAN Heterogeneous nuclear ribonucleoprotein AO
0OS=Ho

015534 |PER1_HUMAN Period circadian protein homolog 1 0S=Homo
sapie
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Figure S1. Comparing means in the sequence sets using a nonparametric test. A-C, p-values
calculated by the Mann-Whitney U-test, shown as -log(p-value), compares set means in 567
amino acid scales and vmogel. Here, the use of colors and symbols are identical to that used in
Figure 2, where conformation-based scales are grouped by type and highlighted by blue boxplots,
and physicochemical-based scales are grouped by type and highlighted by green boxplots. Scales
(e.g., refractivity, crystal melting point) that did not easily map into a conformation-based or
physicochemical-based group were combined separately (Other; orange boxplot). Boxplots show
the dataset median (50" percentile) with the central bar, and the vertical width spans the 25 to
75% percentiles. Open triangles highlight the smallest p-value from Welch’s t-test when
comparing means in the PS ID and ID sets, which was from an a-helix propensity scale, the
smallest p-value from Welch’s t-test when comparing means in either ID set with the folded set,
which was from a structure-based hydrophobicity scale, and the B-turn propensity scale used in
ParSe (also provided for reference).
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Figure S2. Modes of variance in the sequence sets arising from different amino acid property
scales. A-C, bidimensional plots (top figures) from PCA showing the modes of variance in the
human proteome and the combined ID sets (PS ID and ID) arising from conformation- (blue
arrows) and physicochemical-based (green arrows) scales relative to the two principal
components of variance, given as Dimension 1 and Dimension 2. Scree plots (bottom figures)
showing the percent of the total variance in the human proteome and in the combined set of ID
sequences that is captured by each principal component (i.e., dimension).
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Figure S3. Comparing hydrophobicity, a-helix propensity, and Vmodesr in homopolymers.
Hydrophobicity (¢) and a-helix propensity (a) were calculated using the scales from Vendruscolo
and coworkers (14) and Tanaka and Scheraga (15), respectively, in homopolymers (N = 100)
where amino acid type is identified by its one-letter code. Filled circles show the mean and

standard deviation in ¢, a, and Vmoges in the PS ID (blue), ID (red), and folded sets (black).
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Figure S4. Predicting protein regions that drive LLPS. ParSe v2 was applied to the whole
sequences of proteins with diverse reported mechanisms driving LLPS. The proteins are identified
by name and UniProt accession number. Contiguous regions (N >20) that were 90% of only one
label, P, D, or F were colored blue, red, or black, respectively, to represent predicted PS, ID, or

folded regions. Striped represents >50% identity to a known PS IDR (blue) or folded protein
(black).
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Figure S5. LLPS driver sequences have AUC >0.8 when compared against the human proteome.
AUC calculations used the human proteome as the comparison set, and recall was based on the
summed P classifier distance, as described in Figure 4. AUC values for SCOPe (grey) and DisProt
(red) are reproduced from Figure 4C. LLPS driver sets (blue) are from Vernon et al (3),
representing a set of proteins that have been verified in vitro to exhibit homotypic phase
separation behavior (referred to as “in vitro sufficient” by Vernon), the parent proteins of the PS
ID sequence set from the current study, and LLPS driver sets from Saar et al (16), Chen et al (17),
Farahi et al (18), and Cai et al (19), where the sets are identified by the names used for these sets
in each study. For comparison, light blue shows AUC for protein sets thought to have lower
potential for phase separation (compared to the driver sets) because these proteins require
partners (Vernon (3) and Chen sets (17)) and/or relatively high protein concentrations (>100 uM;
Saar set (16)) for LLPS.
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homotypic LLPS
v2 AUC =0.984
v1 AUC = 0.980

recall

0 T T T T T
0 02 04 06 08 1
human proteome accepted

Figure S6. ParSe v2 shows improved recall compared to the original version. Homotypic LLPS is
the Vernon et al set of proteins that have been verified in vitro to exhibit homotypic phase
separation behavior (3). Solid lines are ParSe v2 results, while stippled lines are from the original
ParSe algorithm. Data in this figure is a reproduction of the results in Figure 4A. Calculated AUC
values are indicated to the right of the figure.
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Figure S7. ParSe v2 shows reduced recall when using scales with weaker predictive value. A,
the structure-based hydrophobicity scale from Vendruscolo and coworkers (14) was substituted
for a solution-based hydrophobicity scale from Wilce et al (20) with t-test p-values of 3.4E-21 and
1.7E-18 when comparing means in the folded and PS ID and folded and ID sets, respectively. This
solution-based hydrophobicity scale was used to identify F windows from P or D. A composition-
based scale from Jukes et al (21), with a t-test p-value of 7.4E-08 when comparing means in the
PS ID and ID sets, and a coil propensity scale from Isogai et al (22), with a t-test p-value of 4.6E-
08 when comparing means in the PS ID and ID sets, were used to identify P windows from D. B,
when using these weaker scales with ParSe v2 (dashed lines), the overall predictive value, as
judged by AUC (left-most figure), decreased relative to ParSe v2 when using the top-performing
scales (solid lines).
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Figure S8. ParSe v2 shows similar predictive accuracy as other LLPS predictors. AUC values for
PLAAC, PScore, catGranule, FuzDrop, SaPS, SaPS-8, SaPS-10 are reproduced from the scores given
in Figures 1D, 2E, and S2B in Chen et al (17). AUC values for ParSe v2 used recall based on the
summed P classifier distance, as described in Figure 4. A, SaPS, B, SaPS-test, and C, hSaPS-test
sets were evaluated against the NoPS set. These sequence sets were obtained from Chen et al

(17). D, recall in the NoPS set compared to the human proteome gives AUC >0.5, indicating that
ParSe v2 predicts the NoPS set is enriched in PS.
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Figure S9. Predicting mutation effects on phase separation behavior by training against cs:. A,
the summed classifier distance of P-labeled positions was used to calculate a phase-separating
(PS) potential from sequence. Mutants were grouped by experimental study and colored grey for
wildtype (WT), yellow for mutants with both NCPR and SCD identical to the WT values, and green
otherwise (non-WT NCPR and SCD). Placement left-to-right within a study follows the reported
PS potential in rank, from high-to-low, for comparison to the predicted PS potential. A1-LCD
mutants used cse: to establish rank. B, A1-LCD mutants with NCPR and SCD matching the WT
values were used to fix a in Equation 3 by optimizing the correlation of Parse-calculated PS
potential (including Ur) to -logio(csat); the right figure shows the optimal correlation. C, similarly,
all A1-LCD mutants with experimental cs,: were then used to fix b and c¢ in Equation 4 by
optimizing the correlation of ParSe-calculated PS potential (including U and Ug) to -logio(Csat);
the right figure shows the optimal correlation. D, ParSe-calculated PS potentials (including Ur and
Uq optimized to -logio(csat)) for the mutant and WT sequences.
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100. Ah Csat

% correct

Figure S10. ParSe v2 and other LLPS predictors show similar accuracy for predicting mutation
effects. Each predictor was used to rank the mutant sequences in order of phase separation
potential, for the set of mutants shown in Figures 5 (rank determined by Ah°) and S9 (rank
determined by csqt). Percent correct is the number of mutant sequences that correctly predicted
an increase or decrease relative to the wildtype sequence, divided by the total number of
mutants and given as a percentage. Granule propensity was used for the catGranule score and
LLR was used for the PLAAC score. “ParSe v2 corrected” refers to PS potential (sum of P-labeled
windows) including Ur and Us.
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Figure S11. U, and U, effects on ParSe predicted PS regions and potential. A, ParSe v2 (solid
lines) and ParSe v2 including Ur and Uy in the calculations (dashed lines) were used to identify
regions in proteins that were >90% labeled P, which are referred to as phase-separating, PS,
regions. Shown by the y-axis is the percent of proteins in a set with PS regions at least as long as
the length indicated by the x-axis. The human proteome (UniProt reference proteome
UP000005640) is given by black lines; a set of in vitro sufficient homotypic LLPS proteins by blue
lines; and the full sequences of the proteins in the PS ID set by light blue lines. B, the summed P
classifier distance was calculated for the proteins sets in panel A, using both ParSe v2 (solid lines)
and ParSe v2 including Ur and Uq (dashed lines). Shown by the y-axis is the percent of proteins in
a set with a summed P classifier distance at least as much as the value indicated by the x-axis.
Lines were colored using the same coloring scheme as in panel A.
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