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ABSTRACT. The Peterson-Thom conjecture asserts that any diffuse,
amenable subalgebra of a free group factor is contained in a unique
maximal amenable subalgebra. This conjecture is motivated by related
results in Popa’s deformation/rigidity theory and Peterson-Thom’s re-
sults on L2-Betti numbers. We present an approach to this conjecture
in terms of so-called strong convergence of random matrices by formu-
lating a conjecture which is a natural generalization of the Haagerup-
Thorbjørnsen theorem whose validity would imply the Peterson-Thom
conjecture. This random matrix conjecture is related to recent work of
Collins-Guionnet-Parraud.

1. INTRODUCTION

Amenability is arguably the central concept in von Neumann algebra theory. Cele-
brated and fundamental work of Connes [18] shows that amenable von Neumann
algebras are precisely the hyperfinite ones, and also gives several equivalent forms
of amenability. Because of this famous work, amenable algebras are well under-
stood and completely classified.

Given our understanding of amenable von Neumann algebras, it is natural
to try to bootstrap our knowledge of arbitrary von Neumann algebras from our
knowledge of the amenable ones. This naturally motivates the study of maxi-
mal amenable subalgebras of a von Neumann algebra, those subalgebras which are
amenable and are maximal with respect to inclusion among amenable subalgebras.
In a landmark discovery [60], Popa showed that L(Z) is a maximal amenable sub-
algebra of L(Fr ) = L(Z∗Fr−1) for any r ∈ N (here and throughout the paper, Fr
denotes the free group on r letters). This provided the first example of a maximal
amenable subalgebra that was abelian (a phenomenon that was unexpected at the
time), and it gave a negative answer to a related problem of Kadison stated during
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the Baton Rouge conference in 1967. In fact, Popa’s work establishes the more
general result that L(Z) is maximal Gamma in L(Fr ). The foundational insight
of Popa was the usage of his asymptotic orthogonal property to establish maximal
amenability. Many authors have used Popa’s asymptotic orthogonal property to
establish maximal amenability in various cases (see [9, 12, 23, 25, 26, 35, 36, 48,
66]).

Popa’s deformation/rigidity theory also allows one to deduce strong “mal-
normality” properties of free group factors: for example, primeness of all non-
amenable subfactors [57], as well as the celebrated strong solidity of free group
factors [54]. Much of the developments in deformation/rigidity theory go beyond
free group factors and apply to von Neumann algebras associated with groups
which have a combination of approximation properties and nontrivial cohomol-
ogy [15,55,57,61–64], as well as crossed product algebras associated with actions
of such groups. (See [39, 40, 65, 68, 69] for further results, including resolutions
of long-standing open problems.) These developments parallel, and frequently
require input from, the theory of L2-Betti numbers for groups (developed in [2])
as well as equivalence relations (developed in [24]). Given these connections, we
should expect in general that results from the theory of L2-Betti numbers will have
natural analogues for von Neumann algebras. In [58], Peterson-Thom proved var-
ious indecomposability and malnormality results for groups with positive first L2-
Betti number. Based on their work, and previous work of Ozawa-Popa, Peterson,
and Jung [45, 54, 57], they conjectured the following for von Neumann algebras.

Conjecture 1. Fix r > 1. If Q is a von Neumann subalgebra of L(Fr ) which
is both diffuse and amenable, then there is a unique maximal amenable von Neu-
mann subalgebra P of L(Fr ) with Q ⊆ P .

For the rest of the article, if M is a von Neumann algebra, we will use the
notation N ≤ M to mean that N is a unital, von Neumann subalgebra of M.
Given N ≤ M with M a finite von Neumann algebra and N diffuse, we say that N
has the absorbing amenability property (see [37, Theorem 4.1]) if whenever Q ≤ M
is amenable and Q∩N is diffuse, we have Q ⊆ N. An equivalent way of phrasing
Conjecture 1 is to say that if r > 1, then any maximal amenable N ≤ L(Fr )
has the absorbing amenability property. For many examples of maximal amenable
subalgebras of free group factors this has been verified [10, 56, 75], and typically
uses a generalization of Popa’s asymptotic orthogonality property, called the strong
asymptotic orthogonality property implicitly defined in [37, Theorem 3.1]. Many
exciting recent works [7, 8, 53] apply an alternative method using an analysis of
states.

The fact that we can show the absorbing amenability property for many ex-
amples of maximal amenable subalgebras of free group factors is strong evidence
for the Peterson-Thom conjecture, but as of yet the methods of proof for these ex-
amples have not led to a general approach to the problem. The goal of this paper is
to provide such an approach through Voiculescu’s free entropy dimension theory
and random matrices. Free entropy dimension theory was initiated by Voiculescu
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in a series of papers [72,73], and provides a powerful method to deduce indecom-
posability and malnormality results for free group factors (among other algebras).
For example, Voiculescu used free entropy dimension, in combination with his
previously established random matrix results [71, 74], to give the first proof of
absence of Cartan subalgebras in free group factors [73]. Shortly after this work,
primeness and thinness of free group factors were first established by Ge, Ge-Popa
using free entropy dimension theory [27, 28]. (See [19, 38, 45] for other appli-
cations.) Popa’s deformation/rigidty theory and asymptotic orthogonality tech-
niques apply to a wider range of algebras than free group factors/amalgamated free
products, and do not require the Connes approximate embedding property for
their applicability. However, some indecomposability results for free group fac-
tors shown using free entropy dimension theory cannot currently be approached
by deformation/rigidity theory or the (strong) asymptotic orthogonal property
[19, 28, 33, 34].

We now present our result which reduces the Peterson-Thom conjecture to
a natural random matrix problem. It requires usage of the 1-bounded entropy,
which was implicitly defined in [45] and explicitly in [33]. If N ≤ M are diffuse,
tracial von Neumann algebras, the 1-bounded entropy of N in the presence of M
(denoted h(N : M)) is some sort of measurement of “how many” ways there are
to “simulate” N by matrices which have an extension to a “simulation” of M by
matrices (see Definition 2.5 for the precise definition). Throughout the paper, we
say that a random self-adjoint matrix X ∈ Mk(C)s.a. is GUE distributed if

{Xii : i = 1, · · · , k}∪ {
√

2 ReXij : 1 ≤ i < j ≤ k}∪ {
√

2 ImXij : 1 ≤ i < j ≤ k}

is an independent family of Gaussian random variables each with mean 0 and
variance 1

k . For a natural number k, we use C〈T1, T2, · · · , Tk〉 for the C-algebra
of noncommutative polynomials in k-variables (i.e., the free C-algebra in k inde-
terminates).

Theorem 1.1. Fix an integer r ≥ 2. Consider the following statements:

(i) If Q ≤ L(Fr ) is diffuse and amenable, then there is a unique maximal
amenable P ≤ L(Fr ) with Q ≤ P.

(ii) If Q ≤ L(Fr ) is nonamenable, then h(Q : L(Fr )) > 0.

(iii) For k ∈ N, let X(k)1 , · · · , X(k)r ,Y (k)1 , · · · , Y (k)r be random, self-adjoint k×k
matrices which are independent and are each GUE distributed. Set X(k) ⊗

1Mk(C) = (X
(k)
i ⊗ 1Mk(C))

r
i=1, 1Mk(C) ⊗ Y = (1Mk(C) ⊗ Y

(k)
i )ri=1. Let s =

(s1, · · · , sr ) be r free-semicirculars each with mean zero and variance 1. Let
s ⊗ 1C∗(s) = (si ⊗ 1C∗(s))

r
i=1 and

1C∗(s) ⊗ s = (1C∗(s) ⊗ si)ri=1 ∈ (C
∗(s)⊗min C

∗(s))r

Then, with high probability the law of (X(k) ⊗ 1C∗(s),1C∗(s) ⊗ Y (k)) tends
(as k → ∞) to the law of (s ⊗ 1C∗(s),1C∗(s) ⊗ s) strongly. Specifically, for
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every polynomial P ∈ C〈T1, · · · , Tr , Tr+1, · · · , T2r 〉 we have

‖P(X(k) ⊗ 1Mk(C),1Mk(C) ⊗ Y
(k))‖∞(1.1)

→k→∞ ‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖C∗(s)⊗minC∗(s)

in probability.

Then, (iii) implies (ii), which implies (i).

As will be stated explicitly in Sections 3, 4 the GUE ensemble can be re-
placed by the Haar unitary ensemble (with the limit distribution being free Haar
unitaries) and many of the other random matrix ensembles from random matrix
theory (this is implied by the more general Theorem 1.2). We state the results
for the GUE ensemble mostly for convenience. Strictly speaking, so-called strong
convergence is the conjunction of (1.1) with

1
k2

Tr⊗Tr(P(X(k) ⊗ 1Mk(C),1Mk(C) ⊗ Y
(k)))(1.2)

→k→∞ τ ⊗ τ(P(s ⊗ 1C∗(s),1C∗(s) ⊗ s))

for every noncommutative polynomial P ∈ C〈T1, · · · , Tr , Tr+1, · · · , T2r 〉, where
τ is the underlying tracial state on C∗(s1, · · · , sr ). However, the fact that (1.2)
holds for every P ∈ C〈T1, · · · , Tr , Tr+1, · · · , T2r 〉 is already a consequence of
Voiculescu’s asymptotic freeness theorem [71]. The concept of strong convergence
arises from groundbreaking work of Haagerup-Thorbjørnsen [31], who showed
that the law of an r -tuple of independent, k × k GUE distributed matrices con-
verges strongly to the law of an r -tuple of freely independent semicircular vari-
ables which each have mean zero and variance 1. This work opened up an array
of powerful tools which have been used in combination with delicate analytic and
combinatorial arguments to establish strong convergence for many other ensem-
bles, and also for a mixture of random and deterministic ensembles [5, 17, 50].
In particular, recent work [16, 59] shows that if mk is a sequence of positive in-
tegers with |mk| ≤ Ck1/3 for some constant C ≥ 0, and if X(k) is an r -tuple of
independent, k × k GUE distributed matrices, and Y (mk) is an r -tuple of inde-
pendent, mk ×mk GUE distributed matrices chosen independent of X(k), then
(in the notation of the above theorem) the law of (X(k)⊗1Mmk(C),1Mk(C)⊗Y

(mk))

converges strongly to the law of (x⊗1C∗(x),1C∗(x)⊗x). This was later improved

to |mk| ≤ C
k

(logk)3 [4, Proposition 9.3]. While this work does not quite resolve

our conjecture (we need mk = k), it nevertheless lends positive evidence to the
validity of our approach.

Our work actually establishes something slightly more general than the above.
To state this more general result requires as input the notion of exponential con-
centration of measure, a well-established tool in probability and geometric func-
tional analysis (see Definition 2.12 for the precise definition). It also uses the
highly general noncommutative functional calculus of Jekel initiated in [34, 41,
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42]. We recall the precise construction in Section 2.4, but for now the reader
should simply know that for r ∈ N and R ∈ [0,∞) there is a space FR,r ,∞
of “noncommutative functions” defined on the R-ball of any von Neumann al-
gebra which are uniformly L2-continuous in an appropriate sense and have the
property that if (M,τ) is any tracial von Neumann algebra, and x ∈ Mr has
‖xj‖ ≤ R, j = 1, · · · , r , then given any y ∈ W∗(x) there is an f ∈ FR,r ,∞ with
f (x) = y. For natural numbers k, r , we define a pseudometric dorb on Mk(C)r

as follows. For A ∈ Mk(C), we set ‖A‖2 =
1
k Tr(A∗A). We then define

dorb (A, B) = inf
U∈U(k)




r∑

j=1

‖UAjU
∗ − Bj‖

2
2




1/2

.

We also use the notational convention that if

C ∈ Mk(C),D = (D1,D2, · · · ,Dr ) ∈ Mk(C)
r

then CD = (CD1, CD2, · · · , CDr ) ∈ Mk(C)r , and similarly for DC. Thus, for
A ∈MK(C), we let At be its transpose. The following is our more general random
matrix result.

Theorem 1.2. LetX(k) = (X(k)j )lj=1 be a tuple ofn(k)×n(k)-random matrices.
Suppose the following hold:

• There is an (Rj)lj=1 ∈ [0,∞)
l so that for all j

lim
k→∞

P(‖X(k)j ‖∞ ≤ Rj) = 1.

• The law of X(k) converges in probability to the law of a tuple x = (xj)lj=1

in a tracial von Neumann algebra (M,τ) with M = W∗(x1, · · · , xl).

• The probability distribution of X(k) exhibits exponential concentration of
measure at scale n(k)2 as k→∞.

(i) Suppose thatQ ≤ M is finitely generated, diffuse, and h(Q : M) ≤ 0. Suppose
y ∈ Qr with Q = W∗(y) and write y = f (x) for some f ∈ FR,r ,∞.
Then, there exists A(k) ∈ Mn(k)(C)l such that A(k) converges to x in law
and so that

dorb(f (X(k)), f (A(k)))→ 0,

in probability. Specifically, for every ε > 0

P(dorb(f (X(k)), f (A(k))) < ε)→k→∞ 1.

(ii) Assume that C∗(x) is locally reflexive. Let Y (k) = (Y (k)j )lj=1 be an inde-

pendent copy of (X(k)j )lj=1. If (X(k) ⊗ 1Mn(k)(C)),1Mn(k)(C) ⊗ (Y
(k))t) con-

verges strongly in probability to (x⊗1C∗(x)op ,1C∗(x)⊗xop), then any diffuse
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Q ≤ M with h(Q : M) ≤ 0 is necessarily amenable. In particular, given any
diffuse, amenable Q ≤ M there is a unique maximal amenable P ≤ M with
Q ⊆ P.

Let us comment a bit on the intuition for (i). The assumption that the law
of X(k) converges in probability to the law of x means that the randomly cho-
sen matrix X(k) “simulates” x with high probability. In terminology introduced
in Section 2.2, we say that X(k) are microstates for x. The general properties of
Jekel’s noncommutative functional calculus then guarantee that the random ma-
trix f (X(k)) are also microstates for f (x) = y. The conclusion of (i) then asserts
that the random microstates for y produced by the random matrix f (X(k)) are all
approximately unitarily equivalent to each other. If one passes to the ultraprod-
uct framework, then the picture becomes much clearer. These randomly chosen
microstates then turn into (random) honest embeddings into a ultraproduct of
matrices, and the conclusion of (i) is then the assertion that, with high probabil-
ity, these different embeddings are all unitarily conjugate when restricted to Q.

Viewed through this lens, part (ii) is connected with Jung’s theorem [44] that
a tracial von Neumann algebra which satisfies Connes approximate embeddability
property is amenable if and only if any two embeddings into an ultraproduct of
matrices are unitarily conjugate (see [3] for a recent generalization of this fact
to conjugation by unital, completely positive maps). In fact, Jung’s argument
shows the following more general fact: if (M,τ) is a tracial von Neumann algebra
which embeds into an ultraproduct of matrices, then given any nonamenable N ≤
M there are two embeddings of M into an ultraproduct of matrices which are
not unitarily conjugate when restricted to N. A consequence of (ii) is that, under
the assumption of strong convergence, given a nonamenable N ≤ M , a randomly
chosen pair of embeddings of M into an ultraproduct of matrices are not unitarily
conjugate when restricted to N. (See Section 4 for a more precise discussion of
parts (i),(ii) in an ultraproduct framework.)

We close with a discussion of organization of the paper. Section 2 is a dis-
cussion of background for the paper. In Section 2.1 we state our conventions and
notation from von Neumann algebra and operator space theory. In Section 2.2 we
recall the notion of noncommutative laws, and their use in defining 1-bounded
entropy. Here, we also recall the definitions of the weak∗ and strong topologies
on the space of laws. In Section 2.3, we discuss (sequences of ) measures on mi-
crostates spaces and the two important conditions on them we will use: being
asymptotically supported on microstates spaces, and exponential concentration.
Section 2.4 describes Jekel’s noncommutative functional calculus, as well as the
modification we will need for the non-selfadjoint case. Strictly speaking, the usage
of this general functional calculus is not necessary for the proofs of the main re-
sults, and earlier versions of this paper did not use it. However, its usage drastically
simplifies both the conception and the deduction of the main results, so we think
its inclusion is worthwhile. Section 3 contains the proofs of Theorems 1.1 and
1.2. Specifically, in Section 3.1 we prove Theorem 1.2 (i) which states that under
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an assumption of exponential concentration there is a “collapse” of the microstates
space where the vast majority of the measure lives near a single unitary conjugation
orbit. The methods of proof here are similar to those in [34]. Section 3.2 contains
a proof of Theorem 1.2 (ii), and it is here that both strong convergence and local
reflexivity play a crucial role. In Section 3.3 we deduce Theorem 1.1 from Theo-
rem 1.2. In Section 4 we explain how the results are related to Jung’s theorem, and
give reformulations of the main results in an ultraproduct framework. In Section
4 we also introduce several conjectures related to the Peterson-Thom conjecture
and Theorem 1.1, and we explicitly explore their relative strength. Finally, we
close in Section 5 with a few comments on the approach. In particular, we discuss
the discontinuity in the strong topology of taking tensors, and how exactness of
free group factors may allow one to follow previous approaches to proving strong
convergence in probability.

2. BACKGROUND

2.1. General convention and notation. For k ∈ N, we let Mk(C) be
the space of k × k matrices over C, and Mk(C)s.a. be the space of k × k self-
adjoint matrices over C. We also use U(k) for the unitaries in Mk(C). We define
tr : Mk(C)→ C by

tr(A) =
1
k

k∑

j=1

Ajj .

We define a Hilbert space inner product on Mk(C) by 〈A,B〉 = tr(B∗A), and we
let ‖ · ‖2 be the norm induced by this inner product. We use S2(n, tr) for Mn(C)
equipped with this Hilbertian structure. For an index set J, a finite F ⊆ J, and
A ∈Mk(C)J , we set

‖A‖2,F =


∑

j∈F

‖Aj‖
2
2




1/2

.

If J itself is finite, and F = J we will often use ‖ · ‖2 instead of ‖ · ‖J . The pair
(Mk(C), tr) is an important example of a more general concept.

Definition 2.1. A tracial von Neumann algebra is a pair (M,τ) where M is a
von Neumann algebra, and τ : M → C is a faithful, normal, tracial state.

For a von Neumann algebra M we use M∗ for the normal linear functionals
M → C. We call M∗ the predual of M , it is a Banach space under the operator
norm. For von Neumann algebras, we will adopt similar conventions as in the case
of matrices. For example, U(M),Ms.a. will refer to the unitaries and self-adjoints
in M. For reasons that will become clear shortly, for x ∈ M we use ‖x‖∞ for the
operator norm of x.Given a von Neumann algebraM we shall useN ≤ M to mean
that N is a unital von Neumann subalgebra ofM. IfM is a von Neumann algebra,
J an index set and x = (xj)j∈J ∈ MJ , and y ∈ M, we will use yx,xy for
(yxj)j∈J , (xjy)j∈J ∈ MJ , respectively. Similarly, if M1,M2 are von Neumann
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algebras and π : M1 → M2 is a ∗-homomorphism, then for an index set J and

x = (xj)j∈J ∈M
J
1 we will use π(x) for (π(xj))j∈j ∈M

J
2 .

While a von Neumann algebra is assumed to come with an ambient embed-
ding into bounded operators on a Hilbert spaceH , one significant advantage of a
tracial von Neumann algebra is that there is a natural representation of the algebra
we can build from the trace. Given a tracial von Neumann algebra (M,τ), we
define an inner product on M by

〈a,b〉 = τ(b∗a).

We use ‖ · ‖2 for the norm induced by this inner product, and we let L2(M,τ) be
the Hilbert space which is the completion under this inner product. It is direct to
show (see [1, Section 7.1.1]) that for all x,y ∈ M ,

‖xy‖2 ≤ ‖x‖∞‖y‖2, ‖xy‖2 ≤ ‖y‖∞‖x‖2.

Thus, the operators y ֏ xy, y ֏ yx extend continuously to bounded operators
on L2(M,τ). Moreover, ifM is given as a von Neumann algebra of operators on a
Hilbert spaceH , then the above inequality proves that the norms of the operators
y ֏ xy, y ֏ yx acting on L2(M,τ) are equal to the norm of x as an element of
B(H ). For ξ ∈ L2(M,τ), we use xξ, ξx for the image of ξ under these operators.
Given a tracial von Neumann algebra (M,τ) the above allows us to view it as a
von Neumann algebra of operators on L2(M,τ) by left multiplication. We will
essentially always view a tracial von Neumann algebra in this manner and ignore
whatever other Hilbert space it arises from.

We will need to use tensor products at various points in the paper. For vector
spaces V,W we use V ⊗algW for their algebraic (i.e., not completed) tensor product.
If H1,H2 are Hilbert spaces, we let H1 ⊗H2 denote their Hilbert space tensor
product. Given T ∈ B(H1), S ∈ B(H2), we let T ⊗ S be the unique operator in
B(H1 ⊗H2) given by

(T ⊗ S)(ξ ⊗ η) = Tξ ⊗ Sη for ξ ∈H1, η ∈H2.

For von Neumann algebras Mj ⊆ B(Hj), j = 1,2 we let

M1⊗M2 = span{T ⊗ S : T ∈M1, S ∈M2}
SOT

.

At various important points in the paper, we will need to use approximation
properties in terms of completely bounded/completely positive maps. These are the
appropriate morphisms for what are now called operator spaces/operator systems.

Definition 2.2. A (concrete) operator space is a closed, linear subspace of B(H )
for some Hilbert space H . A (concrete) operator system is a closed, linear subspace
of B(H ) which is closed under adjoints and contains the identity operator.
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If E ⊆ B(H ) is an operator space, then we may view Mn(E) ⊆ B(H⊕n) in a
natural way. Thus, if we are given A ∈ Mn(E), the embeddingMn(E) ⊆ B(H⊕n)
allows us to make sense of ‖A‖Mn(E). Properly speaking, an operator space is re-
ally a Banach space E together with the data of these norms on Mn(E), and one
can give an axiomatic description for such norms to arise from an embedding
into B(H ) (see [22, Theorem 2.3.5]). We will stick to concrete operator spaces
(i.e., given as a subspace of B(H )) for the purposes of this paper. Given oper-
ator spaces E, F and a bounded, linear map T : E → F , we define (for n ∈ N)
T ⊗ idMn(C) : Mn(E)→ Mn(F) by [(T ⊗ idMn(C))(A)]ij = T(Aij) for A ∈ Mn(E).
We say that T is completely bounded if

sup
n
‖T ⊗ idMn(C) ‖ < ∞,

the norm in question being the operator norm. If T is completely bounded, we
set

‖T‖cb = sup
n
‖T ⊗ idMn(C) ‖.

We say that T is completely contractive if ‖T‖cb ≤ 1. We let CB(E, F) be the
completely bounded maps E → F and will often use CB(E) instead of CB(E, E).
If E1, E2 are operator spaces and Ej ⊆ B(Hj), j = 1,2,, then we let E1 ⊗min E2 be
the operator space given by

span{A⊗ B : A ∈ E1, B ∈ E2}
‖·‖∞

⊆ B(H1 ⊗H2).

If Ej , Fj, j = 1,2 are operator spaces and Tj : Ej → Fj , j = 1,2 are completely
bounded, then the map T1⊗T2 : E1⊗alg E2 → F1⊗alg F2 extends continuously to a
completely bounded map E1 ⊗min E2 → F1 ⊗min F2 which we still denote T1 ⊗ T2.
We also have

‖T1 ⊗ T2‖cb = ‖T1‖cb‖T2‖cb.

This is decidedly not true if we consider bounded maps instead of completely
bounded maps, and indeed arguably the main motivation for completely bounded
maps and operator spaces is to provide a context in which one can extend bounded
maps to tensor products.

For operator systems a natural order structure is at play. Suppose E ⊆ B(H )
is an operator system, and consider the embeddings Mn(E) ⊆ B(H⊕n). We can
then define the positive elements in Mn(E) to be those which are positive as oper-
ators on B(H⊕n). Since E is an operator system, it has an abundance of positive
elements: for example, every element of E is a linear combination of 4 positive ele-
ments. Given operator systems E, F , a map T : E → F is positive if T(x) ≥ 0 for all
x ∈ E with x ≥ 0. It is completely positive if T ⊗1Mn(C) is positive for all n.We say
T is unital if T(1) = 1. We use CP(E, F) and UCP(E, F) for the completely pos-
itive and unital, completely positive maps E → F , respectively. It is a fact that for
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T ∈ CP(E, F) we have ‖T‖cb = ‖T(1)‖ (see [22, Lemma 5.1.1]). As in the op-
erator space case, if Ej, Fj , j = 1,2 are operator systems and Tj : Ej → Fj , j = 1,2
are completely positive, then so is T1 ⊗ T2 : E1 ⊗min E2 → F1 ⊗min F2. As in the
operator space case, the analogous statement is false for positive maps.

Since any C∗-algebra can be embedded in bounded operators on a Hilbert
space, we may view any closed subspace of a C∗-algebra as an operator space.
Similarly, we may view any closed subspace which is closed under adjoints and
contains the unit as an operator system.

If Mj , j = 1,2, Nj , j = 1,2 are von Neumann algebras and Tj : Mj → Nj, j =
1,2 are normal, completely bounded maps, then T1 ⊗ T2 has a unique, normal
extension to a map M1⊗M2 → N1⊗N2 which we still denote T1 ⊗ T2. Moreover,

‖T1 ⊗ T2‖CB(M1⊗M2,N1⊗N2) = ‖T1‖cb‖T2‖cb.

Further, if each Tj is completely positive, then so is T1 ⊗ T2.

2.2. Laws, Microstates, and 1-Bounded Entropy. Given an index set J,
we let C∗〈(Tj)j∈J〉 be the ∗-algebra of noncommutative ∗-polynomials in the
abstract variables (Tj)j∈J .We may think of C∗〈(Tj)j∈J〉 as the (algebraically) free
∗-algebra indexed by J. If J = {1, · · · , n}, we typically use C∗〈T1, · · · , Tn〉 for
C∗〈(Tj)

n
j=1〉. If we are given a ∗-algebra A, and a tuple x ∈ AJ , then by algebraic

freeness there is a unique ∗-homomorphism evx : C∗〈(Tj)j∈J〉 → A such that
evx(Tj) = xj . For P ∈ C∗〈(Tj)j∈J〉, we denote evx(P) by P((xj)j∈J). Again, if
J = {1, · · · , n}, we usually use P(T1, · · · , Tn).

Definition 2.3. Let J be an index set. A linear functional ℓ:C∗〈(Tj)j∈J〉→C
is called a tracial law if there is a R : J → [0,∞) so that the following hold:

• ℓ(P∗P) ≥ 0 for all P ∈ C∗〈(Tj)j∈J〉.
• ℓ(1) = 1.
• ℓ(PQ) = ℓ(QP) for all P,Q ∈ C∗〈(Tj)j∈J〉.
• for all n ∈ N, all j1, j2, · · · , jn ∈ J and all σ1, · · · , σn ∈ {1,∗},

|ℓ(Tσ1

j1
Tσ2

j2
· · ·T

σn
jn
)| ≤ Rj1Rj2Rj3 · · ·Rjn .

We let ΣJ be the space of tracial laws indexed by J. If J = {1, · · · , n}, we typically
use Σn instead of ΣJ . Given a function R : J → [0,∞), we let ΣR,J be the set of
all laws ℓ satisfying the fourth item above for this specific R. If R ∈ [0,∞) we

will frequently use ΣR,J for ΣR̂,J , where R̂ : J → [0,∞) is the function which is
constantly R. As above, if J = {1, · · · , n} we will frequently use ΣR,n (in both
the case where R is a function and the case where it is a constant).

The above may be regarded as an abstract definition of a law. If we are con-
cretely given a tracial von Neumann algebra (M,τ) and a tuple x ∈ MJ for some
indexing set J, we define the law of x to be the linear functional

ℓx : C∗〈(Tj)j∈J〉 → C
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given by ℓx(P) = τ(P((xj)j∈J)). We always equip Mk(C) with its unique tracial
state tr given by

tr(A) =
1
k

k∑

j=1

Ajj .

Thus, if A ∈Mk(C)J , we have a notion of its law ℓA.
In fact, every abstract law arises as a concrete law for some tuple in a tracial von

Neumann algebra. This follows from the GNS (Gelfand-Naimark-Segal) con-
struction, which we sketch here. Let J be an index set and ℓ ∈ ΣJ . Define a
semi-inner product on C∗〈(Tj)j∈J〉 by 〈P,Q〉 = ℓ(Q∗P). For P ∈ C∗〈(Tj)j∈J〉
we set ‖P‖L2(ℓ) = ℓ(P

∗P)1/2, and we define

W = {P ∈ C∗〈(Tj)j∈J〉 : ‖P‖L2(ℓ) = 0}, V = C∗〈(Tj)j∈J〉/W.

The semi-inner product C∗〈(Tj)j∈J〉 descends to a genuine inner product on V,
and we let L2(ℓ) be the Hilbert space which is the completion of V under the norm
coming from this inner product. From the fourth bullet point in Definition 2.3,
one can deduce that there is a C : C∗〈(Tj)j∈J〉 → [0,∞] so that

‖PQ‖L2(ℓ) ≤ C(P)‖Q‖L2(ℓ)

for all P,Q ∈ C∗〈(Tj)j∈J〉. Thus, we may proceed as in the tracial von Neumann
algebra case to deduce that there is a well-defined ∗-homomorphismπℓ : C∗〈(Tj)j∈J〉 →
B(L2(ℓ)) satisfying

(2.1) πℓ(P)(Q +W) = PQ+W

for all P,Q ∈ C∗〈(Tj)j∈J〉. Set

(2.2) W∗(ℓ) = πℓ(C∗〈(Tj)j∈J〉)
SOT

,

and let x = (πℓ(Tj))j∈J ∈ MJ . We then have a faithful, normal, tracial state
τℓ : M → C given by

(2.3) τℓ(a) = 〈a(1+W),1+W〉, for a ∈M,

and by construction the law of x with respect to τℓ is ℓ. It is an exercise using the
spectral theorem to show that

(2.4) ‖πℓ(P)‖∞ = sup
k

ℓ((P∗P)k)1/2k = lim
k→∞

ℓ((P∗P)k)1/2k.

for all P ∈ C∗〈(Tj)j∈J〉. Thus, if R ∈ [0,∞)J and ℓ ∈ ΣR,J , then ‖πℓ(xj)‖∞ ≤
Rj for all j ∈ J.
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Moreover, laws may be viewed as a natural noncommutative extension of
probability measures. If (M,τ) is a tracial von Neumann algebra and x ∈ M
is normal, we let µx ∈ Prob(C) be the spectral measure of x defined by µx(E) =
τ(1E(x)) for all Borel E ⊆ C. Then, by definition, for all P ∈ C∗〈T 〉 we have

(2.5) τ(P(x)) =

∫
P(z)dµx(z).

Here, we are using P(z) for the image of T under the unique ∗-homomorphism
C∗〈T 〉 → C given by T ֏ z. Of course, C∗〈T 〉 is noncommutative, whereas
z ֏ P(z) is given by a (different) commutative polynomial in z and z. Since µx
is compactly supported, the Stone-Weierstrass theorem tells us that equation (2.5)
uniquely determines µx . This equation may be read as

ℓx(P) =

∫
P(z)dµx(z),

and so we see that the law of x encodes the same information as the spectral
measure of x.

Fix a set J. Since ΣJ is a subset of the algebraic dual of C∗〈(Tj)j∈J〉, it can
be naturally endowed with the weak∗-topology. Thus, a basic neighborhood of
ℓ ∈ ΣJ is given by

UF,ε(l) =
⋂

Q∈F

{φ ∈ ΣJ : |φ(Q)− ℓ(Q)| < ε}

for a finite F ⊆ C∗〈(Tj)j∈J〉 and an ε > 0. We leave it as an exercise to verify that
for every R ∈ [0,∞)J we have that ΣR,J is compact in the weak∗-topology.

We recall the notion of freely independent random variables, which forms the
basis for Voiculescu’s free probability. Let (M,τ) be a tracial von Neumann alge-
bra, and let (Aj)j∈J be ∗-subalgebras of M. We say that (Aj)j∈J are freely inde-
pendent (or free) if for all n ∈ N, and all j ∈ Jn with j1 6= j2, j2 6= j3, j3 6= j4,
· · · , jn−1 6= jn, and for all a ∈Mn with ai ∈ Aji and τ(ai) = 0 we have

τ(a1a2 · · ·an) = 0.

Say that (xj)j∈J ∈ MJ are freely independent (or free) if the ∗-algebras they gen-
erate are free as a J-tuple. This necessarily forces (W∗(xj))j∈J to be free. Given
any collection (Mj , τj)j∈J , one may find (see [70, Chapter 1]) another tracial
von Neumann algebra (M,τ) for which there are trace-preserving embeddings
Mj ֓ M so that if we identify Mj with its image under this embedding, then

M = W∗
(⋃

jMj

)
, and (Mj)j∈J are free. If (M̃, τ̃) is another such algebra, then

there is a unique trace-preserving isomorphism (M,τ) ≅ (M̃, τ̃) which respects

the embeddings of (Mj , τj) into (M,τ), (M̃, τ̃) for each j ∈ J. Thus, we may
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define the free product of (Mj, τj), denoted ∗j∈J(Mj , τj), to be any such alge-
bra. Given index sets (Ji)i∈I , and ℓi ∈ ΣJi define ℓ = ∗i∈Iℓi ∈ Σ⊔iJi to be the
law of x = (πℓi(Tj))j∈Ji,i∈I in ∗i∈I(W∗(ℓi), τℓi). By its very nature, freeness of
noncommutative variables depends only upon their joint law. Thus, we will often
omit reference to the underlying von Neumann algebra. For example, we will of-
ten say “suppose x = (x1, · · · , xr ) is a free tuple.” Provided we specify ℓxj for all
j, this unambiguously gives ℓx . Since many of our results only require knowledge
of the law of x, this will suffice for our purposes. One case of utmost importance
is the following. A tuple s = (s1, · · · , sr ) is a free semicircular family if it is a free
family, each sj is self-adjoint, and for each j we have that

dµsj =
1

2πσ 2

√
4σ 2 − (x − µ)21[µ−2σ,µ+2σ] dx

for some µ ∈ R, σ ∈ (0,∞).

Definition 2.4. Let J be an index set, and fix R : [0,∞) → J. Given a set
O ⊆ ΣR,J with nonempty interior (relative to ΣR,J) and an k ∈ N, we define
Voiculescu’s space of (O, k) microstates to be

Γ (k)R (O) = {A ∈Mk(C)
J : ℓA ∈ O,‖Aj‖∞ ≤ Rj for all j ∈ J}.

The reader may be more familiar with the following case. Let (M,τ) be
a tracial von Neumann algebra, and let J be an index set. Let x ∈ MJ and
choose R ∈ [0,∞)J with ‖xj‖ < Rj for all j ∈ J. Then, it is typical to consider

Γ (k)R (O) for O a weak∗-neighborhood of x. Indeed, it is common to denote this

by Γ (k)R (x;O) even though it does not require x for its definition. If W∗(x) = M,
then we have that M embeds into an ultrapower of the hyperfinite II1-factor if
and only if, for every neighborhood O of the law of x in ΣR,J , there is an integer
k ∈ N so that

Γ (k)R (O) 6= 0.

Because of this, the spaces Γ (k)R (O) are often regarded as spaces of “finitary approx-
imations” of x, and they form the basis for microstates free entropy, microstates
free entropy dimension, and the 1-bounded entropy of x.

There is a mild, but very important, variant of this which takes into account
microstates which have an “extension” to a larger algebra. Suppose that (M,τ) is
a tracial von Neumann algebra, and that I, J are index sets. Let y ∈ M I ,, and fix
R ∈ [0,∞)I⊔J with ‖yi‖∞ ≤ Ri for all i ∈ I. Let O ⊆ ΣR,I⊔J , and assume that

{ℓ
∣∣
C∗〈(Ti)i∈I〉

: ℓ ∈ O}

is a neighborhood of ℓy . For an integer k ∈ N we define Voiculescu’s microstates

space for y in the presence of O, denoted Γ (k)R (y : O), by

Γ (k)R (y : O) = {A ∈Mk(C)
I : there exists a B ∈ Mk(C)J with ℓA,B ∈ O}.
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Typically, one takes y ∈ Mk(C)J and O to be a neighborhood of ℓy,x. In this

case, one thinks of Γ (k)R (y : O) as “microstates for y which have an extension to
microstates for (y,x).”

Given a set Ω, a pseudometric on Ω is a function d : Ω×Ω→ [0,∞) satisfying
the following:

• d(x,y) = d(y,x) for all x,y ∈ Ω.
• d(x, z) ≤ d(x,y)+ d(y, z) for all x,y, z ∈ Ω.

Given a pseudometric d on Ω, an r > 0, and an x ∈ Ω, we let

Br (x,d) = {y ∈ Ω : d(x,y) < r}.

For E ⊆ X and r > 0, we let [Nr (E,d) =
⋃
x∈E Br (x,d). We call Nr (E,d)

the r -neighborhood of E. For ε > 0 and E ⊆ Ω, we let Kε(E,d) be the minimal
cardinality of a set F ⊆ E which has Nε(F, d) ⊇ E. If there is no such finite set
F, then by convention Nε(F, d) = ∞. If F ⊆ C, then Nε(F) will refer to the
ε-neighborhood of F with respect to the Euclidean distance on C. and we will not
make reference to the fact that we are using the Euclidean distance.

The most important pseudometric for our purposes is the following. Given an
index set J, a finite set F ⊆ J, and a natural number k, we define a pseudometric
dorb
F on Mk(C)J by

dorb
F (A, B) = inf

U∈U(k)
‖A−UBU∗‖2,F .

As in the case of ‖ · ‖2,F , if J itself is finite we will usually use dorb instead of dorb
J .

Definition 2.5. Let (M,τ) be a tracial von Neumann algebra, and let also
y ∈ M I , x ∈ MJ . Fix R ∈ [0,∞)I∪J with ‖xj‖∞ ≤ Rj for all j ∈ J, and
‖yi‖∞ ≤ Ri for all i ∈ I. For a weak∗-neighborhood O of ℓy,x and a finite F ⊆ I,
we set

Korb
ε,F (y : O,‖ · ‖2) = lim sup

k→∞

1
k2

logKε(Γ (k)R (y : O), dorb
F ).

We then define
Korb
ε,F (y : x) = inf

O
Korb
ε,F (y : O,‖ · ‖2),

h(y : x) = sup
ε,F

Korb
ε,F (y : x),

where the infimum is over all weak∗-neighborhoods O of ℓy,x and the supremum
is over all ε > 0 and finite subsets F of J. We call h(y : x) the 1-bounded entropy
of y in the presence of x.

It follows from [32, Theorem A.9] that if J′, I′ are other index sets, and if
y ′ ∈ MJ′ , x′ ∈ M I′, and W∗(y) = W∗(y ′),W∗(x,y) = W∗(x′, y ′), then

h(y : x) = h(y ′ : x′).
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Suppose N ≤ M, and that N is diffuse. If y ∈ NJ , x ∈ M I with W∗(y) =
N,W∗(x,y) = M, we may define the 1-bounded entropy of N in the presence of M
by

h(N : M) = h(y : x).

We think of h(N : M) as some precise measurement of the “size of the space of
microstates for N which have an extension to M .” Note that since we allow arbi-
trary index sets, the quantity h(N : M) is always defined (provided N is diffuse),
though it may be −∞. We set h(M) = h(M : M), and call h(M) the 1-bounded
entropy of M .

We now turn to permanence properties the 1-bounded entropy enjoys. We
say that a von Neumann algebraM is hyperfinite if there is an increasing net (Mα)α
of finite-dimensional von Neumann subalgebras of M with

M =
⋃
α

Mα

WOT

.

By a celebrated result of Connes [18], this is equivalent to several other properties
of M , such as being amenable [1, Chapter 10]. Because of Connes’s famous and
deep work, we will use hyperfinite and amenable interchangeably. We use R for
the (unique modulo isomorphism) hyperfinite II1-factor. For a tracial von Neu-
mann algebra (M,τ) and x ∈MJ for some set J, we let δ0(x) be the microstates
free entropy dimension of x. We will not need the precise definition, and refer
the reader to [72, Definition 6.1] for the details. We assume that all our von
Neumann algebras are diffuse for all the properties listed below.

P1 h(N : M) ≥ 0 if N ≤ M and every von Neumann subalgebra of M with
separable predual embeds into an ultrapower ofR, and h(N : M) = −∞ if
there exists a von Neumann subalgebra ofM with separable predual which
does not embed into an ultrapower of R (exercise from the definitions).

P2 h(N1 : M1) ≤ h(N2 : M2) if N1 ≤ N2 ≤ M2 ≤ M1 (exercise from the
definitions).

P3 h(N : M) = 0 if N ≤ M and N is diffuse and hyperfinite (exercise from
the definitions).

P4 For M diffuse, h(M) < ∞ if and only if M is strongly 1-bounded in the
sense of Jung. (See [32, Proposition A.16].)

P5 h(M) = ∞ if M = W∗(x1, · · · , xn) where xj ∈ Msa for all 1 ≤ j ≤ n
and δ0(x1, · · · , xn) > 1. For example, this applies if M = L(Fn), for
n > 1. (This follows from Property P4 and [45, Corollary 3.5].)

P6 h(N1 ∨N2 : M) ≤ h(N1 : M)+h(N2 : M) if N1, N2 ≤ M and N1 ∩N2 is
diffuse. (See [32, Lemma A.12] .)

P7 Suppose that (Nα)α is an increasing chain of diffuse von Neumann sub-
algebras of a von Neumann algebra M . Then,

h

(∨
α

Nα : M

)
= sup

α
h(Nα : M).
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(See [32, Lemma A.10].)
P8 h(N : M) = h(N : Mω) if N ≤ M is diffuse, and ω is a free ultrafilter on

an infinite set. (See [32, Proposition 4.5].)
P9 h(W∗(NM(N)) : M) = h(N : M) if N ≤ M is diffuse. Here, NM(N) =

{u ∈ U(M) : uNu∗ = N}. (This is a special case of [32, Theorem 3.8].)

These properties are sufficient by themselves to deduce the landmark results of
Voiculescu [73], Ge [27] that free group factors do not have Cartan subalgebras,
and are prime, as well as the fact that a von Neumann algebra generated by a
family with free entropy dimension bigger than 1 does not have Property Gamma.
We refer the reader to [34, Section 1.2] for a more detailed discussion on this.

The 1-bounded entropy allows us to single out a particularly nice set of von
Neumann subalgebras of a fixed tracial von Neumann algebra.

Definition 2.6. Suppose (M,τ) is a tracial von Neumann algebra, and that
P ≤ M. We say that P is a Pinsker algebra in M if h(P : M) ≤ 0 and for every
P ≤ Q ≤ M with Q 6= P we have h(Q : M) > 0.

Recall that if M is a von Neumann algebra, then Q ≤ M is maximal amenable
if Q is amenable and for every N ≤ M with Q ⊆ N and N amenable, we have
N = Q. It follows from Property P6 that if Q ≤ M is diffuse, and h(Q : M) = 0,
then there is a unique Pinsker P ≤ M with Q ≤ P. If P ≤ M is Pinsker and
amenable, it is necessarily maximal amenable by Property P3. Moreover, by P6,
P3 it has the absorbing amenability property. Specifically, ifQ ≤ M is amenable and
Q ∩ P is diffuse, then Q ≤ P. It also has the following Gamma stability property
(in the sense of [37]): if Q ≤ M is such that Q′ ∩Mω and Q∩ P are diffuse, then
Q ≤ P.

Of relevance to the Peterson-Thom conjecture is the following.

Proposition 2.7. Let (M,τ) be a tracial von Neumann algebra. Suppose every
Pinsker algebra in M is amenable. Then, given any diffuse, amenable Q ≤ M there is
a unique, maximal amenable P ≤M with Q ⊆ P.

Proof. Suppose that Q ≤ M is diffuse and amenable. Let P ≤ M be the
unique Pinsker algebra in M with Q ⊆ P. By assumption, P is amenable. Since P

is Pinsker, it is necessarily maximal amenable. Suppose P̂ ≤ M is another maximal

amenable subalgebra of M with Q ⊆ P̂ . Then, P̂ ∩ P ⊇ Q, and since Q is diffuse

this forces P̂ ∩ P to be diffuse. Thus, h(P ∨ P̂ : M) ≤ 0, by Property P6. Since P

is Pinsker, P̂ ∨ P ≤ P , which forces P̂ ⊆ P. Since P̂ is maximal amenable, we have
P̂ = P , and this completes the proof. ❐

The weak∗-topology on laws is what allows us to define Voiculescu’s mi-
crostates, and by extension the 1-bounded entropy. We will also need another
topology on the space of laws. Fix an index set J. Recall the definition of πℓ for
ℓ ∈ ΣJ discussed after Definition 2.3. For P ∈ C∗〈(Tj)j∈J〉, ℓ ∈ ΣJ , set

‖P‖L∞(ℓ) = ‖πℓ(P)‖∞.
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It is not true that the map

ΣJ × C∗〈(Tj)j∈J〉 → [0,∞]

given by (ℓ, P) ֏ ‖P‖L∞(ℓ) is continuous in the first variable. However, from
(2.4) we have the following semi-continuity: if ℓα is a net in ΣJ and ℓα → ℓ
weak∗, then for all P ∈ C∗〈(Tj)j∈J〉

‖P‖L∞(ℓ) ≤ lim inf
α

‖P‖L∞(ℓα).

This motivates the definition of a different topology on ΣJ .
Definition 2.8. Let J be an index set. The strong topology on ΣJ is the coarsest

topology finer than the weak∗-topology which makes the map ΣJ → [0,∞) given
by P ֏ ‖P‖L∞(ℓ) continuous for each P ∈ C∗〈(Tj)j∈J〉.

Given ℓ ∈ ΣJ , a neighborhood basis at ℓ in the strong topology may be given
by

OV,F,ε(ℓ) = V ∩
⋂

P∈F

{φ ∈ ΣJ : |‖P‖L∞(ℓ) − ‖P‖L∞(φ)| < ε}

ranging over weak∗-neighborhoods V of ℓ, finite sets F ⊆ C∗〈(Tj)j ∈ J〉, and
ε ∈ (0,∞). In fact, by semicontinuity, the sets

VV,F,ε(ℓ) = V ∩
⋂

P∈F

{φ ∈ ΣJ : ‖P‖L∞(φ) < ‖P‖L∞(ℓ) + ε}

ranging over weak∗-neighborhoods V of ℓ, finite sets F ⊆ C∗〈(Tj)j ∈ J〉, and
ε ∈ (0,∞) form a neighborhood basis of ℓ ∈ ΣJ in the strong topology.

Suppose we are given a sequence (Mk, τk)k of tracial von Neumann algebras,

xk ∈ M
J
k , and another von Neumann algebra (M,τ) and x ∈ MJ . We will then

say that the distribution of xk converges strongly to the distribution of x if ℓxk → ℓx
in the strong topology. Concretely, this is just the conjunction of the following
two properties:

• τk(P(xk))→ τ(P(x)) for all P ∈ C∗〈(Tj)j∈J〉;
• ‖P(xk)‖∞ → ‖P(x)‖∞ for all P ∈ C∗〈(Tj)j∈J〉.

Thus, our notion of strong convergence agrees with that already discussed in
[17, 50]. To further illustrate the meaning of strong convergence, we close with the
following lemma relating strong convergence to Hausdorff convergence of spectra.
This is a well-known result, and we mainly prove it to give the reader some insight
and practice as to what strong convergence is and why it is important. Recall that
the Hausdorff metric on nonempty, compact subsets of C is given by

dHaus (E, F) = inf{r > 0 : E ⊆ Nr (F) and F ⊆ Nr (E)}.
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Lemma 2.9. Fix an index set J. Let (Mk, τk), k ∈ N be a sequence of tracial

von Neumann algebras and xk ∈ M
J
k . Let (M,τ) be a tracial von Neumann algebra

and x ∈ MJ . Assume that supk ‖xk,j‖∞ < ∞ for all j ∈ J. Suppose that ℓxk → ℓx
weak∗. Then, ℓxk → ℓx strongly if and only if, for every P ∈ C∗〈(Tj)j∈J〉 with
P = P∗, we have that σ(P(xk))→ σ(P(x)) in the Hausdorff metric.

Proof. First, suppose that for every self-adjoint P ∈ C∗〈(Tj)j∈J〉 we have that
σ(P(xk)) → σ(P(x)) in the Hausdorff metric. Now, fix Q ∈ C∗〈(Tj)j∈J〉, and
let ε > 0. Then, for all sufficiently large k, we have that

σ((Q∗Q)(xk)) ⊆ Nε(σ((Q
∗Q)(x))).

Since the norm of a self-adjoint element is given by its spectral radius, it follows
that ‖Q(xk)‖2

∞ = ‖(Q∗Q)(xk)‖∞ ≤ ε + ‖(Q∗Q)(x)‖∞ = ε + ‖Q(x)‖2
∞ for

large k. Since ε > 0 is arbitrary, we have shown that lim supk→∞ ‖Q(xk)‖∞ ≤
‖Q(x)‖∞. The fact that ‖Q(x)‖∞ ≤ lim infk→∞ ‖Q(xk)‖∞ is already a conse-
quence of weak∗ convergence of ℓxk to ℓx .

For the reverse direction, assume that ℓxk → ℓx strongly. First, choose a
M > 0 so that ‖P(xk)‖∞ ≤ M for all k. This is possible as supk ‖xk,j‖∞ < ∞ for
all j ∈ J. Note we have ‖f (P(xk))‖∞ → ‖f (P(x))‖∞ for all f ∈ C([−M,M]).
Indeed, the set of f ∈ C([−M,M]) for which ‖f (P(xk))‖∞ →k→∞ ‖f (P(x))‖∞
can be directly shown to be a closed subset of C([−M,M]), and by our as-
sumption of strong convergence it contains all polynomials. Thus, we have that
‖f (P(xk))‖∞ → ‖f (P(x))‖∞ for all f ∈ C([−M,M]) by the Stone-Weierstrass
theorem. Let ε > 0, and apply Urysohn’s Lemma to find a continuous function
φ ∈ C([−M,M]) which is 0 on σ(P(x)) and is 1 on

Nε(σ(P(x))
c ∩ [−M,M].

Then, ‖φ(P(xk))‖∞ →k→∞ ‖φ(P(x))‖∞ = 0, and so for all large k we have

‖φ(P(xk))‖∞ <
1
2
.

By the spectral mapping theorem, σ(φ(P(xk))) = φ(σ(P(xk))). Since φ = 1
on Nε(σ(P(x)))c ∩ [−M,M], and ‖φ(P(xk))‖ is the supremum of |φ| over
σ(P(xk)), it follows that σ(P(xk)) ⊆ Nε(σ(P(x))) for all large k.

Thus, it remains only to show that σ(P(x)) ⊆ Nε(σ(P(xk))) for all large
k. For every t ∈ σ(P(x)), choose a ψt ∈ C([−M,M]) with ψt(t) = 1 and
ψt
∣∣
Bε/2(t)c∩[−M,M]

= 0. As above, there is a Kt ∈ N so that for all k ≥ Kt
we have ‖ψt(P(xk))‖∞ ≥ 1/2. As in the above paragraph, this implies that
Bε/2(t)∩ σ(P(xk)) 6= 0 and so t ∈ Nε/2(σ(P(xk))) for all k ≥ Kt. As σ(P(x))
is compact, we can choose t1, · · · , tn ∈ σ(P(x)) so that

σ(P(x)) ⊆ Nε/2({t1, · · · , tn}).
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Set K =max(Kt1 , · · · , Ktn). Then, for all k ≥ K,,

σ(P(x)) ⊆ Nε/2({t1, · · · , tn}) ⊆ Nε(σ(P(xk))). ❐

Note that the weak∗-convergence of ℓxk → ℓx implies the weak∗-convergence
of µP(xk) to µP(x) for all self-adjoint P ∈ C∗〈(Tj)j∈J〉. The above lemma than
asserts that strong convergence of ℓxk → ℓx means that there one does not have
any “outliers” in the spectrum of P(xk). In random matrices, this is often called
having a “hard edge.”

We phrased Lemma 2.9 in terms of strong convergence of laws of specific
elements because it is more natural for the reader who might have some experi-
ence with random matrices. For example, if A(k) ∈ Mn(k)(C)J and if there is
a tracial von Neumann algebra (M,τ) and a tuple x ∈ MJ with ℓA(k) → ℓx
weak∗, then strong convergence of A(k) to x just asserts that for any self-adjoint
P ∈ C∗〈(Tj)j∈J〉 the spectral distribution of P(A(k)) converges weak∗ to the
spectral measure of P(x), and the spectrum of P(A(k)) converges to the spectrum
of P(x) in the Hausdorff sense. However, one can phrase Lemma 2.9 without
referring to any ambient tracial von Neumann algebra. Suppose we have a se-
quence ℓn ∈ ΣR,J for some R ∈ [0,∞)J with ℓn → ℓ weak∗. Lemma 2.9 is
then equivalent to saying that ℓn → ℓ strongly if and only if for all self-adjoint
P ∈ C∗〈(Tj)j∈J〉 we have σ(πℓk(P)) → σ(πℓ(P)) in the Hausdorff sense.

2.3. Measures on microstates and concentration thereof.

Definition 2.10. Let (M,τ) be a tracial von Neumann algebra, I an index
set, and x ∈ MJ . Suppose we have a sequence n(k) ∈ N with n(k) → ∞, and
µ(k) ∈ Prob(Mn(k)(C)I). Then, we say that µ(k) is asymptotically supported on
microstates for x if there exists an R ∈ [0,∞)I where the following hold:

• ‖xi‖∞ ≤ Ri for all i ∈ I,.
• We have µ(k)(Γ (n(k))R (O)) →k→∞ 1 for every weak∗-neighborhood O of
ℓx.

Suppose J is another index set, y ∈MJ , and ν(k) ∈ Prob(Mk(C)J). Then, we say
that ν(k) is asymptotically supported on microstates for y in the presence of x if there
is an R ∈ [0,∞)J⊔I so that the following hold:

• ‖xi‖∞ ≤ Ri for all i ∈ I,.
• ‖yj‖∞ ≤ Rj for all j ∈ J.

• ν(k)(Γ (n(k))R (y : O))→ 1 for every weak∗-neighborhood O of ℓy,x.

Recall that a Polish space is a topological space X which is separable and com-
pletely metrizable. Such a space is naturally equipped with its Borel σ -algebra,
which is the σ -algebra generated by the open subsets of X. For a Polish space X,
we let Prob(X) be the space of Borel probability measures on X.

Definition 2.11. A pseudometric measure space is a triple (X, µ,d) where the
following hold:
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• X is a Polish space.
• µ ∈ Prob(X).
• d is a continuous pseudometric on X (giving X×X the product topology).

Given a pseudometric measure space (X, µ,d) we define its concentration function
αµ,d : (0,∞)→ [0,1] by

αµ,d(ε) = inf{µ(Nε(E,d)c) : E ⊆ X is Borel and µ(E) ≥ 1/2}.

An alternative (and typically more useful) way to view the concentration func-
tion is as follows. If E ⊆ X is Borel, and µ(E) ≥ 1/2, then

µ(Nε(E,d)) ≥ 1− αµ,d(ε).

Note that, typically, one is interested in sequences of pseudometric measure spaces
(Xk, µk, dk) so that αµk,dk(ε) decays rapidly for each fixed ε > 0.

Definition 2.12. Let (Xk, µk, dk) be a sequence of pseudometric measures
spaces, µ(k) ∈ Prob(Xk), and (rk)k ∈ (0,∞)N with rk →∞.We say (Xk, µ(k), dk)
exhibits exponential concentration at scale rk if for every ε > 0,

lim sup
k→∞

1
rk

logαµ(k),dk(ε) < 0.

Suppose that n(k) ∈ N, with n(k) →∞, and that J is a set. Suppose we have a se-
quence µ(k) ∈ Prob(Mk(C)J). Then, we say that µ(k) exhibits exponential concen-
tration at scalen(k)2 if, for every finite F ⊆ J, the sequence (Mn(k)(C)J , µ(k), d

orb
F )

exhibits exponential concentration at scale n(k)2.

If it is clear from the context, we will often drop reference to Xk, dk and say
“µk exhibits exponential concentration at scale rk.” As we shall show shortly (see
Lemma 3.1), exponential concentration implies that if Ek ⊆ Xk are Borel and
asymptotically have “nontrivial” size, that is,

lim
k→∞

µ(k)(Ek)
1/rk = 1,

then
lim
k→∞

µ(k)(Nε(Ek, d)) = 1

for every ε > 0. Thus, for every sequence of Borel subsets of Xk which are “not ex-
ponentially small,” no matter how small ε is, expanding Ek to its ε-neighborhood
makes it “nearly everything.” This is the reason for the name “concentration func-
tion,” and it gives precise control over the rate at which the measures must con-
centrate near sets that are not “exponentially small.” Despite being a very strong
concentration property, there are nevertheless many examples of natural sequences
of metric measure spaces which satisfy exponential concentration, and this concept
is of frequent use in probability theory and functional analysis.
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2.4. L2-Continuous Functional Calculus. We discuss a generalization L2-
continuous functional calculus of Jekel developed in [42, Section 3], and devel-
oped further in [34, Section 2]. That functional calculus was defined for self-
adjoint noncommutative variables, and we will need the version for general vari-
ables defined in [43, Section 13.7]. We start by recalling the construction and
general properties in the self-adjoint case, and then explain how to give the ap-
propriate definition in generality and derive the corresponding results from the
self-adjoint case.

We will need to introduce some notation for the self-adjoint case. Given an
index set J, we let C〈(Tj)j∈J〉 be the algebra of noncommutative polynomials (not
∗-polynomials) in the abstract variables (Tj)j∈J . We may view C〈(Tj)j∈J〉 as the
free C-algebra indexed by J.We turn C〈(Tj)j∈J〉 into a ∗-algebra by giving it the
unique ∗-structure which makes Tj self-adjoint for all j ∈ J. When viewed as a
∗-algebra, we may think of C〈(Tj)j∈J〉 as the universal ∗-algebra generated by
self-adjoint elements indexed by J. We will also need a space of self-adjoint laws.
We adopt similar notational conventions as in the non-selfadjoint case, for exam-
ple, if J = {1, · · · , n} we will typically use C〈T1, · · · , Tn〉 instead of C〈(Tj)j∈J〉.

Definition 2.13. Let J be an index set, and R ∈ [0,∞)J . Moreover, let
evT : C∗〈(Sj)j∈J〉 → C〈(Tj)j∈J〉 be the unique ∗-homomorphism that satis-

fies evT (Sj) = Tj for all j ∈ J. Let Σ(s)J be the set of all linear functionals
ℓ : C〈(Tj)j∈J〉 → C so that ℓ ◦ evT ∈ ΣJ . We let

Σ(s)R,J = {ℓ ∈ Σ(s)J : ℓ ◦ evT ∈ ΣR,J}.

Concretely, a linear functional ℓ : C〈(Tj)j∈J〉 → C is in Σ(s)J if and only if it
satisfies the following axioms:

• ℓ(PQ) = ℓ(QP) for all Q,P ∈ C〈(Tj)j∈J〉.
• ℓ(P∗P) ≥ 0 for all P ∈ C〈(Tj)j∈J〉.
• ℓ(1) = 1.
• There is a R ∈ [0,∞)J so that for all n ∈ N, and all j1, j2, · · · , jn ∈ J,

|ℓ(Tj1Tj2 · · ·Tjn)| ≤ Rj1Rj2 · · ·Rjn .

Moreover, given ℓ ∈ Σ(s)J and R ∈ [0,∞)J , we have that ℓ ∈ Σ(s)R,J if and only if it
satisfies the fourth bullet point for this R.

Definition 2.14. Fix an index set J and R ∈ (0,+∞)J . Consider the space

A(s)
R,J = C(Σ(s)R,J)⊗alg C〈(Tj)j∈J〉.

Given a tracial von Neumann algebra (M,τ) and x ∈ MJ
sa with ‖xj‖ ≤ Rj , we

define the evaluation map to be the linear map evx : A(s)
R,J → M satisfying

evx(φ⊗ P) = φ(ℓx)P(x), for φ ∈ C(Σ(s)R,J), P ∈ C〈(Tj)j∈J〉.
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We then define a semi-norm on A(s)
R,J by

‖f‖R,2 = sup
(M,τ),x

‖ evx(f )‖L2(M,τ),

where the supremum is over all tracial W∗-algebras (M,τ) and all x ∈MI
sa with

‖xj‖ ≤ Rj for all j ∈ J. Denote by F(s)
R,J,2 the completion of

A
(s)
R,J/{f ∈AR,J : ‖f‖R,2 = 0}.

In [34], the superscripts (s) are not there, so for exampleA(s)
R,J,2 is denoted by

AR,J,2, and so on. We have elected to use the superscript (s) here to reference the

fact that spaces Σ(s)R,J , A(s)
R,J,2, F

(s)
R,J,2 are noncommutative function spaces of self-

adjoint variables, in contrast to the function spaces for non-selfadjoint variables
that we will discuss imminently.

By construction, for every tracial von Neumann algebra (M,τ), and for every

x ∈ M I
s.a. with ‖xj‖ ≤ Rj , the evaluation map evx : A(s)

R,J → M extends to a

well-defined F(s)
R,J,2 → L2(M,τ), which we continue to denote by evx , and we

will also write f (x) = evx(f ). If (M,τ) is a tracial von Neumann algebra, and

ξ ∈ L2(M,τ) \M , we set ‖ξ‖∞ = ∞. For f ∈ F(s)
R,J,2 we set

‖f‖R,∞ = sup
x,(M,τ)

‖f (x)‖∞ ∈ [0,+∞],

where the supremum is over all tracial von Neumann algebras and all x ∈ MJ
s.a..

We now recall the main properties of this construction, with pointers to [34]
where the relevant details are shown. We let

F(s)
R,J,∞ = {f ∈ FR,J,2 : ‖f‖R,∞ <∞}.

(P1) The natural multiplication, addition, and∗-algebra operations that are on

C(Σ(s)R,J)⊗algC〈(Tj)j∈J〉 have a unique extension to F(s)
R,J,∞ which satisfies

‖f‖R,∞ = ‖f
∗‖R,∞, ‖f‖R,2 = ‖f

∗‖R,2

‖fg‖R,∞ ≤ ‖f‖R,∞‖g‖R,∞, ‖fg‖R,2 ≤ ‖f‖R,∞‖g‖R,2.

These operations together with the norm ‖ · ‖R,∞ turn F(s)
R,J,∞ into a C∗-

algebra [34, Lemma 2.3].

(P2) For any tracial von Neumann algebra (M,τ), and any x ∈ MJ
s.a. with

‖xj‖∞ ≤ Rj for all j ∈ J, the evaluation map evx : F(s)
R,J,∞ → M is surjec-

tive [34, Proposition 2.4]. In fact, given any a ∈ M there is an f ∈ F(s)
R,J,∞

with ‖f‖R,∞ ≤ ‖a‖∞ so that evx(f ) = a.
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(P3) Every f ∈ F(s)
R,J,∞ is ‖ · ‖2-uniformly continuous in the following sense.

For every ε > 0, there is a δ > 0 and a finite F ⊆ J so that if (M,τ) is a

tracial von Neumann algebra and x,y ∈ MJ
s.a. with ‖xj‖∞,‖yj‖∞ ≤ Rj

for all j ∈ J and ‖xj−yj‖2 < δ for all j ∈ F, then ‖f (x)−f (y)‖2 < ε.
[34, Proposition 2.8].

We now wish to define an analogous space of “noncommutative functions” when
the variables are not self-adjoint, and we will want it to satisfy analogues of the
above three properties. Thus, fix an index set J, and R ∈ [0,∞)J . Define

AR,J = C(ΣR,J)⊗alg C
∗〈(Tj)j∈J〉.

Given a tracial von Neumann algebra (M,τ) and x ∈ MJ with ‖x‖∞ ≤ Rj for
all j ∈ J, we let evx : AR,J → M be the linear map satisfying evx(φ ⊗ P) =
φ(ℓx)P(x) for φ ∈ C(ΣR,J),P ∈ C∗〈(Tj)j∈J〉. For f ∈ AR,J,2 we will use f (x)
for evx(f ). Define a seminorm ‖ · ‖R,2 on AR,J by

‖f‖R,2 = sup
x,(M,τ)

‖f (x)‖2,

where the supremum is over all tracial von Neumann algebras (M,τ) and over all
x ∈ MJ . Then, let FR,J,2 be the completion ofAR,J,2/{f ∈ AR,J,2 : ‖f‖R,2 = 0}
under the norm induced by ‖ · ‖R,2. For f ∈ FR,J,2 we let

‖f‖R,∞ = sup
x,(M,τ)

‖f (x)‖∞ ∈ [0,+∞],

and we set FR,J,∞ = {f ∈ FR,J,2 : ‖f‖R,∞ < ∞}. For a tracial von Neumann
algebra (M,τ) and x ∈ MJ , we then have f (x) ∈M.

The algebras FR,J,∞,F(s)
R,J,∞ are both examples of algebras which are comple-

tions of a C∗-algebra with respect to uniform 2-norm coming from a family of
traces. These are now known as uniformly tracially complete C∗-algebras. Ozawa
defined such a completion when the family consisted of all traces (see [52, p. 351–
352]), the special case of convex subsets of the trace space appeared recently in
the study of classification of nuclear C∗-algebras and their homomorphisms (see
[6, 13, 14]).

The following is proved exactly as in [34, Lemma 2.3].

Proposition 2.15. Let J be an index set and R ∈ [0,∞)J .Then, the product and
∗-operation have a unique extension to product and ∗-operations on FR,J,∞ which
satisfy the axioms of a ∗-algebra as well as the following estimates:

‖f‖R,∞ = ‖f
∗‖R,∞, ‖f‖R,2 = ‖f

∗‖R,2

‖fg‖R,∞ ≤ ‖f‖R,∞‖g‖R,∞, ‖fg‖R,2 ≤ ‖f‖R,∞‖g‖R,2.

Under these extended operations and the norm ‖ · ‖R,∞, the ∗-algebra FR,J,∞ is a
C∗-algebra.
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We now turn to the other two main properties of FR,J,∞ we will want. If
(Mk, τk), k = 1,2 are two tracial von Neumann algebras and Θ : M1 → M2 is a
trace-preserving ∗-homomorphism, then ‖Θ(x)‖2 = ‖x‖2 for all x ∈ Mk. It
thus follows that Θ extends uniquely to an isometry L2(M1, τ1) → L2(M2, τ2)
which we still denote by Θ.

Theorem 2.16. Let J be an index set and R ∈ [0,∞)J . We then have the
following properties of the noncommutative function space FR,J,∞:

(i) Let (M,τ) be a tracial von Neumann algebra and x ∈ MJ with ‖x‖∞ ≤
Rj for all j ∈ J. Then, the map FR,J,∞ → W∗(x) given by f ֏ f (x)
is surjective. In fact, for all a ∈ W∗(x), there is an f ∈ FR,J,∞ with
‖f‖R,∞ ≤ ‖a‖∞ and so that f (x) = a.

(ii) Every f ∈ FR,J,2 is ‖ · ‖2-uniformly continuous in the following sense. For
every ε > 0, there is a δ > 0 and a finite F ⊆ J so that if (M,τ) is any
tracial von Neumann algebra and x,y ∈ MJ with ‖xj − yj‖2 < δ for all
j ∈ F, we have ‖f (x)− f (y)‖2 < ε.

(iii) Suppose that (Mk, τk), k = 1,2 are tracial von Neumann algebras and that
x ∈

∏
j∈J{a ∈ M1 : ‖a‖∞ ≤ Rj}, and that Θ : M1 → M2 is a trace-

preserving, unital, normal ∗-homomorphism. Then, f (Θ(x)) = Θ(f (x))
for all f ∈ FR,J,2.

Proof. Let K = J × {0,1}, and define self-adjoint elements of C∗〈(Tj)j∈J〉
indexed by K as follows:

A(j,0) =
Tj + T

∗
j

2
, A(j,1) =

Tj − T
∗
j

2i
,

for all j ∈ J. Letπ : C〈(Sk)k∈K〉 → C∗〈(Tj)j∈j〉 be the unique∗-homomorphism
satisfying π(Sk) = Ak for all k ∈ K. Then, π is surjective. Define a continuous

map Ψ : ΣR,J → Σ(s)R,K by
Ψ(ℓ)(P) = ℓ(π(P)),

and let Ψ̂ : C(Σ(s)R,K)→ C(ΣR,J) be the induced map defined by Ψ̂(φ) = φ ◦ Ψ .
Suppose (M,τ) is any tracial von Neumann algebra and x ∈ MJ satisfies

‖x‖∞ ≤ Rj for all j ∈ J. Define y ∈ MK by

y(j,0) =
xj + x

∗
j

2
, y(j,1) =

xj − x
∗
j

2i

for all j ∈ J.Direction calculations show that for all f ∈A(s)
R,K we have evy(f ) =

evx[(Ψ̂ ⊗ π)(f )]. Indeed, since evy , evx , Ψ̂ , and π are all ∗-homomorphisms,
it suffices to check this equation on an element of the form φ ⊗ Sk for some
k ∈ K. In this case, the desired equality follows from the fact that evy(Sk) = yk,

evx(π(Sk)) = yk, and Ψ(ℓx) = ℓy . It follows that for all f ∈A(s)
R,K we have

‖[Ψ̂ ⊗π](f )‖R,2 ≤ ‖f‖R,2, ‖[Ψ̂ ⊗π](f )‖R,∞ ≤ ‖f‖R,∞.
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From the above two inequalities it then follows that Ψ̂ ⊗ π uniquely extends

to maps, still denoted Ψ̂ ⊗ π , from F
(s)
R,K,2 → FR,J,2, F(s)

R,K,∞ → FR,J,∞, which
are ‖ · ‖R,2–‖ · ‖R,2, ‖ · ‖R,∞–‖ · ‖R,∞ contractions. Moreover, we still have that
evx ◦Ψ̂ ⊗π = evy .

(i): Given x ∈MJ , let y ∈MK
s.a. be defined as above. Then, by [34, Proposi-

tion 2.4] for any a ∈ W∗(x) = W∗(y), there is an g ∈ F(s)
R,K,∞ with g(y) = a

and ‖g‖R,∞ ≤ ‖a‖∞. Set f = [Ψ̂ ⊗ π](g); then, as evx ◦Ψ̂ ⊗ π = evy , we

know f (x) = a. Since Ψ̂ ⊗ π is ‖ · ‖R,∞–‖ · ‖R,∞ contractive, it follows that
‖f‖R,∞ ≤ ‖g‖R,∞ ≤ ‖a‖∞.

(ii): Let V the set of all f ∈ FR,J,2 which satisfy the conclusion of (ii).

Since elements of F(s)
R,K,2 are uniformly continuous, it follows that V contains

[Ψ̂ ⊗π](F(s)
R,K,2). In particular, V is dense. It then suffices to show that V is

‖ · ‖R,2–closed. For every f ∈ FR,2, and every tracial von Neumann algebra
(M,τ) and all x ∈

∏
j∈J{y ∈ M : ‖y‖∞ ≤ Rj} we have ‖f (x)‖2 ≤ ‖f‖R,2.

From the above estimate, it is a standard argument to show that V is closed.
(iii): First, observe that because Θ is trace-preserving, we know that ℓΘ(x) =

ℓx. From here, the conclusion is direct to check for the case that f ∈ AR,J . For
f ∈ FR,J,2 we have the estimate

max(‖f (Θ(x))‖2,‖f (x)‖2) ≤ ‖f‖R,2.

The above estimate allows us to deduce the conclusion for a general element of
FR,J,2 from the case of elements of AR,J by approximation. ❐

Given an index set J, and an R ∈ [0,∞)J , for any tracial von Neumann
algebra (M,τ), we may abuse notation and view f as a map

f :
∏

j∈J

{a ∈ M : ‖a‖∞ ≤ Rj} → M

via x ֏ f (x). Given another index set J′ and R′ ∈ [0,∞)J
′
, we define

FR,R′,J,J′ = {f = (fj′)j′∈J′ ∈ (FR,J,∞)
J′ : ‖fj′‖R,∞ ≤ R′j′ for all j′ ∈ J}.

Then, f also determines a map

f :
∏

j∈J

{a ∈M : ‖a‖∞ ≤ Rj} →
∏

j′∈J′

{a ∈ M : ‖a‖∞ ≤ R
′
j′ for all j′ ∈ J′}

by x ֏ (fj′(x))j′∈J′ . In particular, all of this makes sense forM = Mk(C). Given
a µ ∈ Prob(Mk(C)J), with

µ


∏

j∈J

{a ∈Mk(C) : ‖a‖∞ ≤ Rj}


 = 1,
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we slightly abuse notation and use f∗(µ) for the measure on

∏

j′∈J′

{a ∈Mk(C) : ‖a‖∞ ≤ R
′
j′ for all j′ ∈ J′}

which is the pushforward of µ under the map x ֏ (fj′(x))j′∈J′ . A nice con-
sequence of ‖ · ‖2-uniform continuity is that taking pushforwards of measures
preserves exponential concentration.

Proposition 2.17. Let J,J′ be a countable index set, R∈[0,∞)J , R′∈[0,∞)J
′
,

and f ∈ FR,R′ ,J,J′ . Suppose we are given a sequence µ(k) ∈ Prob(Mn(k)(C)J) with

µ(k)


∏

j∈J

{A ∈Mn(k)(C) : ‖A‖∞ ≤ Rj}


 = 1.

If µ(k) has exponential concentration at scale n(k)2, then so does f∗µ(k).

Proof. Fix a finite F ′ ⊆ J′, and an ε > 0. By Theorem 2.16 (ii), we may choose
a finite F ⊆ J and a δ > 0 so that if (M,τ) is any tracial von Neumann algebra,
and x,y ∈ MJ satisfy ‖xj‖∞,‖yj‖∞ ≤ Rj for all j ∈ J and ‖xj −yj‖2 < δ for
all j ∈ F , then ‖f (x)− f (y)‖2,F ′ < ε.

By Theorem 2.16 (iii) for every g ∈ FR,J,∞, every tracial von Neumann al-
gebra (M,τ), every u ∈ U(M), and every x ∈

∏
j∈J{a ∈ M : ‖a‖∞ ≤ Rj}, we

have g(uxu∗) = ug(x)u∗. Hence, for all k ∈ N, and all

A,B ∈
∏

j∈J

{C ∈ Mk(C) : ‖C‖∞ ≤ Rj}

with dorb
F (A, B) < δ, we have dorb

F ′ (f (A), f (B)) < ε.

Thus, supposeΩ ⊆ Mn(k)(C)J
′
and f∗µ(k)(Ω) ≥ 1/2.Then, µ(k)(f−1(Ω)) ≥

1/2, so
µ(k)(Nδ(f

−1(Ω), dorb
F )) ≥ 1−αµ(k),dorb

F
(δ).

Our choice of δ implies that Nδ(f−1(Ω), dorb
F ) ⊆ f−1(Nε(Ω, dorb

F ′ )), and thus

f∗µ
(k)(Nε(Ω, dorb

F ′ )) ≥ 1− αµ(k),dorb
F
(δ).

Thus,

lim sup
k→∞

1
n(k)2

logαf∗µ(k),dorb
F′
(ε) ≤ lim sup

k→∞

1
n(k)2

logαµ(k),dorb
F
(δ) < 0. ❐

We also need the following analogues of [34, Proposition 2.6 (1) and (2)],
whose proofs are identical.
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Lemma 2.18. Let J, J′ be index sets and R ∈ [0,∞)J , R′ ∈ [0,∞)J
′
. Suppose

f ∈ FR,R′ ,J,J′ . The following hold:

(i) Suppose that (Mk, τk), k = 1,2 are two tracial von Neumann algebras, and
xk ∈

∏
j∈J{a ∈ Mk : ‖a‖∞ ≤ Rj}, k = 1,2. If ℓx1 = ℓx2 , then ℓf (x1) =

ℓf (x2).
(ii) Define a map f∗ : ΣR,J → ΣR′,J′ as follows. Given ℓ ∈ ΣR,J , let πℓ, W∗(ℓ)

be as in (2.1),(2.2) and equip W∗(ℓ) with the trace τℓ given by (2.3). Set
x = (πℓ(Tj))j∈J , and define f∗ℓ = ℓf (x). Then f∗ is weak∗-weak∗ con-
tinuous.

Recall that the point of the construction in (2.1) was that ℓ = ℓx . Thus, by
(i), for any tracial von Neumann algebra (M,τ), and any y ∈ MJ with ℓy = ℓ,
we have f∗ℓ = ℓf (y). So, for example, if we have a sequence (xn)n of tuples in

tracial von Neumann algebras and if ℓxn →
weak∗
n→∞ ℓx for some other tuple x, then

by (ii) we know ℓf (xn) →
weak∗
n→∞ ℓf (x) provided that xn, x satisfies the appropriate

norm bounds to define f (xn), f (x).
We also need a simple consequence of the above, which is that microstates

behave well with respect to the noncommutative function spaces FR,R′,J,J′ . The
proof is the same as in [34, Corollary 2.7].

Lemma 2.19. Let J, J′ be index sets, and R ∈ [0,∞)J and R′ ∈ [0,∞)J
′
. Fix

an f ∈ FR,R′,J,J′ , a tracial von Neumann algebra (M,τ), and

x ∈
∏

j∈J

{a ∈M : ‖a‖∞ ≤ Rj}.

Then, for any weak∗-neighborhood V of ℓf (x),x in ΣR′⊔R,J′⊔J , there is a weak∗-

neighborhood O of ℓx so that f (Γ (k)R (O)) ⊆ Γ (k)R′⊔R(f (x) : V ).

3. PROOFS OF THE MAIN THEOREMS

3.1. Microstates Collapse and the proof of Theorem 1.2 (i). Intuitively,
Theorem 1.2 (i) asserts that if we sample microstates for M according to the se-
quence of measures µ(k), and use them to “induce” (via the function f ) microstates
forN, then “most” of these microstates for N are unitarily conjugate to each other.
This will be proved in a manner entirely similar to the proof of [34, Proposition
3.3], with only minor changes in place to take care of the fact that we are dealing
with unitary conjugation orbits of microstates instead of relative microstates as in
[34, Section 3.3].

Lemma 3.1. Let (X, µ,d) be a pseudometric measure space. If Ω ⊆ X and
µ(Ω) > αµ,d(ε), then µ(N2ε(Ω, d)) ≥ 1−αµ,d(ε).

Proof. Suppose µ(Ω) > αµ,d(ε), and set Θ = Nε(Ω, d)c . Then, µ(Nε(Θ)c) ≥
µ(Ω) > αµ,d(ε). The definition of α implies that µ(Θ) < 1/2. Thus, we have
µ(Nε(Ω, d)) > 1/2, and this in turn implies µ(N2ε(Ω, d)) ≥ 1−αµ,d(ε). ❐
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It will frequently be useful to note the following facts about sequences of
measures which are asymptotically concentrated on microstates spaces and have
exponential concentration.

Lemma 3.2. Let (M,τ) be a tracial von Neumann algebra, I an index set,
R ∈ [0,∞)I , and x ∈

∏
i∈I{a ∈ M : ‖a‖∞ ≤ Ri}. Assume we are given integers

n(k) for k∈Nwithn(k)→∞ and µ(k)∈Prob(Mk(C)J) with µ(k)(Γ (n(k))R (O))→1
for all weak∗ neighborhoods O of ℓx in ΣR,I . Further assume µ(k) has exponential
concentration with scale n(k)2. The following hold:

(i) Assume that

lim
k→∞

µ(k)


∏

i∈I

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}




1
n(k)

2

= 1.

Define ν(k) ∈ Prob(Mn(k)(C)I) by

ν(k)(E) =
µ(k)

(
E ∩

∏
i∈I{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}

)

µ(k)
(∏

i∈I{A ∈Mn(k)(C) : ‖A‖∞ ≤ Ri}
) .

Then, ν(k) still has exponential concentration with scale n(k)2.
(ii) Assume that

lim
k→∞

µ(k)


∏

i∈I

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}


 = 1,

and define ν(k) as in (i). For every weak∗ neighborhood O of ℓx in ΣR,I we
have

lim sup
k→∞

1
n(k)2

logν(k)(Γ (n(k))R (O)c) < 0.

Proof. (i): To see that ν(k) still exhibits exponential concentration, fix ε > 0,

and suppose that Ek ⊆ Mn(k)(C)J has ν(k)(Ek) ≥
1
2 for all k. Then,

µ(k)(Ek) ≥
1
2
µ(k)


∏

i∈I

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}


 .

By our assumptions and Lemma 3.1, we have

µ(k)(N2ε(Ek, d
orb
F )c) ≤ αµ(k),dorb

F
(ε)

for all large k. But then, for all large k we have

ν(k)(N2ε(Ek, d
orb
F )c) ≤

αµ(k),dorb
F
(ε)

µ(k)
(∏

i∈I{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}
) .
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Hence,

αν(k),dorb
F
(2ε) ≤

αµ(k),dorb
F
(ε)

µ(k)
(∏

i∈I{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}
)

for all large k. This estimate and our hypotheses on

µ(k)


∏

i∈I

{A ∈Mn(k)(C) : ‖A‖∞ ≤ Ri}




are enough to show that ν(k) still has exponential concentration with scale n(k)2.
(ii): We may choose a weak∗-neighborhood V of the law of x, a δ > 0, and

a finite subset F ⊆ I so that

Nδ(Γn(k)R (V ),‖ · ‖2,F)∩
∏

i∈I

{A ∈Mn(k)(C) : ‖A‖∞ ≤ Ri} ⊆ Γn(k)R (O)

for all k ∈ N. Since Γn(k)R (V ) is conjugation invariant, it follows that

Nδ(Γn(k)R (V ), dorb
F )∩

∏

i∈I

{A ∈Mn(k)(C) : ‖A‖∞ ≤ Ri} ⊆ Γn(k)R (O).

Our assumptions on ν(k) guarantee that for all large k, ν(k)(Γn(k)R (V )) ≥ 1
2 . Thus,

ν(k)(Γn(k)R (O)c) ≤ αν(k),dorb
F
(δ)

for all large k. Taking 1
n(k)2 log of both sides and letting k → ∞ completes the

proof, by (i). ❐
We will deduce Theorem 1.2 (i), as a consequence of the following more

general result.

Theorem 3.3. Let (M,τ) be a tracial von Neumann algebra and N ≤ M with
h(N : M) = 0. Fix index sets I, J with J countable, and let x ∈ M I , y ∈ NJ be
given. Suppose that R̂ ∈ [0,∞)I⊔J with ‖xi‖∞ ≤ R̂i for all i ∈ I, and ‖yj‖∞ ≤ R̂j
for all j ∈ J and so that M = W∗(x). Set R = R̂

∣∣
I , R

′ = R̂
∣∣
J . Write y = f (x) for

some f ∈ FR,R′ ,I,J .
Assume that n(k) ∈ N is a sequence of integers with n(k) → ∞, and that

µ(k) ∈ Prob(Mn(k)(C)I) satisfies

µ(k)(Γ (n(k))R (O))→k→∞ 1

for every weak∗-neighborhood O of ℓx in ΣR,I . Further assume that

lim
k→∞

µ(k)


∏

i∈I

{A ∈Mk(C) : ‖A‖∞ ≤ Ri}


 = 1.
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If (µ(k))k has exponential concentration at scale n(k)2, then there exists a sequence
Ωk ⊆

∏
i∈I{C ∈ Mk(C) : ‖C‖∞ ≤ Ri} with the following properties:

• µ(k)(Ωk)→ 1.
• For every weak∗-neighborhood O of ℓx we have Ωk ⊆ Γ (n(k))R (O) for all

sufficiently large k.
• For every finite F ⊆ J, limk→∞ supA1,A2∈Ωk d

orb
F (f (A1), f (A2)) = 0.

Proof. By Lemma 3.2 we may, and will, assume that

µ(k)


∏

i∈I

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Ri}


 = 1.

We start with the following claim.

Claim 1. For every finite F ⊆ J, for every ε > 0, and for every weak∗-neighborhood

O of ℓx , there is a sequence Ωk ⊆ Γ (n(k))R (O) (depending upon ε, F,O) satisfying the
following:

• limk→∞ µ(k)(Ωk) = 1.
• lim supk→∞ supA1,A2∈Ωk d

orb
F (f (A1), f (A2)) ≤ ε.

To prove the claim, let ν(k) = f∗µ(k) as defined in the discussion preceding
Proposition 2.17. Set

η = − lim sup
k→∞

1
n(k)2

αν(k),dorb
F
(2ε).

By Proposition 2.17, we know η > 0. Since h(N : M) ≤ 0, we may choose a
weak∗-neighborhood V of ℓ(y,x) so that Korb

ε,F (y : V ,‖ · ‖2) ≤
η
8 . Also, let

Ξk ⊆ Γ (n(k))R̂
(y : V ) be ε-dense with respect to dorb

F and so that

|Ξk| = Kε(Γ (n(k))R̂
(y : V ), dorb

F ).

Let φk : Γ (n(k))
R̂

(y : V ) → Ξk be Borel maps which satisfy dorb
F (A,φk(A)) < ε

for all A ∈ Γ (n(k))
R̂

(y : V ). Set

Θk = {A ∈ Γ (n(k))R̂
(y : V ) : ν(k)(N2ε(A,d

orb
F )) ≥ exp(−n(k)2η/2)},

and ∆k = Γ (n(k))(y ;V ) \Θk. Observe that for every A ∈ ∆k we have

ν(k)(Nε(φk(A),d
orb
F )) < exp(−n(k)2η2/2).
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Thus,

ν(k)(∆k) ≤
∑

B∈φk(∆k)
ν(k)(Nε(B,d

orb
F )) < exp(−n(k)2η/2)|Ξk|.

Thus, ν(k)(∆k) ≤ exp(−n(k)2/4) for all large k, and so ν(k)(∆k)→ 0. Therefore,

ν(k)(Θk) = ν(k)(Γ (n(k))R (y : O))− ν(k)(∆k)→ 1,

as ν(k) is asymptotically supported on the microstates space for y in the presence
of x. Suppose B1, B2 ∈ Θk. If k is sufficiently large, then by Lemma 3.1

N4ε(B1, d
orb
F )∩N4ε(B2, d

orb
F ) 6= 0,

and thus dorb
F (B1, B2) ≤ 8ε. By definition of ν(k), we have µ(k)(f−1(Θk)) =

ν(k)(Θk) → 1. Thus, if we set Ωk = f−1(Θk) ∩ Γ (n(k))R (O), it is then direct to
show that Ωk has the desired properties with ε replaced by 8ε. Since ε > 0 is
arbitrary, this proves the claim.

To prove the theorem, let (Fm)m be an increasing sequence of finite subsets of
J with J =

⋃
m Fm, and let Om be a decreasing sequence of weak∗-neighborhoods

of ℓx in ΣR,J with
⋂
mOm = {ℓx}. By the claim, for every positive integer m, we

may choose a sequence Ωk,m ⊆ Γ (n(k))R̂
(y : Om) with

lim sup
k→∞

sup
A1,A2∈Ωk,m

dorb
Fm(f (A1), f (A2)) < 2−m,

lim
k→∞

µ(k)(Ωk,m) = 1.

We may thus find a strictly increasing sequence 1 < K1 < K2 < · · · of integers so
that for every positive integer m

sup
k≥Km,

A1,A2∈Ωk,m

dorb
Fm(f (A1), f (A2)) < 2−m, and inf

k≥Km
µ(k)(Ωk,m) ≥ 1− 2−m.

Define Ωk as follows. For k < K1, set Ωk = 0, and for k ≥ K1 letm be the unique
integer so that Km ≤ k < Km+1, and set Ωk = Ωk,m. It is then direct to verify that
Ωk has the desired properties. ❐

This recovers Theorem 1.2 (i) as follows.

Proof of Theorem 1.2 (i) from Theorem 3.3. Let µ(k) be the distribution ofX(k),
and fix Q ≤ M with h(Q : M) ≤ 0. Let Rj, y, f be as in the statement of The-
orem 1.2 and set R = (Rj)

n
j=1. The statement that ℓX(k) → ℓx in probability im-

plies that for every weak∗-neighborhood O of ℓx we have µ(k)(Γ (k)R (O))→k→∞ 1.
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Additionally, the assumptions of Theorem 1.2 imply that

lim
k→∞

µ(k)




n∏

j=1

{A ∈ Mn(C) : ‖A‖∞ ≤ Rj}


 = 1,

and that µ(k) has exponential concentration at scale n(k)2. Let Ωk be as in the
conclusion to Theorem 3.3. Since µ(k)(Ωk) → 1, for all large k we can find
A(k) ∈ Ωk. Then ℓA(k) → ℓx in law, since for every weak∗-neighborhood O of ℓx
we have Ωk ⊆ Γ (k)R (O) for all large k.

If ε > 0, then we may find a K so that for all k ≥ K we have

sup
B∈Ωk

dorb (f (B), f (A(k))) < ε.

Thus, for all k ≥ K,

P(dorb (f (X(k)), f (A(k))) < ε) = µ(k)({X : dorb (f (X(k)), f (A(k))) < ε})

≥ µ(k)(Ωk)→k→∞ 1.

Thus, dorb (f (X(k)), f (A(k))) → 0 in probability. ❐

As noted in the introduction, we will see in Section 4 (see Theorem 4.3) that
one can use an ultraproduct framework to reformulate the above result in terms of
a “random Jung theorem.”

3.2. Proof of Theorem 1.2 (ii). The Peterson-Thom conjecture is inher-
ently a question about von Neumann algebras, whereas strong convergence of laws
is inherently a question about C∗-algebras. For example, strong convergence can
be reformulated in terms of trace-preserving embeddings into C∗-ultraproducts.
Thus, a significant aspect of Theorem 1.2 is the assertion that we can reduce
the von Neumann question of validity of the Peterson-Thom conjecture to a C∗-
question about strong convergence. To do this, we need to assume that our given
von Neumann algebra can be approximated by any “nice enough” weak∗-dense
∗-subalgebra in a manner robust enough to preserve some key structure of the
von Neumann algebra. In particular, we make use of the Connes-Haagerup char-
acterization of nonamenability of a von Neumann algebra in terms of norms of
“Laplace-like” operators in the tensor of the algebra with its opposite. Thus, we
need to assume that our approximation process keeps norms under control when
we pass to tensor products. Maintaining control over norms when passing to ten-
sor products is the raison d’être for the notions of completely bounded/completely
positive maps. Thus, the above discussion naturally leads us to the consideration
of approximation properties formulated via completely positive and completely
bounded maps.
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Given a C∗-algebra A, there is a canonical way to view A∗∗ as a von Neu-
mann algebra. Moreover, the natural inclusion A ֓ A∗∗ allows us to view
A∗∗ as the universal enveloping von Neumann algebra of A. Specifically, given
any ∗-representation π : A → B(H ) with H a Hilbert space, there is a unique,
normal ∗-representation π̃ : A∗∗ → B(H ) with π̃

∣∣
A = π . Moreover, π̃(A) =

π(A)
SOT

(see [67, Theorem 2.4] for a proof of all of this).

Definition 3.4. We say that a (unital) C∗-algebra A is locally reflexive if, given
any finite-dimensional operator system E ⊆ A∗∗, there is a net φα : E → A of
completely positive maps with ‖φα‖cb ≤ 1 and so that φα(x) →α x in the
weak∗-topology.

An alternate way to phrase this is as follows. Let E, F be operator systems. If
F is an operator system concretely embedded in B(H ) with H a Hilbert space,
then we can give CP(E, F) the point-WOT topology. Thus, a basic neighborhood
of φ ∈ CP(E, F) is given by

OG1,G2,ε(φ) =
⋂

x∈G1,ξ,η∈G2

{ψ ∈ CP(E, F) : |〈φ(x)ξ, η〉 − 〈ψ(x)ξ, η〉| < ε}

for finite sets G1 ⊆ E, G2 ⊆ H , and an ε ∈ (0,∞). Let A be a C∗-algebra. For
an operator space E ⊆ A∗∗, we use ιE for the inclusion map E ֓ A∗∗. Locally,
reflexivity is then just the assertion that

ιE ∈ {φ ∈ CP(E,A∗∗) : φ(E) ⊆ A,‖φ‖cb ≤ 1}
point−WOT

,

for every finite-dimensional E ⊆ A∗∗. The main result on locally reflexivity that
we need is that every exact C∗-algebra is locally reflexive (see [46, 47] and also
[11, Theorem 9.3.1]). Since exact C∗-algebras are ubiquitous in free probabil-
ity, this provides us with an adequate source of examples. For example, the re-
duced free group C∗-algebra is locally reflexive, as is the C∗-algebra generated by
a free semicircular family. Indeed, given any free tuple (x1, · · · , xk) ∈ Mk in a
tracial von Neumann algebra (M,τ), with each xj being normal, we have that
C∗(x1, · · · , xk) is exact by [20, 21].

It should be emphasized that A∗∗ is a very large von Neumann algebra. For
example, it is only in very rare circumstances that A∗ is separable (e.g., this does
not occur if A contains a copy of C(X) where X is an uncountable compact Haus-
dorff space). Consequently, it is rare that A∗∗ can be represented on a separable
Hilbert space. However, the fact that A∗∗ is the universal enveloping von Neu-
mann algebra allows us to deduce more concrete approximations for other von
Neumann algebras associated with A. Recall that if H is a Hilbert space, and
M ⊆ B(H ) is a von Neumann algebra, then M is a von Neumann completion of A

if there is a faithful ∗-representation π : A→ B(H ) withM = π(A)
SOT

. Suppose
A is locally reflexive and M is a von Neumann completion of A, and view A ⊆ M.
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By universality of A∗∗, it follows that if E ⊆ M is a finite-dimensional operator
system, then

ιE ∈ {φ ∈ CP(E,M) : φ(E) ⊆ A,‖φ‖cb ≤ 1}
point−WOT

,

where ιE : E → M is the inclusion map. This is the precise manner in which we
shall use local reflexivity to approximate elements of M by a prescribed weak∗-
dense ∗-subalgebra.

We also need to recall some notation and a result of Haagerup. We have
an action # of Mk(C) ⊗ Mk(C) on S2(k, tr) defined on elementary tensors by
(A⊗B)#C = ACBt . It is direct to check that this gives a ∗-isomorphismMk(C)⊗
Mk(C) ≅ B(S2(k, tr)). Since ∗-isomorphisms between C∗-algebras are isometric,
it follows that ‖x‖∞ = ‖x#‖B(S2(k,tr)) for all x ∈ Mk(C)⊗Mk(C). For a tracial von
Neumann algebra (M,τ) and x ∈ M, we let Mop be the von Neumann algebra
which as a set is {xop : x ∈M}. The vector space operations and the ∗-operation
is the same as in M, but the product is the opposite:

xopyop = (yx)op.

For x ∈ M, we let x = (x∗)op . Note that we have a canonical identification
Mk(C) ≅ Mk(C)op given by A ֏ (At)op . For A ∈ Mk(C), we let A = (A∗)t.

Technically, this means we have two different notions of A for A ∈ Mk(C): one
as an element of Mk(C), and one as an element of Mk(C)op . However, under the
identificationMk(C) ≅Mk(C)op given above, these two notations coincide. Since
we always identify Mk(C),Mk(C)op via the map A ֏ (At)op , this will not cause
confusion. The way we shall use nonamenability is in the following characteriza-
tion of nonamenability of tracial von Neumann algebras, due to Haagerup.

Theorem 3.5 ([29, Haagerup, Lemma 2.2]). Let (M,τ) be a tracial von Neu-
mann algebra. Then, M is nonamenable if and only if there is a nonzero central
projection f ∈M and u1, · · · , ur ∈ U(Mf) so that

∥∥∥∥∥∥
1
r

r∑

j=1

uj ⊗uj

∥∥∥∥∥∥
∞

< 1.

In order to prove Theorem 1.2 (ii), we need to reduce the validity of the
Peterson-Thom conjecture to the C∗-question of strong convergence. We begin
with the following Proposition, which gives a general result along these lines. We
comment that the argument for the proof of this Proposition is analogous to a
method of proof of Chifan-Sinclair (see [15, Theorem 3.2]) in the context of
Popa’s deformation/rigidity theory.

Proposition 3.6. Let (M,τ) be a tracial von Neumann algebra, I an index set,
and x ∈ M I with W∗(x) = M. Fix R ∈ [0,∞)I with ‖xi‖∞ ≤ Ri for all i ∈ I.
Suppose that C∗(x) is locally reflexive and that Q ≤ M is nonamenable. Then, there
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is an r ∈ N, an F ∈ (FR,I,∞)r with F(x) ∈ Qr , and an ε > 0 which satisfies the
following property. Assume we are given the following:

• Positive integers (n(k))∞k=1 with n(k)→∞;
• A(k), B(k) ∈

∏
i∈I{C ∈ Mn(k)(C) : ‖C‖∞ ≤ Ri}.

Assume these are such that the law of (A(k) ⊗ 1Mn(k)(C),1Mn(k)(C) ⊗ (B
(k))t) converges

strongly to the law of (x ⊗ 1C∗(x)op ,1C∗(x) ⊗ xop). Then,

lim inf
k→∞

dorb (F(A(k)), F(B(k))) ≥ ε.

Proof. By [29, Lemma 2.2], we may find a nonzero projection p ∈ Z(Q) and
u1, · · · , ur ∈ U(Qp) so that

C =

∥∥∥∥∥∥
1
r

r∑

j=1

uj ⊗uj

∥∥∥∥∥∥
∞

< 1.

Fix any C′ ∈ (C,1). Choose P ∈ FR,I with ‖P‖R,∞ ≤ 1 and P(x) = p, and Fj ∈
FR,J ,j = 1, · · · , r with Fj(x) = uj and ‖Fj‖R,∞ ≤ 1. Set F = (F1, · · · , Fr ).
Suppose we have the following:

• Positive integers (n(k))∞k=1 with n(k) →∞;
• A(k), B(k) ∈

∏
i∈I{C ∈ Mn(k)(C) : ‖C‖∞ ≤ Ri}.

Also, assume these are such that the law of (A(k) ⊗ 1Mn(k)(C),1Mn(k)(C) ⊗ (B
(k))t)

converges strongly to the law of (x ⊗ 1C∗(x)op ,1C∗(x) ⊗ xop). Choose unitaries
U(k) ∈ U(k) so that

dorb(F(A(k)), F(B(k))) = ‖F(A(k))− U(k)F(B(k))(U(k))∗‖2.

Then,

dorb(F(A(k)), F(B(k)))2

=
r∑

j=1

(‖Fj(A
(k))‖2

2 + ‖Fj(B
(k))‖2

2)

− 2
r∑

j=1

Re tr(Fj(A
(k))U(k)Fj(B

(k))∗(U(k))∗).

By weak∗ convergence of laws,

lim inf
k→∞

dorb(F(A(k)), F(B(k)))2

≥ 2rτ(p)− 2 lim sup
k→∞

r∑

j=1

Re tr(Fj(A(k))U(k)Fj(B(k))∗(U(k))∗).



1278 BEN HAYES

Since Fj(x)P(x) = Fj(x), and ‖Fj‖R,∞ ≤ 1,‖P‖R,∞ ≤ 1 for all j = 1, · · · , r ,

‖Fj(B
(k))− P(B(k))Fj(B

(k))P(B(k))∗‖2 → 0.

Thus, using once again that ‖Fj‖R,∞ ≤ 1 for all j = 1 · · · , r , it follows that

lim inf
k→∞

dorb(F(A(k)), F(B(k)))2

≥ 2rτ(p)

− 2 lim sup
k→∞

r∑

j=1

Re tr(Fj(A(k))U(k)P(B(k))Fj(B(k))∗P(B(k))∗(U(k))∗)

≥ 2rτ(p)

− 2 lim sup
k→∞

‖P(B(k))‖2

∥∥∥∥∥∥
r∑

j=1

Fj(A
(k))U(k)P(B(k))Fj(B

(k))∗

∥∥∥∥∥∥
2

.

Since ‖P(B(k))‖2 → ‖P(x)‖2 =
√
τ(p), we obtain

lim inf
k→∞

dorb(F(A(k)), F(B(k)))2(3.1)

≥ 2rτ(p) − 2
√
τ(p) lim sup

k→∞

∥∥∥∥∥∥
r∑

j=1

Fj(A
(k))U(k)P(B(k))Fj(B

(k))∗

∥∥∥∥∥∥
2

.

To bound the second term in this expression, let

E = span({uj}rj=1 ∪ {1} ∪ {u
∗
j }
r
j=1).

By local reflexivity, we have

(uj)
r
j=1 ∈ {(φ(uj))

r
j=1 : φ ∈ CP(E,C∗(x)),‖φ‖cb ≤ 1}

WOT
.

Thus, by convexity,

(uj)
r
j=1 ∈ {(φ(uj))

r
j=1 : φ ∈ CP(E,C∗(x)),‖φ‖cb ≤ 1}

SOT
.

We may find a sequenceφm : E → C∗(x) of contractive, completely positive maps
with ‖φm(uj) − uj‖2 → 0 for all j = 1, · · · , r . Choose Qj,m ∈ C∗〈(Tj)j∈J〉
with

‖Qj,m(x)−φm(uj)‖∞ ≤ min
(
C′ − C

2
,2−m

)
for all j = 1, · · · , r ,

‖Qj,m‖∞ ≤ 1 for all j = 1, · · · , r .
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As uj = Fj(x), and ‖P‖R,∞, ‖Qj,m‖R,∞, ‖Fj‖R,∞ ≤ 1 for all j = 1, · · · , r , we get

∥∥∥∥∥∥
r∑

j=1

Fj(A
(k))U(k)P(B(k))Fj(B

(k))∗

∥∥∥∥∥∥
2

≤
r∑

j=1

‖Fj(A
(k))−Qj,m(A

(k))‖2

+
r∑

j=1

‖Fj(B
(k))−Qj,m(B

(k))‖2

+

∥∥∥∥∥∥
r∑

j=1

Qj,m(A
(k))U(k)P(B(k))Qj,m(B

(k))∗

∥∥∥∥∥∥
2

≤
r∑

j=1

‖Fj(A
(k))−Qj,m(A

(k))‖2

+
r∑

j=1

‖Fj(B
(k))−Qj,m(B

(k))‖2

+

∥∥∥∥∥∥
r∑

j=1

Qj,m(A
(k))⊗Qj,m(B(k))

∥∥∥∥∥∥
∞

‖P(B(k))‖2.

Using strong convergence, we have

lim sup
k→∞

∥∥∥∥∥∥
r∑

j=1

Fj(A
(k))U(k)P(B(k))Fj(B

(k))∗

∥∥∥∥∥∥
2

≤ 2
r∑

j=1

‖uj −Qj,m(x)‖2 +
√
τ(p)

∥∥∥∥∥∥
r∑

j=1

Qj,m(x)⊗Qj,m(x)

∥∥∥∥∥∥
∞

.

By our choice of Qj,m, we have

∥∥∥∥∥∥
r∑

j=1

Qj,m(x)⊗Qj,m(x)

∥∥∥∥∥∥
∞

≤ (C′ − C)r +

∥∥∥∥∥∥
r∑

j=1

φm(uj)⊗φm(uj)

∥∥∥∥∥∥
∞

≤ C′r ,

where in the last step we use the definition of C and the fact that ‖φm‖cb ≤ 1
implies ‖φm ⊗φ

op
m ‖cb ≤ 1. Thus, altogether we have shown that

lim sup
k→∞

∥∥∥∥∥∥
r∑

j=1

Fj(A
(k))U(k)P(B(k))Fj(B

(k))∗

∥∥∥∥∥∥
2

≤ C′r
√
τ(p)+2

r∑

j=1

‖uj−Qj,m(x)‖2.
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Inserting this into (3.1),

lim inf
k→∞

dorb(F(A(k)), F(B(k)))2 ≥ 2rτ(p)(1− C′)− 4
r∑

j=1

‖uj −Qj,m(x)‖2.

Letting m→∞ and then C′ → C shows that

lim inf
k→∞

dorb(F(A(k)), F(B(k))) ≥
√

2τ(p)(1 − C).

Thus, setting ε =
√

2τ(p)(1− C) completes the proof. ❐

We will give a cleaner way to state the above Proposition in terms of ultra-
products in Section 4 (see Proposition 4.5). For now, we proceed to the proof of
Theorem 1.2.

Proof of Theorem 1.2 (ii). Set R = (R1, · · · , Rl) ∈ [0,∞)l. Then, let also

µ(k) ∈ Prob(Mk(C)l) be the distribution of (X(k)j )lj=1. Suppose, for the sake
of contradiction, that Q ≤ M is nonamenable and h(Q : M) ≤ 0. Since our
hypotheses necessarily imply that M embeds into an ultrapower of R, it follows
that h(Q : M) = 0. Let r ∈ N and F ∈ (FR,l)r with F(x) ∈ Qr and ε > 0
be as in the conclusion to Proposition 3.6. By Theorem 3.3, choose a sequence

Ωk ⊆
∏l
j=1{A ∈Mk(C) : ‖A‖∞ ≤ l} with µ(k)(Ωk) = 1 and so that

lim
k→∞

sup
A,B∈Ωk

dorb(F(A), F(B)) = 0.

By strong convergence in probability, choose a sequence Θk ⊆ Mk(C)l ×Mk(C)l

with µ(k) × µ(k)(Θk)→ 1, and so that for any sequence (A(k), B(k)) ∈ Θk the law
of (A(k)⊗1Mk(C),1Mk(C)⊗(B

(k))t) converges strongly to the law of (x⊗1,1⊗xop).
Since µ(k)(Ωk) → 1 and µ(k) ⊗ µ(k)(Θk) → 1, for all large k we may choose a
(A(k), B(k)) ∈ (Ωk ×Ωk)∩Θk. Then, Proposition 3.6 shows

lim inf
k→∞

dorb(F(A(k)), F(B(k)) ≥ ε,

whereas our choice of Ωk implies

lim
k→∞

dorb(F(A(k)), F(B(k)) = 0.

This gives a contradiction, which completes the proof. ❐
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3.3. Deduction of Theorem 1.1 from Theorem 1.2. In this section, we
deduce Theorem 1.1 from Theorem 1.2. We also state a version for free families
of Haar unitaries instead of free semicirculars. Moreover, it is not hard to see that
our proof applies equally well to many other families of random matrices which
model L(Fr ), provided they exhibit exponential concentration with the correct
rate. We start with the proof of Theorem 1.1.

Proof of Theorem 1.1. The fact that (ii) implies (i) is the content of Proposi-
tion 2.7. Thus, we focus on proving that (iii) implies (ii).

Let s = (s1, s2, · · · , sr ) be a free semicircular family with mean zero and vari-
ance 1. Thus, W∗(s) ≅ L(Fr ). We let µ(k) ∈ Prob(Mk(C)2r

s.a.) be the distribution
of (X(k), Y (k)). It is well known (see [30, Proof of Lemma 3.3]) that there is a
C > 0 so that

lim sup
k→∞

1
k

logµ(k)(({A ∈Mk(C)
2r
s.a : ‖A‖∞ ≤ C})c) < 0,

and Voiculescu’s asymptotic freeness theorem (specifically [71, Theorem 2.2]) im-
plies that µ(k) is asymptotically concentrated on microstates for s (by using R as
the constant function C). Further, exponential concentration of measure with
scale k2 is well known and follows, for example, from [49, Equation (2.10)]. It is
direct to see that the coordinate-wise transpose map Mk(C)rs.a. → Mk(C)rs.a. pre-
serves µ(k). Further, sop = (sop1 , s

op
2 , · · · , s

op
r ) is also a tuple of r free semicircular

elements each with mean 0 and variance 1,, and so sop has the same distribution
as s. Thus, the strong convergence in probability of (X(k)⊗1Mk(C),1Mk(C)⊗Y

(k))
to (s ⊗ 1C∗(x),1C∗(x) ⊗ s) is equivalent to the strong convergence in probability
of (X(k) ⊗ 1Mk(C),1Mk(C) ⊗ (Y

(k))t) to (s ⊗ 1C∗(sop),1C∗(s)⊗ sop). Thus, we may
apply Theorem 1.2 (ii), and the conclusion of that Theorem gives us exactly what
we want. ❐

We also state a version of Theorem 1.1 using independent Haar unitaries
instead of the GUE ensemble.

Theorem 3.7. Fix an integer r ≥ 2. For each k ∈ N, let U(k)1 , · · · , U(k)r and

V (k)1 , · · · , V (k)r be random k × k unitary matrices which are independent and are
each distributed according to Haar measure on U(k). Set

U(k) ⊗ 1Mk(C) = (U
(k)
j ⊗ 1Mk(C))

r
j=1, 1Mk(C) ⊗ V

(k) = (1Mk(C) ⊗ V
(k)
j )rj=1.

Let Fr be the free group on r letters a1, · · · , ar , and let

λ(a)⊗ 1 = (λ(aj)⊗ 1C∗λ (Fr ))
r
j=1, 1⊗ λ(a) = (1⊗ λ(aj))

r
j=1.

If the distribution of (U(k) ⊗ 1Mk(C),1Mk(C) ⊗ U
(k)) converges (as k → ∞) to the

distribution of (λ(a) ⊗ 1C∗λ (Fr ),1C∗λ (Fr ) ⊗ U
(k)) strongly in probability, then for any

Q ≤ L(Fr ) with h(Q : L(Fr )) ≤ 0 we have that Q is amenable.
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Proof. It is well known that the distribution of (U(k)j )rj=1 satisfies exponential

concentration of measure with scale k2 (e.g., this follows from [49, Theorem 5.3]
and [51, Theorem 15]). By compactness, the Haar measure on U(k) is invariant
under right multiplication, and thus under anti-automorphisms. Thus, the dis-

tribution of (U(k)j )t is the same as the distribution of U(k)j for all j = 1, · · · , r .
Additionally, it is direct to show that the unique homomorphism Fr → Fr sending
aj to a−1

j is bijective, and so λ(a)op has the same law as λ(a). The proof now
proceeds exactly as in the “(iii) implies (ii)” aspect of the proof of Theorem 1.1. ❐

4. INTERMEDIATE CONJECTURES AND RELATION TO JUNG’S
THEOREM

In this section, we collect various conjectures which imply the Peterson-Thom
conjecture, and discuss their relative strength. We start by stating the conjectures
already discussed in the introduction.

Conjecture 2. LetX(k)1 , X(k)2 , · · · , X(k)r ,Y (k)1 , Y (k)2 , · · · , Y (k)r be random, self-
adjoint k × k matrices which are independent and are each GUE distributed.

Set X(k) = (X(k)j )rj=1,Y (k) = (Y (k)j )rj=1. Let s = (s1, · · · , sr ) be a tuple of free
semicircular elements which have mean zero and variance 1. Then, for every
P ∈ C∗〈(Tj)j∈J〉, we have

‖P(X(k) ⊗ 1Mk(C),1Mk(C) ⊗ Y
(k))‖∞ →k→∞ ‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞

in probability.

Conjecture 3. Let Q ≤ L(Fr ) be diffuse and nonamenable; then, we have
that h(Q : L(Fr )) > 0.

We now explain some intermediate conjectures, the first of which is formu-
lated in an ultraproduct framework.

Definition 4.1. Let ω be a free ultrafilter on N, and let (Mk, τk)
∞
k=1 be a

sequence of tracial von Neumann algebras. We define their tracial ultraproduct
with respect to ω by

∏

k→ω

(Mk, τk)=
{(xk)k ∈

∏
kMk : supk ‖xk‖∞ <∞}

{(xk)k ∈
∏
kMk : supk ‖xk‖∞ < ∞, and limk→ω ‖xk‖L2(τk) = 0}

.

If (xk)k ∈
∏
kMk and supk ‖xk‖∞ < ∞, we let (xk)k→ω be the image of (xk)k

under the quotient map. If J is an index set, and (xk)k ∈
∏
kM

J
k and

sup
k

‖xk,j‖∞ < ∞ for all j ∈ J,

then we let (xk)k→ω ∈
(∏

k→ω(Mk, τk)
)J be the tuple whose jth coordinate is

(xk,j)k→ω.
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As is well known,
∏
k→ω(Mk, τk) is a tracial von Neumann algebra with the

∗-algebra operations defined pointwise and the trace given by τω((xk)k→ω) =
limk→ω τk(xk) (this follows from the same argument as [11, Lemma A.9]). It will
helpful to know that the noncommutative functional calculus described in Section
2.4 commutes with passing to the ultraproduct.

Lemma 4.2. Let (Mk, τk)k be a sequence of tracial von Neumann algebras, and
let ω be a free ultrafilter on the natural numbers. Fix an index set J, R ∈ [0,∞)J ,
and suppose

(xk)k ∈
∏

k

MJ
k

with ‖xk,j‖∞ ≤ Rj for all k ∈ N, j ∈ J. Then, for any f ∈ FR,J,∞, we have that
f ((xk)k→ω) = (f (xk))k→ω.

Proof. First, note that the conclusion of the lemma is true for f ∈ AR,J .
For the general case, fix f ∈ FR,J,∞. Given ε > 0, choose a g ∈ AR,J with
‖f − g‖R,2 < ε. Then,

‖f ((xk)k→ω)−(f (xk))k→ω‖2 ≤ ‖(f − g)((xk)k→ω)‖2+‖((f − g)(xk))k→ω‖2

≤ ‖f − g‖R,2 + lim
k→ω

‖(f − g)(xk)‖2

≤ 2‖f − g‖R,2

< 2ε.

❐

Theorem 4.3. Suppose we are given a tracial von Neumann algebra (M,τ),
a countable index set J, and an x ∈ MJ with W∗(x) = M. Suppose R ∈ [0,∞)J

satisfies ‖xj‖∞ ≤ Rj for all j ∈ J. Assume we are given a sequence of natural numbers
n(k)→∞, and a sequence µ(k) ∈ Prob(M)k(C)J) such that the following hold:

•
∑
k µ

(k)

((∏
j∈J{A ∈ Mk(C)J : ‖Aj‖∞ ≤ Rj

)c)
< ∞.

• µ(k)(Γ (n(k))R (O))→ 1 for all weak∗ neighborhoods O of ℓx in ΣR,J .
• µ(k) has exponential concentration with scale n(k)2.

Then, we have the following:

(i) There is a conull subsetΩ0⊆
∏
kMn(k)(C)J so that for anyA=(A(k))k∈Ω0,

and for every free ultrafilter ω on N, there exists a unique trace-preserving
∗-homomorphism ΘA,ω : M →

∏
k→ω(Mn(k)(C), trn(k)) so that

ΘA,ω(P(x)) = (P(A(k)))k→ω for all P ∈ C∗〈(Tj)j∈J〉.

(ii) If Q ≤M satisfies h(P : M) ≤ 0, then there is a conull subset Ω ⊆ Ω0 so that
for all A,B ∈ Ω and for every free ultrafilter ω on N, we have that ΘA,ω

∣∣
Q,

ΘB,ω
∣∣
Q are unitarily conjugate.
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Proof. Let ν(k) be the measure on Mn(k)(C)J given by

ν(k)(E) =
µ(k)

(
E ∩

(∏
j∈J{A ∈Mn(k)(C) : ‖A‖∞ ≤ Rj}

))

µ(k)
(∏

j∈J{A ∈Mn(k)(C) : ‖A‖∞ ≤ Rj}
) .

(i): It suffices to find a
⊗
k µ

(k)-conull Ω1 ⊆
∏
kMn(k)(C)J so that for every

A = (A(k))k ∈ Ω1, we have ℓAk → ℓx . Fix a decreasing sequence Om ⊆ ΣR,J of
weak∗-neighborhoods of ℓx with

∞⋂

m=1

Om = {ℓx}.

(This is possible as J is countable.) By Lemma 3.2 (ii),

∑

k

(
⊗sν

(s)
)(
{(A(s))s : A(k) ∈ Γ (n(k))R (Om)

c}
)
<∞

for every m ∈ N. For every k ∈ N, we have that

µ(k)(Γ (n(k))R (Om)
c))

≤ µ(k)


Γ (n(k))R (Om)

c ∩
∏

j∈J

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Rj}




+ µ(k)




∏

j∈J

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Rj}



c


= ν(k)
(
Γ (n(k))R (Om)

c
)
µ(k)


∏

j∈J

{A ∈Mn(k)(C) : ‖A‖∞ ≤ Rj}




+ µ(k)




∏

j∈J

{A ∈ Mn(k)(C) : ‖A‖∞ ≤ Rj}



c
 .

Thus, ∑

k

(
⊗sµ

(s)
) (
{(A(s))s : A(k) ∈ Γ (n(k))R (Om)

c}
)
< ∞.

Hence,

Ω0 =
⋂
m


⋃

k

⋂

l≥k

{(A(s))s : A(l) ∈ Γ (n(l))R (Om)}




is a conull subset of
∏
kMn(k)(C). By construction, for every A ∈ Ω0 we have

ℓA(k) → ℓx.
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(ii): Fix a countable set J′ and a tuple y ∈ MJ′ with W∗(y) = Q. Choose
an R ∈ [0,∞)J with ‖xj‖∞ ≤ Rj for all j ∈ J and an f ∈ (FR,J,∞)J

′
with

f (x) = y. By Lemma 4.2 and Theorem 2.16 (iii), for any free ultrafilter ω, and
any A = (A(k)) ∈ Ω we have

ΘA,ω(y) = ΘA,ω(f (x)) = f (ΘA,ω(x)) = (f (A(k)))k→ω.

Thus, it suffices to find a conull subset Ω of
∏
kMn(k)(C)J so that for all A =

(A(k)), B = (B(k)) ∈ Ω there is a sequence of unitaries U(k) ∈Mn(k)(C) so that

‖U(k)fj′(A
(k))(U(k))∗ − fj′(B

(k))‖2 →k→∞ 0, for all j′ ∈ J′.

Since J is countable, by a diagonal argument it is sufficient to show that for every
ε > 0, and for every finite F ′ ⊆ J, there is a conull subset ΥF ′ ,ε of

∏
k Prob(Mk(C)J)

so that for all A = (A(k))k, B = (B(k))k ∈ ΥF ′,ε we have

lim sup
k→∞

dorb
F ′ (f (A

(k)), f (B(k))) ≤ ε.

Thus, fix an ε > 0 and a finite F ′ ⊆ J′. Then, by Theorem 2.16 (ii), we may
find a δ > 0 and a finite F ⊆ J so that if (M,τ) is any tracial von Neumann
algebra, and if a,b ∈

∏
j∈J{c ∈ M : ‖c‖∞ ≤ Rj} satisfy ‖a − b‖2,F < δ,

then ‖f (a) − f (b)‖2,F ′ < ε/4. Since f commutes with unitary conjugation by
Theorem 2.16 (iii), it follows that for every n ∈ N, and all A,B ∈

∏
j∈J{C ∈

Mn(C) : ‖C‖∞ ≤ Rj} with dorb
F (A, B) < δ, we have dorb

F ′ (f (A), f (B)) < ε/4. By

Theorem 3.3, we may choose a sequence Υ̃k ⊆
∏
j∈J{C ∈ Mn(k)(C) : ‖C‖∞ ≤ Rj}

with ν(k)(Υ̃k)→ 1 and so that

lim
k→∞

sup
A1,A2∈Υ̃k

dorb
F (f (A1), f (A2)) = 0.

Now, choose K so that for all k ≥ K we have ν(k)(Υ̃k) ≥ 1/2 and

sup
A1,A2∈Υ̃k

dorb
F (f (A1), f (A2)) < ε/2.

Then, by exponential concentration,

∑

k≥K

ν(k)(Nδ(Υ̃k)c) <∞.

As in part (i) we have ∑

k≥K

µ(k)(Nδ(Υ̃k)c) < ∞.
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If A,B ∈ Nδ(Υ̃k), choose A1, B1 ∈ Υ̃k with dorb
F (A,A1), d

orb
F (B, B1) < δ. Then,

dorb
F ′ (f (A), f (B)) < ε/2+ d

orb
F ′ (f (A1), f (B1)) < ε.

Thus,

ΥF,ε =
⋃

k≥K

⋂

l≥k

{(A(m))m : A(l) ∈ Nδ(Υ̃l)}

is
⊗
k µ

(k)-conull and for all (A(k))k, (B(k))k ∈ ΥF,ε we have

lim sup
k→∞

dorb
F ′ (f (A

(k)), f (B(k))) ≤ ε.

This completes the proof. ❐

The conclusion of Theorem 4.3 (ii) is interesting in light of the following
theorem of Jung.

Theorem 4.4 (Jung, [44]). Let (M,τ) be a tracial von Neumann which admits
an embedding into a tracial ultraproduct of matrix algebras. Then, given any nona-
menable Q ≤ M and any free ultrafilter ω on N, there are trace-preserving, normal
∗-homomorphisms

Θj : M →
∏

k→ω

Mk, j = 1,2

so that Θ1

∣∣
Q is not unitarily equivalent to Θ2

∣∣
Q. Conversely, if Q ≤ M is amenable,

then any two embeddings of Q into an ultraproduct of matrix algebras are unitarily
equivalent.

Strictly speaking, Jung only proved the case Q = M and when M is finitely
generated of Theorem 4.4. However, by analyzing his proof and replacing mi-
crostates spaces with microstates spaces in the presence, it is not hard to prove
the case Q is nonamenable and finitely generated of Theorem 4.4. Since any
nonamenable von Neumann algebra has a finitely generated nonamenable von
Neumann subalgebra, this is sufficient to handle the general case of Theorem 4.4.

Under the hypotheses of Theorem 4.3, if for every nonamenable Q ≤ M,
almost every (A, B) ∈ Ω0 and every free ultrafilter ω on the natural numbers, we
had that ΘA,ω

∣∣
Q and ΘB,ω

∣∣
Q are not unitarily conjugate, then it would follow

that any N ≤ M with h(N : M) ≤ 0 must be amenable. In particular, any
amenable subalgebra of M must have a maximal amenable extension. We can
think of the statement that almost surely ΘA,ω

∣∣
Q is not unitarily equivalent to

ΘB,ω
∣∣
Q as a “randomized Jung theorem.” It would mean that not only can we

find a pair of homomorphisms satisfying the conclusion of Jung’s theorem, but
that a randomly chosen pair satisfies Jung’s theorem. This motivates the following
conjecture.
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Conjecture 4. Fix an integer r ≥ 2, and let µ(k) ∈ Prob(Mk(C)rs.a.) be the
r -fold product of the GUE distribution. Set µ =

∏
k µ

(k), and choose a µ-conull
Ω0 ⊆

∏
kMk(C)rs.a. as in Theorem 4.3. Then, for every Q ≤ L(Fr ) nonamenable

and for every free ultrafilter ω on N, there is a µ ⊗ µ-conull subset Ω ⊆ Ω0 ×Ω0

so that ΘA,ω
∣∣
Q,ΘB,ω

∣∣
Q are not unitarily conjugate for all (A, B) ∈ Ω.

Related to Jung’s theorem, we can use strong convergence and local reflexivity
to give criteria so that a concrete pair of embeddings into ultraproducts of matrices
are not unitarily conjugate when restricted to any nonamenable subalgebra.

Proposition 4.5. Let (M,τ) be a tracial von Neumann algebra, I an index set,
and x ∈ M I withW∗(x) =M. Suppose we are given positive integers n(k)→∞ and
(A(k), B(k)) ∈ Mn(k)(C)I so that the law of (A(k) ⊗ 1Mn(k)(C),1Mn(k)(C) ⊗ (B

(k))t)
converges strongly to the law of (x ⊗ 1C∗(x)op ,1C∗(x) ⊗ xop). For a free ultrafilter
ω, let ΘA,ω : M →

∏
k→ωMn(k)(C), ΘB,ω : M →

∏
k→ωMn(k)(C) be the unique

trace-preserving, normal ∗-homomorphisms which satisfy ΘA,ω(x) = (A(k))k→ω and
ΘB,ω(x) = (B(k))k→ω. If C∗(x) is locally reflexive, then for any nonamenable
Q ≤ M we have that ΘA,ω

∣∣
Q and ΘB,ω

∣∣
Q are not unitarily conjugate.

Proof. Note that strong convergence implies that for all i ∈ I,

Ri = sup
k

max(‖A(k)i ‖∞,‖B
(k)
i ‖∞) < ∞.

From here, it is an exercise to derive this from Proposition 3.6. ❐

Recall that if we have x ∈ Mn(C) ⊗ Mn(C), then we have an operator
x#: Mn(C)→ Mn(C) defined on elementary tensors by

(A⊗ B)#C = ACBt .

Also, x ֏ x# is an injective ∗-homomorphismMn(C)⊗Mn(C)→ B(S2(n, tr)),
and as such it is isometric. Thus, ‖x‖Mn(C)⊗Mn(C) = ‖x#‖B(S2(n,tr)), and this
is precisely what we used in our reduction to strong convergence. However, it
is natural to view x# as an operator between other noncommutative Lp-spaces.
Recall that if 1 ≤ p < ∞, then we have a norm ‖ · ‖p on Mn(C) by

‖A‖p = tr(|A|p)1/p , with |A| = (A∗A)1/2.

As usual, we let ‖A‖∞ be the operator norm of A ∈ Mn(C). We let Sp(n, tr)
be Mn(C) equipped with the norm ‖ · ‖p, and for x ∈ Mn(C) ⊗ Mn(C) and
1 ≤ p,q ≤ ∞, we let ‖x#‖p,q be the norm of the operator A ֏ x#A as an
operator Sp(n, tr) → Sq(n, tr). Thus, our discussion above shows that ‖x#‖2,2 =
‖x‖Mn(C)⊗Mn(C). Because we are using the normalized trace, we have that ‖A‖p ≤
‖A‖q for 1 ≤ p ≤ q ≤ ∞ and A ∈ Mn(C). Thus, ‖x#‖p1,q1 ≤ ‖x#‖p2,q2 if
p2 ≤ p1,q1 ≤ q2. We now state a conjecture weaker than our strong convergence
conjecture in terms of operator norms Mn(C) → S1(n, tr).



1288 BEN HAYES

Conjecture 5. Fix an integer r ≥ 2. Then, there is a constant C > 0 with

the following property. Let X(k)1 , X(k)2 , · · · , X(k)r ,Y (k)1 , Y (k)2 , · · · , Y (k)r be random,
self-adjoint k× k matrices which are independent and are each GUE distributed.
Let s = (s1, · · · , sr ) be a free semicircular family each with mean zero and vari-
ance 1. Then, for any P ∈ C〈T1, · · · , T2r 〉, we have that

lim sup
k→∞

‖P(X(k) ⊗ 1Mk(C),1Mk(C) ⊗ Y
(k))#‖∞,1 ≤ C‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞,

where the norm on the righthand side is taken in C∗(s)⊗min C∗(s).

Proposition 4.6. We have the following implications between the above conjec-
tures and the Peterson-Thom conjecture. Conjecture 2 implies Conjecture 5, Conjec-
ture 5 implies Conjecture 4, Conjecture 4 implies Conjecture 3, and Conjecture 3
implies the Peterson-Thom conjecture.

Proof. (Conjecture 2 implies Conjecture 5): Take C = 1, and then use that
‖x#‖∞,1 ≤ ‖x#‖2,2 = ‖x‖Mn(C)⊗Mn(C) for alln ∈ N, and all x ∈Mn(C)⊗Mn(C).

(Conjecture 5 implies Conjecture 4): It is well known (see [30, Proof of
Lemma 3.3]) that we may find an R > 0 so that

lim sup
k→∞

1
k

logµ(k)






r∏

j=1

{A ∈ Mk(C) : ‖A‖∞ ≤ R}



c
 < 0.

SupposeQ ≤ L(Fr ) is nonamenable, and apply [29, Lemma 2.2] to find a nonzero
projection f ∈ Z(Q) and u1, · · · , ur ∈ U(Qf) so

D′ =
1
r

∥∥∥∥∥∥
r∑

j=1

uj ⊗uj

∥∥∥∥∥∥
∞

< 1.

By replacing


1
r

r∑

j=1

uj ⊗uj


 with


1
r

r∑

j=1

uj ⊗uj



s

for a suitably large s ∈ N,

we may, and will, assume that D′ <
τ(f )

C
. Let Ω0 be as in Theorem 4.3 (i). By

Conjecture 5, we may choose a conull Ξ ⊆ Ξ×Ω0 so that for all A = (A(k)), B =
(B(k)) ∈ Ξ, we have

lim sup
k→∞

‖P(A(k) ⊗ 1Mk(C),1Mk(C) ⊗ B
(k))#‖∞,1 ≤ C‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞.

Suppose the negation of Conjecture 4 holds. Then, there is a positive measure
Υ ⊆ Ξ and a free ultrafilterω on N so that for all (A, B) ∈ Υ, we have that ΘA,ω

∣∣
Q

and ΘB,ω
∣∣
Q are unitarily conjugate. Fix (A, B) ∈ Υ. Let v ∈ U


 ∏

k→ω

Mk(C)


 be
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such that vΘB,ω(x)v∗ = ΘA,ω(x) for all x ∈ Q, and write v = (V (k))k→ω with
V (k) ∈ U(k).

Observe that for all (Xk)k→ω ∈
∏
k→ωMk(C) we have that ‖(Xk)k→ω‖1 =

limk→ω ‖Xk‖1. Indeed, this follows from the fact that |(Xk)k→ω| = (|Xk|)k→ω,
which is in turn a consequence of the fact that continuous functional calculus
commutes with the operation of passing to the ultraproduct. Since C∗(s) is exact,
and thus locally reflexive, as in the proof of Theorem 1.2 (ii)) we may choose a

D ∈ (D′,
τ(f )

C
) and a sequence Pj,m ∈ C〈(Tj)j∈J〉 so that the following hold:

• ‖Pj,m‖R,∞ ≤ 1,
• ‖Pj,m(s)−uj‖2 →m→∞ 0,

• 1
r

∥∥∥∑r
j=1 Pj,m(s)⊗ Pj,m(s)

∥∥∥
∞
≤ D for all m.

Note that as a consequence of the second item,

‖Pj,m(s)−uj‖1 ≤ ‖Pj,m(s)−uj‖2 →m→∞ 0.

Then, for every m ∈ N,

τ(f ) = ‖vf‖1 =
1
r

∥∥∥∥∥∥
r∑

j=1

ΘA,ω(uj)vΘB,ω(f )ΘB,ω(uj)∗
∥∥∥∥∥∥

1

≤
2
r

r∑

j=1

‖Pj,m(s)−uj‖1

+
1
r

∥∥∥∥∥∥
r∑

j=1

Pj,m((A
(k))k→ω)vΘB,ω(f )Pj,m((B(k))k→ω)∗

∥∥∥∥∥∥
1

,

where in the last step we use that ‖Pj,m(s)‖∞ ≤ 1 and the fact that ΘA,ω,ΘB,ω are
‖ · ‖1 − ‖ · ‖1,‖ · ‖∞ − ‖ · ‖∞ isometries. Write ΘB,ω(f ) = (F (k))k→ω where F (k)

are projections in Mn(k)(C). We can estimate the second term above as follows:

1
r

∥∥∥∥∥∥
r∑

j=1

Pj,m((A
(k))k→ω)vΘB,ω(f )Pj,m((B(k))k→ω)∗

∥∥∥∥∥∥
1

= lim
k→ω

1
r

∥∥∥∥∥∥
r∑

j=1

Pj,m(A
(k))V (k)F (k)Pj,m(B

(k))∗

∥∥∥∥∥∥
1

≤ lim sup
k→∞

1
r

∥∥∥∥∥∥
r∑

j=1

Pj,m(A
(k))⊗ Pj,m(B(k))#

∥∥∥∥∥∥
∞,1

≤
C

r

∥∥∥∥∥∥
r∑

j=1

Pj,m(s)⊗ Pj,m(s)

∥∥∥∥∥∥
∞

≤ CD.
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Thus, we have shown that for every m ∈ N we have

τ(f )− CD ≤
2
r

r∑

j=1

‖Pj,m(s)−uj‖1.

Since D < τ(f )
C , we obtain a contradiction by letting m→∞.

Conjecture 4 implies Conjecture 3: This follows from Theorem 4.3 (ii).
Conjecture 3 implies the Peterson-Thom conjecture: This is the content of

Proposition 2.7. ❐

We comment that it is likely helpful to consider operator spaces and operator
space tensor products to tackle Conjecture 5. For instance, one can imagine that
instead of working withMn(C)⊗Mn(C), one considers Sp(n, tr)⊗αSq(n, tr) for
some p,q ∈ [1,∞] and some operator space tensor product ⊗α.One would want
to choose α so the map Sp(n, tr)⊗α Sq(n, tr) → CB(Mn(C), S1(n, tr)) given by
A ⊗ B ֏ (C ֏ ACBt) is completely bounded. It is natural to choose p,q with
1
p +

1
q = 1 so that

‖ACBt‖1 ≤ ‖A‖p‖B‖∞‖C‖q.

Therefore, it would make sense to consider an operator space tensor norm on
S1(n, tr)⊗Mn(C) or on OS2(n, tr)⊗OS2(n, tr) where OS2(n, tr) is Pisier’s op-
erator space structure on S2(n, tr) (or potentially other natural operator space
structures on S2(n, tr)).

We shall close this section by mentioning that the full strength of Conjec-
ture 2 is not needed to deduce Conjecture 4. In fact, we only need that for all
P1, · · · , Pl ∈ C〈T1, · · · , Tr 〉 we have

∥∥∥∥∥∥
l∑

j=1

Pl(X
(k))⊗ Pj(Y (k))

∥∥∥∥∥∥
∞

→

∥∥∥∥∥∥
l∑

j=1

Pj(s)⊗ Pj(s)

∥∥∥∥∥∥
∞

.

Therefore, it is clear that we can allow a certain symmetry in the elements of
C〈T1, · · · , Tr , S1, · · · , Sr 〉 we are testing strong convergence on. Similar remarks
apply to the other conjectures in this section. Lastly, in Conjectures 2, 4,5 we may
replace the GUE ensemble with Haar unitaries, or any other ensemble, provided
it has exponential concentration, and converges in law to the law of a generator x
of a free group factor with the property that C∗(x) is locally reflexive. The details
as to why these alternate conjectures imply the Peterson-Thom conjecture are the
same as in Proposition 4.6.

5. CLOSING REMARKS

We close with some comments concerning Theorem 1.1. First, in Theorem 1.1
(iii), it is crucial that we are taking X(k),Y (k) independent of each other. In fact,
tensoring tends to behave rather poorly in the strong topology, as we now show.
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Definition 5.1. Let (M,τ) be a tracial von Neumann algebra, and J a count-
able index set. We say that x ∈ MJ is a nonamenability tuple if supj ‖xj‖∞ < ∞

and there is a µ ∈ Prob(J) so that
∑
j∈J µj|xj ⊗ 1 − 1 ⊗ xopj |

2 ∈ M⊗Mop is
invertible.

The sum in question in the second item converges in ‖ · ‖∞-norm. By [18]
(see also [1, Theorem 10.2.9]), every nonamenable von Neumann algebra admits
a finite nonamenability tuple.

Proposition 5.2. Let (M,τ) be a tracial von Neumann algebra, J a count-
able index set, and x ∈ MJ . Suppose either that x is a nonamenability tuple, or
that W∗(x) is nonamenable and that C∗(x) is locally reflexive. Fix an R > 0
with supj ‖xj‖∞ < ∞. Given any sequence n(k) ∈ N, and xk ∈ Mk(C)J with
supk,j ‖xk,j‖∞ ≤ R and ℓxk → ℓx strongly, we have that ℓxk⊗1,1⊗xtk

does not con-

verge strongly to ℓx⊗1,1⊗xop .

Proof. The case where C∗(x) is locally reflexive and where W∗(x) is non-
amenable follows from Proposition 4.5, so we assume x is a nonamenability set.
Let µ ∈ Prob(J) be so that

∑

j∈J

µj|xj ⊗ 1− 1⊗ x
op
j |

2

is invertible. Since invertible elements in a Banach algebra are open and the sum
above converges in ‖ · ‖∞, it follows that we may choose a finite F ⊆ J so that

∑

j∈F

µj|xj ⊗ 1− 1⊗ x
op
j |

2

is invertible.
By strong convergence and Lemma 2.9, the spectrum of

∑

j∈F

µj|xk,j ⊗ 1− 1⊗ xtk,j|
2

Hausdorff converges to the spectrum of

∑

j∈F

µj|xj ⊗ 1− 1⊗ xopj |
2.

Since 0 is not in the spectrum of
∑
j∈F µj|xj ⊗ 1− 1⊗ x

op
j |

2, it follows that 0 is
not in the spectrum of

∑

j∈F

µj|xk,j ⊗ 1− 1⊗ xtk,j|
2
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for all sufficiently large k. But since

∑

j∈F

µj|xk,j ⊗ 1− 1⊗ xtk,j|
2#1 = 0,

we have that 0 is in the spectrum of
∑
j∈J µj|xk,j ⊗ 1− 1⊗xtk,j|

2 for all k. Thus,
we have a contradiction, and this completes the proof. ❐

More positively, we comment that many previous proofs of strong conver-
gence (e.g., for a mixture of deterministic and random matrices, see [17, 50])
involve replacing some coordinates of the tuple with their strong limits. A similar
approach holds here.

Proposition 5.3. Let r ≥ 2 be an integer and s = (s1, · · · , sr ) a free semi-
circular family each with mean zero and variance one. Let X(k) be as in The-
orem 1.1 (iii). In order to prove Theorem 1.1, it is enough to show that for any
P ∈ C〈(Tj)

r
j=1, (Sj)

r
j=1〉 we have

∣∣∣‖P(X(k) ⊗ 1Mk(C),1Mk(C) ⊗ Y
(k))‖∞ − ‖P(X

(k) ⊗ 1C∗(s),1Mk(C) ⊗ s)‖∞
∣∣∣→ 0

in probability.

Proof. It suffices to show that

‖P(X(k) ⊗ 1C∗(s),1Mk(C) ⊗ s)‖∞ → ‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞

in probability. Let µ(k) ∈ Prob(Mk(C)rs.a) be the distribution of (X(k)). By
Haagerup-Thorjbørnsen [31, Theorem A], we may find a sequenceΩk⊆Mk(C)rs.a.
so that the following hold:

• µ(k)(Ωk)→ 1.
• For all (A(k))k ∈

∏
kΩk, we have that ℓA(k) → ℓs strongly.

Let

B = {(ak)k ∈
∏

k

Mk(C) : sup
k

‖ak‖∞ < ∞},

J = {(ak)k ∈
∏

k

Mk(C) : ‖ak‖∞ →k→∞ 0},

and set A = B/J. Then, A is a C∗-algebra under the norm

‖(ak)k + J‖ = lim sup
k→∞

‖ak‖∞,

and we have an exact sequence of C∗-algebras

(5.1) 0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ J -----------------------------------------------------------------------------------------------------------------------------------------------------------→ B -----------------------------------------------------------------------------------------------------------------------------------------------------------→ A -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.
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For (A(k))k ∈
∏
kΩk, strong convergence guarantees we have a∗-homomorphism

π : C∗(s)→ B satisfyingπ(P(s)) = (P(A(k)))k+J for all P ∈ C〈T1, T2, · · · , Tr 〉.
We thus have a natural ∗-homomorphism

(5.2) π ⊗ id : C∗(s)⊗min C
∗(s)→ B ⊗min C

∗(s).

Since C∗(s) is exact, the exact sequence (5.1) produces an exact sequence
(5.3)
0 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ J⊗minC∗(s) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ B⊗min C∗(s) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ A⊗min C∗(s) -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 0.

We have a natural identification

J ⊗min C
∗(s) ≅


(ak)k ∈

∏

k

(Mk(C)⊗min C
∗(s)) : ‖ak‖∞ → 0


 ,

and a natural isometric embedding

B ⊗min C
∗(s)֓


(ak)k ∈

∏

k

(Mk(C)⊗min C
∗(s)) : sup

k

‖ak‖∞ < ∞


 .

Combining this with (5.2), (5.3), we have produced a ∗-homomorphism

C∗(s)⊗ C∗(s)→
{(ak)k ∈

∏
k(Mk(C)⊗min C∗(s)) : supk ‖ak‖∞ < ∞}

{(ak)k ∈
∏
kMk(C)⊗min C∗(s) : ‖ak‖∞ → 0}

satisfying

P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)֏ (P(A(k) ⊗ 1C∗(s),1C∗(s) ⊗ s))k

+


(ak)k ∈

∏

k

(Mk(C)⊗min C
∗(s)) : ‖ak‖∞ → 0




for all P ∈ C〈T1, · · · , Tr , S1, · · · , Sr 〉. Since ∗-homomorphisms between C∗-
algebras are contractive, this implies that

‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞ ≥ lim sup
k→∞

‖P(A(k) ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞.

The inequality

‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞ ≤ lim inf
k→∞

‖P(A(k) ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞

is a consequence of the weak∗-convergence of the law of (A(k)⊗1C∗(s),1Mk(C)⊗s)
to the law of (s ⊗ 1C∗(s),1C∗(s) ⊗ s). Thus, we have shown

‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞ = lim
k→∞

‖P(A(k) ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞
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for all (A(k))k ∈
∏
kΩk and all P ∈ C〈T1, · · · , Tr , S1, · · · , Sr 〉.As µ(k)(Ωk)→ 1,

it follows that

‖P(X(k) ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞ → ‖P(s ⊗ 1C∗(s),1C∗(s) ⊗ s)‖∞

in probability. ❐
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