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Abstract

Multiple-subject network data are fast emerging in recent years, where a separate

connectivity matrix is measured over a common set of nodes for each individual

subject, along with subject covariates information. In this article, we propose a new

generalized matrix response regression model, where the observed network is treated

as a matrix-valued response and the subject covariates as predictors. The new model

characterizes the population-level connectivity pattern through a low-rank intercept

matrix, and the e↵ect of subject covariates through a sparse slope tensor. We develop

an e�cient alternating gradient descent algorithm for parameter estimation, and

establish the non-asymptotic error bound for the actual estimator from the algorithm,

which quantifies the interplay between the computational and statistical errors. We

further show the strong consistency for graph community recovery, as well as the edge

selection consistency. We demonstrate the e�cacy of our method through simulations

and two brain connectivity studies.

Keywords: Computational and statistical errors; Generalized linear model; High-dimensional

regression; Neuroimaging; Tensors.
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1 Introduction

Network data are now ubiquitous in a wide range of scientific applications. More recently,

multiple-subject network data are fast emerging, in which a separate connectivity network

is measured over a common set of nodes for each individual subject. Examples include

social cognitive science (Brands, 2013), genetics (Dai et al., 2019), and our motivating brain

connectivity analysis. Brain connectivity concerns functional and structural architectures of

the brain (Varoquaux and Craddock, 2013). A typical connectivity study collects imaging

scans, e.g., functional magnetic resonance imaging (fMRI), or di↵usion tensor imaging

(DTI), from multiple subjects. Based on the scan, a connectivity network is constructed for

each subject, with the nodes corresponding to a common set of brain regions, and the edges

encoding functional or structural associations between the regions. In addition, the study

collects subject features such as age, sex and other traits. A fundamental scientific question

of interest is to characterize the brain connectivity at both the population-level and subject-

level, and to ascertain how subject features modulate the subject-level connectivity changes.

Characterizing such individualized brain connectivity networks is central in developing

personalized treatment for neurological disorders (Sylvester et al., 2020).

There have been some recent proposals on modeling a collection of networks (Chen et al.,

2015; Kang et al., 2016; Wang et al., 2016; Zhang and Cao, 2017; Kundu et al., 2018; Wang

and Guo, 2019). However, these methods may not be able to capture complex associations

between the network connectivity and external covariates. Wang et al. (2017); Durante

et al. (2017) proposed Bayesian network models with covariates, which are flexible, but can

be computationally intensive, especially for large networks or a large number of covariates.

There is another line of related work in matrix and tensor data analysis. Notably, Sun

and Li (2017) developed a tensor response regression model, Kong et al. (2019) proposed a

matrix response linear regression model, and Hu et al. (2020) considered a matrix response

regression based on nonlinear kernels. These models were designed to handle a continuous-

valued response, and imposed di↵erent structures on the coe�cients compared to our model.

Relatedly, Zhang and Li (2017); Li and Zhang (2017); Tang et al. (2019) studied tensor
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predictor models, where the tensor was treated as a predictor and the response variable

was a scalar.

In this article, we propose a new connectivity matrix response generalized linear regres-

sion model for a collection of network samples with network-level covariates. We represent

the observed network as a matrix-valued response variable, and the subject covariates as

predictors. We then adopt the form of generalized linear model (GLM), and formulate

the population-level connectivity, after a proper transformation, as the sum of two high-

dimensional components. The first component is the intercept matrix and is assumed to

possess a low-rank structure. The second component involves the slope coe�cient tensor,

which models the e↵ects of covariates on the connectivity and is assumed to be sparse.

These structural assumptions substantially reduce the number of free parameters, as well

as the subsequent modeling and computation complexity. Moreover, they are scientifically

plausible, and are frequently employed in scientific applications (Bi et al., 2018).

Our proposal makes some useful contributions to both methodology and theory. As

to the methodology, we develop a systematic approach to model the associations between

connectivity matrices and covariates. The proposed model framework preserves the intrin-

sic characteristics of networks, facilitates a scalable computation, and allows an explicit

quantification of the computational and statistical errors. Besides, although our motivat-

ing application is the brain connectivity study, our method is applicable to other problems,

e.g., the genetic study that investigates the gene regulatory relationships among gene-gene

networks based on single-cell samples (Dai et al., 2019). As to the theory, we establish

several useful statistical properties. We obtain an explicit non-asymptotic error bound for

the iterates of our algorithm. This error bound reveals an interesting interplay between the

computational e�ciency and statistical rate of convergence. It shows that the computa-

tional error decays geometrically with the number of iterations, while the statistical error

matches with the existing rates for sparse regressions and low-rank regressions. Built on

this error bound, we further establish the consistency of a community detection procedure

and the selection consistency, in that we can consistently identify the edges that are a↵ected

by the covariates, and exclude those that are not. These theoretical analyses are highly
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nontrivial, involving alternating gradient descent, factorization of the low-rank component,

hard-thresholding operator for sparsity, and non-quadratic form of the loss function.

The rest of the article is organized as follows. Section 2 introduces the generalized matrix

response model. Section 3 develops the estimation algorithm, and Section 4 investigates

the statistical properties. Section 5 presents the simulations, and Section 6 illustrates with

two studies of brain functional and structural connectivity. Section 7 concludes the paper

with a short discussion. All technical proofs are relegated to the supplement.

2 Generalized Connectivity Matrix Response Model

We start with some notation. Let In⇥n denote the n ⇥ n identity matrix. For a vector

b 2 Rd1 , let kbk2 denote its `2 norm. For a matrix B 2 Rd1⇥d2 , let Bi· and B·j denote its

ith row and jth column, and let kBk2, kBk⇤, kBkF , and kBk1 denote its spectral norm,

nuclear norm, Frobenius norm, and entry-wise infinity norm, respectively. Let SVDr(B)

denote the rank-r singular value decomposition of B such that SVDr(B) = [U ,⌃,V ],

where ⌃r⇥r is a diagonal matrix with the largest r singular values and Ud1⇥r,Vd2⇥r collect

the left and right singular vectors, respectively. For a tensor B 2 Rd1⇥d2⇥d3 , let Bijk, Bij·

and B··k denote its (i, j, k)th entry, (i, j)th tube fiber, and kth frontal slice, respectively.

Let kBkF =
qP

ijk B2
ijk and kBk0 denote the number of nonzero entries. Lastly, define

the tensor matrix product hB,Bi =
P

ijk BijkBij for B 2 Rd1⇥d2 and B 2 Rd1⇥d2⇥d3 .

2.1 Model formulation

Consider a network with n nodes, and the n⇥n adjacency matrixA, whereAjj0 denotes the

edge from node j to j
0, 1  j, j

0  n. If the edge is undirected, then Ajj0 = Aj0j. The edge

value can be binary, i.e., Ajj0 2 {0, 1}, or count, i.e., Ajj0 is a nonnegative integer. We

consider independent network samples observed from N individuals, with corresponding

n⇥ n adjacency matrices A(1)
, . . . ,A(N). Here we assume all N networks share a common

set of n nodes. Additionally, for each subject, we observe a vector of p covariates, denoted

by xi = (xi1, . . . , xip)>.
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Denote µ(i) = E{A(i)|xi}, where the expectation E(·) is applied element-wise to the

entries in A(i). We assume that A(i) conditional on xi follows an exponential family

distribution with a canonical link function, i.e.,

f(A(i)|µ(i)) =
nY

j 6=j0

h(A(i)
jj0) exp

h
A(i)

jj0⌘
(i)
jj0 �  

n
⌘(i)
jj0

oi
, (1)

where ⌘(i) = g(µ(i)), g(·) is a known invertible link function in usual GLM and is applied

element-wise to the entries of µ(i), and  (·) is the cumulant function with its first derivative

 
0(·) = g(·)�1. Furthermore, we postulate that,

g
�
µ(i)

 
= ⇥+B ⇥3 xi, i = 1, . . . , N, (2)

where ⇥ 2 Rn⇥n is the intercept matrix that characterizes the population level connectiv-

ity, B 2 Rn⇥n⇥p is the slope tensor that encodes the e↵ects of subject covariates on the

connectivity matrix, and B ⇥3 xi =
Pp

l=1 xil B··l.

We postulate that the population level connectivity ⇥ to be low-rank, which reduces

the number of free parameters and is plausible in neuroscience applications (Bi et al.,

2018; Kong et al., 2019). In addition, we assume B is sparse, i.e., the e↵ects of covariates

concentrate only on a subset of connections. This sparsity assumption again reduces the

number of free parameters, greatly facilitates the model interpretation, and is also well

supported by empirical neurological studies (Vounou et al., 2010). As every subject has a

unique sparse deviation B ⇥3 xi from the low-rank ⇥, model (2) is identifiable. We note

that it is possible to impose more complex structures on ⇥ and B; e.g., B is low-rank and

sparse, or B is slice sparse. Accommodating these structures requires some straightforward

modification to the estimation procedure. We choose to focus on the current setup as it

o↵ers a good balance between model complexity and model flexibility.

To ensure the low-rank structure of ⇥, we adopt the Burer-Monteiro factorization (Bu-

rer and Monteiro, 2003), in which the low-rank matrix is reparameterized as the product

of two factor matrices, ⇥ = UV >, where U ,V 2 Rn⇥r, and r is the rank of ⇥. This repa-

rameterization avoids repeatedly performing the computationally expensive SVD, which

is often required in optimization with the low-rank constraint. If the adjacency matrix
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is symmetric, we reparameterize ⇥ as ⇥ = U⇤U>, where U 2 Rn⇥r and ⇤ is an r ⇥ r

diagonal matrix with diagonal entries {�1, 1}. If ⇥ is positive semi-definite (PSD), then

⇤ becomes the identity matrix. We note that the intercept matrix ⇥ may not be PSD. To

enforce the sparsity of B, we adopt the hard-thresholding sparsity constraint, by setting

kBk0  s for some positive integer s. Compared to the lasso type soft-thresholding con-

straint, the hard-thresholding constraint reduces bias and has been shown to enjoy superior

performance in many high-dimensional problems (Zhang et al., 2018).

We briefly discuss the benefits and necessity of imposing separate structures on ⇥ and

B. At first glance, it seems that one could stack ⇥ and B into one coe�cient tensor of

size n ⇥ n ⇥ (p + 1), and require it to be both low-rank and sparse. However, assuming

⇥ to be sparse may not be plausible in the GLM setting. For instance, when the edges

are binary and g(·) is the logit link, g(0) yields a connecting probability of 0.5; when the

edges are counts and g(·) is the log link, g(0) is not well defined. As such, a sparse ⇥

does not necessarily imply the sparsity in connectivity at the population-level, and may

not even be well defined. This is a unique challenge in using GLM to model discrete-valued

connectivity matrices. In addition, based on the Burer-Monteiro reparameterization of the

low-rank ⇥, we can detect clusters, or communities, of nodes, so that the nodes are more

densely connected within the clusters and less so between the clusters. This also contributes

to the network community detection literature, as the existing spectral clustering methods

cannot handle network heterogeneity induced by network-level covariates.

2.2 Connections with existing models for a single network

Our proposed model (2), when applied to a single network sample, is connected to several

prevalent network models, including the stochastic blockmodel (Holland et al., 1983), the

latent space model (Ho↵ et al., 2002), and the latent factor model (Minhas et al., 2016).

Similar to those models, our model (2) also assumes the low-rank structure, but is more

general in that it imposes no additional structural constraint, e.g., the block structure.

Consider a single observed adjacency matrix A and µ = E(A). The stochastic block-
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model is one of the most popular network models. It imposes that the nodes form K

communities, and the edges are determined by the community memberships of the two end

nodes and are independent given the community assignment. Accordingly, the model can

be written as

g(µ) = CMC>
,

whereC is a n⇥K community assignment matrix, withCjk = 1 if node j belongs to the kth

community, and 0 otherwise, and M 2 RK⇥K characterizes the connecting probabilities

within and between the K communities. It is seen that the rank of the matrix CMC> at

most K, and may be viewed as a special case of model (2).

The latent space model (Ho↵ et al., 2002) is another well-studied network model. It

assumes the nodes are positioned in a K-dimensional latent space, and two nodes are likely

to form a tie if their latent positions are close. The model can be written as

g(µ) = ↵1n1
>
n +C(MC)>,

where 1n is an n-dimensional vector of ones, C 2 Rn⇥K has its jth row c>j 2 RK⇥1 encoding

the latent position of node j, and M 2 Rn⇥n is a diagonal matrix with its jth diagonal

entry equal to 1/kcjk2, 1  j  n. We see the rank of the matrix ↵11> + C(MC)> is

(K + 1), and thus this model is again a special case of (2). Relatedly, the latent factor

model (Minhas et al., 2016), similar to the latent space model, imposes

g(µ) = ↵⌦ 1>
n +↵> ⌦ 1n +CC>

,

where ↵ 2 Rn encodes the additive e↵ect, and C 2 Rn⇥K encodes the multiplicative e↵ect.

In this case, the rank of the matrix ↵⌦ 1>
n +↵> ⌦ 1n +CC> is (K + 1).

3 Estimation

Denote the negative log-likelihood function of the connectivity matrix response model (2)

by `(⇥,B), which, up to a constant, is of the form (McCullagh and Nelder, 1989),

`(⇥,B) = � 1

N

NX

i=1

nX

j 6=j0

h
A(i)

jj0⌘
(i)
jj0 �  

n
⌘(i)
jj0

oi
, (3)
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Algorithm 1 Optimization algorithm for (4)

Step 1: compute Ā = 1
N

PN
i=1 A

(i) and let SVDr{g(Ā)} = [Ū0, ⌃̄0, V̄0]. Set U (0) =

Ū0⌃̄
1/2
0 , V (0) = V̄0⌃̄

1/2
0 , and B(0) = 0.

repeat

Step 2: update U (t+1) = U (t) � �rU
˜̀
n
UV (t)>

,B(t)
o ���

U=U (t)
;

Step 3: update V (t+1) = V (t) � �rV
˜̀
n
U (t+1)V >

,B(t)
o ���

V =V (t)
;

Step 4: update B(t+1) = Truncate
h
B(t) � ⌧rB ˜̀

n
U (t+1)V (t+1)>

,B
o ���

B=B(t)
, s

i
.

until the objective function converges.

where ⌘(i) = ⇥ + B ⇥3 xi. We propose to estimate the parameters ⇥ and B through a

non-convex regularized optimization. We first develop the optimization algorithm for the

general case without the symmetry constraint, which is an easier scenario. Building upon

this procedure, we further develop the algorithm for the symmetric case.

For the general case that ⇥ is low-rank but not necessarily symmetric, we consider the

factorization ⇥ = UV > and the corresponding optimization problem,

min
U ,V 2Rn⇥r

B2Rn⇥n⇥p

˜̀
�
UV >

,B
�
, subject to kBk0  s, (4)

where we augment the loss function `(⇥,B) with an additional regularizer, ˜̀
�
UV >

,B
�
=

`
�
UV >

,B
�
+ 1

8kU
>U � V >V k2F . In our theoretical analysis, we write the true intercept

matrix⇥⇤ as⇥⇤ = U ⇤V ⇤>, and assumeU ⇤ and V ⇤ have the same set of singular values; see

Section S2 of the supplement. The regularizer kU>U�V >V k2F/8 is added to guarantee the

uniqueness of solutions to U and V in the optimization. In low-rank matrix factorization, a

regularizer of this type, i.e., �0kU>U�V >V k2F with �0 > 0, has been commonly used (Tu

et al., 2016; Zheng and La↵erty, 2016; Park et al., 2018), whereas the scalar �0 is sometimes

treated as a tuning parameter (Park et al., 2018). Assuming that U ⇤ and V ⇤ have the

same set of singular values, our theoretical analysis establishes the linear convergence of

the proposed algorithm when �0 = 1/8, and thus we treat �0 as a fixed constant in our

method. To enforce sparsity along the solution path, we employ a truncation operator

Truncate(B, s),
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[Truncate(B, s)]jj0l =

8
><

>:

Bjj0l if (j, j0, l) 2 supp(B, s),

0 otherwise,

for B 2 R
d1⇥d2⇥d3 and s  d1d2d3. Here supp(B, s) is the set of indices of B corresponding

to its largest s absolute values. We then develop an alternating gradient descent algorithm

for (4) to iteratively update U , V and B. We summarize the optimization procedure

in Algorithm 1. In this algorithm, rU
˜̀(UV >

,B) denotes the gradient of the objective

function ˜̀(UV >
,B) with respect to U , and rV

˜̀(UV >
,B), rB ˜̀(UV >

,B) are defined

similarly. Explicit forms of these gradients are given in the supplement. In Section 4, some

theoretical conditions are placed on � and ⌧ to ensure the linear convergence rate of the

algorithm, based on which we discuss their empirical choices.

Next, for the case that ⇥ is low-rank and symmetric, we consider the factorization

⇥ = U⇤U> and the corresponding optimization problem,

min
U2Rn⇥r,⇤2Dr

B2Rn⇥n⇥p

`(U⇤U>
,B), subject to kBk0  s, (5)

where Dr denotes the set of all r⇥ r diagonal matrices with diagonal entry values {�1, 1}.

The alternating gradient descent algorithm for (5) is summarized in Algorithm 2. In this

algorithm, we have chosen not to update the estimate of ⇤. This is because we initialize

by first solving the optimization problem (4), treating ⇥ as a general matrix without

the symmetry constraint. From solving (4), the obtained [ eU ; eV ] consistently estimates

[U ⇤;⇤U ⇤>], as we show in Proposition 1 in the supplement, where ⇥⇤ = U ⇤⇤U ⇤> is

the true coe�cient. As such, the diagonal entries of ⇤ can be accurately estimated using

⇤ii = sign( eU>
.i
eV.i).

The rank r and the sparsity s in (4) and (5) are two tuning parameters. We select

these parameters via the eBIC criterion (Chen and Chen, 2012) that was first developed

for variable selection in the diverging dimension regime. As a heuristic criterion to balance

model fitting and complexity, the eBIC function has been used in low-rank estimation

problems and has been found to give a good performance (Srivastava et al., 2017; Cai

et al., 2021). Specifically, among a set of working ranks and sparsity levels, we choose the
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Algorithm 2 Optimization algorithm for (5)

Step 1: first solve (4) using Algorithm 1 and denote the output as eU , eV , eB. Set ⇤ii =

sign( eU>
.i
eV.i), i = 1, . . . , r, U (0) = ( eU +⇤ eV >)/2 and B(0) = eB.

repeat

Step 2: update U (t+1) = U (t) � �rU`

n
U⇤U>

,B(t)
o ���

U=U (t)
;

Step 3: update B(t+1) = Truncate
h
B(t) � ⌧rB`

n
U (t+1)⇤U (t+1)>

,B
o ���

B=B(t)
, s

i
.

until the objective function converges.

combination of (r, s) that minimizes

eBIC = 2N ⇥ `
�
⇥̂, B̂

�
+
⇥
log(n2

N) + log
�
n
2(p+ 1)

 ⇤
⇥ (2nr + s) , (6)

where ` is the loss function in (3), and ⇥̂, B̂ are the estimates of ⇥,B under the working

rank and sparsity level. The eBIC criterion for the symmetric case is computed similarly.

4 Theory

We first derive the non-asymptotic error bound of the actual estimator from our algorithm,

then establish the community detection consistency and edge selection consistency. We

focus on the symmetric case and leave the results for the asymmetric case to the supplement.

4.1 Non-asymptotic error bound

Suppose the parameter space for {⇥,B} is compact. Let ⇥⇤ denote the true coe�cient

matrix with rank r
⇤ and B⇤ the true coe�cient tensor with s

⇤ nonzero entries. Denote

the nonzero singular values of ⇥⇤ as �⇤
1 � . . . � �

⇤
r⇤ > 0. Write ⇥⇤ = U ⇤⇤U ⇤>, where

U ⇤ 2 Rn⇥r⇤ and ⇤ is a r
⇤ ⇥ r

⇤ diagonal matrix with diagonal entries in {�1, 1}, collecting

signs of the eigenvalues of ⇥⇤. Let B⇥⇤(1) ⇢ Rn⇥n and BB⇤(2) ⇢ Rn⇥n⇥p denote the

Frobenius-norm ball around ⇥⇤ with radius 1 > 0 and around B⇤ with radius 2 > 0,

respectively. We next introduce several regularity conditions on the model.

(B1) The samples xi’s are i.i.d. from a zero-mean distribution with covariance⌃x satisfying
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bl  �min(⌃x)  �max(⌃x)  bu for some positive constants bl, bu, where �min(⌃x)

and �max(⌃x) denote the smallest and largest eigenvalues of ⌃x, respectively.

(B2) The covariates are bounded by some constant Mx > 0, i.e., |xis|  Mx.

(B3) Each element of A(i) conditional on xi follows an exponential family distribution

with continuous  00(·). For ⇥ 2 B⇥⇤(
p
�⇤
r⇤/3) and B 2 BB⇤(

p
�⇤
r⇤/3), it holds that

⌫
�1
0   

00(⇥jj0 + x>
i Bjj0)  ⌫0, for any j and some large constant ⌫0 > 0.

(B4) For ⇥ 2 B⇥⇤(
p
�⇤
r⇤/3), B 2 BB⇤(

p
�⇤
r⇤/3), we have |Eh 00(⌘(i)) � ⇥,B ⇥3 xii| 

0k⇥kF · kBkF , where � denotes Hadamard product and 0 =
p
�min(⌃x)/(18⌫0).

Condition (B1) places a regularity condition on the design matrix and Condition (B2)

is to bound the Hessian of the cumulant function in the neighborhood of B⇤. These two

conditions are commonly assumed in high-dimensional generalized linear models (Negahban

et al., 2012). Condition (B3) is satisfied by most generalized linear models. In particular,

the boundedness of  00(⇥jj0 + x>
i Bjj0) is directly implied by Condition (B2) as well as

the compactness of the parameter space for {⇥,B}. Condition (B4) is to bound the

Lipschitz gradient parameter. In the case of a linear model, (B4) is easily satisfied with

|Eh 00(⌘(i)) �⇥,B⇥3 xii| = 0, since  00(·) is a constant and xi has mean zero. For a GLM,

such as a logistic or multinomial model,  00(·) is not a constant, and (B4) requires the inner

product of a sparse matrix and a low-rank matrix to be bounded. This is satisfied if the

sparse entries are spread out so that B is not exactly low-rank, and the low-rank matrix is

not spiky so that ⇥ is not sparse. Such a conditions has been commonly assumed in the

matrix factorization literature; see, e.g., Zhang et al. (2018).

For any U and B, we define the distance

D {U ,B} = d
2(U ,U ⇤) + kB �B⇤k2F/�⇤

1, where d(U ,U ⇤) = min
�2Qr⇤

kU �U ⇤�kF ,

andQr⇤ denotes the set of r⇤⇥r
⇤ orthonormal matrices. The factor 1/�⇤

1 in the distance met-

ric comes from the di↵erence between⇥ and U , as it holds that k⇥�⇥⇤k2F  c�
⇤
1d

2(U ,U ⇤)

for a constant c (Zhang et al., 2018). The next theorem gives the non-asymptotic error

bound of U (t) and B(t) from Algorithm 2 at the tth iteration.
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Theorem 1 Assume (B1)-(B4) and define µ1 = ⌫
�1
0 , µ2 = �min(⌃x)/(4⌫0), ↵1 = ⌫0 and

↵2 = 7�max(⌃x)⌫0/4. Let c1 and c2 be positive constants such that c1  µ1/(96↵2
1), and

3c1↵2  c2  min
n
1/3,

p
µ1/(5↵1)

o
. Let the step sizes � = c1/�

⇤
1, ⌧ = c2/↵2, and s = �s

⇤,

where � � 1+ {(3↵2 +µ2c2)/(µ2c2)}2. When N � c3(r⇤n log n+ s
⇤ log n) for some positive

constants c3 and c4, for any initial estimator
n
U (0)

,B(0)
o
satisfying D{U (0)

,B(0)}  c
2
2�

⇤
r⇤,

we have, with probability of at least 1� c4/n,

D

n
U (t)

,B(t)
o
 ⇢

t
D

n
U (0)

,B(0)
o
+ �1

r
⇤
n log n

N
+ �2

s
⇤ log n

N
, (7)

where ⇢ = max{1� �µ1�
⇤
r⇤/16, 1� ⌧µ2/18} 2 (0, 1) is a contraction parameter, and �1 and

�2 are positive constants that depend on c1, c2, ⌫0, �min(⌃x) and �max(⌃x).

Theorem 1 portrays the estimation error at each iteration. The error bound consists of two

terms that correspond to the computational error and the statistical error, respectively.

It reveals an interesting interplay between the computational e�ciency and the statistical

rate of convergence. Note that the computational error decays geometrically with the

iteration number t, whereas the statistical error remains the same. Therefore, as the

iteration number increases, the computational error is to be dominated by the statistical

error and the resulting estimator falls within the statistical precision of the true parameter.

Theorem 1 also o↵ers some useful guidance on the choice of the step sizes � and ⌧ . Their

bounds hinge on ⌫0, �min(⌃x) and �max(⌃x). Specifically, we suggest to estimate ⌃x using

the sample covariance of x1, . . . ,xN , and estimate ⌫0 by identifying a ⌫0 such that ⌫�1
0 

 
00(⇥(0)

jj0 + x>
i B

(0)
jj0 )  ⌫0, where ⇥(0) and B(0) are initial estimates. As the true intercept

matrix is unknown, we suggest to upper bound �⇤
1 with k⇥(0)kF . Meanwhile, in practice, we

often find the estimates of the above step sizes from the data very small, leading to a slow

convergence of the algorithm. We thus further suggest to multiply a large constant, e.g.,

1000, with those calculated step sizes. We can dynamically vary this constant depending

on the convergence behavior of the algorithm. We also investigate in Section S4.3 of the

supplement the backtracking line search for step size, which yields a similar performance.

We make some additional remarks on the computational error, statistical error and

the initial condition. First, the computational error ⇢tD{U (0)
,B(0)} directly relies on the
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contraction parameter ⇢, in that a smaller value of ⇢ leads to a faster convergence. Given

the conditions on the steps sizes � and ⌧ and the definitions of µ1 and µ2, some direct

calculation shows that ⇢ is ensured to be positive. When the step sizes � and ⌧ increase,

⇢ decreases. Second, the term r
⇤
n log n/N is the statistical error from the low-rank ma-

trix estimation, which, up to a logarithmic factor, matches with the minimax rate for

multi-response regression with a low-rank constraint (Raskutti et al., 2011), and the term

s
⇤ log n/N is the statistical error from the sparse tensor estimation, which matches with

the minimax rate in sparse regressions (Negahban et al., 2012). While the above minimax

rates are established under di↵erent settings compared to ours, we expect the error rate

in Theorem 1 to be sharp up to a logarithmic factor. Third, in Theorem 1, we require

the initialization error to be bounded. Such an assumption is often needed in non-convex

optimizations (Zhang and Xia, 2018). In Algorithm 1, we initialize with the truncated

singular value decomposition for the low-rank component and a zero tensor for the sparse

component, which we have found to enjoy a good empirical performance. Meanwhile, it is

useful to devise an initialization procedure that can ensure the conditions in Theorem 1.

We leave its investigation as future research.

4.2 Consistency of community detection and edge selection

One implication of our model is that we may recover the community structure of the nodes

given the low-rank parameterization of ⇥. We show that our solution can correctly recover

the true community labels for all nodes with probability 1 � O(K/n), while allowing the

number of communities K to grow sub-linearly with the number of nodes n.

We first formally define the true underlying community structure. Based on U ⇤ from

the decomposition ⇥⇤ = U ⇤⇤U ⇤>, the true community structure is determined by the

rows of U ⇤ in that there are K distinct groups of rows, such that

U ⇤ = (U ⇤
1·, . . . ,U

⇤
n·)

> =
⇣
u⇤

1, . . . ,u
⇤
1| {z }

l nodes

, u⇤
2, . . . ,u

⇤
2| {z }

l nodes

, . . . , u⇤
K , . . . ,u

⇤
K| {z }

l nodes

⌘>
2 Rn⇥r⇤

,

where u⇤
k 2 R1⇥r⇤ , k = 1, . . . , K. Here for notational simplicity, we assume there is an
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equal number of nodes, l = n/K, in each community. Accordingly, we define the true

community assignments as A⇤
1 := {1, . . . , l}, . . . ,A⇤

K := {n� l, . . . , n}.

We propose to recover community labels by applying a distance-based clustering pro-

cedure, such as K-means to rows of the final estimate U (t) obtained from Algorithm 2. We

show that the resulting clustering output achieves strong consistency, under the following

regularity conditions.

(C1) Assume that �⇤
r⇤ > c5 for some constant c5 > 0, where �⇤

r⇤ is the smallest non-zero

singular value of ⇥⇤.

(C2) Assume that mink 6=k0 ku⇤
k � u⇤

k0
k22 > c6e0 for some constant c6 > 0, where e0 =

�1r
⇤
n log n/N + �2s

⇤ log n/N , and �1, �2 are defined as in Theorem 1.

Condition (C1) requires that the minimum non-zero singular value of ⇥⇤ is bounded below

by a positive constant. Condition (C2) ensures that the minimal gap between di↵erent

cluster centers does not tend to zero too fast.

Theorem 2 Suppose the conditions in Theorem 1 and (C1)-(C2) hold. Then after t iter-

ations, with t � log⇢

⇣
e0/D{U (0)

,B(0)}
⌘
, we have, with probability of at least 1 � c4K/n,

bA(t)
k = A⇤

k, for all k = 1, . . . , K, where c4 is the constant defined as in Theorem 1.

Theorem 2 shows that our community detection procedure achieves the strong consistency

as long as K = o(n). Note that ⇥̂ is estimated after the covariate e↵ects have been

removed from the connectivity matrix. Existing spectral clustering methods, either for a

single network or for multiple networks, cannot handle heterogeneity due to the network-

level covariates. Our result allowsK to grow at a sub-linear rate with n, which is achievable

as we have N network samples, which provides more information than a single sample.

Another property of our estimator is that we can select the edges that are a↵ected by

the covariates consistently.

Corollary 1 Assume all conditions in Theorem 1 hold and minijk |B⇤
ijk| > 2

p
�⇤
1e0. Then

after t iterations with t � log⇢

⇣
e0/D{U (0)

,B(0)}
⌘
, we have, with probability of at least
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1 � c4/n, for any B⇤
ijk 6= 0, the estimate B(t)

ijk 6= 0, and for any B⇤
ijk = 0, the estimate

B(t)
ijk = 0.

Corollary 1 is a direct consequence of Theorem 1, and thus we omit its proof. This result

has an important implication in practice, as it ensures that our model can correctly select

the edges that are a↵ected by the subject covariates. The condition on minijk |B⇤
ijk| is a

minimal signal condition, which is commonly employed to establish selection consistency

(Kong et al., 2019). It allows the minimal signal to tend to zero as the sample size N

increases. Nevertheless, its optimality remains unclear, and we leave the search for the

optimal minimal signal condition as future research.

5 Simulations

We carry out simulations to investigate the finite-sample performance of our proposed

method, and to compare with some competing solutions. We focus on symmetric matri-

ces throughout the simulations. We first consider our proposed model (2), then the CISE

model of Wang et al. (2019) where our model structure is not satisfied. We further con-

sider a stochastic blockmodel (Holland et al., 1983), and a latent factor model (Minhas

et al., 2016), and we report the results in the supplement. We have found our method

performs competitively in all settings, even under potential model misspecification. In all

simulations, we tune the rank r and sparsity s using the eBIC criterion.

5.1 Generalized matrix response model

We first simulate the connectivity matrix with binary edges from (2), g{µ(i)} = ⇥ +

B ⇥3 xi, where g(·) is the logit link function. We generate the covariates from N (0, 1)

and standardize the columns of the design matrix to have zero mean and unit standard

deviation. For ⇥ = U⇤U>, we set ⇤ as an r⇥ r identity matrix, and generate the entries

of U 2 Rn⇥r from N (0, 1). For B, we randomly set a proportion of its entries to be 2, and

the rest to zero; let s0 = s/(n2
p) denote this proportion of the nonzero entries. We set the
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number of nodes n = 50, the number of covariates p = 10, and vary the number of subjects

N = 200, 400, the rank r = 2, 5, and the sparsity proportion s0 = 0.1, 0.3, respectively.

We compare with three alternative methods. The first is the element-wise penalized

GLM method of Firth (1993), which fits a penalized GLM to each entry of Ajj0 , for all

j, j
0. This approach has been shown to be e↵ective in reducing the small sample bias

(Firth, 1993). The second method is similar to the first one, except that it uses an elastic-

net penalty (Zou and Hastie, 2005). The third is the common and individual structure

explained method proposed by Wang et al. (2019) coupled with a GLM, and the tuning is

done using the elbow method as described in Wang et al. (2019).

To evaluate the estimation accuracy, we report the estimation errors, N�1
PN

i=1 kµ(i)�

µ̂(i)kF , k⇥ � ⇥̂kF , and kB � B̂kF , where µ̂(i) = g
�1(⇥̂ + B̂ ⇥3 xi). To evaluate the edge

selection accuracy, we report the F1 score, which is calculated as 2TP/(2TP+FP+FN),

where TP is the true positive count, FP is the false positive count, and FN is the false

negative count. Since the method of Firth (1993) does not consider entry-wise sparsity,

its F1 score is not reported. Since the method of Wang et al. (2019) could only estimate

µ(i), the estimation errors for ⇥ and B are not reported. Table 1 reports the average

criteria, with the standard errors in the parentheses, over 50 data replications. The four

methods under comparison are: the element-wise penalized GLM with the Je↵reys invariant

prior penalty (denoted as GLMJP), the element-wise penalized GLM with the elastic-net

penalty (GLMEN), the common and individual structure explained method (CISE), and

the proposed generalized connectivity matrix response model (GLSNet). Our proposed

method is seen to achieve the best performance among all competing methods, in terms of

both estimation accuracy and selection accuracy, and this holds true for di↵erent sample

sizes N , ranks r and sparsity levels s0. Moreover, we see the estimation error of our

method decreases as N increases, or as r and s0 decrease. Such observations agree with

our theoretical results in Theorem 1. We further report the heat map of the eBIC over

varying r and s0 values in Section S4.2 and results with a larger network size n in Section

S4.4 of the supplement.

Finally, we report the computation time of the proposed method with varying sample
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Table 1: Simulation results under the low-rank and sparse model, with the varying sample

size N , rank r and sparsity proportion s0. Marked in boldface are those achieving the best

evaluation criteria in each setting.

N r s0 Method Error of µ(i) Error of ⇥ Error of B F1 score

200

2

0.1

GLMJP 1.106 (0.009) 47.09 (1.531) 35.09 (0.389) -
GLMEN 1.063 (0.011) 47.50 (1.865) 28.38 (0.201) 0.709 (0.002)
CISE 0.638 (0.001) - - -

GLSNet 0.152 (0.002) 3.490 (0.129) 25.79 (0.426) 0.964 (0.002)

0.3

GLMJP 1.101 (0.008) 45.06 (1.454) 52.53 (0.696) -
GLMEN 1.062 (0.008) 45.61 (1.561) 46.73 (0.345) 0.905 (0.001)
CISE 0.818 (0.001) - - -

GLSNet 0.207 (0.002) 4.15 (0.175) 35.35 (0.415) 0.994 (0.001)

5

0.1

GLMJP 1.353 (0.005) 93.38 (1.604) 35.55 (0..486) -
GLMEN 1.328 (0.006) 94.64 (1.599) 29.40 (0.215) 0.736 (0.002)
CISE 0.631 (0.001) - - -

GLSNet 0.154 (0.001) 6.51 (0.232) 26.86 (0.346) 0.960 (0.002)

0.3

GLMJP 1.311 (0.005) 88.39 (1.648) 52.30 (0.613) -
GLMEN 1.287 (0.005) 87.92 (1.625) 47.63 (0.295) 0.916 (0.001)
CISE 0.838 (0.001) - - -

GLSNet 0.211 (0.001) 9.79 (0.488) 37.27 (0.337) 0.981 (0.001)

400

2

0.1

GLMJP 0.774 (0.007) 39.04 (1.892) 25.05 (0.132) -
GLMEN 0.756 (0.007) 40.58 (1.815) 18.35 (0.101) 0.700 (0.002)
CISE 0.457 (0.001) - - -

GLSNet 0.055 (0.000) 2.44 (0.110) 13.61 (0.185) 0.997 (0.000)

0.3

GLMJP 0.769 (0.006) 36.47 (1.388) 33.27 (0.130) -
GLMEN 0.752 (0.006) 38.48 (1.135) 30.47 (0.117) 0.901 (0.001)
CISE 0.577 (0.001) - - -

GLSNet 0.088 (0.000) 3.04 (0.131) 22.51 (0.151) 0.998 (0.000)

5

0.1

GLMJP 0.974 (0.004) 81.80 (1.923) 26.82 (0.110) -
GLMEN 0.964 (0.004) 82.52 (1.893) 18.86 (0.087) 0.716 (0.002)
CISE 0.452 (0.001) - - -

GLSNet 0.061 (0.000) 4.57 (0.161) 14.97 (0.234) 0.993 (0.001)

0.3

GLMJP 0.939 (0.004) 77.18 (1.466) 34.65 (0.156) -
GLMEN 0.927 (0.004) 77.94 (1.435) 31.13 (0.136) 0.908 (0.001)
CISE 0.513 (0.001) - - -

GLSNet 0.094 (0.001) 7.87 (0.274) 25.47 (0.273) 0.995 (0.000)

sizeN , network size n and covariate dimension p, while we adopt the simulation setting with

rank r = 2 and sparsity level s0 = 0.1. All simulations were run on an iMac with a 3.6 GHz
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Figure 1: Average computing time over 50 data replications with varying sample size N ,

network size n and covariate dimension p.

Intel Core i9 processor. Figure 1 shows the average computing time over 50 replications

when n = 50, p = 10 with varying N (left panel), N = 200, p = 10 with varying n (middle),

and N = 200, n = 50 with varying p (right), when the working rank and sparsity level are

set at the truth. We observe that the computing time is approximately linear with respect

to N and p, and quadratic to n. When n is large, the number of parameters involved in

the computation is large too. For instance, there are 1,375,000 parameters involved when

n = 500 and p = 10, and correspondingly, the computing time is longer.

5.2 Common and individual structure explained model

Next we consider the performance of our method under a potentially misspecified model,

and compare with the individual structure explained method of Wang et al. (2019). The

CISE model assumes the entries in A(i) are independent Bernoulli random variables with

logit{µ(i)} = ⇥+Di, i = 1, . . . , N, (8)

where µ(i) is as defined in (2), ⇥ characterizes the common connectivity pattern, and Di

represents the subject-specific deviation; the subject-specific deviation Di is assumed to be

low-rank while no structure assumption is placed on ⇥. For ⇥ = U⇤U>, we set ⇤ = Ir⇥r,

and generate the entries of U 2 Rn⇥r from N (0, 1). We set Di = di ⌦di, where ⌦ is outer

product, and generate the entries of di 2 Rn from N (0, 1).

We simulate binary networks from the CISE model in (8) with details given in Table
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Table 2: Simulation results under the common and individual structure explained model,

with the varying sample size N and rank r. Marked in boldface are those achieving the

best evaluation criteria in each setting.

r Method
N = 200 N = 400

Error of µ(i) Error of ⇥ Error of µ(i) Error of ⇥

5
CISE 0.435 (0.000) 46.08 (0.553) 0.301 (0.000) 44.74 (0.651)

GLSNet 0.506 (0.002) 16.50 (0.256) 0.359 (0.002) 16.27 (0.289)

20
CISE 0.306 (0.000) 157.2 (1.130) 0.440 (0.000) 155.8 (1.195)

GLSNet 0.294 (0.001) 104.8 (1.367) 0.423 (0.002) 100.6 (1.463)

2. The two methods under comparison are: the common and individual structure ex-

plained method (CISE) and the proposed generalized connectivity matrix response model

(GLSNet). The CISE model cannot incorporate subject covariates, and hence B is not

included. Moreover, ⇥ +Di is not necessarily low-rank. As such, our model assumption

may not be satisfied. We set n = 50, N = 200, 400, and r = 5, 20. Table 2 reports

the estimation errors based on 50 data replications for the CISE method and our proposed

method. It is seen that, under this potentially misspecified model, our method still achieves

a comparable performance as Wang et al. (2019).

6 Applications to Brain Connectivity Analysis

We apply the proposed method to two brain connectivity studies. The first is a study

of brain functional connectivity based on resting-state fMRI, where the edge is binary

resulting from a thresholded partial correlation matrix. The second is a study of brain

structural connectivity based on DTI, where the edge is the count of white matter fibers

between pairs of brain regions.

6.1 Functional connectivity analysis

We first analyze an fMRI dataset from ADHD-200 (http://neurobureau.projects.nitrc.

org/ADHD200/Data.html). We focus on N = 319 healthy control subjects, aging between
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Figure 2: The functional connectivity study. Heatmap of the 264⇥264 matrix g
�1(b⇥) with

rows and columns ordered according to the pre-specified functional module membership.

The red dashed lines mark the boundaries of the ten functional modules.

7.09 to 21.8 years old, with 46.4% females and 53.6% males. Each subject received a resting-

state fMRI scan, and the image was preprocessed following the usual Athena pipeline,

including slice timing correction, motion correction, spatial smoothing, denoising by re-

gressing out motion parameters, white matter, and cerebrospinal fluid time, and band-pass

filtering. Each fMRI image was then summarized in the form of a binary network, with the

nodes corresponding to 264 seed regions of interest in the brain Power et al. (2011), and

the edges recording the binary indicator of the thresholded partial correlations. We apply

our proposed model to this data with a logit link function. We standardize the covariates,

age and sex, to have mean zero and variance one. The rank is selected as r = 9 and the

sparsity proportion as s0 = 0.02 based on eBIC.

We first examine the estimate ⇥̂. In the neuroscience literature, those 264 nodes have

been partitioned into 10 functional modules (Smith et al., 2009). Each module possesses

a relatively autonomous functionality, and complex brain tasks are carried out through

coordinated collaborations among those modules. Figure 2 shows the heatmap of g�1(⇥̂),

with the nodes ordered according to the functional modules. Here the function g
�1(·) maps
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a value from the real line to [0, 1] so to facilitate data visualization. From this figure, we

see that our estimate agrees reasonably well with the pre-specified functional modules by

Smith et al. (2009). We observe larger values of ⇥̂ located within the diagonal blocks, which

indicates higher functional connectivities within those functional modules. Furthermore,

there are high connectivities among modules 1-3, namely, the medial visual, occipital pole

visual and lateral visual modules. These visual modules appear to have high connectivities

with the cerebellum, but generally low connectivities with the rest of functional modules.

We observe a high connectivity between modules 9-10, namely, the frontoparietal right and

frontoparietal left modules. These two modules are important in attention control and can

generate a diverse range of control signals depending on task demands (Scolari et al., 2015).

We next examine the estimate B̂. In B̂··1, i.e., the coe�cient matrix for the sex covariate.

The non-sparse entries are located within the lateral visual module, and those values are

negative, ranging from �0.777 to �0.506. This indicates that male subjects have lower

connectivities in those regions within the lateral visual module. This result agrees with the

existing finding that developing females outperform developing males on tasks related to

emotion identification and reasoning (Satterthwaite et al., 2014). The non-sparse entries

of B̂ mostly concentrate in B̂··2, i.e., the coe�cient matrix for the age covariate. In B̂··2,

the positive entries are located within the occipital pole visual, default mode, executive

control and frontoparietal left modules, with values ranging from 0.454 to 0.902, indicating

the connectivities within those modules increase with age. We also observe positive entries

located in the default model to executive control and the default mode to frontoparietal

right, which agrees with the literature that the default mode module has increasingly

synchronized connections to other modules with increasing age (Grayson and Fair, 2017).

We also find negative entries located in the medial visual to lateral visual, the executive

control to frontoparietal right, and the default mode to auditory modules, with values

ranging from �1.350 to �1.095, suggesting the connectivities between those modules also

decrease with age. These findings suggest some interesting patterns that warrant further

investigation and validation.
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6.2 Structural connectivity analysis

We next analyze a structural DTI dataset from KKI-42 (http://mrneurodata.s3-website

-us-east-1.amazonaws.com/KKI2009/ndmg_0-0-48/graphs/desikan/). We focus on 21

subjects with no history of neurological conditions, aging from 22 to 61 years old, with

47.6% females and 52.4% males. Each subject received a resting-state DTI scan, which

is a magnetic resonance imaging technique that enables measurement of the di↵usion of

water. Estimates of white matter connectivity patterns can be obtained using the di↵u-

sion anisotropy and the principal di↵usion directions. In the KKI-42 study, a scan-rescan

imaging session was conducted on each subject, leading to two images for each subject,

and a total of N = 42 for the study. For simplicity, we treat those images as if they formed

independent samples. Each DTI image was preprocessed, and summarized in the form of

a count network, with n = 68 nodes defined following the Desikan Atlas, and the edges

recording the total number of white matter fibers between the pair of nodes. See Landman

et al. (2011) for more information about data collection and brain networks construction

using DTI scans. We apply our proposed method to this data, with a log link function.

We standardize the covariates, age and sex, to have mean zero and variance one. The rank

is selected as r = 5 and the sparsity proportion as s0 = 0.31 based on eBIC.

We first examine the estimate ⇥̂. To the best of our knowledge, communities in struc-

tural connectivity networks have not been studied before. We applied the K-means clus-

tering algorithm to the estimate U (t) from ⇥̂, and identified five clusters among the 68

anatomic regions of interest (ROIs). We selected the number of clusters based on the el-

bow plot. Figure 3, right panel, reports the members of each cluster in the table. From

an anatomical perspective, the first group of nodes are entirely contained in the frontal

lobe, the second group are mostly contained in the temporal lobe, the fourth group are

entirely contained in the temporal lobe, and the third and fifth groups contain nodes from

the frontal, parietal, occipital and temporal lobes. Many of the 68 anatomic ROIs in the

Desikan Atlas overlap with the resting-state functional modules. By exploring this overlap,

we gained further insights of potential functions of those five groups. We found that group 1
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1
frontalpole, parsopercularis, lateralorbitalfrontal,
parstriangularis, medialorbitalfrontal,
rostralanteriorcingulate, rostralmiddlefrontal

2
bankssts, fusiform, inferiortemporal, lingual,
middletemporal, parsorbitalis, superiortemporal,
transversetemporal

3

caudalanteriorcingulate, caudalmiddlefrontal,
parahippocampal, posteriorcingulate, precentral,
isthmuscingulate, precuneus, corpuscallosum,
superiorfrontal

4 entorhinal, temporalpole

5
inferiorparietal, lateraloccipital, paracentral,
cuneus, pericalcarine, postcentral,
superiorparietal, supramarginal

Figure 3: The structural connectivity study. Left panel: heatmap of the 68 ⇥ 68 matrix

g
�1(b⇥) with rows and columns ordered according to the K-means clustering result. Right

and left hemispheres are marked in the plot. The red dashed lines mark the boundaries of

the identified groups. Right panel: the anatomic regions of interest in the identified groups.

is related to the dorsal attention and default mode modules, group 2 is related to the visual

and auditory, group 3 is related to the default mode, and group 5 is related to the visual

module. The resting-state functions of the nodes in Groups 4 are unidentified. Figure 3,

left panel, shows the heatmap of the estimated ⇥̂, with the nodes reordered according to

the cluster membership.

We next examine the estimate B̂. Figure 4 shows the estimated subject covariates e↵ect

coe�cients. From the left panel of Figure 4, we see that, as age increases, the structural

connectivity generally decreases both within and between the two hemispheres. This re-

sult agrees with existing neurological finding (Betzel et al., 2014). From the right panel of

Figure 4, we see that male and female subjects have di↵erent structural connectivity pat-

terns. Such di↵erences are observed in the between-group connections within and between

hemispheres, and in the within-group connections within each hemisphere. For instance,

we see males have lower between-hemisphere connectivities for the ROIs in Group 1. This

observation agrees with the literature that males have lower connectivities between the left

and right frontal regions (Ingalhalikar et al., 2014).
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Right                         Left Right                         Left

Figure 4: The structural connectivity study. Left panel: the age coe�cient matrix. Right

panel: the sex coe�cient matrix.

7 Discussion

In this article, we propose a generalized connectivity matrix response regression model that

relates subject-specific connectivity matrix to external covariates. We briefly comment on

potential future research.

One direction is to incorporate random e↵ect into our model formulation, by considering

g
�
µ(i)

 
= ⇥+B ⇥3 xi +R(i)

, i = 1, . . . , N,

where g(·), ⇥ and B are as defined in (2), and R(i) 2 Rn⇥n is the subject-specific random

e↵ect matrix. In this model, the edges for the same subject, i.e., the edges in A(i), are

correlated. To improve estimability and interpretability, we may assume that R(i) follows

a low-dimensional structure. For instance, we may impose that R(i) = v(i) � v(i), where v(i)

follows a multivariate normal distribution with mean zero and covariance ⌃0 that needs

to be estimated. Model estimation in this case is expected to be more challenging, as it

requires integration over the random vector v(i) 2 Rn.

Another direction is to consider alternative community structure specifications. In our

current community detection setup, we assume that the communities are fully determined

by the population level connectivity matrix ⇥, which is closely related to the stochastic
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blockmodel. Meanwhile, other specifications of the community structure are possible. For

instance, the slope tensor B may have a community structure, in that the covariate e↵ect

on the connectivity between nodes j and j
0 is determined by the community labels of those

two nodes. In this case, the coe�cient matrix for the lth covariate, i.e., B..l, becomes a

block matrix. This new structure requires a new set of estimation algorithm and theory.
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