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I. INTRODUCTION

Sepsis is a high mortality condition in ICU which leads

to organ failure, and requires immediate healthcare interven-

tions [1]±[4]. According to a global audit conducted in 2018

[3], the incidence of sepsis in ICU hospitalized patients varied

from 13.6% to 39.3% of all hospital patients in different

regions. ICU mortality of sepsis patients was 25.8% and in-

hospital mortality was 35.3% in sepsis patients, both signifi-

cantly higher than non-septic patients.

Early intervention can improve prognosis of patients [5].

Taking antibiotics can prevent sepsis from developing, or

reduce symptoms when an infection begins. For each hour

of antibiotic intervention, mortality was reduced by 15% [6].

Therefore, early and accurate diagnosis of sepsis is crucial to

the prognosis of patients. While there exists general guidance

for sepsis treatment [7], sepsis is challenging to detect early in

the critically ill trauma population because organ dysfunction

from injury can mask or obscure clinical signs of infection [8],

[9]. Physicians still lack a personalized systems for decision

support for such conditions.

Given the importance of early identification of sepsis, many

prior efforts have used machine learning models to predict the

occurrence of sepsis ahead of its onset in patients based on

data from Electronic Health Records (EHR). Various studies

use traditional machine learning models [10], [11], such as

random forest, XGboost, with EHR data in a fixed time

window as input. The drawback of these methods is the lack

of EHR data modeled as a heterogeneous high variety of

sources (demographic, labs and medications) and the inability

to extract and model temporal patterns from high velocity

sources such as vitals. Datasets like MIMIC used in prior

efforts [12] use curated perturbed datasets that don’t represent

the real-world industry setting, and results cannot be validated
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by clinicians in prospective settings. We have hence avoided

the use of such research only datasets as baselines. Some

newer methods use deep learning models [10], [13], [14] such

as LSTM and CNN to directly learn temporal features. Liu et.

al. [10] demonstrated the superiority of the LSTM method

over traditional models through experimental comparisons.

However, these new methods have very high data quality

requirements such as: (a) the input time series must be at a

fixed sampling interval, and (b) records with missing values

are not allowed as inputs when using these models for scoring

a patient. However, in clinical practice, it is difficult to ensure

such high quality of data. On the contrary, some vital sign

data are collected by sensors, and the update frequency may

only be a few minutes, while some laboratory test data

or interventions such as surgery only occur once within a

few days. Furthermore, patients may leave the ICU due to

diagnostic imaging, surgical intervention, etc. At this time,

data cannot be continuously collected, and missing values

are unavoidable. Therefore, the existing models ignore the

difference of sampling intervals in the real scenarios, and at

the same time have to discard some features that do not meet

the input requirements of the models.

In our study, we creatively use a flexible graph data rep-

resentation and Graph Neural Networks (GNN) to overcome

these challenges. The graph structure can express time inter-

vals between feature records, and the model has the char-

acteristics of naturally supporting unstructured data input, a

capability that greatly increases the implementation flexibility.

In the experimental design process, we have also further

improved the setup. Many of the earlier studies using machine

learning models [10], [11], [15]±[18] were retrospective and

identified the timestamp of the sepsis onset event, then record

input data by looking back for a fixed time interval. Only one

input window is selected for each patient, the experimental

conclusions of these studies are not sufficient to demonstrate

clinical utility when frequent and regular predictions are

needed for a single patient. Motivated by the unmet need for

early detection tools we designed the system described in this

paper as a solution which can predict sepsis prospectively, and

then translate the output into the clinical setting within each

hour, using input data from just the past 12 hours, to then

predict the risk of sepsis happening in next few hours so that

clinical decision support can act on the output.

Through more reasonable experiments, compared with base-

line LSTM model, our model can flexibly process EHR data

with missing values and has higher prediction performance.

Due to pragmatic data utilization of data, our GNN model is

promising for the early detection of sepsis.

The main contributions of this paper are:

• Design and development of the first ever medical Graph

Neural Network (GNN) based sepsis prediction system

• Demonstrate that graph representation helps support fea-

tures with irregular time intervals and mitigate the loss

due to missing values.

• First continuous rolling window prediction setup irrespec-

tive of time of day or hour. i.e. use previous 12 hours

to predict risk of developing sepsis in next few hours

(variable output).

II. RELATED WORK

In this section, we will first review some related work about

the related studies in sepsis prediction. Then, we will introduce

general graph neural networks (GNN) for learning flexible

relations and its successful usage.

A. Machine Learning for Early Sepsis Prediction

Traditional machine learning models such as XGboost and

Random Forest [11], [15]±[17] have been previously applied

to sepsis prediction. Barton et al. [15] tested XGBoost for

up to 48 hour sepsis prediction with 6 vital signs as input.

Khojandi et al. [11] used Random Forest to predict sepsis and

mortality risk based on first 12, 24 and 48 hours after patients’

admission to ICU. Tang et al. [17] applied PCA and SVM to

classify the severity of sepsis. The challenge of these studies is

that traditional machine learning models rely on hand-designed

features and cannot model the continuous transition of input

data over time. These weaknesses limit the expressive ability

and predictive performance of traditional models.

Deep neural networks have also recently been applied to

sepsis prediction due to their utility as automatic feature

extraction and the capability to model time series. Through

experimental comparison, Liu et al. [10] proved that the RNN

model has better results in the early prediction of sepsis than

Generalized Linear Model and XGBoost. Moor et al. [19]

extended the Temporal CNN model to analyze EHR data

using causal convolution. These deep learning models have

better performance because they can capture slowly changing

patterns over time. However, they require temporal features be

input in a fixed sampling interval format, and missing values

are not allowed. In clinical practice, the recording frequencies

of different features are not the same, and missing values are

inevitable. These challenges limit the deployment utility of

these models in critical care settings and motivates us to use

a graph representation that could prove to be more flexible.

B. Common Evaluation Experimental Designs

In sepsis prediction literature, the most common class label

or target of machine learning models is whether sepsis will

occur within a fixed time in the future. Khojandi et al [11] used

input data from 12, 24, and 48 hours before onset of sepsis

for prediction. Van et al. [18] used a time window collected 6

hours before onset to predict the probability of developing sep-

sis. But herein lies the problem. When collecting experimental

data, these studies are based on the known onset time and

retrieve previous data in a fixed-length duration. For patients

with sepsis, only the latest time window was collected into

their dataset. This experimental setup can only be used for

retrospective studies with known onset times. Such a setting

does not evaluate the model’s false positive predictions in the

early stages of patients, and it is difficult to be confidently

applied directly to real critical care infrastructures. In our

experimental setting, sepsis onset probabilities were predicted
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C. Evaluation Metrics

Prior work of deploying machine learning models on sep-

sis onset prediction use Area Under the Receiver Operating

Characteristic curve (AUROC) as major evaluation metric [15],

[30], [31]. Operating characteristic curve (ROC) is plotted with

true positive rate and false positive rate at different confidence

threshold settings. AUROC is suitable for binary classification

tasks, which can measure the rank correlation between pre-

dicted probabilities and targets. Also because the considers

both positive and negative samples equally, it can also serve

as a mixed measurement of sensitivity and specificity.

However, our major concern is that AUROC can be biased

when evaluating severely imbalanced data. In our collected

data, positive samples are far less than negative samples. True

positive rate (i.e., sensitivity) could be precisely measured by

AUROC, but false positive rate would be imprecise due to

large amount of negative samples. Area Under the Precision-

Recall Curve (AUPRC) shows the trade-off between precision

and recall rate across different decision thresholds. Recall rate

is exactly same as true positive rate, meanwhile precision score

is more decisive on imbalanced data. In this work, we choose

AUPRC as our key performance metric.

Besides AUPRC and AUROC, other common metrics for

binary classification including F-1 score, precision rate, recall

rate, sensitivity and specificity are also recorded to measure

diverse model performance.

D. Parameters Setup

Following similar GNN methods [32], [33], we set the

dimension of latent vectors d = 100 for all nodes. Besides,

we tune other hyper-parameters using 5-fold cross validation.

Orthogonal initialization [34] is used to initialize parameters

for GRU cells in the Readout function, based on its good

performance on RNN cells. All other parameters are initialized

using a Gaussian distribution with a mean of 0 and a standard

deviation of 0.1. We choose the Adam optimizer for training,

where the learning rate is set to 10
−4 and will decay by 0.5

every 20 epochs. Moreover, the batch size is set to 100 and

the L2 penalty with 10
−4 is added to avoid overfitting.

E. Comparison with Baseline Methods

To demonstrate the performance of the proposed approach,

we first compare with other commonly used deep learning

based sepsis prediction models. LSTM is chosen as the base-

line method, for its wide usages in sepsis prediction and other

tasks like time series analysis.

LSTM can accept input both continuous variables and

discrete variables. Since feature categorization using expert-

designed criteria is a step in our data processing pipeline,

we want to compare our complete approach with LSTM on

continuous features, to prove both the validity of categorization

and strength of GNN-based model.

For a fair comparison, LSTM and GNN have exact same

input windows and prediction targets. Identical features are

selected, and Last Observation Carried Forward (LOCF) im-

putation is applied to both methods, in order to relieve the

restriction of LSTM that missing values are not allowed. Due

to the limitation that some features in Cumulative Exposures

and Laboratory Data have too many missing values and can-

not implement imputation, these features are excluded when

comparing with baseline model. Two feature selection setups

are used: a) Vital Signs with LOCF imputation, b) Vital Signs

with LOCF imputation + Trends.

The AUPRC score between different methods are shown

in Figure 8. When using feature groups of Vital Signs with

imputation, our proposed GNN model performs as good as

baseline LSTM in terms of AUPRC. After including Trends

features, our GNN model has a significant improvement in

AUPRC than LSTM model. This indicates that our method

has utilization ability at least comparable to LSTM, and will

even outperforms LSTM in some input feature groups.

To further inspect the prediction results, the Table 5 in Fig-

ure 8 reports more detailed metrics for the 24-hour prediction

window setup in window 6b. GNN has a slight improvement

in terms of precision score, but has an obvious increase in

terms of sensitivity, which domains the improvement in overall

AUPRC score.

F. Benefit of graph representation to handle missing values

The proposed GNN-based method is flexible in construct-

ing temporal transitions of various features, which naturally

supports modeling features with missing records. As shown

in Figure 7, there are some features in Cumulative Exposures

and Laboratory Data are extremely rare, which only recorded

in less than 5% of all the hours during the admission in ICU.

Data imputation cannot reliably process these features, thus,

traditional time-series models are unable to leverage infor-

mation from these features. In this section, we compare the

prediction performance between baseline Vital Signs features

and adding Cumulative Exposures and Laboratory Data with

missing values, in order to test the ability of our method to

capture patterns of features even with extreme missing values,

and measure the incremental value that these rare feature types

have for model performance.

Figure 8 reports AUPRC when adding Cumulative Expo-

sures and Laboratory Data among three prediction window

setups. A clear improvement in terms of AUPRC can be

observed when adding Cumulative Exposures or Laboratory

Data. Cumulative Exposures brings the most significant in-

crease, which matches the expectation since these exposures

are highly related to sepsis development.

This experiment verified the capability of our approach to

accept input data with severe missing values, and proved the

benefit of taking Cumulative Exposures and Laboratory Data

into account.

G. Comparing Combinations of Feature Groups

In order to analyze the impact of combining different groups

of features in our method, further experiments are applied

to study the prediction performance according to differentiate

feature selection settings.
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