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Distributed Nonlinear Placement for Multicluster
Systems: A Time-Varying Nash
Equilibrium-Seeking Approach

Bomin Huang™, Chengwang Yang, Ziyang Meng

and Wei Ren

Abstract—TIn this article, a class of distributed nonlinear place-
ment problems is considered for a multicluster system. The task
is to determine the positions of the agents in each cluster subject
to the constraints on agent positions and the network topology.
In particular, the agents in each cluster are placed to form the
desired shape and minimize the sum of squares of the Euclidean
lengths of the links amongst the center of each cluster and its
corresponding cluster members. The problem is converted into a
time-varying noncooperative game and then a distributed Nash
equilibrium-seeking algorithm is designed based on a distributed
observer method. A new iterative approach is employed to prove
the convergence with the aid of the Lyapunov stability theorem.
The effectiveness of the distributed algorithm is validated by
numerical examples.

Index Terms—Distributed algorithm, Nash equilibrium (NE)
seeking, noncooperative game, nonlinear placement.

I. INTRODUCTION

ONLINEAR placement is a typical geometric problem
Nand has attracted extensive attention due to its diverse
applications. The objective of nonlinear placement is to place
some points with additional constraints such that the sum of
squares of the Euclidean lengths of the links amongst the points
is minimized. The applications of nonlinear placement include
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transportation cost control, wire placement in integrated circuits,
and sensor placement in networks [1], [2]. For example, in
the transportation cost control problem, given several possible
locations of plants or warehouses of a company and the routes
over which goods must be shipped, the task is to find specific
locations that minimize the total transportation cost. On the other
hand, in the wire placement problem for integrated circuits,
given the positions of modules or cells and the wires that
connect pairs of cells, the objective is to place the cells such
that the total length of wires used to interconnect the cells is
minimized. All these problems can be modeled as a nonlinear
placement problem and the solutions can be found by a convex
optimization method, as shown in [1].

The study on multiagent system has gained increasing
attention in the literature on consensus control [3], [4]; dis-
tributed optimization [5], [6]; formation control [7]-[9]; etc.
Specifically, recent years have witnessed a rapid growth in the
study of multicluster systems. The main reasons lie in the fol-
lowing facts. First, multicluster systems allow the coexistence
of cooperation and competition. In particular, cooperation
and competition normally coexist in natural and engineer-
ing systems, as well as in many practical applications of
multiagent systems. For example, cooperation and competition
appear simultaneously in interactive living systems [10], [11].
In the noncooperative game for multicluster systems, the
clusters behave as self-interested “virtual players” while the
agents in the same cluster coordinate to minimize their total
cost [12], [13]. Second, the multicluster structure is beneficial
to the implementation of distributed control for multiagent
systems with a large number of agents. For example, for-
mation control is a widely studied topic within the realm of
multiagent systems. A typical position-based formation control
is to guarantee a prescribed desired formation shape and/or
track some prescribed desired reference trajectories [8], [9].
Generally speaking, the prescribed formation shape and refer-
ence trajectories are designed by a centralized method, which
is often quite difficult for a large number of agents. A natural
idea is to cut apart the network into some clusters, where each
cluster only includes a few agents with a prescribed designed
formation shape or some reference trajectories. Moreover, the
shape connecting the centers of the clusters can be designed
automatically by using the distance between the clusters.

Therefore, formation control of a multicluster system is
modeled as a distributed nonlinear placement problem in this
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article. The shape connecting the centers of the clusters is auto-
matically guaranteed by a distributed method. In particular, the
shape depends on the placement of the followers such that the
sum of squares of the Euclidean lengths of the links amongst
the center of each cluster and its corresponding cluster mem-
bers is minimized, subject to additional constraints on agent
positions and the network topology. The problem is solved in
two steps. First, the problem is converted into a time-varying
Nash equilibrium (NE)-seeking problem. Then, a distributed
seeking algorithm is designed based on a distributed observer
method, and the results are proved by using the Lyapunov
stability theorem.

The main contributions lie in the following facts.

1) We solve the distributed nonlinear placement problem
for multicluster systems. It can be viewed as a spe-
cial position-based formation control problem since the
formation shape is automatically guaranteed by a dis-
tributed method. To the best of our knowledge, there are
no results that are capable of solving the distributed non-
linear placement problem for multicluster systems with
limited information exchange. For example, the methods
in [1] and [2] are inapplicable to our problem since they
are centralized.

2) The most promising feature of our algorithm is that it
is capable of handling time-varying NEs for the multi-
cluster systems, which renders the NE-seeking algorithm
design and the convergence analysis more challeng-
ing. In contrast to most of the distributed NE-seeking
algorithms in [12]-[17], where the cost functions are
required to be time invariant, our algorithm is capable
of tackling time-varying cost functions.

3) In contrast to [18], where a time-varying NE-
seeking algorithm is designed by using a nonmodel-
based method, our algorithm has a zero convergent
error and the multicluster models are not considered
in [18].

The remainder of this article is organized as follows.
In Sections II and III, preliminaries and problem formu-
lation are presented. Section IV presents the distributed
algorithm for the considered nonlinear placement problem.
The proposed approach is validated by numerical exam-
ples in Section V. Finally, Section VI concludes the arti-
cle.

II. PRELIMINARIES
A. Notation

Let R"” and C" denote the n-dimensional Euclidean space
and complex space, respectively. For x; e R™, i=1,...,m,
col(xy, ..., xy) = [xT, ... ,x;rn]T, where xiT is the transpose of
x;. Let I, € R™™ denote the identity matrix and ® denote
the Kronecker product. Let 1,, denote the m-dimensional vec-
tor with all entries being 1. Let f(x,f) : R* x R — R
be a continuously differentiable function with respect to
x and ¢, and V,f(x,f) denote the first partial derivative
of the function f(x,r) with respect to vector x. Let |x|[
and ||x|| denote, respectively, the 1-norm and 2-norm of
vector x.
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B. Graph Theory

In this article, a graph G = (V, &) is used to describe
the information exchange of a network system, where V =
{1,2,...,N} is the node set and £ C V x V is the edge set.
Here, (j, i) € £ represents that node i can obtain information
from node j. For an undirected graph, (j,i) € & implies
(G,j) € £ Let N; = {j : (j,i) € £} denote the set of neigh-
bors of node i. A path is a sequence of edges of the form
@i, )), (G, k), .... A graph is connected if there is a path between
each pair of nodes.

For graph G, the adjacency matrix A = [a;] € RV s
defined as a;; =0, a; > 0 if (j, i) € £ and a;; = 0 otherwise.
The Laplacian matrix L = [l;j] € RV is defined as /; =
Z]N:l ajj, and l;j = —ay; for any i # j. Let [a;]™* denote the
maximum of aj, i,j € V, that is, [a;]™ = max; ;jep a;;.

Lemma 1: LetA = [a;] € RV*N and L € RV*¥ be, respec-
tively, the adjacency matrix and the Laplacian matrix of an
undirected and connected graph G. Assume that [a;]™ <
(2L;/IN — 1]),i € V. For L, = L+aly1}, with [a;]™ < a <
(2L;;/[N — 1]), L, is positive definite and L;llN = (1/aN)1y.

Proof: Let A;,i = 1,...,N, be the eigenvalues of L,. It
follows from the Gershgorin theorem ([19]) that A; lies in the
set:

; N
U z€C?: |z— (i +a) |§Z|a—aij|

i=1 j=1
Because [a;]™ < a < (21;;/[N — 1), it follows that:

N
li+a> Z|a—aij|
j=1
indicating that L, is positive definite. It follows from L, 1y =
(L + alyli)ly = aNly that L;'1y = (1/aN)ly, and the
proof is completed. |

III. DISTRIBUTED NONLINEAR PLACEMENT PROBLEM

Consider a nonlinear placement problem for a multicluster
system composed of n = Zi:o ny agents. There are ng (ng >
2) leaders and Z,le ni followers in the multicluster system.
All the followers are divided by o clusters (each cluster has
n; agents with k = 1,..., ). The positions of the leaders
q‘r)(t) e R", r =1,...,np, are time varying. The dynamics
of each follower i in cluster k is described by the following
single-integrator system:

-k k
q;i = Ti»

i=1,....,m, k=1,...,0 (1
where qé‘ € R™ denotes the generalized position and rik e R™
denotes the control force. The network topology constraint is
given as follows.

1) The followers in cluster k (includes n; agents with
k=1,..., ) are specified by a communication network
graph G5 = (VK &5), where V¥ = (4f,.... 4} is
the node set and £ ¢ VK x V¥ is the edge set. Let
Ak = [af] € R™>" denote the adjacency matrix of the
graph G*.

2) The information flows amongst the followers and the rth
leader ¢¥ are specified by graph ¢/*" = (V/*7, &/+7)
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where W+ = VW (¢} and & < VW x VT

For graph G/*7, ; " denotes the set of neighbors of

(Vf+0 5f+0) and Nf+
used to specified all the followers (w1th0ut any lead-
ers) and the set of neighbors of agent ¢* in graph G/*°,
respectively.

3) The information flows amongst the followers and lead-
ers are specified by graph G = (V,€), where V =
{1,2,..., Zi:o ni} is the node set and £ C V x V is the
edge set. For graph G, /. . denotes the set of neighbors

agent g~. Similarly, G/ =

of agent qf .
The objective is to design the following distributed control
law:

ek _ ok kL kol

vi = F; (qi,qj,v,-,vj)

k k( k I k .l :
‘Cl‘:Hl‘(qi’qj’vl’vj)’ lzl,...,

where vf € R and my is a positive integer, F¥ and HY are
some smooth functions, and j and [/ are chosen such that qf.‘
can obtain information from q; in graph G.

Distributed Nonlinear Placement Problem: Consider the
closed-loop system composed of (1) and (2) with any ini-
tial conditions qf.‘(O) and vf(O). The objective is achieved if
vf-‘ is bounded while qf.‘ converges to the global optimal solu-

ng, k=1,...,0 2)

tion g¥, that is, lim/oo(g(1) — G¥(H) =0, i=1,...,n and
k=1,...,0, where Z]f-‘(t) is the solution to
k—1 2 noy 2
minimize Za)xk Z5 — ZkH + Z w(r)k q(r)(t) - ZkH
s=1 r=1
(3a)
subject to g — g =dj.i.j=1,....m. (3b)

Here, 2K = (1/ny) Zl 1‘11 is the center of cluster k, dll-‘j is
the desired constant displacement constraint vector, df-‘l- =0,
and wg > 0 (or “)(r)k > 0) is the weight of cluster s [or leader
q(,)(t)] and cluster k.

Remark 1: We assume that the parameters ny, ws, and w?k
are known to all agents in cluster k. A weight wg = 0 (or
")(r)k = 0) implies that the positions of cluster s [or leader q(r) (0]
and cluster k are irrelevant. Note that the nonlinear placement
problem (3) includes two targets.

1) Nonlinear Placement for Clusters in (3a): Define the
length &5 (or 8 ) of the link that connects the cen-
ters of cluster s (or leader q) and cluster k, that
is, ok = 125 — 24 (or &7, = llg) — Z*]). The
followers are placed to satisfy that the measure of
the total interconnection length of the links, that is,
p a)rk(sr D7+ S * 1 wg(esx)?, is minimized.

2) Inner Cluster Formation in (3b): The followers q and
q] in cluster k, k=1, ..., o, are maintained according
to the desired dlstance vector df‘

Remark 2: 1t is worth mentioning that if n; = 1,i =
1,..., 0, the placement problem, (3) is reduced to a nonlinear
placement problem which is studied in [1, Sec. 8.7]. Even in
such a case, the placement problem considered in this article
is distributed and the results in [1] are centralized. Moreover,
if o = 1, the considered placement problem is reduced to a

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

formation control problem that is studied in [20]. In such a
case, the center of the formation in this article is placed to
minimize the distance from the leaders, and this condition is
not required in [20].

Remark 3: The considered problem is similar to the for-
mation problem of multileader networks (e.g., [21]). Note
that the multiformation problem can be converted into the
group/cluster consensus problem, multiconsensus problem, or
multitracking problem since a desired geometric formation
is given. In contrast, the formation shape is automatically
guaranteed by a distributed method in this article.

Remark 4: In  [1], function (3a) is given as
Siloah(12° — Z4) + X0 ofh(lgd — 24,
where h(-) is defined as an monotonically increasing (on R™)
and convex function, for example, h(z) = z, h(z) = 72 and
h(z) = Z*. In this article, we only consider A(z) = 2 for
notational simplicity.

Assumption 1: Graphs G¥, k =1, ...
0,1,...,nq are undirected and connected.

Assumption 2: For cluster k, k = 1, ..., 0 and its desired
distance vector df; the formation problem is solvable, for

,o0 and ¢/, r =

example, there exists at least some vectors éf i=1,...,m
vk vk _ gk
such that g7 — q; = dl-j.
Assumption 3: For the leaders, §0(1), ¢7(),j = 1,...,no
are bounded. For cluster k, & = 1, ...,0, the weight
set Qr = {wik, ..., Wk—1 &, w(l)k’ ... nok} has at least two

positive entries.

Remark 5: Assumption 1 is a common assumption for
both distributed formation and distributed game problems.
Assumption 2 is necessary to ensure that the formation
problem in (3b) is solvable. Note that under Assumption 2,
Z]i‘ +d(r) with any vector d(¢) is also a solution to (3b). Hence,
the center of each cluster is not fixed under Assumption 2. In
fact, the centers are placed according to the solution to (3a).
Assumption 3 implies that the states of leaders are bounded,
which is necessary to ensure that the nonlinear displacement
problem (3) is solvable. Note that problem (3) has a unique
nontrivial solution unless the set 2 has at least two positive
entries. If the weights of wg and w?k are all equal to 0, then
the solution isn’t unique. Moreover, if € has only one pos-
itive entry, then the solution is trivial, that is, zZk = 25 or
zZk = g%0.

Lemma 2: Consider the nonlinear placement problem (3).
Assume that Assumptions 2 and 3 hold. Then, there exists a
unique solution g(r) = col(@{ (), ..., gy, (), G1 (@), ... Gn, (1))
to problem (3).

Proof: Note that function (3a) is a strictly convex func-
tion with respect to ZK that is, function || - ||2, composed of
an affine mapping on Z*. Hence, for cluster k, there exists
a unique solution Zk@) for (3a) by using Assumption 3.
Moreover, for cluster k with the center trajectory Zk@),
Assumption 2 implies that there exists a unique g(f) such
that g} — g} = dj,. [ ]

IV. MAIN RESULTS
A. Equivalence to Distributed NE Seeking

In this section, we show that the placement problem (3)
can be converted into a distributed NE-seeking problem. In
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particular, the ith agent (player) in cluster k£ aims to minimize
its cost function

k—1 ng
Wyk
Ji(g,t) = ng qp—WkZZ =g
s=1 j=1
0 2
. zwekqem)
r=1
-1 2
ng n
k k( k k
+ | 2 di Z“U(% —dij> )
j=1 j=1
where ¢ = col(qi,...,q,l”,q%, ..,qﬁz,...,qﬁ),...,qﬁg),
8k > 0, £k = 1,...,Q,i = 1,...,n and wp =
(ZIS‘ wsk + Z 0 w97 A profile of state () =
col (qlm N O N7 (O NN 2 (5 M () MO - ())!
is said to constitute an NE [22] for game (4) if
K@, .3 0.8 0.35,0.....3,0.1)
<H@o..... 30,4030, 3,0.1)
Vgk ). 5

In fact, an NE means that no player can further reduce its
associated cost function by unilaterally changing its own state.
Note that the ith player in cluster k£ only has direct access to
the states of the players that are its neighbors.

Remark 6: Note that the function (4) contains two terms.
The first term is designed to fix the center of cluster k, which
corresponds to the nonlinear placement target (3a). The second
term is designed for the inner cluster formation target (3b).
See the proof of Proposition 1 for more details. It is not
hard to see that the function (4) is not unique and any func-
tion is available if it has a unique solution to problem (3).
Here, we only consider quadratic function (4) for notational
simplicity.

Distributed NE-Seeking Problem: Consider the Zle nk-
player noncooperative game (1) and (4). Design distributed
control law (2) to seek the NE of game (4), that is, for
any initial condition qf(O) and vf.‘(O), vé‘ is bounded and
lim;— o0 (q(?) — g(t)) = 0, where g(t) is defined in (5).

Lemma 3: Consider the noncooperative game (4).
Assume that Assumption 1 holds. If [ai.‘l.]max < g <
20 a1/l — 1) Vij=1,....mk=1,...0, then

there exists a unique time-varying NE for game (4).

Proof: Note that the cost function (4) a is quadratic
function (i.e., || 1%) composed of an affine map-
ping on qf. It follows that the cost function Jll‘(q, 1)
is strictly convex and radially unbounded in qf-‘ for
Col(q%,...,q},l,q%,...,q,%z,...,qif_l,qf_‘_l,...,qn y e
Moreover, it is not hard to prove that ‘the pseu-
dogradient of function (4), that is, F : ¢ —
col(Vq{Jll(q, t),...,Vq’ggJﬁg(q, 1)), is strictly monotonic. In

particular, define the auxiliary variable x* = col( X{( e

s Xow)
with X,-k being

Cng)-
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k 1
Xi = 2V‘1kJ (g, 1)

k—1 ng

K
8k Z qy — Z Z —q, — Wy wakqf(t)
s=1 j=1 r=1
+Z df(ak - qf - df)

T
S SR S ) RO
=1 j=1 j=1

where
k—1 ng w no
k
0= =g 3 2+ 3 ohalo
s=1 j=1

Define Lgk =LF+ gily, l,Tk, where LF = [lg-] € R™*" denotes
the Laplacian matrix of graph G¥, k = 1, ..., . It follows that:

= (th e Im)q" + 1, ® Ok — Dy ©6)
where D = col(z 1a1] ...,Z"" amdﬁu) and ¢F =
col(q]f, ...,an) Note that Ok and Dj are independent of
g = col(q‘i, ...,qfh),s = k,k+ 1,...,0. Therefore, the
Jacobian matrix of the pseudogradient map F' is given by
Ly ®L, 0 0 0
Ly, ®Ly 0 0
Jr=2 ) ) , )
.
* * * ng ® 1,
where “x” implies the hidden matrices and 0 denotes the

matrix with appropriate dimension and all entries being
0. Since Assumption 1 holds and [ag-]max < & <
([ZZ 1%]/ m—1D Vi = 1,...,n,
Lemma 1 that L’g‘k ® I, is positive definite. According to
[Proposition 2.5 and Th. 2.3] [23], the pseudogradient F is
strictly monotonic (since Jg is positive definite) and there
exists a unique NE for game (4). |

Proposition 1: Assume that Assumptions 1-3 hold.
Consider the NE §(r) in (5). If [ag.]max < @ <
([22 1al]]/[nk— 1 VYij=1,...,nm,k = 1,...,0,
then q(t) is also the unique solution to the nonlinear
placement problem (3).

Proof: According to Lemmas 2 and 3, both problems (3)
and (4) have only one unique solution. It follows from (4)
that:

it follows from

JHKagn=0 Yi=1,....,m,k=1,...,0.

Next, we show that zero is the minimum of Jf‘ (g, 1) for all i
and k. Assume that there exists g such that Jlk(Z], H=0, k=
1,...,o0and i =1, ..., ng. It follows that:

ny k—1 ng " no
~ 0 0
S(# - 3 2 - m Yoo | =0
p=1 s=1 j=1 s r=1
(7a)
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Based on Assumptions 1 and 2, (7b) implies q[ - qj = dfj
since graph GX,k = 1,..., 0 is undirected and connected.

Consequently, the solution to (7b) can be given as Z]f =

Z];‘—I—Ak, where Z]f»‘,k: I,...,0and i =1, ..., n, is an arbi-
trary solution to the equation F]ﬁ‘ — é]k = dl]j, k=1,...,0,i=
1,...,n, and Ay is a constant vector to be determined. It is

straightforward to compute Ay according to (7a) and the solu-
tion is unique. Hence, (7a) and (7b) have a unique solution
and zero is the minimum of J,{‘(q, t) for all i and k.

It follows from the definition of @y and (7a) that:

k—1 no 1 ng
(z o+ zwsk) Lyt
i=1
no

- Z Dsk 21: +;w 9. (1)

which gives
k—1
SMESWEFIN)
s=1
+ Zwi’k(q?(r) - Za{f) =
i=1

r=1

Note that the gradient of the objective function in (3a) can be
written as the left-hand side of the above equation, which is
equal to 0. Combining Z]f — ZIJ’? = df;- from (7b), the optimal
solution of (3) is achieved. It can be concluded that g(¢) is
also the solution to the nonlinear placement problem (3).

Remark 7: Note that Proposition 1 illustrates that the dis-
tributed nonlinear placement problem for the multicluster
systems can be converted into a time-varying noncooperative
game problem. It is hard to deal with the problem (3) by the
methods of [1, Sec. 8.7]. The main challenges include three
aspects: 1) the problem is distributed other than centralized;
2) the existence of the displacement constraint vector dj;; and
3) the leaders’ states are time varying.

Remark 8: Note that the parameter g; should be the same
for all agents in cluster k. We assume it is possible because
every cluster only includes a few agents and it can be viewed

as an initialization step. Moreover, if there exist a e {0, 1}
and Zjilaij > ([nx — 1]/2), we can choose gy = 1 for

simplicity.

B. Centralized NE-Seeking Algorithm

In this section, we first give a centralized solution to the
NE-seeking problem. Consider the controller in (1) as

k—1
s s

k(.0 0 1
:qbi(ql,...,qno,ql,...

.0 0 -1 o h—
‘11’“-"1;107‘11’-“"1;1;(,])

—-gkj[jqp j{j Sd-d-a)  ®

j=1

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

where

k(.0 0 1 k—1 -0 0 -1 s k—1
qbi(ql,...,qno,ql,...,an_l,ql,...,qno,ql,...,an_l>

k—1 ng
Wk
= gk Dk Z Z —ACIJX + Z o) (1)
s=1 j=1 s
k—1 ng g
+ﬂk22¢%+2wmn ©)
s=1 j=1 s
|

Lemma 4: Consider system (1) with controller (8). Suppose
that Assumptions 1-3 hold. If [ag]max < g <
([227i1a§§.]/[nk— IWVij=1,....m,k=1,...,0, it fol-
lows that lim;_, 5o (q(¥) — g(¢)) = 0, where g(¢) is the NE of
game (4), which is also the solution to problem (3).

Proof: 1t follows from (1) and (8) that:

i =—xi (10)
This is done by using the definition of X,-k and O given
in the proof of Lemma 3. Since [af;-]max < g <
([22 1aU]/ nk— 1D Vi = 1,...,n, it follows from
Lemma 1 that ( D7 llnk = (1/n4g1)1y,. Equation (10) can
be written in a compact form as

. -1 d
g = —xk - (Lfgik) 1, ® 561"

Taking the derivative of (6) and using the above equation
lead to

d
o

ik = (Lgk ®1m)q’< +1, 8

According to Lemma 1 again, it follows that L’;k Q I, is
positive definite. Hence, lim;— X (t) = 0, which implies
lim; 00 V kJ (g, 1) = 0. It thus follows that lim;_, . (q(?) —
q(t) = 0 where g(¢) is the NE to (4) [17]. The proof is
completed based on the results of Proposition 1. |

(1)

C. Distributed NE-Seeking Algorithm

Note that the variables g/, ¢}, { = 0,1,....,k — 1 and
j = 1,...,n, in function ¢{‘ may be unavailable to agent
qf because of local information exchange. Motivated by the
centralized algorithm (8), we will focus on solving the dis-
tributed NE-seeking problem (4) in this section. Consider the
distributed controller for (1) as

k _ ik(~k0 Ak 0 k1 Akk—1 Ak0 Ak,0
T =¢; (ql],...,qlno,ql1,...,qi’nk_l,0i,1 ,...,Qi’no,
Ak, 1 Ak, k—1 k
91.,1 e Qi,nk,l) — 8kNKN;

k
ki k k
aij <QI —q '

k

_ dij>
Jj=1

Gkl !

k1 1 ) Akl As,l
o= ) (% — 0 )_/3ng“ > (91',1 _95,1)

= —u
. kl . kl
rs 6./\[0 rs e_/\/"j
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Akz 1 Ak, I N nsl
Z (qt/ _qr1> — djsgn Z (61,-] qi1>
rse/\flf’ rxe./\/é?l
3
£ = gkzagsgn(n,’-‘ - nf‘)
J=1
=g+ 45 ef0)=0 (12)
where k =1,...,0,i=1,...,m,1=0,1,...,0—1,j =
NH 1=0
ALL o1 AL Kl _ q l
Lm0 = q], q;; = q],N = th 1750’%

and y are nonnegative constants, and ﬂl 81 and Gk are some
positive constants to be determined. rs € N K implies that ‘11
can obtain information from ¢¢ in graph G/*7 for [ = 0 and
& for I # 0, respectively.

Remark 9: The algorithm (12) is designed based on a dis-
tributed observer method. In partlcular qgl s 6‘[]‘1 ,and nf‘ are used
by agent i of cluster k to estimate qj, qj, and (1/ny) Z'Zf | qp,
respectively. Note that k = 1, ..., o implies that each leader
does not need to estimate other agents’ information. For agent
i of cluster k, when the observed target is the jth leader (i.e.,
[ = 0), it follows from N ki Nf 7 that only the jth leader’s

information is used. Slmllarly, When the observed target is a

follower (i.e., [ # 0), it follows from ./\fl’,‘l = qu that all

leaders’ information is unused.

Remark 10: Note that the algorithm (12) is divided into
two phases. First, two auxiliary observers are designed (see
Remark 9 for more details). Second, the centralized NE-
seeking algorithm (8) is composed of the two auxiliary
observers. The design is reasonable since algorithm (8) ensures
lim;, 5 V kJ (g, t) = 0. Moreover, the design and analytical
processes are different from most of the distributed NE-
seeking algorithms in [12]-[17] since the cost function (4)
is time varying.

Remark 11: The algorithm (12) is discontinuous since the
signum function is used. However, we do not use the nons-
mooth analysis in the proofs hereafter for two reasons. One
is that the signum function is measurable and locally essen-
tially bounded, and the other is that the Lyapunov function
candidate, which we will adopt in the proof of Theorem 1
is continuously differentiable. Moreover, the agents’ state
trajectories are continuous.

Lemma 5: Consider the dynamics of ékl and &k[ in (12).
Assume that Assumption 1 holds. If qj(t) is bounded then
there exists ﬂjl > ,3} with ,31 being a posmve constant, such
that 11m,_)oo(0k 1) — q (t)) = 0. Also, if q is bounded, then

there exists 8/ > 8} W1th 61 being a positive constant, such that
im0 (1) — g/(0)) = 0.

Proof: Consider the case [ = 0 that the observed target is
the jth leader and N o= A7 . Thus, the dynamics of 951

i

in (12) can be written as

*k,o_ 0 Z (Ako

rAGkaﬂ

i

)
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0 Ak0 55,0
— Bj'sgn Z (01-,]- —Gr’j).
rse/\/“f

Note that the above dynamics has the same form
with [24, eq. (2)]. Moreover, Assumption 1 and the bound-
edness of 'c}]l-(t) imply that the conditions of [24, Th. 3.1] hold.
Therefore, it follows from in [24, Th. 3.1] that there exists
,31 > ﬂl > ||qj(t)||oo with ,31 being a positive constant such
that hmt_mo(le(t) — q l(#)) = 0. The proofs for q !"and the
other case [ # O are snmlar and are hence omitted. |

Theorem 1: Assume that Assumptions 1-3 hold. Consider
the closed-loop system composed of (1) and (12). If [ak max <
gk < ([22 1aU]/ n— 1) VYV i,j = 1,...,m and k =
1,...,0, then there exist ,BJI > ,81, 811 > 5}, and ¢ > &k
with ,3_][ , S} and ¢ being some positive constants, such that
lim;—, 00 (g(t) — q()) = 0, where () is the NE of game (4),
which is also the solution to problem (3).

Proof: Now, we prove the results using an iterative
approach. First, consider k = 1. Define eil’}.o = égj’.o - i];)(t),
i}jio = E]})J-O — q})(t), j=1,...,n9. Based on (8) and (9), the
q} subsystem in (12) can be rewritten as

-0
)
— — dl
81 Clp q] ii
j=1
s 1,0 1,0 1,0
+ ¢>i (ei’l o€ Oi s ...,oi,n())

L §~ 1
—qu - N
m e

Define the state observer error ® for the éil ]’-O

(o2

. 0 0 -
ql.l :¢l’l<q1""’qn0’q(l)(t)""

+ gin (13)

and 2111 }0 sub-

systems and the average tracking error W; for gi‘ subsystem
as follows:

1,0 1,0 1,0
[ON] _col(¢l< Il,...,ei’no,ol.’l ,...,ai’no),...,
,0 1,0 1,0 1,0
¢n1 ei’l e € Oi s e O

1 &

2:1 1
n_ qp_nl ey
1

p=1

Yy =col| g1m

811

1 < 1 1
Z Z 9p — ny
p=1

Based on the same arguments of (11), system (13) and él.l
subsystem in (12) can be rewritten as

7= (L @ L) + (L, @ In) (@1 + W)
ni
E=q Za}ngn(n} - n})
j=1
n =& +q, EO0)=0i=1....m (14)
where

= (L ®1n)q' + 1, ® 01 =Dy
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)
O = —g1n o) Zw(,)kq(,)(t)

r=1

ny
Dy = col Zabdij, ..
Jj=1

ni

Xﬁwm,

and ¢' = col(q%, cees q,lll). Note that Assumption 3 requires
that qjo (t) and é]/(?(t) are bounded. According to Lemma 5, there
exist B = B = 4] (lloo. 8 = §) = 1) ()]l with B and
8;) being some positive constants, such that

lim ') =0, lim o) = 0.
It follows from (9) that ¢f‘ is a nonnegative weighted sum
function of its variables. Then, we have that

lim ®¢(¢r) = 0.
t—00

Now, we can study the stability of system (14). Note
that Assumption 1 requires G'! being connected. It fol-
lows from (12) that Z £l = 0. Consequently, we have
Zn E 1 = Z"I%S (O) = O which implies Zl 1 (t) =
Z?Ilql (1. Let Z' = col(z],.. an) with zjl = 17]-
(l/nl)zplz1 qp,] =1,...,ny. It follows that:

() zal,sgn@ ) =iy

1 1

Z] — % |
i=1 i=1
(15)
ny np np
1
>4, = 1ZZuz—zH
: ny —
i=1 i=1 j=1
n—1 1.1 1
<— Za,-j 5 -4, (16)
i=1
Using (14), we have that
1 &
1 -1 -1
g =N — n_l Z_:qp
ni
_ Zal]sgn(z —2d)+q - — qu. (17)

It follows from X = (Li,] ® Im)q +1,, ® ©1 — D that
= (L;,] ® L)~ '(x' — 1,, ® ©;). System (17) can be
rewritten as
nnl)

7' = ¢jcol Zaljsgn( _’71) Zanusgn<

—1 .
+M1(L1 ®1m) (;'(1—1,11@@1)

where M' = (I, — (1/n1)1n| i ® In). Note that Wy =
—gmZ'. Combining the x! subsystem in (14) and the Z!
system, we have

== (L @) (X! - o1+ amz')

ni ni
51 1 1 1 1 1
Z = gjcol E aljsgn(nj —nl),..., E anljsgn<nj
=1 j=1

1
b))
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—amM'Z' — M'y!
—1 .
+ M1 <(D1 - (L;I ®Im> (1n| ®®l)>

Define the Lyapunov function candidates as

1 T 1 T -1

04 @) e () o)

) + 2e1m1 X 21 Q I X

It follows from (15) that:

fo Sy
2

1.1 1 I\Tys11
ag|z —z; l—glnl(Z)MZ

i=1
N\ 1 -1 :
+ () M (@1 + (L ® 1) (1, ®61)
1 N1 1 T
——(x) X +—(x ) @,
811 g1ny
_ (Zl>TM1X1 _ (21>TX1
Note that lim;_, <I>1(t) 0 and Assumption 3 imply that

@1 = —g|nw Zr—l w qu (t) is bounded. Thus, there exists
¢* > 0 such that

‘(ZI>TM1 (@1 + (Lél ®Im)71(1n] ®@1)>' <o n le
i=1

= (n1 — )(¢* + 1) such that

(18)

Using (16), there exists ¢; > ¢

. T 1 T
V< —g1n1( ) Mlzl__<xl) Xl
giny
(A 1 1 1 1
Z M +Imn1 X +— x ([Pl
g1n
T 1 T T
< —gim (Zl> z' - —(X1> x! —2(21) x!
g1n
|| - 3]
glm — 1
1
_ 71 1
(o )
.
glnl

The second inequality is obtained by (Z HTy! = (zYH)T, which
comes from (l,T,1 ® I,,)Z' = 0. Using the comparison prin-
ciple in [25, Ch. 3.4], it follows from lim;, o ®1(f) = 0
that lim,_ o V! (t) = 0. Therefore, lim;_, Vq;]l.l (g, 1) =
lim/— 00 2x 1 (#) = 0. It follows that lim,—, « (g} (£) —'51} ) =0,
lg; 01l < Q' and [|g; (0] < Q" with constant Q'.

Second, assume that lim;_ o0 (g} (1) — g} (1)) =0, |lg} (t)|| <
0, and [|g} (1| < QY with constant Q" holding for v =
0,....k—1. Next we will show that Xk(t) — 0. Let e =
= 4"/ — q\(r). Based on (8) and (9), the
‘L subsystem in (12) can be rewritten as

9” — q](t) and a

-k _ k(0 0 1 k—1 -0 0 -1 - k—1
qi—¢i(q17""qn0’('h’""qmﬁ]’ql’""qno’ql""’an—l>

—ng% Z ( —q - dtk/)

j=1
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k(.0 0 1 k—1
+qbi(el,...,eno,el,...,enkil,
0 0 _1 k-1
or, Opgs 01 » ,ank_l)
1 &
k k
+ g n—qup—ni : (19)
p=1

Define the state observer error @ for the élkjl and @f/ subsys-

tems, and the average tracking error W for the éik subsystem
as follows:

— 1,0 1,0 1,0
lON _col<¢1( €l € 04 ""’Ui,n())""’

1 ,0 1,0 1,0 1,0
¢n1 ei,l [ ei,n()’ Ui,l et Ui,llo

ng

Wy = col | gxmx —qu—m
1 &
8kMk —quf,—ﬂﬁk
nkp:]

Based on the same arguments of (11), the system (19) and the
éik subsystem in (12) can be written as

x* —(Lf;k ® Im) XK+ (Lf;k ® Im)(d>k + )

1
& = o> dbsen(nf — )

=1
nf = &f +4f,

0y =0, i=1,....,m (20)

where

1= (Lh @ 1) + 1, ® O - Dy

k—1 ng

O = —gtmwr | Y Z Dk q] + Zwrqu )

s=1 j=1

Dj, = col Zaljdlj, ..
J=1

Zaw i

and qk = col(q]f e qﬁk). Note that (20) has the same form
with (14). Using the same argument of (14), we have that
limy— o0 (gf () = G (1) = 0, [Igf 0l < O, and [IG; ()] < O
with constant Q.

The process is repeated o times to obtain limHoo(qf.? (1) —
éf (1)) = 0, and the proof is completed based on the results in
Proposition 1. |

Remark 12: Note that all the agents’ states are bounded
since the leaders’ states are bounded and the followers’
states are constrained in the bounding box of the lead-
ers (see the requirements of a nonlinear placement problem
in [1, Sec. 8.7]). The lower bounds of ,81, _], and & are given
in the proof. In particular, we require ﬂj > ||q](t)||oo and S} >
||i1§(t)||oo, which come from the conditions of [24, Th. 3.1].
The parameter ¢, depends on ®; and ®y, which comes from
the conditions of the average tracking algorithm in [26].
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Fig. 1. Network topology among agents.
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Fig. 2. Average tracking states '71 & Zl 1 ql.

V. EXAMPLES

Consider a formation control problem of a multicluster
system composed of four leaders and ten followers, and
assume that the problem can be modeled as the distributed
nonlinear placement problem (3). All the followers are divided
into four clusters (including 3, 3, 4, and 4 followers, respec-
tively). The communication network graphs G¥ and G are given
in Fig. 1. Let the state of system (1) be qf = [qﬁx, qé"y]T. The
positions of the leaders are q?(t) = (545i)[ sin wt; cos wt] with
w=4r x 1074,i =1, 2,3, 4. Some elements of the weight
are a)?l = a)gl =1, a)g2 = a)g2 =1, a)?3 = a)g3 =wi;3 =1,
and w4 = a)34 = 1, and others are 0. The desired distance
vectors are d}, = d2, = [5; 5IT, dl, = d}, = d}; = [ 5; 51",
diy = di; = [0; 5], and d3, = dj, = dg‘l = [5; 0]". Assume
that all the agents’ initial positions are g; k0) = [10i, 154]. It
is not hard to show that Assumptions 1 and 2, and [czf;]mglx <

k<([22 1%]/ g — 1) Vi=1,...,n hold.

Let gy = I, af =2x 107, B/ = 50, yl =5x107,
8! = 50, and ¢, = 3. The effectiveness of the control algo-
rithm (12) in maintaining a formation shape is demonstrated
in Figs. 2-6 (only some results are presented due to space
limitation). In particular, Figs. 2 and 3 show that the average
tracking errors and states observer errors asymptotically con-
verge. It follows from Fig. 4 that the nonlinear placement for
cluster k is satisfied, that is, the total interconnection length
of the links connecting the centers of cluster 1 and leaders q(l)
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Fig. 3. State observers ég»l & q} and éi]]‘»l & q/l
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Fig. 4. Positions of leaders q9 and centers of clusters (1/ny) Z:’i 1 qg‘ .
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Fig. 5. Clusters maintaining a formation (q{-‘ o qff y).

and qg is minimized. Moreover, Fig. 5 shows that the follow-
ers in each cluster are maintained according to some desired
distance vector df; The formation errors of cluster 1 are given
in Fig. 6. It can be observed that the formation errors asymp-
totically converge, which indicates that the system actually
converges to the NE.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022
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Fig. 6. Formation errors qf»‘ - q;‘ - df;

VI. CONCLUSION

In this article, we proposed a distributed nonlinear place-
ment algorithm, which was designed based on a distributed
observer-based method. The communication among all the
agents is an undirected connected topology. The main results
were proved by an iterative approach. Future study directions
include several open and interesting questions. For example,
the communication amongst the agents is directed and time
varying or the dynamics for each agent is nonlinear and het-
erogeneous. Moreover, it is interesting to extend the designed
algorithm to the nonlinear placement problem with a more
complex function A(-).
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