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Abstract—In this article, a class of distributed nonlinear place-
ment problems is considered for a multicluster system. The task
is to determine the positions of the agents in each cluster subject
to the constraints on agent positions and the network topology.
In particular, the agents in each cluster are placed to form the
desired shape and minimize the sum of squares of the Euclidean
lengths of the links amongst the center of each cluster and its
corresponding cluster members. The problem is converted into a
time-varying noncooperative game and then a distributed Nash
equilibrium-seeking algorithm is designed based on a distributed
observer method. A new iterative approach is employed to prove
the convergence with the aid of the Lyapunov stability theorem.
The effectiveness of the distributed algorithm is validated by
numerical examples.

Index Terms—Distributed algorithm, Nash equilibrium (NE)
seeking, noncooperative game, nonlinear placement.

I. INTRODUCTION

N
ONLINEAR placement is a typical geometric problem

and has attracted extensive attention due to its diverse

applications. The objective of nonlinear placement is to place

some points with additional constraints such that the sum of

squares of the Euclidean lengths of the links amongst the points

is minimized. The applications of nonlinear placement include
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transportation cost control, wire placement in integrated circuits,

and sensor placement in networks [1], [2]. For example, in

the transportation cost control problem, given several possible

locations of plants or warehouses of a company and the routes

over which goods must be shipped, the task is to find specific

locations that minimize the total transportation cost. On the other

hand, in the wire placement problem for integrated circuits,

given the positions of modules or cells and the wires that

connect pairs of cells, the objective is to place the cells such

that the total length of wires used to interconnect the cells is

minimized. All these problems can be modeled as a nonlinear

placement problem and the solutions can be found by a convex

optimization method, as shown in [1].

The study on multiagent system has gained increasing

attention in the literature on consensus control [3], [4]; dis-

tributed optimization [5], [6]; formation control [7]–[9]; etc.

Specifically, recent years have witnessed a rapid growth in the

study of multicluster systems. The main reasons lie in the fol-

lowing facts. First, multicluster systems allow the coexistence

of cooperation and competition. In particular, cooperation

and competition normally coexist in natural and engineer-

ing systems, as well as in many practical applications of

multiagent systems. For example, cooperation and competition

appear simultaneously in interactive living systems [10], [11].

In the noncooperative game for multicluster systems, the

clusters behave as self-interested “virtual players” while the

agents in the same cluster coordinate to minimize their total

cost [12], [13]. Second, the multicluster structure is beneficial

to the implementation of distributed control for multiagent

systems with a large number of agents. For example, for-

mation control is a widely studied topic within the realm of

multiagent systems. A typical position-based formation control

is to guarantee a prescribed desired formation shape and/or

track some prescribed desired reference trajectories [8], [9].

Generally speaking, the prescribed formation shape and refer-

ence trajectories are designed by a centralized method, which

is often quite difficult for a large number of agents. A natural

idea is to cut apart the network into some clusters, where each

cluster only includes a few agents with a prescribed designed

formation shape or some reference trajectories. Moreover, the

shape connecting the centers of the clusters can be designed

automatically by using the distance between the clusters.

Therefore, formation control of a multicluster system is

modeled as a distributed nonlinear placement problem in this
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article. The shape connecting the centers of the clusters is auto-

matically guaranteed by a distributed method. In particular, the

shape depends on the placement of the followers such that the

sum of squares of the Euclidean lengths of the links amongst

the center of each cluster and its corresponding cluster mem-

bers is minimized, subject to additional constraints on agent

positions and the network topology. The problem is solved in

two steps. First, the problem is converted into a time-varying

Nash equilibrium (NE)-seeking problem. Then, a distributed

seeking algorithm is designed based on a distributed observer

method, and the results are proved by using the Lyapunov

stability theorem.

The main contributions lie in the following facts.

1) We solve the distributed nonlinear placement problem

for multicluster systems. It can be viewed as a spe-

cial position-based formation control problem since the

formation shape is automatically guaranteed by a dis-

tributed method. To the best of our knowledge, there are

no results that are capable of solving the distributed non-

linear placement problem for multicluster systems with

limited information exchange. For example, the methods

in [1] and [2] are inapplicable to our problem since they

are centralized.

2) The most promising feature of our algorithm is that it

is capable of handling time-varying NEs for the multi-

cluster systems, which renders the NE-seeking algorithm

design and the convergence analysis more challeng-

ing. In contrast to most of the distributed NE-seeking

algorithms in [12]–[17], where the cost functions are

required to be time invariant, our algorithm is capable

of tackling time-varying cost functions.

3) In contrast to [18], where a time-varying NE-

seeking algorithm is designed by using a nonmodel-

based method, our algorithm has a zero convergent

error and the multicluster models are not considered

in [18].

The remainder of this article is organized as follows.

In Sections II and III, preliminaries and problem formu-

lation are presented. Section IV presents the distributed

algorithm for the considered nonlinear placement problem.

The proposed approach is validated by numerical exam-

ples in Section V. Finally, Section VI concludes the arti-

cle.

II. PRELIMINARIES

A. Notation

Let R
n and C

n denote the n-dimensional Euclidean space

and complex space, respectively. For xi ∈ R
ni , i = 1, . . . , m,

col(x1, . . . , xm) = [xT
1 , . . . , xT

m]T, where xT
i is the transpose of

xi. Let Im ∈ R
m×m denote the identity matrix and ⊗ denote

the Kronecker product. Let 1m denote the m-dimensional vec-

tor with all entries being 1. Let f (x, t) : R
n × R → R

be a continuously differentiable function with respect to

x and t, and ∇xf (x, t) denote the first partial derivative

of the function f (x, t) with respect to vector x. Let ‖x‖1

and ‖x‖ denote, respectively, the 1-norm and 2-norm of

vector x.

B. Graph Theory

In this article, a graph G = (V, E) is used to describe

the information exchange of a network system, where V =
{1, 2, . . . , N} is the node set and E ⊂ V × V is the edge set.

Here, (j, i) ∈ E represents that node i can obtain information

from node j. For an undirected graph, (j, i) ∈ E implies

(i, j) ∈ E . Let Ni = {j : (j, i) ∈ E} denote the set of neigh-

bors of node i. A path is a sequence of edges of the form

(i, j), (j, k), . . .. A graph is connected if there is a path between

each pair of nodes.

For graph G, the adjacency matrix A = [aij] ∈ R
N×N is

defined as aii = 0, aij > 0 if (j, i) ∈ E and aij = 0 otherwise.

The Laplacian matrix L = [lij] ∈ R
N×N is defined as lii =

∑N
j=1 aij, and lij = −aij for any i 	= j. Let [aij]

max denote the

maximum of aij, i, j ∈ V , that is, [aij]
max = maxi,j∈V aij.

Lemma 1: Let A = [aij] ∈ R
N×N and L ∈ R

N×N be, respec-

tively, the adjacency matrix and the Laplacian matrix of an

undirected and connected graph G. Assume that [aij]
max <

(2lii/[N − 1]), i ∈ V . For La = L+a1N1T
N with [aij]

max ≤ a <

(2lii/[N − 1]), La is positive definite and L−1
a 1N = (1/aN)1N .

Proof: Let λi, i = 1, . . . , N, be the eigenvalues of La. It

follows from the Gershgorin theorem ([19]) that λi lies in the

set:

n
⋃

i=1

⎧

⎨

⎩

z ∈ C
2 : | z − (lii + a) |≤

N
∑

j=1

| a − aij |

⎫

⎬

⎭

.

Because [aij]
max ≤ a < (2lii/[N − 1]), it follows that:

lii + a >

N
∑

j=1

| a − aij |

indicating that La is positive definite. It follows from La1N =
(L + a1N1T

N)1N = aN1N that L−1
a 1N = (1/aN)1N , and the

proof is completed.

III. DISTRIBUTED NONLINEAR PLACEMENT PROBLEM

Consider a nonlinear placement problem for a multicluster

system composed of n =
∑�

k=0 nk agents. There are n0 (n0 ≥
2) leaders and

∑�

k=1 nk followers in the multicluster system.

All the followers are divided by � clusters (each cluster has

nk agents with k = 1, . . . , �). The positions of the leaders

q0
r (t) ∈ R

m, r = 1, . . . , n0, are time varying. The dynamics

of each follower i in cluster k is described by the following

single-integrator system:

q̇k
i = τ k

i , i = 1, . . . , nk, k = 1, . . . , � (1)

where qk
i ∈ R

m denotes the generalized position and τ k
i ∈ R

m

denotes the control force. The network topology constraint is

given as follows.

1) The followers in cluster k (includes nk agents with

k = 1, . . . , �) are specified by a communication network

graph Gk = (Vk, Ek), where Vk = {qk
1, . . . , qk

nk
} is

the node set and Ek ⊂ Vk × Vk is the edge set. Let

Ak = [ak
ij] ∈ R

nk×nk denote the adjacency matrix of the

graph Gk.

2) The information flows amongst the followers and the rth

leader q0
r are specified by graph Gf +r = (V f +r, E f +r)
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where V f +r = V f
⋃

{q0
r } and E f +r ⊂ V f +r × V f +r.

For graph Gf +r, N
f +r

qk
i

denotes the set of neighbors of

agent qk
i . Similarly, Gf +0 = (V f +0, E f +0) and N

f +0

qk
i

are

used to specified all the followers (without any lead-

ers) and the set of neighbors of agent qk
i in graph Gf +0,

respectively.

3) The information flows amongst the followers and lead-

ers are specified by graph G = (V, E), where V =
{1, 2, . . . ,

∑�

k=0 nk} is the node set and E ⊂ V×V is the

edge set. For graph G, Nqk
i

denotes the set of neighbors

of agent qk
i .

The objective is to design the following distributed control

law:

v̇k
i = Fk

i

(

qk
i , ql

j, vk
i , vl

j

)

τ k
i = Hk

i

(

qk
i , ql

j, vk
i , vl

j

)

, i = 1, . . . , nk, k = 1, . . . , � (2)

where vk
i ∈ R

mk and mk is a positive integer, Fk
i and Hk

i are

some smooth functions, and j and l are chosen such that qk
i

can obtain information from ql
j in graph G.

Distributed Nonlinear Placement Problem: Consider the

closed-loop system composed of (1) and (2) with any ini-

tial conditions qk
i (0) and vk

i (0). The objective is achieved if

vk
i is bounded while qk

i converges to the global optimal solu-

tion q̃k
i , that is, limt→∞(qk

i (t) − q̃k
i (t)) = 0, i = 1, . . . , nk and

k = 1, . . . , �, where q̃k
i (t) is the solution to

minimize

k−1
∑

s=1

ωsk

∥

∥

∥
Zs − Zk

∥

∥

∥

2
+

n0
∑

r=1

ω0
rk

∥

∥

∥
q0

r (t) − Zk
∥

∥

∥

2

(3a)

subject to qk
i − qk

j = dk
ij, i, j = 1, . . . , nk. (3b)

Here, Zk = (1/nk)
∑nk

i=1 qk
i is the center of cluster k, dk

ij is

the desired constant displacement constraint vector, dk
ii = 0,

and ωsk ≥ 0 (or ω0
rk ≥ 0) is the weight of cluster s [or leader

q0
r (t)] and cluster k.

Remark 1: We assume that the parameters nk, ωsk, and ω0
rk

are known to all agents in cluster k. A weight ωsk = 0 (or

ω0
rk = 0) implies that the positions of cluster s [or leader q0

r (t)]

and cluster k are irrelevant. Note that the nonlinear placement

problem (3) includes two targets.

1) Nonlinear Placement for Clusters in (3a): Define the

length εs,k (or ε0
r,k) of the link that connects the cen-

ters of cluster s (or leader q0
r ) and cluster k, that

is, εs,k = ‖Zs − Zk‖ (or ε0
r,k = ‖q0

r − Zk‖). The

followers are placed to satisfy that the measure of

the total interconnection length of the links, that is,
∑n0

r=1 ω0
rk(ε

0
r,k)

2 +
∑k−1

s=1 ωsk(εs,k)
2, is minimized.

2) Inner Cluster Formation in (3b): The followers qk
i and

qk
j in cluster k, k = 1, . . . , �, are maintained according

to the desired distance vector dk
ij.

Remark 2: It is worth mentioning that if ni = 1, i =
1, . . . , �, the placement problem, (3) is reduced to a nonlinear

placement problem which is studied in [1, Sec. 8.7]. Even in

such a case, the placement problem considered in this article

is distributed and the results in [1] are centralized. Moreover,

if � = 1, the considered placement problem is reduced to a

formation control problem that is studied in [20]. In such a

case, the center of the formation in this article is placed to

minimize the distance from the leaders, and this condition is

not required in [20].

Remark 3: The considered problem is similar to the for-

mation problem of multileader networks (e.g., [21]). Note

that the multiformation problem can be converted into the

group/cluster consensus problem, multiconsensus problem, or

multitracking problem since a desired geometric formation

is given. In contrast, the formation shape is automatically

guaranteed by a distributed method in this article.

Remark 4: In [1], function (3a) is given as
∑k−1

s=1 ωskh(‖Zs − Zk‖) +
∑n0

r=1 ω0
rkh(‖q0

r (t) − Zk‖),
where h(·) is defined as an monotonically increasing (on R

+)

and convex function, for example, h(z) = z, h(z) = z2 and

h(z) = z4. In this article, we only consider h(z) = z2 for

notational simplicity.

Assumption 1: Graphs Gk, k = 1, . . . , � and Gf +r, r =
0, 1, . . . , n0 are undirected and connected.

Assumption 2: For cluster k, k = 1, . . . , � and its desired

distance vector dk
ij, the formation problem is solvable, for

example, there exists at least some vectors q̌k
i , i = 1, . . . , nk

such that q̌k
i − q̌k

j = dk
ij.

Assumption 3: For the leaders, q̈0
j (t), q̇0

j (t), j = 1, . . . , n0

are bounded. For cluster k, k = 1, . . . , �, the weight

set �k = {ω1k, . . . , ωk−1 k, ω
0
1k, . . . , ω

0
n0k} has at least two

positive entries.

Remark 5: Assumption 1 is a common assumption for

both distributed formation and distributed game problems.

Assumption 2 is necessary to ensure that the formation

problem in (3b) is solvable. Note that under Assumption 2,

q̌k
i +d(t) with any vector d(t) is also a solution to (3b). Hence,

the center of each cluster is not fixed under Assumption 2. In

fact, the centers are placed according to the solution to (3a).

Assumption 3 implies that the states of leaders are bounded,

which is necessary to ensure that the nonlinear displacement

problem (3) is solvable. Note that problem (3) has a unique

nontrivial solution unless the set �k has at least two positive

entries. If the weights of wsk and w0
sk are all equal to 0, then

the solution isn’t unique. Moreover, if �k has only one pos-

itive entry, then the solution is trivial, that is, Zk = Zs or

Zk = q0
r (t).

Lemma 2: Consider the nonlinear placement problem (3).

Assume that Assumptions 2 and 3 hold. Then, there exists a

unique solution q̃(t) = col(q̃1
1(t), . . . , q̃1

n1
(t), q̃2

1(t), . . . , q̃
�
n� (t))

to problem (3).

Proof: Note that function (3a) is a strictly convex func-

tion with respect to Zk, that is, function ‖ · ‖2, composed of

an affine mapping on Zk. Hence, for cluster k, there exists

a unique solution Zk(t) for (3a) by using Assumption 3.

Moreover, for cluster k with the center trajectory Zk(t),

Assumption 2 implies that there exists a unique q̃(t) such

that q̃k
i − q̃k

j = dk
ij.

IV. MAIN RESULTS

A. Equivalence to Distributed NE Seeking

In this section, we show that the placement problem (3)

can be converted into a distributed NE-seeking problem. In
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particular, the ith agent (player) in cluster k aims to minimize

its cost function

Jk
i (q, t) =

∥

∥

∥

∥

∥

∥

gk

nk
∑

ρ=1

⎛

⎝qk
ρ − 	k

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

qs
j

− 	k

n0
∑

r=1

ω0
rkq0

r (t)

)
∥

∥

∥

∥

∥

2

+

⎛

⎝

nk
∑

j=1

ak
ij

⎞

⎠

−1∥
∥

∥

∥

∥

∥

nk
∑

j=1

ak
ij

(

qk
i − qk

j − dk
ij

)

∥

∥

∥

∥

∥

∥

2

(4)

where q = col(q1
1, . . . , q1

n1
, q2

1, . . . , q2
n2

, . . . , q
�

1 , . . . , q
�
n� ),

gk > 0, k = 1, . . . , �, i = 1, . . . , nk, and 	k =
(
∑k−1

s=1 ωsk +
∑n0

r=1 ω0
rk)

−1. A profile of state q̃(t) =
col (q̃1

1(t), . . . , q̃1
n1

(t), q̃2
1(t), . . . , q̃2

n2
(t), . . . , q̃

�

1(t), . . . , q̃
�
n� (t))

is said to constitute an NE [22] for game (4) if

Jk
i

(

q̃1
1(t), . . . , q̃k

i−1(t), q̃k
i (t), q̃k

i+1(t), . . . , q̃�
n�

(t), t
)

≤ Jk
i

(

q̃1
1(t), . . . , q̃k

i−1(t), qk
i (t), q̃k

i+1(t), . . . , q̃�
n�

(t), t
)

∀qk
i (t). (5)

In fact, an NE means that no player can further reduce its

associated cost function by unilaterally changing its own state.

Note that the ith player in cluster k only has direct access to

the states of the players that are its neighbors.

Remark 6: Note that the function (4) contains two terms.

The first term is designed to fix the center of cluster k, which

corresponds to the nonlinear placement target (3a). The second

term is designed for the inner cluster formation target (3b).

See the proof of Proposition 1 for more details. It is not

hard to see that the function (4) is not unique and any func-

tion is available if it has a unique solution to problem (3).

Here, we only consider quadratic function (4) for notational

simplicity.

Distributed NE-Seeking Problem: Consider the
∑�

k=1 nk-

player noncooperative game (1) and (4). Design distributed

control law (2) to seek the NE of game (4), that is, for

any initial condition qk
i (0) and vk

i (0), vk
i is bounded and

limt→∞(q(t) − q̃(t)) = 0, where q̃(t) is defined in (5).

Lemma 3: Consider the noncooperative game (4).

Assume that Assumption 1 holds. If [ak
ij]

max ≤ gk <

([2
∑nk

j=1 ak
ij]/[nk − 1]) ∀ i, j = 1, . . . , nk, k = 1, . . . , �, then

there exists a unique time-varying NE for game (4).

Proof: Note that the cost function (4) a is quadratic

function (i.e., ‖ · ‖2) composed of an affine map-

ping on qk
i . It follows that the cost function Jk

i (q, t)

is strictly convex and radially unbounded in qk
i for

col(q1
1, . . . , q1

n1
, q2

1, . . . , q2
n2

, . . . , qk
i−1, qk

i+1, . . . , qn
�

1
, . . . , q

�
n� ).

Moreover, it is not hard to prove that the pseu-

dogradient of function (4), that is, F : q →
col(∇q1

1
J1

1(q, t), . . . ,∇q
�
n�

J
�
n� (q, t)), is strictly monotonic. In

particular, define the auxiliary variable χk = col(χk
1 , . . . , χk

nk
)

with χk
i being

χk
i = 1

2
∇qk

i
Jk

i (q, t)

= gk

nk
∑

ρ=1

⎛

⎝qk
ρ − 	k

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

qs
j − 	k

n0
∑

r=1

ω0
rkq0

r (t)

⎞

⎠

+
nk

∑

j=1

ak
ij

(

qk
i − qk

j − dk
ij

)

= gk

nk
∑

ρ=1

qk
ρ +

nk
∑

j=1

ak
ij

(

qk
i − qk

j

)

+ �k −
nk

∑

j=1

ak
ijd

k
ij

where

�k = −gknk	k

⎛

⎝

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

qs
j +

n0
∑

r=1

ω0
rkq0

r (t)

⎞

⎠.

Define Lk
gk

= Lk +gk1nk
1T

nk
, where Lk = [lkij] ∈ R

nk×nk denotes

the Laplacian matrix of graph Gk, k = 1, . . . , �. It follows that:

χk =
(

Lk
gk

⊗ Im

)

qk + 1nk
⊗ �k − Dk (6)

where Dk = col(
∑nk

j=1 ak
1jd

k
1j, . . . ,

∑nk

j=1 ak
nkjd

k
nkj) and qk =

col(qk
1, . . . , qk

nk
). Note that �k and Dk are independent of

qs = col(qs
1, . . . , qs

ns
), s = k, k + 1, . . . , �. Therefore, the

Jacobian matrix of the pseudogradient map F is given by

JF = 2

⎛

⎜

⎜

⎜

⎝

L1
g1

⊗ Im 0 0 0

∗ L2
g2

⊗ Im 0 0
...

...
. . .

...

∗ ∗ ∗ L
�
g� ⊗ Im

⎞

⎟

⎟

⎟

⎠

where “∗” implies the hidden matrices and 0 denotes the

matrix with appropriate dimension and all entries being

0. Since Assumption 1 holds and [ak
ij]

max ≤ gk <

([2
∑nk

j=1 ak
ij]/[nk − 1]) ∀ i = 1, . . . , nk, it follows from

Lemma 1 that Lk
gk

⊗ Im is positive definite. According to

[Proposition 2.5 and Th. 2.3] [23], the pseudogradient F is

strictly monotonic (since JF is positive definite) and there

exists a unique NE for game (4).

Proposition 1: Assume that Assumptions 1–3 hold.

Consider the NE q̃(t) in (5). If [ak
ij]

max ≤ gk <

([2
∑nk

j=1 ak
ij]/[nk − 1]) ∀ i, j = 1, . . . , nk, k = 1, . . . , �,

then q̃(t) is also the unique solution to the nonlinear

placement problem (3).

Proof: According to Lemmas 2 and 3, both problems (3)

and (4) have only one unique solution. It follows from (4)

that:

Jk
i (q, t) ≥ 0 ∀ i = 1, . . . , nk, k = 1, . . . , �.

Next, we show that zero is the minimum of Jk
i (q, t) for all i

and k. Assume that there exists q̃ such that Jk
i (q̃, t) = 0, k =

1, . . . , � and i = 1, . . . , nk. It follows that:

nk
∑

ρ=1

⎛

⎝q̃k
ρ − 	k

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

q̃s
j − 	k

n0
∑

r=1

ω0
rkq0

r (t)

⎞

⎠ = 0

(7a)
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nk
∑

j=1

ak
ij

(

q̃k
i − q̃k

j − dk
ij

)

= 0. (7b)

Based on Assumptions 1 and 2, (7b) implies q̃k
i − q̃k

j = dk
ij

since graph Gk, k = 1, . . . , � is undirected and connected.

Consequently, the solution to (7b) can be given as q̃k
i =

q̆k
i +�k, where q̆k

i , k = 1, . . . , � and i = 1, . . . , nk, is an arbi-

trary solution to the equation q̆k
i − q̆k

j = dk
ij, k = 1, . . . , �, i =

1, . . . , nk, and �k is a constant vector to be determined. It is

straightforward to compute �k according to (7a) and the solu-

tion is unique. Hence, (7a) and (7b) have a unique solution

and zero is the minimum of Jk
i (q, t) for all i and k.

It follows from the definition of 	k and (7a) that:

(

k−1
∑

s=1

ωsk +
n0

∑

r=1

ω0
rk

)

1

nk

nk
∑

i=1

q̃k
i

=
k−1
∑

s=1

ωsk

ns

ns
∑

i=1

q̃s
i +

n0
∑

r=1

ω0
rkq0

r (t)

which gives

k−1
∑

s=1

ωsk

(

1

ns

ns
∑

i=1

q̃s
i − 1

nk

nk
∑

i=1

q̃k
i

)

+
n0

∑

r=1

ω0
rk

(

q0
r (t) − 1

nk

nk
∑

i=1

q̃k
i

)

= 0.

Note that the gradient of the objective function in (3a) can be

written as the left-hand side of the above equation, which is

equal to 0. Combining q̃k
i − q̃k

j = dk
ij from (7b), the optimal

solution of (3) is achieved. It can be concluded that q̃(t) is

also the solution to the nonlinear placement problem (3).

Remark 7: Note that Proposition 1 illustrates that the dis-

tributed nonlinear placement problem for the multicluster

systems can be converted into a time-varying noncooperative

game problem. It is hard to deal with the problem (3) by the

methods of [1, Sec. 8.7]. The main challenges include three

aspects: 1) the problem is distributed other than centralized;

2) the existence of the displacement constraint vector dij; and

3) the leaders’ states are time varying.

Remark 8: Note that the parameter gk should be the same

for all agents in cluster k. We assume it is possible because

every cluster only includes a few agents and it can be viewed

as an initialization step. Moreover, if there exist ak
ij ∈ {0, 1}

and
∑nk

j=1 ak
ij > ([nk − 1]/2), we can choose gk = 1 for

simplicity.

B. Centralized NE-Seeking Algorithm

In this section, we first give a centralized solution to the

NE-seeking problem. Consider the controller in (1) as

τ k
i = φk

i

(

q0
1, . . . , q0

n0
, q1

1, . . . , qk−1
nk−1

,

q̇0
1, . . . , q̇0

n0
, q̇1

1, . . . , q̇k−1
nk−1

)

− gk

nk
∑

ρ=1

qk
ρ −

nk
∑

j=1

ak
ij

(

qk
i − qk

j − dk
ij

)

(8)

where

φk
i

(

q0
1, . . . , q0

n0
, q1

1, . . . , qk−1
nk−1

, q̇0
1, . . . , q̇0

n0
, q̇1

1, . . . , q̇k−1
nk−1

)

= gknk	k

⎛

⎝

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

qs
j +

n0
∑

r=1

ω0
rkq0

r (t)

⎞

⎠

+ 	k

⎛

⎝

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

q̇s
j +

n0
∑

r=1

ω0
rkq̇0

r (t)

⎞

⎠. (9)

Lemma 4: Consider system (1) with controller (8). Suppose

that Assumptions 1–3 hold. If [ak
ij]

max ≤ gk <

([2
∑nk

j=1 ak
ij]/[nk − 1]) ∀ i, j = 1, . . . , nk, k = 1, . . . , �, it fol-

lows that limt→∞(q(t) − q̃(t)) = 0, where q̃(t) is the NE of

game (4), which is also the solution to problem (3).

Proof: It follows from (1) and (8) that:

q̇k
i = −χk

i − 1

nkgk

d

dt
�k. (10)

This is done by using the definition of χk
i and �k given

in the proof of Lemma 3. Since [ak
ij]

max ≤ gk <

([2
∑nk

j=1 ak
ij]/[nk − 1]) ∀ i = 1, . . . , nk, it follows from

Lemma 1 that (Lk
gk

)−11nk
= (1/nkgk)1nk

. Equation (10) can

be written in a compact form as

q̇k = −χk −
(

Lk
gk

)−1
1nk

⊗ d

dt
�k.

Taking the derivative of (6) and using the above equation

lead to

χ̇k =
(

Lk
gk

⊗ Im

)

q̇k + 1nk
⊗ d

dt
�k

= −
(

Lk
gk

⊗ Im

)

χk. (11)

According to Lemma 1 again, it follows that Lk
gk

⊗ Im is

positive definite. Hence, limt→∞ χk(t) = 0, which implies

limt→∞ ∇qk
i
Jk

i (q, t) = 0. It thus follows that limt→∞(q(t) −
q̃(t)) = 0, where q̃(t) is the NE to (4) [17]. The proof is

completed based on the results of Proposition 1.

C. Distributed NE-Seeking Algorithm

Note that the variables ql
j, q̇l

j, l = 0, 1, . . . , k − 1 and

j = 1, . . . , nl, in function φk
i may be unavailable to agent

qk
i because of local information exchange. Motivated by the

centralized algorithm (8), we will focus on solving the dis-

tributed NE-seeking problem (4) in this section. Consider the

distributed controller for (1) as

τ k
i = φk

i

(

q̂
k,0
i,1 , . . . , q̂

k,0
i,n0

, q̂
k,1
i,1 , . . . , q̂

k,k−1
i,nk−1

, θ̂
k,0
i,1 , . . . , θ̂

k,0
i,n0

,

θ̂
k,1
i,1 , . . . , θ̂

k,k−1
i,nk−1

)

− gknkη
k
i

−
nk

∑

j=1

ak
ij

(

qk
i − qk

j − dk
ij

)

˙̂
θ

k,l
i,j = −αl

j

∑

rs∈N kl
ij

(

θ̂
k,l
i,j − θ̂

s,l
r,j

)

− β l
j sgn

∑

rs∈N kl
ij

(

θ̂
k,l
i,j − θ̂

s,l
r,j

)
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˙̂qk,l
i,j = −γ l

j

∑

rs∈N kl
ij

(

q̂
k,l
i,j − q̂

s,l
r,j

)

− δl
jsgn

∑

rs∈N kl
ij

(

q̂
k,l
i,j − q̂

s,l
r,j

)

ξ̇ k
i = ςk

nk
∑

j=1

ak
ijsgn

(

ηk
j − ηk

i

)

ηk
i = ξ k

i + qk
i , ξ k

i (0) = 0 (12)

where k = 1, . . . , �, i = 1, . . . , nk, l = 0, 1, . . . , � − 1, j =

1, . . . , nl, θ̂
l,l
j,j = q̇l

j, q̂
l,l
j,j = ql

j, N kl
ij =

⎧

⎨

⎩

N
f +j

qk
i

, l = 0

N
f

qk
i

, l 	= 0
, αl

j

and γ l
j are nonnegative constants, and β l

j , δ
l
j, and ςk are some

positive constants to be determined. rs ∈ N kl
ij implies that qk

i

can obtain information from qs
r in graph Gf +j for l = 0 and

Gf for l 	= 0, respectively.

Remark 9: The algorithm (12) is designed based on a dis-

tributed observer method. In particular, q̂kl
ij , θ̂kl

ij , and ηk
i are used

by agent i of cluster k to estimate ql
j, q̇l

j, and (1/nk)
∑nk

ρ=1 qk
ρ ,

respectively. Note that k = 1, . . . , � implies that each leader

does not need to estimate other agents’ information. For agent

i of cluster k, when the observed target is the jth leader (i.e.,

l = 0), it follows from N kl
ij = N

f +j

qk
i

that only the jth leader’s

information is used. Similarly, when the observed target is a

follower (i.e., l 	= 0), it follows from N kl
ij = N

f

qk
i

that all

leaders’ information is unused.

Remark 10: Note that the algorithm (12) is divided into

two phases. First, two auxiliary observers are designed (see

Remark 9 for more details). Second, the centralized NE-

seeking algorithm (8) is composed of the two auxiliary

observers. The design is reasonable since algorithm (8) ensures

limt→∞ ∇qk
i
Jk

i (q, t) = 0. Moreover, the design and analytical

processes are different from most of the distributed NE-

seeking algorithms in [12]–[17] since the cost function (4)

is time varying.

Remark 11: The algorithm (12) is discontinuous since the

signum function is used. However, we do not use the nons-

mooth analysis in the proofs hereafter for two reasons. One

is that the signum function is measurable and locally essen-

tially bounded, and the other is that the Lyapunov function

candidate, which we will adopt in the proof of Theorem 1

is continuously differentiable. Moreover, the agents’ state

trajectories are continuous.

Lemma 5: Consider the dynamics of θ̂kl
ij and q̂kl

ij in (12).

Assume that Assumption 1 holds. If q̈l
j(t) is bounded, then

there exists β l
j ≥ β̄ l

j with β̄ l
j being a positive constant, such

that limt→∞(θ̂kl
ij (t) − q̇l

j(t)) = 0. Also, if q̇l
j is bounded, then

there exists δl
j ≥ δ̄l

j with δ̄l
j being a positive constant, such that

limt→∞(q̂kl
ij (t) − ql

j(t)) = 0.

Proof: Consider the case l = 0 that the observed target is

the jth leader and N kl
ij = N

f +j

qk
i

. Thus, the dynamics of θ̂kl
ij

in (12) can be written as

˙̂
θ

k,0
i,j = −α0

j

∑

rs∈N f +j

qk
i

(

θ̂
k,0
i,j − θ̂

s,0
r,j

)

− β0
j sgn

∑

rs∈N f +j

qk
i

(

θ̂
k,0
i,j − θ̂

s,0
r,j

)

.

Note that the above dynamics has the same form

with [24, eq. (2)]. Moreover, Assumption 1 and the bound-

edness of q̈l
j(t) imply that the conditions of [24, Th. 3.1] hold.

Therefore, it follows from in [24, Th. 3.1] that there exists

β l
j ≥ β̄ l

j ≥ ‖q̈l
j(t)‖∞ with β̄ l

j being a positive constant, such

that limt→∞(θ̂kl
ij (t) − q̇l

j(t)) = 0. The proofs for q̂kl
ij and the

other case l 	= 0 are similar and are hence omitted.

Theorem 1: Assume that Assumptions 1–3 hold. Consider

the closed-loop system composed of (1) and (12). If [ak
ij]

max ≤
gk < ([2

∑nk

j=1 ak
ij]/[nk − 1]) ∀ i, j = 1, . . . , nk and k =

1, . . . , �, then there exist β l
j ≥ β̄ l

j , δl
j ≥ δ̄l

j , and ςk ≥ ς̄k

with β̄ l
j , δ̄l

j and ς̄k being some positive constants, such that

limt→∞(q(t) − q̃(t)) = 0, where q̃(t) is the NE of game (4),

which is also the solution to problem (3).

Proof: Now, we prove the results using an iterative

approach. First, consider k = 1. Define e
1,0
i,j = θ̂

1,0
i,j − q̇0

j (t),

σ
1,0
i,j = q̂

1,0
i,j − q0

j (t), j = 1, . . . , n0. Based on (8) and (9), the

q1
i subsystem in (12) can be rewritten as

q̇1
i = φ1

i

(

q0
1, . . . , q0

n0
, q̇1

0(t), . . . , q̇0
n0

)

− g1

n1
∑

ρ=1

q1
ρ −

n1
∑

j=1

a1
ij

(

q1
i − q1

j − d1
ij

)

+ φ1
i

(

e
1,0
i,1 , . . . , e

1,0
i,n0

, σ
1,0
i,1 , . . . , σ

1,0
i,n0

)

+ g1n1

⎛

⎝

1

n1

n1
∑

ρ=1

q1
ρ − η1

i

⎞

⎠. (13)

Define the state observer error �1 for the θ̂
1,0
i,j and q̂

1,0
i,j sub-

systems and the average tracking error �1 for ξ1
i subsystem

as follows:

�1 = col
(

φ1
1

(

e
1,0
i,1 , . . . , e

1,0
i,n0

, σ
1,0
i,1 , . . . , σ

1,0
i,n0

)

, . . . ,

φ1
n1

(

e
1,0
i,1 , . . . , e

1,0
i,n0

, σ
1,0
i,1 , . . . , σ

1,0
i,n0

))

�1 = col

⎛

⎝g1n1

⎛

⎝

1

n1

n1
∑

ρ=1

q1
ρ − η1

1

⎞

⎠, . . . ,

g1n1

⎛

⎝

1

n1

n1
∑

ρ=1

q1
ρ − η1

n1

⎞

⎠

⎞

⎠.

Based on the same arguments of (11), system (13) and ξ1
i

subsystem in (12) can be rewritten as

χ̇1 = −
(

L1
g1

⊗ Im

)

χ1 +
(

L1
g1

⊗ Im

)

(�1 + �1)

ξ̇1
i = ς1

n1
∑

j=1

a1
ijsgn

(

η1
j − η1

i

)

η1
i = ξ1

i + q1
i , ξ1

i (0) = 0, i = 1, . . . , n1 (14)

where

χ1 =
(

L1
g1

⊗ Im

)

q1 + 1n1
⊗ �1 − D1
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�1 = −g1n1	1

n0
∑

r=1

ω0
rkq0

r (t)

D1 = col

⎛

⎝

n1
∑

j=1

a1
1jd

1
1j, . . . ,

n1
∑

j=1

a1
n1jd

1
n1j

⎞

⎠

and q1 = col(q1
1, . . . , q1

n1
). Note that Assumption 3 requires

that q̈0
j (t) and q̇0

j (t) are bounded. According to Lemma 5, there

exist β0
j ≥ β̄0

j ≥ ‖q̈0
j (t)‖∞, δ0

j ≥ δ̄0
j ≥ ‖q̇0

j (t)‖∞ with β̄0
j and

δ̄0
j being some positive constants, such that

lim
t→∞

e
1,0
i,j (t) = 0, lim

t→∞
σ

1,0
i,r (t) = 0.

It follows from (9) that φk
i is a nonnegative weighted sum

function of its variables. Then, we have that

lim
t→∞

�1(t) = 0.

Now, we can study the stability of system (14). Note

that Assumption 1 requires G1 being connected. It fol-

lows from (12) that
∑n1

i=1 ξ̇1
i = 0. Consequently, we have

∑n1

i=1 ξ1
i (t) =

∑n1

i=1 ξ1
i (0) = 0, which implies

∑n1

i=1 η1
i (t) =

∑n1

i=1 q1
i (t). Let Z1 = col(z1

1, . . . , z1
n1

) with z1
j = η1

j −
(1/n1)

∑n1

ρ=1 q1
ρ, j = 1, . . . , n1. It follows that:

n1
∑

i=1

(

z1
i

)T
n1

∑

j=1

a1
ijsgn

(

z1
j − z1

i

)

= −1

2

n1
∑

i=1

a1
ij

∥

∥

∥
z1

j − z1
i

∥

∥

∥

1

(15)
n1

∑

i=1

∥

∥

∥
z1

i

∥

∥

∥

1
≤ 1

n1 − 1

n1
∑

i=1

n1
∑

j=1

a1
ij

∥

∥

∥
z1

i − z1
j

∥

∥

∥

1

≤ n1 − 1

2

n1
∑

i=1

a1
ij

∥

∥

∥
z1

j − z1
i

∥

∥

∥

1
. (16)

Using (14), we have that

ż1
i = η̇1

i − 1

n1

n1
∑

ρ=1

q̇1
ρ

= ς1

n1
∑

j=1

a1
ijsgn

(

z1
j − z1

i

)

+ q̇1
i − 1

n1

n1
∑

ρ=1

q̇1
ρ . (17)

It follows from χ1 = (L1
g1

⊗ Im)q1 + 1n1
⊗ �1 − D1 that

q̇1 = (L1
g1

⊗ Im)−1(χ̇1 − 1n1
⊗ �1). System (17) can be

rewritten as

Ż1 = ς1col

⎛

⎝

n1
∑

j=1

a1
1jsgn

(

η1
j − η1

1

)

, . . . ,

n1
∑

j=1

a1
n1jsgn

(

η1
j − η1

n1

)

⎞

⎠

+ M1
(

L1
g1

⊗ Im

)−1(

χ̇1 − 1n1
⊗ �̇1

)

where M1 = (Imn1
− (1/n1)1n1

1T
n1

⊗ Im). Note that �1 =
−g1n1Z1. Combining the χ1 subsystem in (14) and the Z1

system, we have

χ̇1 = −
(

L1
g1

⊗ Im

)(

χ1 − �1 + g1n1Z1
)

Ż1 = ς1col

⎛

⎝

n1
∑

j=1

a1
1jsgn

(

η1
j − η1

1

)

, . . . ,

n1
∑

j=1

a1
n1jsgn

(

η1
j − η1

n1

)

⎞

⎠

− g1n1M1Z1 − M1χ1

+ M1

(

�1 −
(

L1
g1

⊗ Im

)−1
(

1n1
⊗ �̇1

)

)

.

Define the Lyapunov function candidates as

V1 = 1

2

(

Z1
)T

Z1 + 1

2g1n1

(

χ1
)T(

L1
g1

⊗ Im

)−1
χ1.

It follows from (15) that:

V̇1 = −ς1

2

n1
∑

i=1

a1
ij

∥

∥

∥
z1

j − z1
i

∥

∥

∥

1
− g1n1(Z

1)TM1Z1

+
(

Z1
)T

M1

(

�1 +
(

L1
g1

⊗ Im

)−1
(

1n1
⊗ �̇1

)

)

− 1

g1n1

(

χ1
)T

χ1 + 1

g1n1

(

χ1
)T

�1

−
(

Z1
)T

M1χ1 −
(

Z1
)T

χ1. (18)

Note that limt→∞ �1(t) = 0 and Assumption 3 imply that

�̇1 = −g1n1	1

∑n0

r=1 ω0
rkq̇0

r (t) is bounded. Thus, there exists

ς∗ > 0 such that

∣

∣

∣

∣

(

Z1
)T

M1

(

�1 +
(

L1
g1

⊗ Im

)−1
(

1n1
⊗ �̇1

)

)
∣

∣

∣

∣

≤ ς∗
n1

∑

i=1

∥

∥

∥
z1

i

∥

∥

∥

1
.

Using (16), there exists ς1 > ς̄1 = (n1 − 1)(ς∗ + 1) such that

V̇1 ≤ −
n1

∑

i=1

∥

∥

∥
z1

i

∥

∥

∥

1
− g1n1

(

Z1
)T

M1Z1 − 1

g1n1

(

χ1
)T

χ1

−
(

Z1
)T(

M1 + Imn1

)

χ1 + 1

g1n1

∥

∥

∥
χ1

∥

∥

∥
‖�1‖

≤ −g1n1

(

Z1
)T

Z1 − 1

g1n1

(

χ1
)T

χ1 − 2
(

Z1
)T

χ1

+ 1

g1n1

∥

∥

∥
χ1

∥

∥

∥

∥

∥

∥
M1�1

∥

∥

∥
−

n1
∑

i=1

∥

∥

∥
z1

i

∥

∥

∥

1

= −
∥

∥

∥

∥

(√
g1n1Z1 + 1

√
g1n1

χ1

)
∥

∥

∥

∥

2

−
n1

∑

i=1

∥

∥

∥
z1

i

∥

∥

∥

1

+ 1

g1n1

∥

∥

∥
χ1

∥

∥

∥

∥

∥

∥
M1�1

∥

∥

∥
.

The second inequality is obtained by (Z1)TM1 = (Z1)T, which

comes from (1T
n1

⊗ Im)Z1 = 0. Using the comparison prin-

ciple in [25, Ch. 3.4], it follows from limt→∞ �1(t) = 0

that limt→∞ V1(t) = 0. Therefore, limt→∞ ∇q1
i
J1

i (q, t) =
limt→∞ 2χ1(t) = 0. It follows that limt→∞(q1

i (t)−q̃1
i (t)) = 0,

‖q̇1
i (t)‖ ≤ Q1, and ‖q̈1

i (t)‖ ≤ Q1 with constant Q1.

Second, assume that limt→∞(qν
i (t) − q̃ν

i (t)) = 0, ‖q̇ν
i (t)‖ ≤

Qν , and ‖q̈ν
i (t)‖ ≤ Qν with constant Qν holding for ν =

0, . . . , k − 1. Next, we will show that χk(t) → 0. Let e
k,l
i,j =

θ̂
k,l
i,j − q̇l

j(t) and σ
k,l
i,j = q̂

k,l
i,j − ql

j(t). Based on (8) and (9), the

qk
i subsystem in (12) can be rewritten as

q̇k
i = φk

i

(

q0
1, . . . , q0

n0
, q1

1, . . . , qk−1
nk−1

, q̇0
1, . . . , q̇0

n0
, q̇1

1, . . . , q̇k−1
nk−1

)

− gk

nk
∑

ρ=1

qk
ρ −

nk
∑

j=1

ak
ij

(

qk
i − qk

j − dk
ij

)
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+ φk
i

(

e0
1, . . . , e0

n0
, e1

1, . . . , ek−1
nk−1

,

σ 0
1 , . . . , σ 0

n0
, σ 1

1 , . . . , σ k−1
nk−1

)

+ gknk

⎛

⎝

1

nk

nk
∑

ρ=1

qk
ρ − ηk

i

⎞

⎠. (19)

Define the state observer error �k for the θ̂
k,l
i,j and q̂

k,l
i,j subsys-

tems, and the average tracking error �k for the ξ k
i subsystem

as follows:

�1 = col
(

φ1
1

(

e
1,0
i,1 , . . . , e

1,0
i,n0

, σ
1,0
i,1 , . . . , σ

1,0
i,n0

)

, . . . ,

φ1
n1

(

e
1,0
i,1 , . . . , e

1,0
i,n0

, σ
1,0
i,1 , . . . , σ

1,0
i,n0

))

�1 = col

⎛

⎝gknk

⎛

⎝

1

nk

nk
∑

ρ=1

qk
ρ − ηk

1

⎞

⎠, . . . ,

gknk

⎛

⎝

1

nk

nk
∑

ρ=1

qk
ρ − ηk

nk

⎞

⎠

⎞

⎠.

Based on the same arguments of (11), the system (19) and the

ξ k
i subsystem in (12) can be written as

χ̇k = −
(

Lk
gk

⊗ Im

)

χk +
(

Lk
gk

⊗ Im

)

(�k + �k)

ξ̇ k
i = ςk

nk
∑

j=1

ak
ijsgn

(

ηk
j − ηk

i

)

ηk
i = ξ k

i + qk
i , ξ k

i (0) = 0, i = 1, . . . , nk (20)

where

χk =
(

Lk
gk

⊗ Im

)

qk + 1nk
⊗ �k − Dk

�k = −gknk	k

⎛

⎝

k−1
∑

s=1

ns
∑

j=1

ωsk

ns

qs
j +

n0
∑

r=1

ω0
rkq0

r (t)

⎞

⎠

Dk = col

⎛

⎝

nk
∑

j=1

ak
1jd

k
1j, . . . ,

nk
∑

j=1

ak
nkjd

k
nkj

⎞

⎠

and qk = col(qk
1, . . . , qk

nk
). Note that (20) has the same form

with (14). Using the same argument of (14), we have that

limt→∞(qk
i (t) − q̃k

i (t)) = 0, ‖q̇k
i (t)‖ ≤ Qk, and ‖q̈k

i (t)‖ ≤ Qk

with constant Qk.

The process is repeated � times to obtain limt→∞(q
�
i (t) −

q̃
�
i (t)) = 0, and the proof is completed based on the results in

Proposition 1.

Remark 12: Note that all the agents’ states are bounded

since the leaders’ states are bounded and the followers’

states are constrained in the bounding box of the lead-

ers (see the requirements of a nonlinear placement problem

in [1, Sec. 8.7]). The lower bounds of β̄ l
j , δ̄l

j , and ς̄k are given

in the proof. In particular, we require β̄ l
j ≥ ‖q̈l

j(t)‖∞ and δ̄l
j ≥

‖q̇l
j(t)‖∞, which come from the conditions of [24, Th. 3.1].

The parameter ς̄k depends on �k and �k, which comes from

the conditions of the average tracking algorithm in [26].

Fig. 1. Network topology among agents.

Fig. 2. Average tracking states ηk
i &

∑nk
i=1

qk
i .

V. EXAMPLES

Consider a formation control problem of a multicluster

system composed of four leaders and ten followers, and

assume that the problem can be modeled as the distributed

nonlinear placement problem (3). All the followers are divided

into four clusters (including 3, 3, 4, and 4 followers, respec-

tively). The communication network graphs Gk and G are given

in Fig. 1. Let the state of system (1) be qk
i = [qk

i,x, qk
i,y]T. The

positions of the leaders are q0
i (t) = (5+5i)[ sin ωt; cos ωt] with

ω = 4π × 10−4, i = 1, 2, 3, 4. Some elements of the weight

are ω0
11 = ω0

31 = 1, ω0
22 = ω0

42 = 1, ω0
13 = ω0

23 = ω13 = 1,

and ω14 = ω34 = 1, and others are 0. The desired distance

vectors are d1
12 = d2

42 = [5; 5]T, d1
13 = d2

13 = d3
13 = [−5; 5]T,

d2
43 = d4

43 = [0; 5]T, and d3
32 = d4

32 = d4
41 = [5; 0]T. Assume

that all the agents’ initial positions are qk
i (0) = [10i, 15i]. It

is not hard to show that Assumptions 1 and 2, and [ak
ij]

max ≤
gk < ([2

∑nk

j=1 ak
ij]/[nk − 1]) ∀ i = 1, . . . , nk hold.

Let gk = 1, αl
j = 2 × 10−3, β l

j = 50, γ l
j = 5 × 10−5,

δl
j = 50, and ςk = 3. The effectiveness of the control algo-

rithm (12) in maintaining a formation shape is demonstrated

in Figs. 2–6 (only some results are presented due to space

limitation). In particular, Figs. 2 and 3 show that the average

tracking errors and states observer errors asymptotically con-

verge. It follows from Fig. 4 that the nonlinear placement for

cluster k is satisfied, that is, the total interconnection length

of the links connecting the centers of cluster 1 and leaders q0
1
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Fig. 3. State observers q̂kl
ij & ql

j and θ̂kl
ij & q̇l

j.

Fig. 4. Positions of leaders q0
r and centers of clusters (1/nk)

∑nk
i=1

qk
i .

Fig. 5. Clusters maintaining a formation (qk
i,x, qk

i,y).

and q0
3 is minimized. Moreover, Fig. 5 shows that the follow-

ers in each cluster are maintained according to some desired

distance vector dk
ij. The formation errors of cluster 1 are given

in Fig. 6. It can be observed that the formation errors asymp-

totically converge, which indicates that the system actually

converges to the NE.

Fig. 6. Formation errors qk
i − qk

j − dk
ij.

VI. CONCLUSION

In this article, we proposed a distributed nonlinear place-

ment algorithm, which was designed based on a distributed

observer-based method. The communication among all the

agents is an undirected connected topology. The main results

were proved by an iterative approach. Future study directions

include several open and interesting questions. For example,

the communication amongst the agents is directed and time

varying or the dynamics for each agent is nonlinear and het-

erogeneous. Moreover, it is interesting to extend the designed

algorithm to the nonlinear placement problem with a more

complex function h(·).

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[2] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective cov-
erage and surveillance in distributed sensor networks,” in Proc. IEEE

Conf. Wireless Commun. Netw., vol. 3, Mar. 2003, pp. 1609–1614.

[3] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.

Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[4] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.

Control, vol. 50, no. 5, pp. 655–661, May 2005.

[5] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM J. Optim., vol. 20, no. 3, pp. 1157–1170, 2009.
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