

Parametric Analysis of Pitch Angle Scattering and Losses of Relativistic Electrons by Oblique EMIC Waves

Miroslav Hanzelka^{1,2*}, Wen Li¹, and Qianli Ma^{1,3}

¹Center for Space Physics, Boston University, Boston, MA, USA

²Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czech Republic

³Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA, USA

Correspondence*:

Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA

mirekhanzelka@gmail.com

2 ABSTRACT

3 We analyze the effects of electromagnetic ion cyclotron (EMIC) waves on relativistic electron
4 scattering and losses in the Earth's outer radiation belt. The EMIC emissions are commonly
5 observed in the inner magnetosphere and are known to reach high amplitudes, causing significant
6 pitch angle changes in >1 MeV electrons via cyclotron resonant interactions. We run test-particle
7 simulations of electrons streaming through helium-band waves with different amplitudes and
8 wave normal angles and assess the sensitivity of advective and diffusive scattering behavior
9 to these two parameters, including the possibility of very oblique propagation. The numerical
10 analysis confirms the importance of harmonic resonances for oblique waves, and the very oblique
11 waves are observed to efficiently scatter both co-streaming and counter-streaming electrons.
12 However, strong finite Larmor radius effects limit the scattering efficiency at high pitch angles.
13 Recently discussed force bunching effects and associated strong positive advection at low pitch
14 angles are, surprisingly, shown to cause no decrease in the phase space density of precipitating
15 electrons, and it is demonstrated that the transport of electrons into the loss cone balances out
16 the scattering out of the loss cone. In the case of high-amplitude obliquely propagating waves,
17 weak but nonnegligible losses are detected well below the minimum resonant energy, and we
18 identify them as the result of nonlinear fractional resonances. Simulations and theoretical analysis
19 suggest that these resonances might contribute to subrelativistic electron precipitation but are
20 likely to be overshadowed by nonresonant effects.

21 **Keywords:** electron scattering, EMIC waves, nonlinear wave-particle interactions, test-particle simulation, radiation belts, fractional
22 resonance, loss cone, electron precipitation

1 INTRODUCTION

23 Electromagnetic ion cyclotron (EMIC) waves are naturally occurring electromagnetic emissions in Earth's
24 magnetosphere generated by unstable anisotropic hot ion populations (Kennel and Petschek, 1966;
25 Anderson et al., 1996). Each ion component of the space plasma has a corresponding EMIC frequency

26 band located below the gyrofrequency of the ion, with the hydrogen band (H+) and helium band (He+)
27 being the most commonly observed (Min et al., 2012; Meredith et al., 2014; Saikin et al., 2015; Wang et al.,
28 2017b; Jun et al., 2021). In the outer radiation belt, the wave frequencies in the near-equatorial source
29 (Loto'ani et al., 2005; Allen et al., 2015) fall mainly into the Pc1 range 0.2–5 Hz (Saito, 1969; Usanova
30 et al., 2012). Initially generated in the left-handed mode, the waves may convert to the right-handed mode
31 at higher latitudes (Rauch and Roux, 1982; Perraut et al., 1984; Kim and Johnson, 2016). These polarized
32 waves can scatter relativistic electrons (kinetic energies E_k around 1 MeV and larger) in pitch angle α
33 through cyclotron resonant interactions (Summers et al., 1998; Horne and Thorne, 1998), which leads to
34 significant losses of radiation belt electrons to the atmosphere (Thorne and Kennel, 1971; Usanova et al.,
35 2014; Clilverd et al., 2015; Kurita et al., 2018; Li and Hudson, 2019).

36 During geomagnetically active times, EMIC waves at lower L-shells ($L < 6$) can reach peak magnetic
37 field amplitudes B_w above one percent of the background magnetic field strength B_0 (Meredith et al.,
38 2003; Engebretson et al., 2015). Trajectories of particles resonating with strong waves experience large
39 perturbations, and a variety of associated nonlinear effects appear (Karpman, 1974; Artemyev et al., 2018;
40 Grach et al., 2022). Phase-trapping of ions in the wave potential leads to nonlocal transport to higher pitch
41 angles and the formation of phase space density (PSD) holes in the gyrophase space (Omura et al., 2010;
42 Shoji et al., 2021), while phase-trapped electrons experience a decrease in pitch angle (Omura and Zhao,
43 2012; Zheng et al., 2019). At $\alpha \approx 0^\circ$, the force-bunched electrons are transported predominantly to higher
44 pitch angles; Bortnik et al. (2022) proposed that this nonlinear effect may result in precipitation blocking
45 due to the removal of electrons from the loss cone. Below the fundamental cyclotron resonance energy,
46 nonresonant scattering by amplitude-modulated waves takes place and may extend the energy range of
47 precipitating electrons down to hundreds of keV (Chen et al., 2016; An et al., 2022).

48 When the wave normal angle θ_k (WNA) of EMIC waves increases and the propagation becomes oblique,
49 finite Larmor radius effects enable interaction with higher cyclotron harmonics. Wang et al. (2017a) studied
50 the interaction of electrons with moderately oblique monochromatic EMIC waves through nonlinear test-
51 particle simulations and quasilinear diffusive modeling. They have shown that with increasing θ_k , harmonic
52 resonances at ultrarelativistic energies can lead to significant scattering loss, while the fundamental
53 resonance becomes weaker for oblique waves. Lee et al. (2018) analyzed WNA and ellipticity of a set
54 of EMIC waves detected by Van Allen Probe A, ran test-particle simulations of electron interaction with
55 very powerful and oblique EMIC waves, and highlighted the complexity of pitch-angle evolution due to
56 higher-order resonance with the elliptically polarized wave. They also emphasized the advective aspects
57 of nonlinear scattering and noted the importance of ellipticity and WNA distributions in modeling the
58 radiation belt electron transport.

59 In this paper, we perform test-particle simulations of nonlinear electron interactions with quasiparallel and
60 very oblique monochromatic EMIC waves, with the overall goal to describe the dependence of advection,
61 diffusion, and subsequent particle losses on the wave amplitude and wave normal angle – special attention
62 is given to the PSD evolution at low pitch angles. After describing the simulation setup in Section 2, we
63 analyze the average and standard deviation of equatorial pitch angle changes and show that for very oblique
64 waves and discuss the influence of higher harmonics on advection and diffusion 3.1. In Section 3.2, we
65 demonstrate through Liouville mapping of phase space density in backward-in-time simulations that the
66 force-bunching effects at low pitch angles are balanced out by transport from higher pitch angles and
67 that there is no precipitation blocking in the sense of decreasing precipitating electrons PSD below the
68 trapped PSD. Section 3.3 describes fractional resonances, a type of resonance acting below the fundamental
69 resonance energy, and considers their effects on subrelativistic electrons. A summary of the most salient

70 results and the discussion of the impacts of our findings on radiation belt electron modeling can be found
 71 in Section 4.

2 METHODS AND SIMULATION SETUP

72 Before choosing representative wave and plasma parameters for our particle simulation, we must first
 73 consider which quantities can influence the behavior of resonant electrons. Wave amplitude B_w controls the
 74 transition from quasilinear to nonlinear interaction, and wave normal angle θ_k is related to the perpendicular
 75 component of the wave vector and associated harmonic resonances. Varying the values of B_w or θ_k leads
 76 to major qualitative changes in the resonant behavior; therefore, they are the essential parameters in
 77 our simulation. We choose four values of wave normal angle $\{5^\circ, 45^\circ, 70^\circ, 80^\circ\}$ to cover quasiparallel,
 78 moderately oblique, and very oblique wave propagation. The WNA values are combined with three
 79 values of amplitude $\{100\text{ pT}, 400\text{ pT}, 1.6\text{ nT}\}$, which approximately correspond to $B_w/B_{0\text{eq}}$ ratios of
 80 $\{0.04\%, 0.16\%, 0.64\%\}$ for equatorial field strength $B_{0\text{eq}} = 248\text{ nT}$ at $L = 5$. This choice of L-shell is
 81 consistent with regions of enhanced EMIC wave activity identified by Meredith et al. (2014) and Jun et al.
 82 (2021) in spacecraft measurements during active geomagnetic conditions.

83 There are also several parameters that influence the value of the minimum resonant energy, which is
 84 given by the formula

$$E_{R\text{min}} = mc^2 \left(\frac{n\omega\Omega_e - k_{\parallel}c\sqrt{n^2\Omega_e^2 + k_{\parallel}^2c^2 - \omega^2}}{\omega^2 - k_{\parallel}^2c^2} - 1 \right), \quad (1)$$

85 where m is the electron mass, c is the speed of light, k_{\parallel} is the component of wave vector parallel to
 86 B_0 , ω is the wave frequency, Ω_e is the local electron gyrofrequency, and n is an integer determining the
 87 resonance harmonic (positive/negative for electrons streaming against/along a right/left-handed wave). The
 88 energy $E_{R\text{min}}$ is dependent on the normalized frequency ω/Ω_e , and through the cold plasma dispersion
 89 relation $k(\omega)$, it also depends on the electron plasma frequency ω_{pe} and the concentration of ions. These
 90 dependencies are evaluated and plotted in Figure 1, where we plot $E_{R\text{min}}$ with $n = -1$ for a monochromatic
 91 left-handed EMIC wave propagating from the magnetic equator along a dipole field line up to magnetic
 92 latitude $\lambda_m = 30^\circ$. We consider high ($\omega_{pe0}/\Omega_{e0} = 15$) as well as low ($\omega_{pe0}/\Omega_{e0} = 5$) density at the
 93 equator, and we compare the high concentrations of ions ($n_p/n_e = 0.77$, $n_{He}/n_e = 0.2$, $n_O/n_e = 0.03$),
 94 which was used in the simulations of Jordanova et al. (2008) and Bortnik et al. (2022), with lower
 95 concentrations ($n_p/n_e = 0.99$, $n_{He}/n_e = 0.005$, $n_O/n_e = 0.005$). Latitudinal dependence of density
 96 follows the Denton et al. (2002) formula $n_e = n_{e0}(\cos \lambda_m)^{-2a}$, with $a = 0.5$ in the high-density case
 97 and $a = 1.0$ in the low-density case (and the relative ion concentrations remain constant). We observe
 98 that changes to the density, ion concentration, and frequency band manifest mostly through a rescaling
 99 of $E_{R\text{min}}$. Therefore, we limit our investigations to the helium band and choose the higher values of
 100 density ($\omega_{pe0}/\Omega_{e0} = 15 \sim n_{e0} = 134\text{ cm}^{-3}$) and ion concentrations, in agreement with the observations of
 101 Meredith et al. (2014) and Horwitz et al. (1981). The wave frequency is set to $\omega/\Omega_{He0} = 0.80 \sim 0.76\text{ Hz}$,
 102 a slightly higher value that allows the waves to reach higher latitudes before experiencing the polarization
 103 reversal.

104 Apart from the strong interaction near resonant energies, electrons can also experience nonresonant
 105 scattering due to wave amplitude gradients (Chen et al., 2016) or, equivalently, due to the spectral
 106 broadening of amplitude-modulated waves (An et al., 2022). To simplify our analysis, we suppress the

107 nonresonant scattering by introducing a slow and smooth amplitude change at the edges of the wave packet.
 108 This is done by multiplying the wave envelope by a half-period of the \cos^2 function, with a field-aligned
 109 distance from the minimum to the maximum of the function set to $h = 2200$ km. The envelope shape is
 110 plotted in Figure 2a. The packet ends at a latitude where the normalized frequency reaches $\omega/\Omega_O = 1.25$.
 111 At this frequency, the helium wave is already right-handed, and the resonant energy of very oblique waves
 112 rapidly increases (Stix, 1992).

113 The test-particle simulation method is based on the solution of the Lorentz force law by a relativistic Boris
 114 algorithm with a phase angle correction, as described, e.g., by Zenitani and Umeda (2018). The components
 115 of the electromagnetic wave field are defined according to the analysis of elliptically polarized waves
 116 presented in Omura et al. (2019); see also Equations (5)–(8) and (12)–(17) in Appendix A. Wave packet
 117 motion can be neglected on short timescales since the group velocity of EMIC waves is much smaller than
 118 the velocity of relativistic electrons. In forward-in-time simulations, the particles start either at the equator
 119 and propagate until they reach the end of the wave packet (or their mirror point) or they start at the end
 120 of the wave packet and propagate back to the equator. Mirroring particles are not allowed to return to the
 121 equator so that we can separate the resonant effects experienced by co-streaming and counter-streaming
 122 electrons. In both cases, the initial particle energy is spaced logarithmically from 900 keV to 30 MeV with
 123 96 bins, initial pitch angles go from 0° to 90° (or 180° to 90° for counter-streaming electrons) with 90
 124 linear steps, and the initial gyrophases φ uniformly cover the full 360° angle with 72 steps. Note that the
 125 grid boundaries in the (E_k, α, φ) space represent bin edges. In backward-in-time simulations, the pitch
 126 angle range is limited to 0° to 20° (or 180° to 160° for counter-streaming electrons) with 90 linear steps,
 127 providing increased resolution of the loss cone ($\alpha_{\text{loss}} = 3.6^\circ$ at the equator and 6.1° at the end of the
 128 packet). The time step of the Boris solver is adaptive and always stays at 128 steps per local electron
 129 gyroperiod.

130 The backward-in-time simulations are used to map the phase space density of an initial, unperturbed
 131 distribution to the final state and assess the PSD evolution due to resonant interactions (Nunn and Omura,
 132 2015; Hanzelka et al., 2021). We assume that the initial hot (relativistic) distribution is in the form of a sum
 133 of subtracted bi-Maxwellian distributions that preserves phase space density along adiabatic trajectories
 134 (Summers et al., 2012; Omura, 2021). At a distance h , this distribution can be written for relativistic
 135 momenta $u_{\parallel} = \gamma v_{\parallel}$ and $u_{\perp} = \gamma v_{\perp}$ as

$$f(h, u_{\parallel}, u_{\perp}) = \sum_{i=1}^N f_i(h, u_{\parallel}, u_{\perp}) \quad (2)$$

136 with

$$\begin{aligned} f_i(h, u_{\parallel}, u_{\perp}) = & \frac{n_{\text{he}0i}}{(2\pi)^{3/2} U_{t\parallel i} U_{t\perp i}^2 (1 - \rho_i \beta_i)} \exp\left(-\frac{u_{\parallel}^2}{2U_{t\parallel i}^2}\right) \times \\ & \times \left[\exp\left(-\left(\frac{1 - B_{0\text{eq}}/B_0(h)}{2B_0(h)U_{t\perp i}^2} + \frac{B_{0\text{eq}}}{2B_0(h)U_{t\perp i}^2}\right) u_{\perp}^2\right) - \right. \\ & \left. - \rho_i \exp\left(-\left(\frac{1 - B_{0\text{eq}}/B_0(h)}{2B_0(h)U_{t\parallel i}^2} + \frac{B_{0\text{eq}}}{2\beta_i B_0(h)U_{t\parallel i}^2}\right) u_{\perp}^2\right) \right]. \end{aligned} \quad (3)$$

137 We set $N = 5$ and choose the following values of distribution parameters: loss cone width $\beta_i = 0.5 \forall i$,
 138 loss cone height $\beta_i = 1.0 \forall i$, parallel and perpendicular thermal momenta $U_{t\parallel i}/c = U_{t\perp i}/c =$
 139 $\{0.2, 0.5, 1.0, 2.5, 9.0\}$, and hot electron densities $n_{he0i} = \{2.2, 0.22, 0.022, 0.0022, 2.2 \cdot 10^{-7}\} \text{ cm}^{-3}$.
 140 PSD inside the loss cone is set to zero for all values of h . The equatorial distribution is plotted in Figure 2b
 141 in the $(E_k, \alpha_{\text{ini}})$ space. The energy profile up to 10 MeV is constructed to loosely follow the Van Allen
 142 Probes measurements analyzed by Zhao et al. (2019); however, the energy distribution is of little importance
 143 for EMIC-electron resonance since the acceleration caused by this interaction is negligible (Summers
 144 et al., 1998). Line plots of pitch angle distributions for several initial energies are presented in Figure 2c.
 145 Although each component of the initial distribution has a zero temperature anisotropy $A_t = U_{t\perp}^2/U_{t\parallel}^2 - 1$,
 146 the relativistic pitch angle anisotropy (Xiao et al., 1998) can be large due to the subtraction in the PSD
 147 distribution model. This model is consistent with the assumption that previous weaker wave-particle
 148 interactions already eroded the pitch angle profile.

3 RESULTS

149 3.1 Advection and Diffusion

150 When studying the nonlinear interactions between plasma waves and charged particles, it is illustrative
 151 to start by inspecting individual trajectories. In Figure 3, we plot the spatial evolution of the equatorial
 152 pitch angle for electrons propagating through a high-amplitude ($B_w/B_{0\text{eq}} = 0.0064$) moderately oblique
 153 ($\theta_k = 45^\circ$) EMIC wave. The equatorial minimum resonance energy for this wave is $E_{R\text{min}} \approx 3.3$ MeV
 154 for $n = \pm 1$ and $E_{R\text{min}} \approx 7.1$ MeV for $n = \pm 2$. Particles starting at the equator with initial pitch
 155 angle $\alpha = 0.5^\circ$ and energies $E_k = 3.95$ MeV experience a significant increase in equatorial pitch angle
 156 $\Delta\alpha_{\text{eq}} \approx 11^\circ$ due to the $n = -1$ resonance, with almost no dependence on the initial gyrophase (Figure 3a).
 157 This is the advective behavior caused by force bunching, as previously described by Grach and Demekhov
 158 (2020). Particles starting at larger pitch angles ($\alpha_{\text{eq}} = 29.5^\circ$, Figure 3b) experience a large spread in α_{eq}
 159 across the gyrophases, exhibiting a predominantly diffusive behavior. The asymmetry in $\Delta\alpha_{\text{eq}}$ towards
 160 lower values is caused by phase locking of φ to the wave phase ψ , but the particles never become fully
 161 phase-trapped in this particular case. In Figure 3c, we increase the initial energy to $E_k = 8.51$ MeV and
 162 observe that particles first undergo scattering due to the $n = -2$ harmonic resonance and then encounter
 163 the $n = -1$ resonance at latitudes from 11° to 16° , resulting in pitch-angle diffusion.

164 Figures 3d–3f show particle trajectories of electrons starting at the end of the wave packet and streaming
 165 against the wave. Here, resonant interaction is enabled by the right-handed component of the elliptically
 166 polarized wave. Keeping the initial energies and initial equatorial pitch angles similar to the co-streaming
 167 case, we observe that the advective and diffusive effects of the $n = 1$ resonance are comparable to the
 168 $n = -1$ resonance. However, the maximum change in pitch angle is smaller, and the phase-locking effect
 169 does not appear. In the case with $E_k = 8.51$ MeV, the counter-streaming particles first encounter the
 170 stronger $n = 1$ resonance, and the weaker $n = 2$ resonance has then only a little effect on the spread in
 171 $\Delta\alpha_{\text{eq}}$.

172 To evaluate the pitch angle evolution of relativistic electrons across all initial pitch angles and energies,
 173 we introduce two statistical measures: the average $\langle \Delta\alpha_{\text{eq}} \rangle_\varphi$ (first central moment), which is related to the
 174 advection coefficient, and the standard deviation $\sigma_\varphi(\alpha_{\text{eq}})$ (second central moment), which is related to the
 175 diffusion coefficient. We intentionally eschew the standard advection and diffusion coefficients (Zheng
 176 et al., 2019) as they are often bounce-averaged in practical applications, while we do not let the particles
 177 finish the half-bounce, which is to separate between $n > 0$ and $n < 0$ resonances. The average change

178 in equatorial pitch angle for co-streaming particles is plotted in Figure 4 in $(\alpha_{\text{ini}}, E_k)$ coordinates, with
 179 each plot corresponding to one of the 3 combinations of wave amplitude and wave normal angle. Starting
 180 with quasiparallel propagation ($\theta_k = 5^\circ$, Figures 4a–4c), we first note the different scales of color bars,
 181 which have a range of $\pm \max_{(\alpha_{\text{ini}}, E_k)} |\langle \Delta\alpha_{\text{eq}} \rangle_\varphi|$ separately for each plot. An outstanding feature, high
 182 positive advection, appears at low pitch angles near the $n = -1$ resonance, confirming the force-bunching
 183 effects observed on trajectories in Figure 3a. Another prominent feature is the two red (positive) and blue
 184 (negative) curved stripes that follow the dependence of $n = -1$ resonant energy on pitch angle. For the
 185 case with the largest wave amplitude (Figure 4c), the negative advection at higher pitch angles dominates
 186 over the positive one, indicating significant nonlinear phase-trapping effects.

187 Interaction with oblique waves (Figures 4d–4l) introduces some new effects. First, we may notice the
 188 alternating blue and red vertical lines at high pitch angles, with almost no dependence on energy. These are
 189 the result of nonresonant oscillations induced by the parallel component of the wave field, and they would
 190 almost disappear if the particles were allowed to bounce back to the equator – the lines are not relevant
 191 for our analysis of the cyclotron resonance and will be omitted in the following presentation. Harmonic
 192 resonances become visible at higher amplitudes, adding new pairs of positive and negative advective stripes
 193 along the corresponding resonance energy curves. However, as the wave normal angle increases, advective
 194 effects disappear at higher pitch angles; for $\theta_k = 80^\circ$, the average change in pitch angle becomes negligible
 195 for particles with $\alpha_{\text{ini}} > 30^\circ$. Moreover, a fine stripe structure traversing the resonant energy curves appears
 196 in the high-amplitude plots. These new effects will be explained below when discussing the diffusive
 197 behavior, where their origin becomes more apparent.

198 The standard deviation in the equatorial pitch angle of co-streaming particles is plotted in Figure
 199 5, following the panel format of Figure 4. The color bars of each individual panel go from zero to
 200 $\max_{(\alpha_{\text{ini}}, E_k)} \sigma_\varphi(\alpha_{\text{eq}})$. Starting again with the quasiparallel propagation ($\theta_k = 5^\circ$, Figures 5a–5c), we
 201 can see the suppressed diffusion at low pitch angles, consistent with the lack of spread in pitch angles
 202 observed in the particle trajectories (Figure 3a). The largest values of $\sigma_\varphi(\alpha_{\text{eq}})$ are localized along the
 203 resonance energy curve, with slight changes appearing for $B_w = 1.6$ nT at higher pitch angles, where
 204 and phase-trapping and bunching effects may enhance or decrease the standard deviation. In the oblique
 205 case, diffusion at higher pitch angles gets weaker with growing wave normal angle. Unlike in the analysis
 206 of advection, we detect a clear structure of maxima and minima along each resonant curve, which is
 207 related to the zeros of Bessel functions that arise in the derivation of harmonic resonances (see Appendix A,
 208 Equations (9)–(11) and (20)–(22)). The fine structure appearing in the energy range of harmonic resonances
 209 is now also more evident, especially in the high-amplitude case (Figures 5f, 5i, and 5l). By inspecting
 210 trajectory plots, its origin can be traced to multiresonance interactions, when particles phase-organized
 211 by the resonance of order $|n|$ at lower latitudes experience a $|n - 1|$ resonance at higher latitudes. Notice
 212 that the fine structure is also present in the quasiparallel case, showing us that the harmonic resonances are
 213 important even at WNA as low as $\theta_k = 5^\circ$.

214 Concerning the strength of diffusion at lower pitch angles, the test-particle simulations show a decreasing
 215 trend in $\sigma_\varphi(\alpha_{\text{eq}})$ with increasing WNA at energies close to the $n = -1$ resonance. Harmonic resonances
 216 get stronger compared to the fundamental, but the overall diffusion at higher energies does not change
 217 much because the increased strength of near-equatorial harmonic interaction is compensated by the weaker
 218 fundamental resonance encountered at higher latitudes. An exception is the extreme ultrarelativistic energies
 219 ($E_k \gtrsim 15$ MeV), where the interaction with very oblique waves causes slightly stronger diffusion (Figures
 220 5i and 5l). This behavior will impact the precipitation into the loss cone, as discussed in the next section.

221 **3.2 Phase Space Density near Loss Cone**

222 The scattering effects analyzed in Section 3.1 transport particles into the loss cone and contribute thus to
 223 the atmospheric precipitation of relativistic electrons. As described in Section 2, we trace particles back
 224 in time from the end of the wave packet to the equator and map the PSD values of a known equatorial
 225 distribution along particle trajectories to the starting point. The resulting PSD distributions at the end of
 226 the packet are plotted in Figure 6 in the $(\alpha_{\text{end}}, E_k)$ space, where α_{end} is the initial pitch angle value in the
 227 sense of backward-in-time propagation. Since the number density of relativistic electrons in our model is
 228 not scaled to any specific spacecraft observation, we keep normalized phase space density units $c^{-6}\Omega_{\text{e0}}^3$
 229 used in the simulation code.

230 The quasiparallel EMIC wave manages to completely fill the loss cone near fundamental resonant energy
 231 when its amplitude is set to $B_w = 400$ pT (Fig. 6b). Increasing the amplitude to $B_w = 1.6$ nT extends the
 232 range of energies with complete loss cone filling up to 10 MeV (Fig. 6c). There are several noteworthy
 233 features to this strongly perturbed PSD distribution. First, we observe that particles near $E_k = 13$ MeV
 234 reach deeper into the loss cone, a feature not seen in the low-amplitude wave precipitation profile. This
 235 irregularity arises from the fast polarization reversal experienced by quasiparallel waves, which abruptly
 236 stops the resonant interaction – mild oscillations in $\sigma_\varphi(\alpha_{\text{eq}})$ across energy were seen in the top left corners
 237 of Figure 5a–5c, but the effect on precipitation becomes clear only for strong waves. Second, the energy
 238 profile of trapped particles immediately above α_{loss} has a local maximum near the fundamental resonance
 239 – this peak appears due to pitch angle anisotropy when particles from high PSD regions at higher pitch
 240 angles undergo scattering towards lower pitch angles. Third, the pitch angle distribution at energies from
 241 3 MeV to 10 MeV is flattened, signifying a marked decrease in pitch angle anisotropy. And fourth, as a
 242 consequence of the third point, there is no apparent precipitation blocking – that is, phase space density
 243 inside the loss cone reaches the value of trapped particle PSD.

244 The lack of precipitation blocking contradicts the predictions of Bortnik et al. (2022) and may seem
 245 counterintuitive, especially after seeing the strong upward advection at low pitch angles in Figure 4c. To
 246 explain this observation, we can consider the consequences of Liouville’s theorem (i.e., constancy of PSD
 247 along phase space trajectories), which is known to hold in the Hamiltonian system of charged particles and
 248 electromagnetic waves constituting a Vlasovian plasma (Ichimaru, 2004). Assume that a state has been
 249 reached where the PSD of precipitating and trapped electrons are equal at a certain energy. Because EMIC
 250 waves cannot efficiently accelerate electrons and change their energy, the PSD along trajectories will always
 251 be the same. Therefore, no amount of force bunching or other nonlinear effects can disturb the uniform
 252 pitch angle distribution. If the PSD in the loss cone were initially higher than outside, the EMIC-induced
 253 scattering would mix the distribution and restore uniformity, decreasing thus the precipitating PSD, but it
 254 would not push it below the value of trapped PSD. Nonuniformity along the field line could complicate
 255 the argument if a broader range of v_{\parallel} would be considered, but the spread in v_{\parallel} at low pitch angles at a
 256 fixed energy level is negligible. The seeming discrepancy between backward-in-time PSD mapping and the
 257 transport coefficients from Section 3.1 can be resolved by considering the initial distributions of particles
 258 in the forward simulation. A uniform distribution in (α, E_k, φ) is not uniform in (v_x, v_y, v_z) ; consequently,
 259 the number of particles per unit velocity space volume in the forward simulation is much higher at lower
 260 pitch angles than at higher pitch angles. Symbolically, we can write the unit volume as (working in a
 261 nonrelativistic setting for simplicity)

$$dV = dv_x dv_y dv_z = m^{-3/2} \sqrt{2E_k} \sin \alpha dE_k d\varphi. \quad (4)$$

262 The $\sin \alpha$ term in the Jacobian expresses the smallness of velocity space volume near $\alpha = 0$. Therefore, the
263 few test particles scattered into the loss cone can have the same weight as all the force-bunched particles
264 escaping from the loss cone.

265 The effect of increasing obliquity on the PSD evolution displayed in Figures 6d–6l agrees with the
266 analysis of diffusion from Section 3.1. The loss cone is only partially filled near the fundamental resonance
267 energy for waves with $B_w = 400$ pT, and the range of complete loss cone filling with $B_w = 1.6$ nT
268 becomes narrower with increasing θ_k . The penetration of nonzero PSD into the loss cone at higher energies
269 turns out to be mostly independent of wave normal angle, except for ultrarelativistic energies, where the
270 very oblique waves show larger increases in precipitating PSD. The jagged boundary between finite and
271 zero values of PSD in the case of strong, oblique waves (mainly Figures 6i and 6l) comes from the fine
272 multiresonance structure observed in corresponding diffusion plots in Figures 5i and 5l. The weak losses
273 near half of the fundamental resonance energy are related to nonlinear fractional resonances, which will be
274 analyzed in depth in Section 3.3. Finally, we note that the rapid decrease of $\sigma_\varphi(\alpha_{eq})$ with rising WNA at
275 higher pitch angles is not reflected in the PSD perturbations after a single quarter bounce but might become
276 important after multiple bounces due to the weak transport of particles from high-density regions of the
277 initial anisotropic distribution.

278 So far, we have investigated electron scattering and related losses for propagation along the wave.
279 However, as indicated by Figures 3d–3f, counter-streaming particles are also efficiently scattered by
280 oblique EMIC waves, and significant particle losses are to be expected. In Figure 7, we plot the quantities
281 $\langle \Delta\alpha_{eq} \rangle_\varphi$, $\sigma_\varphi(\alpha_{eq})$, and f for electrons streaming against the medium-amplitude wave ($B_w = 400$ pT)
282 with oblique wave vectors. The quasiparallel case is omitted because the right-handed wave component
283 is negligible until the polarization crossover at higher latitudes is reached, where the resonant energies
284 are already near the upper limit of our E_k range. The first thing to notice is that the forward-in-time
285 propagating particles start away from the equator and have a limited range of equatorial pitch angles;
286 therefore, the resonance energy curves appear stretched in the (α_{end}, E_k) space. Unlike in the co-streaming
287 case, the advection and diffusion caused by fundamental resonance grow with increasing WNA because the
288 polarization is becoming more linear and the right-handed wave component is getting larger. This behavior
289 is reflected in the PSD plots, where the precipitating particles can travel deeper into the loss cone when
290 interacting with very oblique waves. For $\theta_k = 80^\circ$, the advection and diffusion (and, as a consequence, the
291 electron losses) become comparable to the co-streaming case, showing the importance of $n > 0$ resonances
292 for analysis for relativistic electron precipitation by oblique EMIC waves.

293 3.3 Nonlinear Fractional Resonances

294 In the discussion of Figures 6i and 6l, we mentioned the surprising detection electron scattering into
295 loss cone at energies $E_k \approx 2$ MeV, far below the fundamental resonance energy. These losses cannot
296 have origin in nonresonant scattering because we use a smooth amplitude distribution along h , and also
297 because the nonresonant scattering would show as a broadening of the fundamental resonance and not as a
298 separate peak in energy profile (An et al., 2022). Trajectories of particles with energies $E_k = 1.83$ MeV
299 and $E_k = 2.12$ MeV propagating along the high-amplitude wave with $\theta_k = 70^\circ$ (Figures 8a and 8b)
300 reveal a spread in α_{eq} that does not disappear even after the particles leave the wave field. This spread is
301 somewhat weaker than the oscillations caused by the fundamental cyclotron resonance. The oscillations
302 can be understood as the maximum possible nonresonant scattering in a wave with a rectangular amplitude
303 distribution along the field line.

304 Since the spread in α_{eq} is too small to be clearly visible in the $\sigma_\varphi(\alpha_{\text{eq}})$ plot from Figure 5i, we re-plot the
 305 diffusion with a logarithmic color bar and show the results in Figure 8c. It becomes apparent that we are
 306 observing a new type of resonance with a minimum resonant energy near $E_{\text{Rmin}}/2$. This new resonance
 307 causes much weaker scattering than the fundamental resonance, but is roughly comparable to nonresonant
 308 oscillations. However, when we look at the particle trajectories and diffusion from the simulation with a
 309 small-amplitude wave ($B_w = 100 \text{ pT}$), the new resonance becomes much weaker than the nonresonant
 310 oscillations, and the corresponding $\sigma_\varphi(\alpha_{\text{eq}})$ values are more than three orders of magnitude below the
 311 fundamental resonance effect (Figure 8d–8f).

312 Based on the numerical observations presented in Figure 8, we identify the new behavior as the nonlinear
 313 fractional resonance of order $n = -1/2$. A simplified analytical derivation is provided in Appendix A,
 314 where we also identify fractional resonances of order $n = \{\pm 1/3, \pm 1/2, \pm 2/3, \pm 3/2\}$, and suggest that
 315 the nonlinear resonance energy spectrum is dense in the sense of rational numbers. These resonances
 316 seem to be analogous to the subcyclotron resonance of electrons with whistler waves described within
 317 the Hamiltonian framework by Fu et al. (2015). The concept of fractional resonances does not appear
 318 in quasilinear theory because it arises from integration along perturbed trajectories (compare with the
 319 integration along unperturbed trajectories employed in quasilinear theory as mentioned, e.g., in the
 320 theoretical works of Kennel and Engelmann (1966) and Allanson et al. (2022)). In the nonlinear treatment
 321 of whistler-electron scattering presented by Omura et al. (2019), an integer resonance is chosen first, and
 322 the nonlinear scattering effects are obtained from perturbations of near-resonant electrons. Suppose we
 323 instead implement a model of large perturbations without specifying a resonance velocity/energy, as in
 324 the example given by Equations (26) and (27), and proceed to analyze power transfer between waves and
 325 particles (which is directly related to pitch angle scattering through resonance diffusion curves as explained,
 326 e.g., by Summers et al. (1998)). In that case, fractional resonances will arise from the Bessel function
 327 expansion of gyrophase evolution. An important property of the $n = -1/2$ is the scaling of scattering
 328 strength with the square of wave amplitude – theoretically proven in Equations (44) and (45) – which
 329 differs from the known linear dependence for integer resonances. The nonlinear fractional resonances are
 330 thus expected to play a role only in precipitation induced by very strong oblique waves.

4 SUMMARY AND DISCUSSION

331 We have numerically analyzed the dependence of relativistic electron scattering on the wave normal angle
 332 and magnetic field amplitude of helium band EMIC waves. Unlike in the previous studies of Wang et al.
 333 (2017a) and Lee et al. (2018), we allow for very oblique wave normal angles $\theta_k = 70^\circ$ and $\theta_k = 80^\circ$, and
 334 keep the amplitudes more moderate ($B_w/B_{0\text{eq}} < 1\%$). The presented analysis of advective and diffusive
 335 behavior is comparable to Bortnik et al. (2022), who, however, used much lower energy and pitch angle
 336 resolution and did not include oblique waves. Our results can be divided into three blocks:

337 1. Confirmation of previous results:

338 a. Harmonic resonances $n < -1$ substantially affect the scattering of relativistic electrons at low pitch
 339 angles for waves with wave normal angles as small as $\theta_k = 5^\circ$ (Wang et al., 2017a). The contribution
 340 from $n > 0$ resonances requires at least moderate obliquity to become significant.

341 b. Positive advection of resonant particles at very low pitch angles was detected and shown to dominate
 342 over diffusion as wave amplitude increases. This is the effect described as boundary reflection by
 343 Zhu et al. (2020) and nonlinear force bunching by Grach and Demekhov (2020) and Bortnik et al.
 344 (2022).

345 c. The advective behavior of resonant particles can be positive or negative, depending on their initial
 346 pitch angle and energy (Lee et al., 2018). Particles that start at energies lower than the resonant
 347 energy for a given pitch angle will, on average (over gyrophases), experience a decrease in pitch
 348 angle, while particles starting at higher energies will encounter the resonance curve at higher
 349 latitudes and experience an average increase in pitch angle. This is visualized by the blue-red stripe
 350 pairs in Figure 4.

351 d. Increasing obliquity weakens the effects of $n = -1$ resonance but enhances the resonant interaction
 352 for $|n| > 1$ and $n = 1$ (Wang et al., 2017a).

353 e. Crossings of multiple resonance energies during one passage through the waves result in a more
 354 stochastic pitch-angle evolution, described by Lee et al. (2018) as “complicated and time-dependent
 355 phase trapping and bunching effects”. Under our simplified wave model, these multiresonance
 356 effects appear after one quarter-bounce as a fine structure in the plots of advection and diffusion
 357 when the EMIC wave is strong and oblique (Figures 4i, 4l, 5i, and 5l).

358 2. Disagreement with previous results:

359 a. Oblique waves seem to weaken the advection effects at low pitch angles, contrary to the observations
 360 by Lee et al. (2018).

361 b. We do not observe any effects of precipitation blocking in the PSD analysis (Figure 6), in
 362 disagreement with the suggestion presented in Bortnik et al. (2022) that force bunching caused by
 363 strong EMIC waves will decrease the electron fluxes/PSD at low pitch angles.

364 3. New discoveries:

365 a. Electrons losses of relativistic electrons by quasiparallel waves are comparable to losses induced
 366 by oblique waves (Figure 6). This behavior changes for ultrarelativistic electrons ($E_k \gtrsim 15$ MeV,
 367 depending on wave parameters), where the very oblique waves cause stronger precipitation.

368 b. Very oblique waves cannot efficiently scatter electrons at higher pitch angles ($\alpha > 30^\circ$ for $\theta_k = 80^\circ$,
 369 see Figures 5j–5l). Transport from high PSD regions at large pitch angles towards the loss cone is
 370 facilitated only by quasiparallel waves.

371 c. Very oblique waves scatter co-streaming and counter-streaming electrons with similar efficiency
 372 due to the high ellipticity, or in other words, due to comparable magnitude of right-handed and
 373 left-handed amplitude components (compare Figure 6k with Figure 7i).

374 d. High-amplitude oblique waves can scatter electrons below minimum resonant energy through
 375 nonlinear fractional resonances. The pitch-angle changes caused by $n = -1/2$ scale with the square
 376 of wave amplitude, faster than the linear scaling for $n = -1$ resonance.

377 When comparing our results to previous literature, a few points must be made to avoid confusion: Under
 378 our sign convention, the interaction of right-handed waves with electrons happens at resonances of order
 379 $n > 1$, and interaction with left-handed waves corresponds with $n < 1$, exactly opposite to the convention
 380 used by Wang et al. (2017a). Also, unlike Wang et al. (2017a), we allow only one-quarter bounce, and so
 381 $\partial B_0 / \partial h > 0$; in the southern hemisphere, the opposite sign of the B_0 -field gradient would change the
 382 effect of phase trapping on electron pitch angles. Furthermore, the strongest wave we use has a relative
 383 amplitude $B_w / B_0 = 0.64\%$, while Lee et al. (2018) go up to 10% (above the amplitude of the extremely
 384 intense EMIC wave observations presented in Engebretson et al. (2015)); as a consequence, phase-trapping
 385 has minimal impact on our PSD mapping results, especially for oblique waves.

386 The disagreement in the dependence of advection on obliquity between our results and Lee et al. (2018)
 387 comes from the different approaches to wave modeling. Lee et al. (2018) implements one wave field that is

388 elliptically polarized, but remains parallel, and another wave field where the wave normal angle is nonzero,
389 but the polarization remains circular. According to the cold plasma dispersion relation, which is strictly
390 followed in our study, oblique waves always have elliptical polarization (linear being considered as a
391 special case of elliptical), and parallel waves are always circularly polarized, except for the singularity at
392 the crossover frequency. Deviations from circular polarization decrease the advection effects, reconciling
393 our results with Lee et al. (2018).

394 The lack of precipitation blocking was demonstrated in Section 3.2 through numerical PSD mapping and
395 supported by arguments based on Liouville’s theorem. The concept of precipitation blocking was likely
396 first introduced by Grach and Demekhov (2020), who, however, concluded that due to competition between
397 phase trapping and force bunching, the precipitating fluxes would reach the strong diffusion limit, with
398 no apparent decrease near $\alpha = 0^\circ$. Our observations corroborate this conclusion, except that the transport
399 of particles to low pitch angles is due to the symmetric (“diffusive”) scattering as observed in Figure 3b,
400 where the particles stay in the phase-trapping region only for a short time and do not become phase-locked.
401 Bortnik et al. (2022) suggested that Van Allen Probes (RBSP) observations of dips in precipitating flux by
402 Zhu et al. (2020) could be explained by force bunching. However, the EMIC-induced precipitating electron
403 flux shown in Zhu et al. (2020) has a local maximum at $\alpha = 0^\circ$, while the force bunching effects should be
404 most effective at removing particles from this region. The spacecraft observations are consistent with the
405 simulation results of Grach and Demekhov (2020), where the PSD distribution sometimes peaked inside
406 the loss cone. This effect is not clearly visible in the perturbed distribution from Figure 6c, because it
407 requires strong phase trapping. Such trapping may be possible with the exceptionally high peak amplitudes
408 $B_w/B_0 > 1\%$ reported by Zhu et al. (2020), but not with the more moderate values used in our simulations.
409 Recall that transport by phase trapping is nonlocal, allowing mixing of phase space density from distant
410 points along the field line, violating the assumption of a spatially localized electron bunch that we used in
411 our theoretical consideration of PSD evolution (Section 3.2). Finally, we must emphasize that the force
412 bunching does indeed remove particles from the loss cone, but the important quantity for precipitation is
413 the net effect of upward and downward pitch-angle motion.

414 Most of our new and original results are related to very oblique propagation, which was omitted in
415 previous literature on EMIC-induced precipitation. We have shown that precipitation of relativistic electrons
416 by very oblique waves is comparable to quasiparallel waves, except for electron energies corresponding to
417 high order resonances ($n < -4$). Note that we are not making a comparison to the routinely investigated
418 purely parallel waves with $\theta_k = 0^\circ$, because in situ spacecraft measurements (Allen et al., 2015) always
419 show at least a small amount of obliquity. Nevertheless, when we consider the increased scattering effects
420 of very oblique waves on counter-streaming electrons, bounce-averaged diffusion might be significantly
421 increased compared to quasiparallel waves. Unfortunately, we do not know how strong the oblique EMIC
422 waves can be, as we are not aware of any study that would show the distribution of wave power over
423 WNA and frequencies. Van Allen Probes observations presented by Saikin et al. (2015) suggest that strong
424 helium-band waves (average wave power $> 0.1 \text{ nT}^2/\text{Hz}$) have lower average WNA than weak waves
425 (average wave power from $0.01 \text{ nT}^2/\text{Hz}$ to $0.1 \text{ nT}^2/\text{Hz}$). Nevertheless, strong waves with $\theta_k > 60^\circ$ at
426 $L = 5$ were occasionally detected, justifying our parameter choice.

427 To our knowledge, the nonlinear fractional resonances were never described before in the context of EMIC-
428 electron interaction. They are, however, conceptually identical to the subcyclotron resonance of electrons
429 with whistler waves, which was studied by Fu et al. (2015). (Kramer et al., 2012) detected fractional
430 resonances in fusion devices in the context of ion drift-orbit resonance with magnetohydrodynamic waves.
431 Given the different physical setting, the theoretical approach taken by Kramer et al. (2012) is not the same

432 as ours, but they arrive at a formula consisting of a multi-index sum over a product of Bessel functions,
 433 not unlike our Equations (37)–(39). Nonlinear interactions at fractions of the plasma frequency were
 434 theoretically described by Lewak and Chen (1969) and used to explain observations made by the Alouette
 435 II spacecraft. The EMIC-electron fractional resonances, especially the resonance of order $n = -1/2$,
 436 might provide a possible explanation for the precipitation of subrelativistic electrons (Hendry et al. (2017),
 437 Hendry et al. (2019), Capannolo et al. (2019), energies in hundreds of keV) if we consider a high-density
 438 plasma where the fundamental resonance energy can drop to 1 MeV (compare with the ω_{pe} dependence
 439 plotted in Figure 1). However, to see if this mechanism is competitive with the nonresonant scattering
 440 (Chen et al., 2016; An et al., 2022), we need to obtain a realistic distribution of wave power/amplitude over
 441 wave normal angles, as mentioned above. Endeavors in this direction are left for future study.

A DERIVATION OF FRACTIONAL RESONANCES

The existence of fractional resonances from Section 3.3 can be derived from the equations of motion for an electron interacting with an elliptically polarized wave. We start by defining the wave field

$$\mathbf{E}_w = \hat{\mathbf{x}}E_x^w \sin \psi - \hat{\mathbf{y}}E_y^w \cos \psi + \hat{\mathbf{z}}E_z^w \sin \psi, \quad (5)$$

$$\mathbf{B}_w = \hat{\mathbf{x}}B_x^w \cos \psi + \hat{\mathbf{y}}B_y^w \sin \psi - \hat{\mathbf{z}}B_z^w \cos \psi, \quad (6)$$

442 where $E_x^w < 0$ and $B_y^w < 0$ for left-hand polarized waves. The three hatted vectors form the standard basis
 443 of a Cartesian system. The wave phase seen by a particle with gyrophase φ is

$$\psi = \omega t - k_z z - k_x \rho_L \sin \varphi + \text{const.} \equiv \psi_B - \beta \sin \varphi \quad (7)$$

444 and includes the effects of finite Larmor radius (FLR) ρ_L through the quantity

$$\beta = \frac{\gamma v_\perp k_x}{\Omega_e}, \quad (8)$$

445 while ψ_B represents the wave phase at the gyrocenter. The constant initial phase will be dropped in the
 446 following analysis.

The equations of motion for an electron with the gyrocenter at $x = y = 0$ propagating through the wave field on a homogeneous background field $\mathbf{B}_0 \parallel \hat{\mathbf{z}}$ (field inhomogeneity is not important for the following resonance spectrum analysis) can be written as

$$\frac{d(\gamma v_z)}{dt} = \frac{e}{m} (v_\perp B_R^w \sin(\varphi - \psi) + v_\perp B_L^w \sin(\varphi + \psi) - E_z^w \sin \psi), \quad (9)$$

$$\frac{d(\gamma v_\perp)}{dt} = \frac{e}{m} ((U_R - v_z) B_R^w \sin(\varphi - \psi) + (U_L - v_z) B_L^w \sin(\varphi + \psi)), \quad (10)$$

$$\frac{d\varphi}{dt} = \frac{e}{m} \left(\frac{U_R - v_z}{\gamma v_\perp} B_R^w \cos(\varphi - \psi) + \frac{U_L - v_z}{\gamma v_\perp} B_L^w \cos(\varphi + \psi) - \frac{B_z^w}{\gamma} \cos \psi + \frac{B_0}{\gamma} \right). \quad (11)$$

Here we used the decomposition into left- and right-hand polarized components (Omura et al., 2019)

$$\mathbf{E}_R = E_R^W (\hat{\mathbf{x}} \sin \psi - \hat{\mathbf{y}} \cos \psi), \quad E_R^W = \frac{E_x^W + E_y^W}{2}, \quad (12)$$

$$\mathbf{E}_L = E_L^W (-\hat{\mathbf{x}} \sin \psi - \hat{\mathbf{y}} \cos \psi), \quad E_L^W = \frac{E_y^W - E_x^W}{2}, \quad (13)$$

$$\mathbf{B}_R = B_R^W (\hat{\mathbf{x}} \cos \psi + \hat{\mathbf{y}} \sin \psi), \quad B_R^W = \frac{B_x^W + B_y^W}{2}, \quad (14)$$

$$\mathbf{B}_L = B_L^W (\hat{\mathbf{x}} \cos \psi - \hat{\mathbf{y}} \sin \psi), \quad B_L^W = \frac{B_x^W - B_y^W}{2} \quad (15)$$

(16)

447 and defined the ratios

$$U_R = \frac{E_R^W}{B_R^W}, \quad U_L = \frac{E_L^W}{B_L^W}, \quad (17)$$

448 which are related to phase velocities (they reduce exactly to phase velocities in case of circularly polarized
449 parallel-propagating waves). In further calculations, we will also use the normalized amplitude components
450 $\Omega_R^W = B_R^W e/m$, $\Omega_L^W = B_L^W e/m$ and $\Omega_z^W = B_z^W e/m$.

451 The average change in electron kinetic energy per one wave period T can be expressed as

$$\begin{aligned} \left\langle \frac{dE_k}{dt} \right\rangle_T &= -\frac{e}{T} \int_0^T dt (\mathbf{v} \cdot \mathbf{E}_W) = \\ &= -\frac{e}{T} \int_0^T dt (v_\perp (E_R^W - E_L^W) \cos \varphi \sin \psi - v_\perp (E_R^W + E_L^W) \sin \varphi \cos \psi + v_z E_z^W \sin \psi), \end{aligned} \quad (18)$$

452 where we used the decompositions from Equations (12)–(15). Let us denote the integrand I and restate it
453 in the form

$$I = -\frac{e}{T} (-v_\perp (E_R^W \sin(\varphi - \psi) + E_L^W \sin(\varphi + \psi)) + v_z E_z^W \sin \psi). \quad (19)$$

We may now apply the Jacobi-Anger expansion (Abramowitz and Stegun, 1965) and express the trigonometric functions in terms of Bessel functions of the first kind,

$$\sin(\varphi - \psi) = \sin(\varphi - \psi_B + \beta \sin \varphi) = \sum_{n=-\infty}^{\infty} J_{n-1}(\beta) \sin \zeta_n = \sum_{n=-\infty}^{\infty} J_n(\beta) \sin \zeta_{n+1}, \quad (20)$$

$$\sin(\varphi + \psi) = \sin(\varphi + \psi_B - \beta \sin \varphi) = - \sum_{n=-\infty}^{\infty} J_{n+1}(\beta) \sin \zeta_n = - \sum_{n=-\infty}^{\infty} J_n(\beta) \sin \zeta_{n-1}, \quad (21)$$

$$\sin(\psi) = \sin(\psi_B - \beta \sin \varphi) = - \sum_{n=-\infty}^{\infty} J_n(\beta) \sin \zeta_n, \quad (22)$$

(23)

454 where

$$\zeta_n = n\varphi - \psi_B \quad (24)$$

455 is the relative phase angle for the n -th resonance. Note that while the changes in kinetic energy of electrons
 456 interacting with EMIC waves are typically negligible, these small energy changes are directly related to
 457 large changes in pitch angle through the particle motion along resonant diffusion curves (Summers et al.,
 458 1998).

459 The nonlinear effect of individual resonances is usually studied by performing an expansion in v_z about
 460 the n -th resonance velocity

$$V_{Rn} = \frac{1}{k_z} \left(\omega + \frac{n\Omega_e}{\gamma} \right). \quad (25)$$

Here we instead expand the gyrophase to the first order of perturbations due to wave-particle interactions, and plug them into the Jacobi-Anger expansions from Equations (20)–(22). Let us write $\varphi \approx \varphi_0 + \varphi_1$ with

$$\frac{d\varphi_0}{dt} = \frac{\Omega_e}{\gamma}, \quad (26)$$

$$\frac{d\varphi_1}{dt} = -\frac{v_z}{\gamma v_\perp} \Omega_R^w \cos(\varphi - \psi) - \frac{v_z}{\gamma v_\perp} \Omega_R^w \cos(\varphi + \psi), \quad (27)$$

461 where we have used the inequalities $|U_L| \ll |v_z|$ and $|U_R| \ll |v_z|$ for EMIC waves and relativistic electrons,
 462 and we also removed the Ω_z^w term by focusing on low pitch angle regions where $\Omega_z^w \ll \Omega_{R,L}^w v_z / \gamma v_\perp$. For
 463 simplicity, we will further neglect the perturbations to v_z and v_\perp . In the case of v_\perp , the factors in front of
 464 sines in Equation (10), divided by γv_\perp , are the same as the factors in front of cosines in Equation (11),
 465 suggesting that the relative perturbations in v_\perp and φ are comparable. However, v_\perp enters the computation
 466 either through $d\varphi_1/dt$, so we can consider that perturbation to be of second order, or through β , which
 467 simply scales the FLR effects and can be thus kept constant without losing information about resonant
 468 behavior. In the case of v_z , the approximation can be justified only for low pitch angles since comparing the
 469 factors in Equations (9) and (11) sets the requirement $v_\perp/v_z \ll v_z/v_\perp$ (v_z enters directly into ψ through
 470 $k_z z = k_z v_z t$, so the perturbation would be of the first order if we did not use the low α approximation).

471 The cut off the perturbation expansion, we replace ψ by ψ_B in Equations (26) and (27). The perturbation
 472 φ_1 can then be obtained by integrating over time,

$$\varphi_1 = -R_1 \sin(\varphi_0 - \psi_B) - L_1 \sin(\varphi_0 + \psi_B). \quad (28)$$

Here we introduced the substitutions

$$R_1 = \frac{v_z}{v_\perp} \frac{\Omega_R}{\nu_1}, \quad (29)$$

$$L_1 = \frac{v_z}{v_\perp} \frac{\Omega_L}{\nu_{-1}}, \quad (30)$$

473 where

$$\nu_{\pm 1} = \Omega_e \mp \omega \pm k_z v_z \quad (31)$$

474 is a quantity expressing the deviation from the fundamental resonances $n = \pm 1$.

475 Going back to the Bessel function expansion from Equations (20)–(22), we can now write

$$\begin{aligned} \sin \zeta_n \approx \sin (n(\varphi_0 + \varphi_1) - \psi_B) &= \sin (n\varphi_0 - nR_1 \sin(\varphi_0 - \psi_B)) \cos (-\psi_B - nL_1 \sin(\varphi_0 + \psi_B)) + \\ &+ \cos (n\varphi_0 - nR_1 \sin(\varphi_0 - \psi_B)) \sin (-\psi_B - nL_1 \sin(\varphi_0 + \psi_B)) . \end{aligned} \quad (32)$$

Using the second form of the expansions, we can expand each of the trigonometric functions from Equation (32) into

$$\sin (n\varphi_0 - nR_1 \sin(\varphi_0 - \psi_B)) = - \sum_{r=-\infty}^{\infty} J_r(nR_1) \sin (r(\varphi_0 - \psi_B) - n\varphi_0) , \quad (33)$$

$$\cos (-\psi_B - nL_1 \sin(\varphi_0 + \psi_B)) = \sum_{l=-\infty}^{\infty} J_l(nL_1) \cos (l(\varphi_0 + \psi_B) + \psi_B) , \quad (34)$$

$$\cos (n\varphi_0 - nR_1 \sin(\varphi_0 - \psi_B)) = \sum_{r=-\infty}^{\infty} J_r(nR_1) \cos (r(\varphi_0 - \psi_B) - n\varphi_0) , \quad (35)$$

$$\sin (-\psi_B - nL_1 \sin(\varphi_0 + \psi_B)) = - \sum_{l=-\infty}^{\infty} J_l(nL_1) \sin (l(\varphi_0 + \psi_B) + \psi_B) . \quad (36)$$

Since R_1 and L_1 are proportional to the relative wave magnetic field B_w/B_0 , we can limit the summations to $|r| \leq 1$ and $|l| \leq 1$. As a further simplification, we will limit the resonance number n to $-1, 0, 1$, which is a reasonable approximation when $\beta^2 \ll 1$, i. e., when pitch angles are low and θ_k is not too close to the resonance cone. We then insert the Equations (33)–(36) into Equations (32) and (20)–(22) and finally obtain

$$\sin(\varphi - \psi) \approx - \sum_{n,r,l=-1}^1 J_n(\beta) J_r((n+1)R_1) J_l((n+1)L_1) \sin ((r-n+l-1)\varphi_0 + (l-r+1)\psi_B) , \quad (37)$$

$$\sin(\varphi + \psi) \approx \sum_{n,r,l=-1}^1 J_n(\beta) J_r((n-1)R_1) J_l((n-1)L_1) \sin ((r-n+l+1)\varphi_0 + (l-r+1)\psi_B) , \quad (38)$$

$$\sin(\psi) \approx - \sum_{n,r,l=-1}^1 J_n(\beta) J_r(nR_1) J_l(nL_1) \sin ((r-n+l)\varphi_0 + (l-r+1)\psi_B) . \quad (39)$$

Comparing the prefactors of φ_0 and ψ results in resonant fractions

$$q_R = - \frac{r-n+l-1}{l-r+1} , \quad (40)$$

$$q_L = - \frac{r-n+l+1}{l-r+1} , \quad (41)$$

$$q_z = - \frac{r-n+l}{l-r+1} . \quad (42)$$

476 Apart from the integer values (which represent fundamental and harmonic resonances), the fractions can
 477 also evaluate to $\pm 1/3$, $\pm 1/2$, $\pm 2/3$, and $\pm 3/2$; other fractional values would appear if we extended the
 478 summation range in n and removed the approximation $\beta^2 \ll 1$.

479 Let us focus on the resonance $-1/2$ which contributes to electron diffusion near $E_k = 2$ MeV in Figure
 480 8c. The related relative phase angle $\varphi_0 + 2\psi_B$ corresponds to resonance velocity

$$V_{R-1/2} = \frac{1}{k_z} \left(\omega - \frac{\Omega_e}{2\gamma} \right). \quad (43)$$

481 Going back to the average change in energy defined in Equation (18), we can perform the Taylor expansion
 482 of Bessel function to the first order and show that term with E_R^W does not contribute to the $-1/2$ resonance,
 483 while the E_L^W contributes to the integrand by

$$- \frac{e\gamma k_x v_\perp v_z E_L^W \Omega_R^W}{2T\Omega_e \nu_1}, \quad (44)$$

484 where we have used Equations (29) and (8). The E_z^W also has a nonzero contribution to the integrand,

$$- \frac{ev_z^2 E_z^W \Omega_L^W}{2T v_\perp \nu_{-1}}. \quad (45)$$

485 Due to the terms $E_L^W \Omega_R^W$ and $E_z^W \Omega_L^W$, the energy change caused by $-1/2$ resonance scales with a square of
 486 the wave amplitude. On the other hand, for the integer resonance terms with $r = l = 0$, the quantities Ω_R^W
 487 and Ω_L^W disappear, and the scaling reduces to the first power in amplitude. This analytical result explains
 488 the diminishing of the $-1/2$ resonance in Figure 8 when the amplitude is decreased. Notice that due to the
 489 term $1/\nu_{-1}$, fractional resonances very close to $n = -1$ retain non-negligible strength and contribute to
 490 resonance broadening.

491 The derivation provided in this section works for whistler-mode waves as well, except for the
 492 approximations $U_R \ll v_z$, $U_L \ll v_z$.

CONFLICT OF INTEREST STATEMENT

493 The authors declare that the research was conducted in the absence of any commercial or financial
 494 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

495 TODO-complete-before-submission. MH wrote and ran the simulation code, analyzed the resulting data,
 496 derived the equations for fractional resonances, and prepared the original draft. WL initiated the study and
 497 provided frequent consultations. QM helped in validating the code. WL and QM provided advice during
 498 the pre-submission review and editing of the manuscript.

FUNDING

499 TODO [Details of all funding sources should be provided, including grant numbers if applicable. Please
 500 ensure to add all necessary funding information, as after publication this is no longer possible.]

ACKNOWLEDGMENTS

501 TODO Murong and Xiaochen for joining the discussions? Jacob Bortnik and Xin An for commenting
502 on precipitation blocking? [This is a short text to acknowledge the contributions of specific colleagues,
503 institutions, or agencies that aided the efforts of the authors.]

DATA AVAILABILITY STATEMENT

504 TODO The dataset is huge because of the high-resolution particle trajectories. Is it ok to provide only
505 the code and instructions? Or can I keep only the trajectories that appear in Figure 3? [The datasets
506 [GENERATED/ANALYZED] for this study can be found in the [NAME OF REPOSITORY] [LINK].]

REFERENCES

507 Abramowitz, M. and Stegun, I. A. (1965). *Handbook of Mathematical Functions: With Formulas, Graphs,
508 and Mathematical Tables*. Dover Books on Advanced Mathematics (Dover Publications, New York)

509 Allanson, O., Elsden, T., Watt, C., and Neukirch, T. (2022). Weak turbulence and quasilinear diffusion
510 for relativistic wave-particle interactions via a Markov approach. *Front. Astron. Space Sci.* 8, 232.
511 doi:10.3389/fspas.2021.805699

512 Allen, R. C., Zhang, J. C., Kistler, L. M., Spence, H. E., Lin, R. L., Klecker, B., et al. (2015). A statistical
513 study of EMIC waves observed by Cluster: 1. Wave properties. *J. Geophys. Res. Space Physics* 120,
514 5574–5592. doi:10.1002/2015JA021333

515 An, X., Artemyev, A., Angelopoulos, V., Zhang, X., Mourenas, D., and Bortnik, J. (2022). Nonresonant
516 Scattering of Relativistic Electrons by Electromagnetic Ion Cyclotron Waves in Earth’s Radiation Belts.
517 *Phys. Rev. Lett.* 129, 135101. doi:10.1103/PhysRevLett.129.135101

518 Anderson, B. J., Denton, R. E., Ho, G., Hamilton, D. C., Fuselier, S. A., and Strangeway, R. J. (1996).
519 Observational test of local proton cyclotron instability in the Earth’s magnetosphere. *J. Geophys. Res.*
520 101, 21527–21544. doi:10.1029/96JA01251

521 Artemyev, A. V., Neishtadt, A. I., Vainchtein, D. L., Vasiliev, A. A., Vasko, I. Y., and Zelenyi, L. M. (2018).
522 Trapping (capture) into resonance and scattering on resonance: Summary of results for space plasma
523 systems. *Commun. Nonlinear Sci. Numer. Simulat.* 65, 111–160. doi:10.1016/j.cnsns.2018.05.004

524 Bortnik, J., Albert, J. M., Artemyev, A., Li, W., Jun, C.-W., Grach, V. S., et al. (2022). Amplitude
525 Dependence of Nonlinear Precipitation Blocking of Relativistic Electrons by Large Amplitude EMIC
526 Waves. *Geophys. Res. Lett.* 49, e98365. doi:10.1029/2022GL098365

527 Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X. C., Spence, H. E., et al. (2019). Direct Observation
528 of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves. *Geophys. Res. Lett.* 46,
529 12,711–12,721. doi:10.1029/2019GL084202

530 Chen, L., Thorne, R. M., Bortnik, J., and Zhang, X.-J. (2016). Nonresonant interactions of electromagnetic
531 ion cyclotron waves with relativistic electrons. *J. Geophys. Res. Space Physics* 121, 9913–9925.
532 doi:10.1002/2016JA022813

533 Clilverd, M. A., Duthie, R., Hardman, R., Hendry, A. T., Rodger, C. J., Raita, T., et al. (2015). Electron
534 precipitation from EMIC waves: A case study from 31 May 2013. *J. Geophys. Res. Space Physics* 120,
535 3618–3631. doi:10.1002/2015JA021090

536 Denton, R. E., Goldstein, J., Menietti, J. D., and Young, S. L. (2002). Magnetospheric electron density
537 model inferred from Polar plasma wave data. *J. Geophys. Res. Space Physics* 107, 1386. doi:10.1029/
538 2001JA009136

539 Engebretson, M. J., Posch, J. L., Wygant, J. R., Kletzing, C. A., Lessard, M. R., Huang, C. L., et al.
540 (2015). Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event
541 extending over 12 h in magnetic local time. *J. Geophys. Res. Space Physics* 120, 5465–5488. doi:10.
542 1002/2015JA021227

543 Fu, X., Guo, Z., Dong, C., and Gary, S. P. (2015). Nonlinear subcyclotron resonance as a
544 formation mechanism for gaps in banded chorus. *Geophys. Res. Lett.* 42, 3150–3159. doi:10.1002/
545 2015GL064182

546 Grach, V. S., Artemyev, A. V., Demekhov, A. G., Zhang, X.-J., Bortnik, J., Angelopoulos, V., et al. (2022).
547 Relativistic Electron Precipitation by EMIC Waves: Importance of Nonlinear Resonant Effects. *Geophys.*
548 *Res. Lett.* 49, e99994. doi:10.1029/2022GL099994

549 Grach, V. S. and Demekhov, A. G. (2020). Precipitation of Relativistic Electrons Under Resonant
550 Interaction With Electromagnetic Ion Cyclotron Wave Packets. *J. Geophys. Res. Space Physics* 125,
551 e27358. doi:10.1029/2019JA027358

552 Hanzelka, M., Santolík, O., Omura, Y., and Kolmašová, I. (2021). Measurability of the Nonlinear Response
553 of Electron Distribution Function to Chorus Emissions in the Earth’s Radiation Belt. *J. Geophys. Res.*
554 *Space Physics* 126, e29624. doi:10.1029/2021JA029624

555 Hendry, A. T., Rodger, C. J., and Clilverd, M. A. (2017). Evidence of sub-MeV EMIC-driven electron
556 precipitation. *Geophys. Res. Lett.* 44, 1210–1218. doi:10.1002/2016GL071807

557 Hendry, A. T., Santolík, O., Kletzing, C. A., Rodger, C. J., Shiokawa, K., and Baishev, D. (2019).
558 Multi-instrument Observation of Nonlinear EMIC-Driven Electron Precipitation at sub-MeV Energies.
559 *Geophys. Res. Lett.* 46, 7248–7257. doi:10.1029/2019GL082401

560 Horne, R. B. and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic
561 acceleration during magnetic storms. *Geophys. Res. Lett.* 25, 3011–3014. doi:10.1029/98GL01002

562 Horwitz, J. L., Baugher, C. R., Chappell, C. R., Shelley, E. G., Young, D. T., and Anderson, R. R. (1981).
563 ISEE 1 observations of thermal plasma in the vicinity of the plasmasphere during periods of quieting
564 magnetic activity. *J. Geophys. Res.* 86, 9989–10001. doi:10.1029/JA086iA12p09989

565 Ichimaru, S. (2004). *Statistical Plasma Physics: Basic Principles (1st ed.)* (CRC Press)

566 Jordanova, V. K., Albert, J., and Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves
567 from self-consistent global simulations. *J. Geophys. Res. Space Physics* 113, A00A10. doi:10.1029/
568 2008JA013239

569 Jun, C.-W., Miyoshi, Y., Kurita, S., Yue, C., Bortnik, J., Lyons, L., et al. (2021). The Characteristics of
570 EMIC Waves in the Magnetosphere Based on the Van Allen Probes and Arase Observations. *J. Geophys.*
571 *Res. Space Physics* 126, e29001. doi:10.1029/2020JA029001

572 Karpman, V. I. (1974). Nonlinear Effects in the ELF Waves Propagating along the Magnetic Field in the
573 Magnetosphere. *Space Sci. Rev.* 16, 361–388. doi:10.1007/BF00171564

574 Kennel, C. F. and Engelmann, F. (1966). Velocity Space Diffusion from Weak Plasma Turbulence in a
575 Magnetic Field. *Phys. Fluids* 9, 2377–2388. doi:10.1063/1.1761629

576 Kennel, C. F. and Petschek, H. E. (1966). Limit on Stably Trapped Particle Fluxes. *J. Geophys. Res.* 71,
577 1–28. doi:10.1029/JZ071i001p00001

578 Kim, E.-H. and Johnson, J. R. (2016). Full-wave modeling of EMIC waves near the He^+ gyrofrequency.
579 *Geophys. Res. Lett.* 43, 13–21. doi:10.1002/2015GL066978

580 Kramer, G. J., Chen, L., Fisher, R. K., Heidbrink, W. W., Nazikian, R., Pace, D. C., et al. (2012). Fractional
581 Resonances between Waves and Energetic Particles in Tokamak Plasmas. *Phys. Rev. Lett.* 109, 035003.
582 doi:10.1103/PhysRevLett.109.035003

583 Kurita, S., Miyoshi, Y., Shiokawa, K., Higashio, N., Mitani, T., Takashima, T., et al. (2018). Rapid Loss of
584 Relativistic Electrons by EMIC Waves in the Outer Radiation Belt Observed by Arase, Van Allen Probes,
585 and the PWING Ground Stations. *Geophys. Res. Lett.* 45, 12,720–12,729. doi:10.1029/2018GL080262

586 Lee, D.-Y., Shin, D.-K., and Choi, C.-R. (2018). Effects of Oblique Wave Normal Angle and Noncircular
587 Polarization of Electromagnetic Ion Cyclotron Waves on the Pitch Angle Scattering of Relativistic
588 Electrons. *J. Geophys. Res. Space Physics* 123, 4556–4573. doi:10.1029/2018JA025342

589 Lewak, G. J. and Chen, C. S. (1969). Higher order resonances in a plasma. *J. Plasma Phys.* 3, 481–497.
590 doi:10.1017/S0022377800004554

591 Li, W. and Hudson, M. K. (2019). Earth's Van Allen Radiation Belts: From Discovery to the Van Allen
592 Probes Era. *J. Geophys. Res. Space Physics* 124, 8319–8351. doi:10.1029/2018JA025940

593 Loto'aniu, T. M., Fraser, B. J., and Waters, C. L. (2005). Propagation of electromagnetic ion cyclotron wave
594 energy in the magnetosphere. *J. Geophys. Res. Space Physics* 110, A07214. doi:10.1029/2004JA010816

595 Meredith, N. P., Horne, R. B., Kersten, T., Fraser, B. J., and Grew, R. S. (2014). Global morphology and
596 spectral properties of EMIC waves derived from CRRES observations. *J. Geophys. Res. Space Physics*
597 119, 5328–5342. doi:10.1002/2014JA020064

598 Meredith, N. P., Thorne, R. M., Horne, R. B., Summers, D., Fraser, B. J., and Anderson, R. R. (2003).
599 Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed
600 on CRRES. *J. Geophys. Res. Space Physics* 108, 1250. doi:10.1029/2002JA009700

601 Min, K., Lee, J., Keika, K., and Li, W. (2012). Global distribution of EMIC waves derived from THEMIS
602 observations. *J. Geophys. Res. Space Physics* 117, A05219. doi:10.1029/2012JA017515

603 Nunn, D. and Omura, Y. (2015). A computational and theoretical investigation of nonlinear wave-particle
604 interactions in oblique whistlers. *J. Geophys. Res. Space Physics* 120, 2890–2911. doi:10.1002/
605 2014JA020898

606 Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the
607 magnetosphere. *Earth Planets Space* 73, 95. doi:10.1186/s40623-021-01380-w

608 Omura, Y., Hsieh, Y.-K., Foster, J. C., Erickson, P. J., Kletzing, C. A., and Baker, D. N. (2019). Cyclotron
609 Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-
610 Mode Chorus Emissions. *J. Geophys. Res. Space Physics* 124, 2795–2810. doi:10.1029/2018JA026374

611 Omura, Y., Pickett, J., Grison, B., Santolik, O., Dandouras, I., Engebretson, M., et al. (2010). Theory and
612 observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere. *J. Geophys. Res.
613 Space Physics* 115, A07234. doi:10.1029/2010JA015300

614 Omura, Y. and Zhao, Q. (2012). Nonlinear pitch angle scattering of relativistic electrons by EMIC waves
615 in the inner magnetosphere. *J. Geophys. Res. Space Physics* 117, A08227. doi:10.1029/2012JA017943

616 Perraut, S., Gendrin, R., Roux, A., and de Villedary, C. (1984). Ion cyclotron waves: Direct comparison
617 between ground-based measurements and observations in the source region. *J. Geophys. Res.* 89,
618 195–202. doi:10.1029/JA089iA01p00195

619 Rauch, J. L. and Roux, A. (1982). Ray tracing of ULF waves in a multicomponent magnetospheric plasma:
620 Consequences for the generation mechanism of ion cyclotron waves. *J. Geophys. Res.* 87, 8191–8198.
621 doi:10.1029/JA087iA10p08191

622 Saikin, A. A., Zhang, J. C., Allen, R. C., Smith, C. W., Kistler, L. M., Spence, H. E., et al. (2015). The
623 occurrence and wave properties of H^+ -, He^+ -, and O^+ -band EMIC waves observed by the Van Allen
624 Probes. *J. Geophys. Res. Space Physics* 120, 7477–7492. doi:10.1002/2015JA021358

625 Saito, T. (1969). Geomagnetic Pulsations. *Space Sci. Rev.* 10, 319–412. doi:10.1007/BF00203620

626 Shoji, M., Miyoshi, Y., Kistler, L. M., Asamura, K., Matsuoka, A., Kasaba, Y., et al. (2021). Discovery of
627 proton hill in the phase space during interactions between ions and electromagnetic ion cyclotron waves.
628 *Sci. Rep.* 11, 13480. doi:10.1038/s41598-021-92541-0

629 Stix, T. (1992). *Waves in Plasmas* (Melville NY: American Institute of Physics)

630 Summers, D., Omura, Y., Miyashita, Y., and Lee, D.-H. (2012). Nonlinear spatiotemporal evolution
631 of whistler mode chorus waves in Earth's inner magnetosphere. *J. Geophys. Res. Space Physics* 117,
632 A09206. doi:10.1029/2012JA017842

633 Summers, D., Thorne, R. M., and Xiao, F. (1998). Relativistic theory of wave-particle resonant diffusion
634 with application to electron acceleration in the magnetosphere. *J. Geophys. Res.* 103, 20487–20500.
635 doi:10.1029/98JA01740

636 Thorne, R. M. and Kennel, C. F. (1971). Relativistic electron precipitation during magnetic storm main
637 phase. *J. Geophys. Res.* 76, 4446. doi:10.1029/JA076i019p04446

638 Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., et al. (2014). Effect
639 of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen
640 Probes observations. *Geophys. Res. Lett.* 41, 1375–1381. doi:10.1002/2013GL059024

641 Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., and Angelopoulos, V. (2012). THEMIS observations of
642 electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic
643 pressure. *J. Geophys. Res. Space Physics* 117, A10218. doi:10.1029/2012JA018049

644 Wang, G., Su, Z., Zheng, H., Wang, Y., Zhang, M., and Wang, S. (2017a). Nonlinear fundamental
645 and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique
646 monochromatic EMIC waves. *J. Geophys. Res. Space Physics* 122, 1928–1945. doi:10.1002/2016JA023451

648 Wang, X. Y., Huang, S. Y., Allen, R. C., Fu, H. S., Deng, X. H., Zhou, M., et al. (2017b). The occurrence
649 and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission. *J.*
650 *Geophys. Res. Space Physics* 122, 8228–8240. doi:10.1002/2017JA024237

651 Xiao, F., Thorne, R. M., and Summers, D. (1998). Instability of electromagnetic R-mode waves in a
652 relativistic plasma. *Phys. Plasmas* 5, 2489–2497. doi:10.1063/1.872932

653 Zenitani, S. and Umeda, T. (2018). On the Boris solver in particle-in-cell simulation. *Phys. Plasmas* 25,
654 112110. doi:10.1063/1.5051077

655 Zhao, H., Johnston, W. R., Baker, D. N., Li, X., Ni, B., Jaynes, A. N., et al. (2019). Characterization and
656 Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements. *J.*
657 *Geophys. Res. Space Physics* 124, 4217–4232. doi:10.1029/2019JA026697

658 Zheng, L., Chen, L., and Zhu, H. (2019). Modeling Energetic Electron Nonlinear Wave-Particle Interactions
659 With Electromagnetic Ion Cyclotron Waves. *J. Geophys. Res. Space Physics* 124, 3436–3453. doi:10.
660 1029/2018JA026156

661 Zhu, H., Chen, L., Claudepierre, S. G., and Zheng, L. (2020). Direct Evidence of the Pitch Angle Scattering
662 of Relativistic Electrons Induced by EMIC Waves. *Geophys. Res. Lett.* 47, e85637. doi:10.1029/
663 2019GL085637

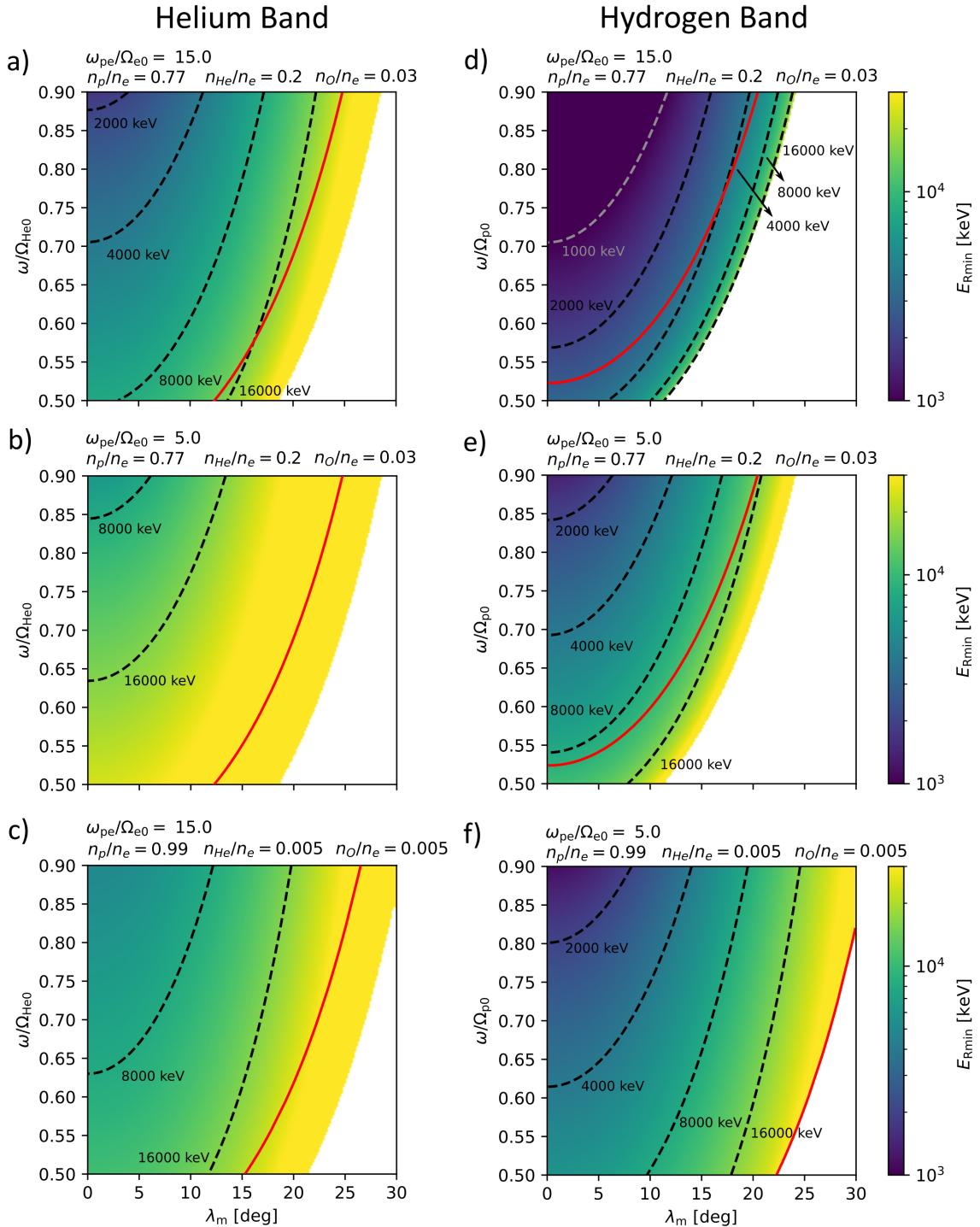


Figure 1. Minimum resonant energies $E_{R\min}$ of electrons interacting with a left-hand polarized parallel propagating EMIC wave. Each panel shows a map of energies in dependence on wave frequency and magnetic latitude. (a) Minimum resonant energies for interaction with a helium-band wave in a high-density plasma with a high relative concentration of heavier ions – these conditions are used in our simulations. (b) Same as panel a, but in a low-density plasma. (c) Same as panel (a), but with a low concentration of heavier ions. Panels (d)–(f) show $E_{R\min}$ for a hydrogen band wave under the same plasma conditions as in panels (a)–(c), except for panel f, where both the electron density and heavier ion concentrations are kept low. In all panels, dashed lines represent energy contours, and the solid red line signifies the crossover frequency. Note that for oblique waves, the left-handed dispersion branch is coupled to the right-handed branch, so the energies right of the red curve would have to be calculated for right-hand polarized waves.

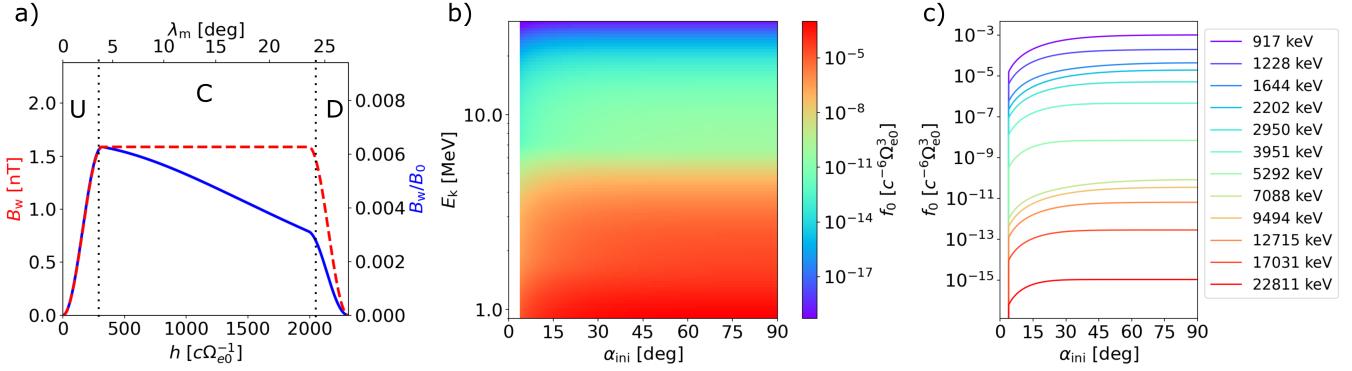


Figure 2. (a) Distribution of wave amplitudes along the field line. The wave experiences smooth growth in region U , stays constant in region C (1.6 nT in this example), and decreases back to zero in region D , as shown by the dashed red line. The solid blue line shows the relative wave amplitude with respect to the background field B_0 . (b) Phase space density distribution at the equator plotted in the energy–pitch angle space. The empty loss cone corresponds to the white region at $\alpha_{ini} < \alpha_{loss} = 3.7^\circ$. Normalized PSD units from the simulation code are used. (c) Line plots of pitch angle profiles from the previous panel for representative energies. Note that the $\sin \alpha$ term from Jacobian is not included; therefore, the decrease in PSD near loss cone indicates positive pitch-angle anisotropy.

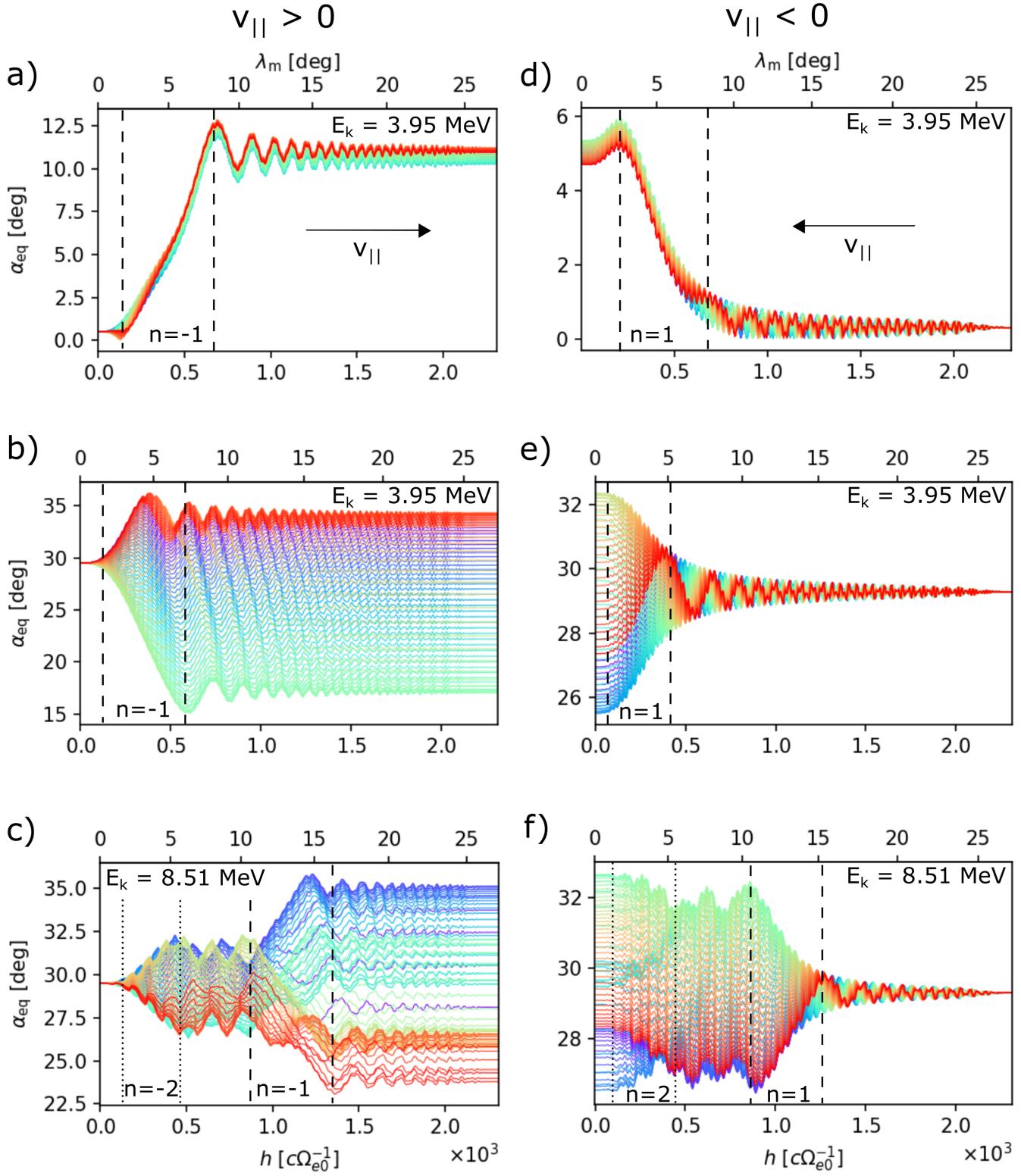


Figure 3. Trajectory examples showing the change in equatorial pitch angle over latitude due to interaction with a high-amplitude, moderately oblique wave ($B_w/B_{0\text{eq}} = 0.0064$ and $\theta_k = 45^\circ$). Panels (a)–(c) depict electrons propagating along the wave (from the equator), while panels (d)–(f) show propagation against the wave (towards the equator). In each panel, electrons have the same initial energy, pitch angle and latitude, and the line colors represent the initial uniform sampling in gyrophase. Pairs of dashed lines represent the approximate spatial interval on which the fundamental cyclotron resonance produces strong scattering; for the harmonic resonances $n = \pm 2$, the interval a delimited by dotted lines.

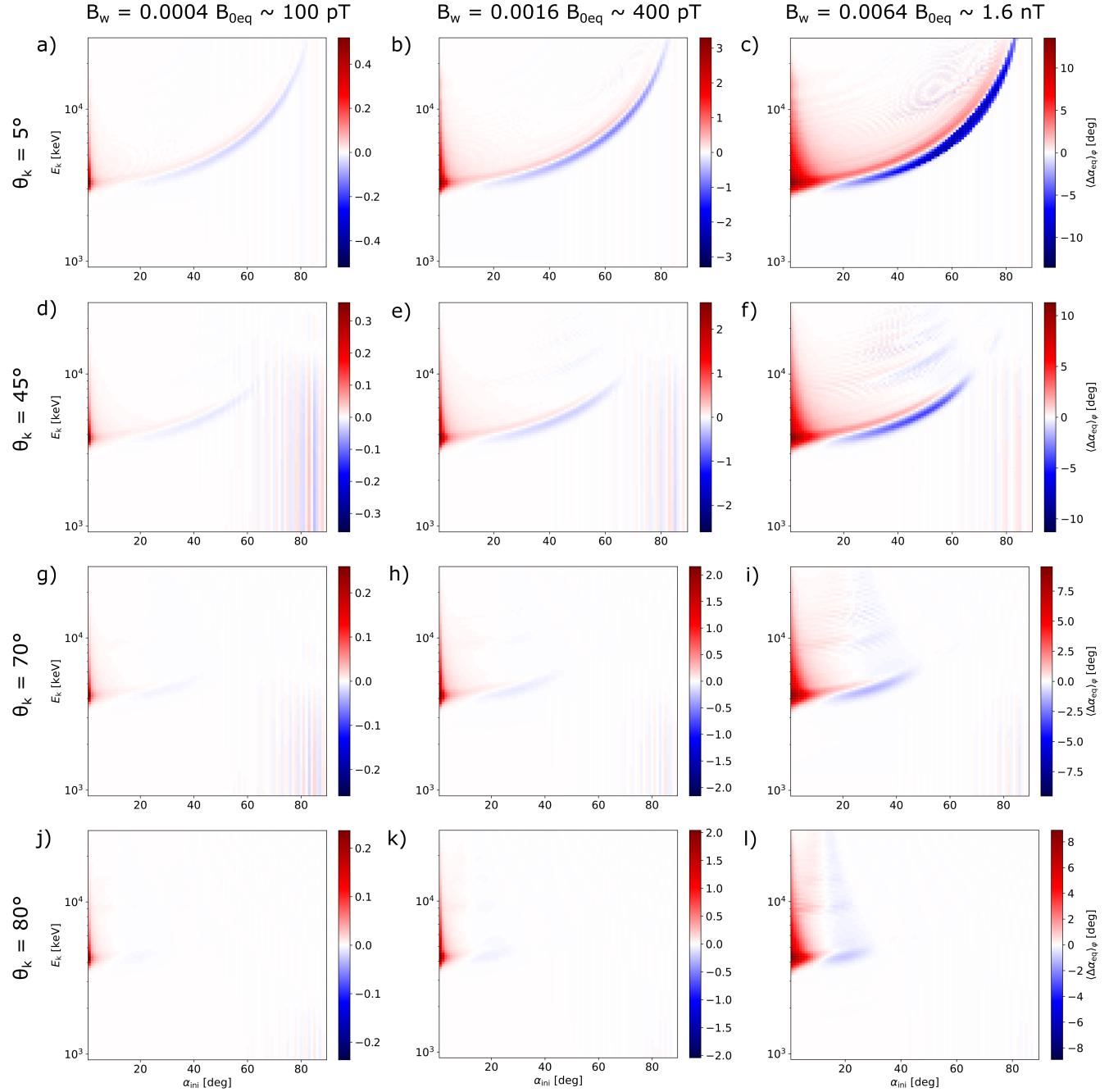


Figure 4. Average change $\langle \Delta \alpha_{eq} \rangle_\varphi$ in electron equatorial pitch angle for propagation along the EMIC wave packet (stopping point is the end of the wave packet or the mirror point). All particles start at the equator, so the initial pitch angle α_{ini} on the abscissa is equal to the initial α_{eq} . The columns are parametrized by wave amplitude (left to right: 100 pT, 400 pT, and 1.6 nT), and the rows are parametrized by wave normal angle (top to bottom: 5°, 45°, 70°, and 80°). The color bars associated with each panel range from $-\max_{(\alpha_{ini}, E_k)} |\langle \Delta \alpha_{eq} \rangle_\varphi|$ to $+\max_{(\alpha_{ini}, E_k)} |\langle \Delta \alpha_{eq} \rangle_\varphi|$. Vertical stripes at higher pitch angles are related to nonresonant oscillations at mirror points and would disappear after a complete half-bounce.

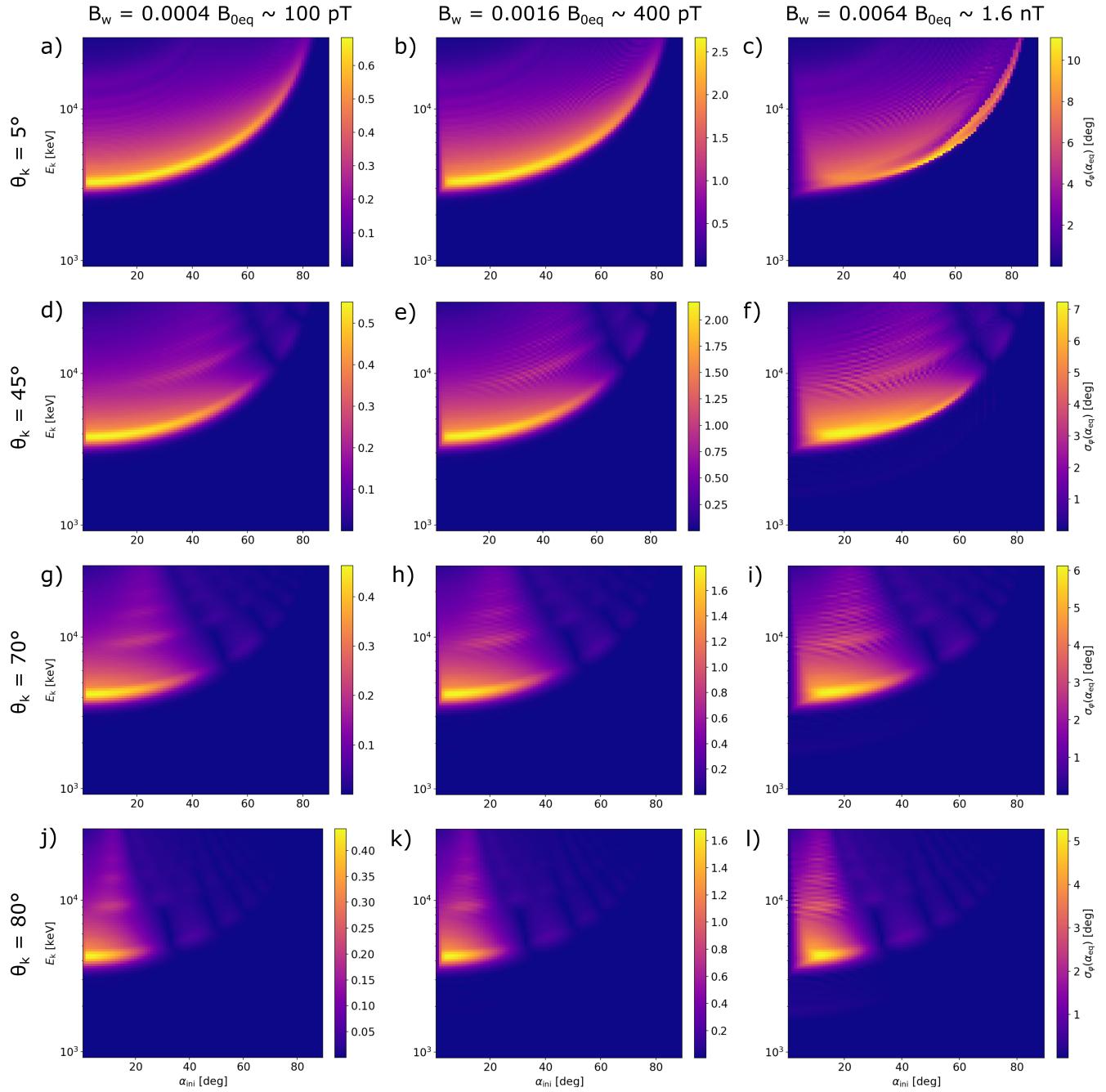


Figure 5. Standard deviation $\sigma_\varphi(\alpha_{\text{eq}})$ in electron equatorial pitch angle for propagation along the EMIC wave packet. Same panel format as in Figure 4, but the color bars in each panel now go from 0 to $\max_{(\alpha_{\text{ini}}, E_k)} \sigma_\varphi(\alpha_{\text{eq}})$.

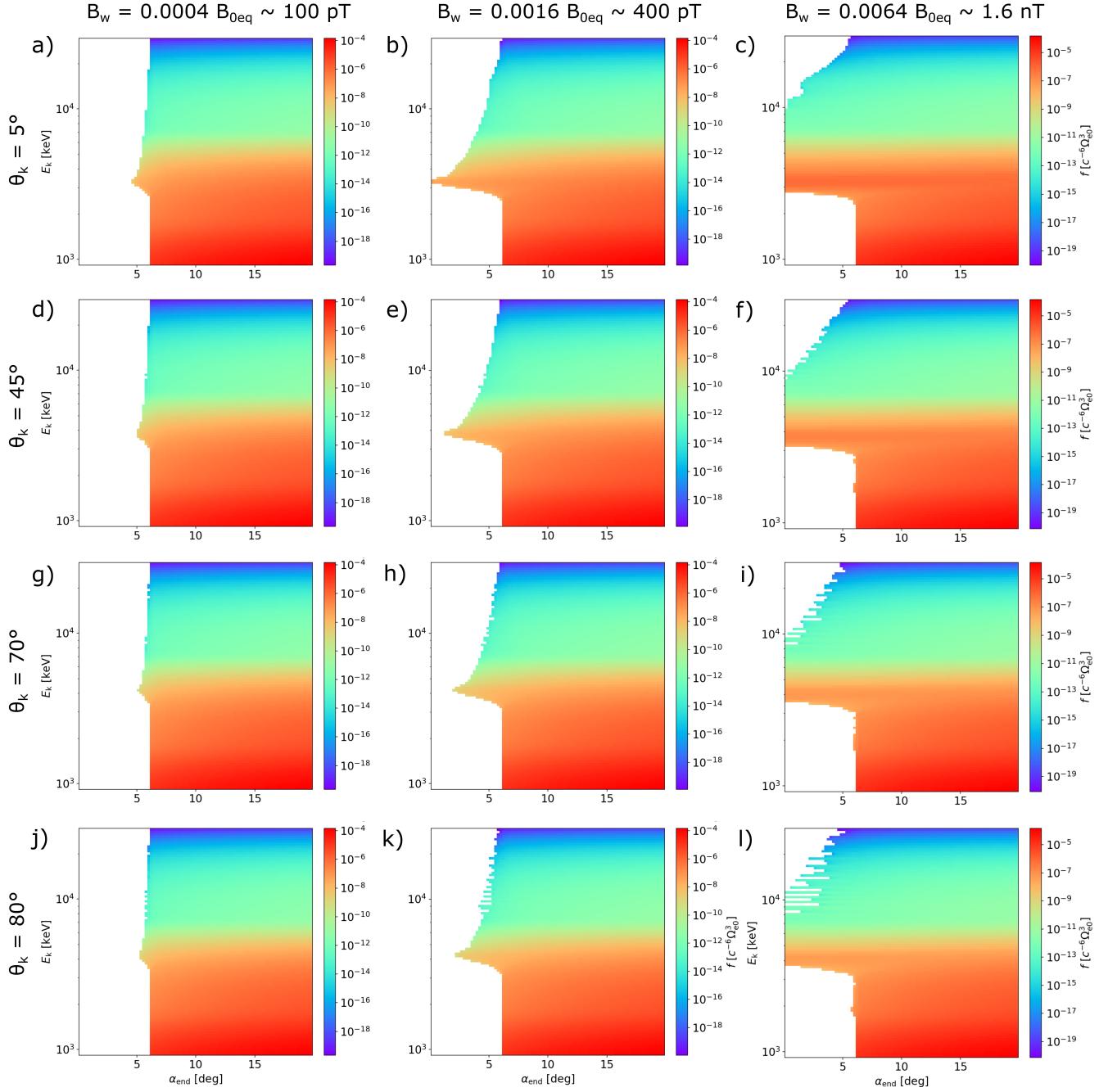


Figure 6. Electron phase space density distribution after resonant interaction with the EMIC wave captured at the end of the wave packet. Range in pitch angles is limited to 0° – 20° to focus on the loss cone. Parametrization of rows and columns follows Figures 4 and 5, but because the co-streaming particles were traced back in time, the pitch angle α_{end} on the abscissa now represents the initial value at the end of the subpacket. The curious small bumps on the boundary between zero and finite PSD values near 2 MeV in panels (f), (i), and (l) arise due to fractional resonances – see Section 3.3 and Figure 8.

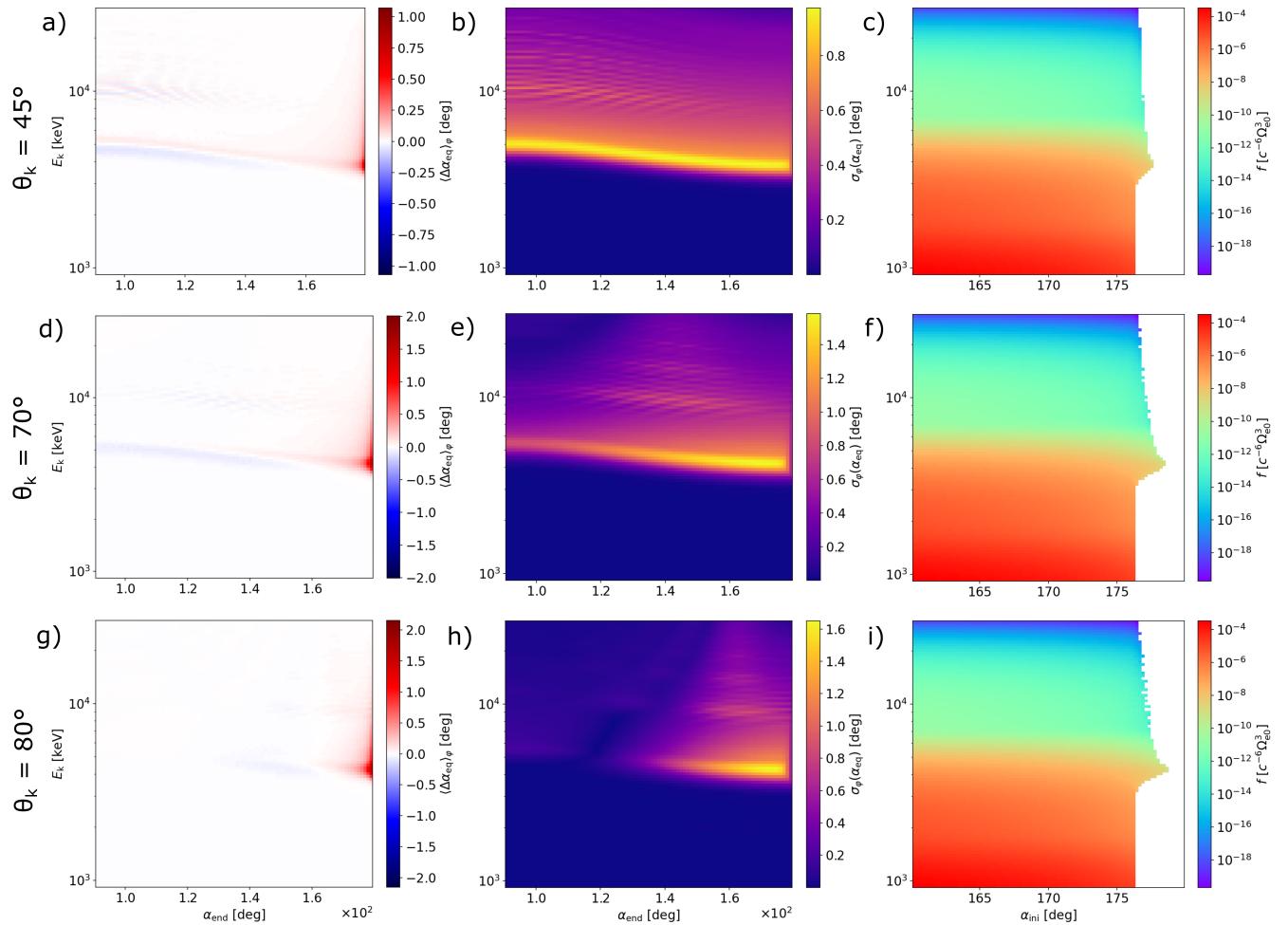


Figure 7. Effect of resonant interactions on electrons propagating against the EMIC wave packet. Panel formatting in the first, second, and third columns follows Figures 4, 5, and 6, respectively. Only a single amplitude value is used, $B_w = 400$ pT, and the wave normal parametrization over rows of panels skips the quasiparallel case $\theta_k = 5^\circ$, where the resonance effects would be negligible except for extremely ultrarelativistic energies ($E_k \gtrsim 15$ MeV). Note that because the electrons are now counter-streaming, the pitch angles on the abscissas α_{ini} and α_{end} were swapped, and particles with initial equatorial pitch angles $> 39^\circ$ are missing from the forward-in-time simulations.

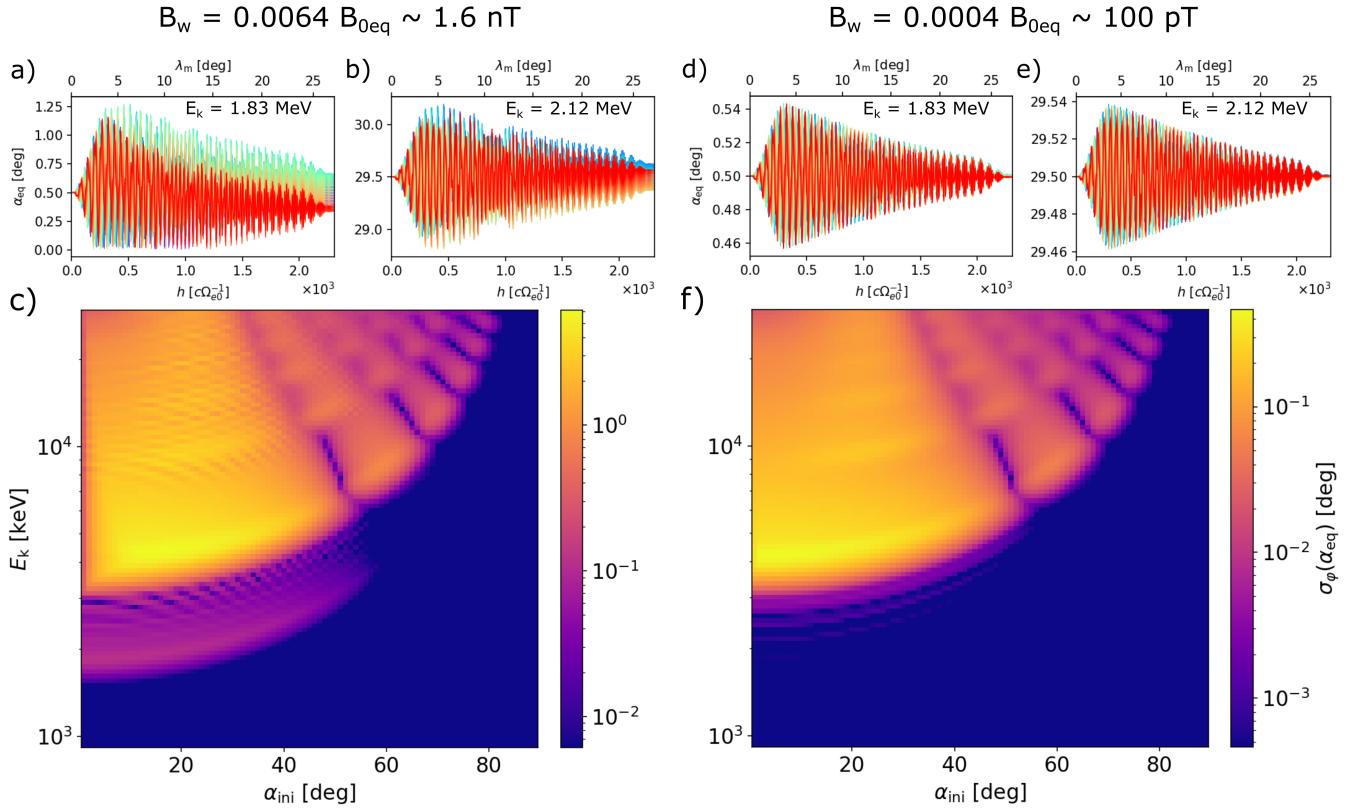


Figure 8. The behavior of fractional resonances explained by particle trajectories and standard deviations in equatorial pitch angle for an EMIC wave with wave normal angle $\theta_k = 70^\circ$. (a),(b) Changes in pitch angle along the field line at energies well below the equatorial fundamental resonance energy $E_{Rmin} \approx 4$ MeV. The wave amplitude is $B_w = 1.6$ nT. (c) Standard deviation in equatorial pitch angle plotted in logarithmic scale that spans three orders of magnitude. Weak resonant effects near 2 MeV become apparent. (d)–(f) Same as (a)–(c), but for a 16 times weaker wave. The resonant effects near $E_{Rmin}/2$ are now insubstantial compared to the fundamental resonance.