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ABSTRACT

We analyze the effects of electromagnetic ion cyclotron (EMIC) waves on relativistic electron
scattering and losses in the Earth’s outer radiation belt. The EMIC emissions are commonly
observed in the inner magnetosphere and are known to reach high amplitudes, causing significant
pitch angle changes in >1 MeV electrons via cyclotron resonant interactions. We run test-particle
simulations of electrons streaming through helium-band waves with different amplitudes and
wave normal angles and assess the sensitivity of advective and diffusive scattering behavior
to these two parameters, including the possibility of very oblique propagation. The numerical
analysis confirms the importance of harmonic resonances for oblique waves, and the very oblique
waves are observed to efficiently scatter both co-streaming and counter-streaming electrons.
However, strong finite Larmor radius effects limit the scattering efficiency at high pitch angles.
Recently discussed force bunching effects and associated strong positive advection at low pitch
angles are, surprisingly, shown to cause no decrease in the phase space density of precipitating
electrons, and it is demonstrated that the transport of electrons into the loss cone balances out
the scattering out of the loss cone. In the case of high-amplitude obliquely propagating waves,
weak but nonnegligible losses are detected well below the minimum resonant energy, and we
identify them as the result of nonlinear fractional resonances. Simulations and theoretical analysis
suggest that these resonances might contribute to subrelativistic electron precipitation but are
likely to be overshadowed by nonresonant effects.

Keywords: electron scattering, EMIC waves, nonlinear wave-particle interactions, test-particle simulation, radiation belts, fractional

resonance, loss cone, electron precipitation

1 INTRODUCTION

Electromagnetic ion cyclotron (EMIC) waves are naturally occurring electromagnetic emissions in Earth’s
magnetosphere generated by unstable anisotropic hot ion populations (Kennel and Petschek, 1966;
Anderson et al., 1996). Each ion component of the space plasma has a corresponding EMIC frequency




26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69

Hanzelka et al.

band located below the gyrofrequency of the ion, with the hydrogen band (H+) and helium band (He+)
being the most commonly observed (Min et al., 2012; Meredith et al., 2014; Saikin et al., 2015; Wang et al.,
2017b; Jun et al., 2021). In the outer radiation belt, the wave frequencies in the near-equatorial source
(Loto’aniu et al., 2005; Allen et al., 2015) fall mainly into the Pc1 range 0.2-5 Hz (Saito, 1969; Usanova
et al., 2012). Initially generated in the left-handed mode, the waves may convert to the right-handed mode
at higher latitudes (Rauch and Roux, 1982; Perraut et al., 1984; Kim and Johnson, 2016). These polarized
waves can scatter relativistic electrons (kinetic energies Ey around 1 MeV and larger) in pitch angle «
through cyclotron resonant interactions (Summers et al., 1998; Horne and Thorne, 1998), which leads to
significant losses of radiation belt electrons to the atmosphere (Thorne and Kennel, 1971; Usanova et al.,
2014; Clilverd et al., 2015; Kurita et al., 2018; Li and Hudson, 2019).

During geomagnetically active times, EMIC waves at lower L-shells (L. < 6) can reach peak magnetic
field amplitudes By, above one percent of the background magnetic field strength By (Meredith et al.,
2003; Engebretson et al., 2015). Trajectories of particles resonating with strong waves experience large
perturbations, and a variety of associated nonlinear effects appear (Karpman, 1974; Artemyev et al., 2018;
Grach et al., 2022). Phase-trapping of ions in the wave potential leads to nonlocal transport to higher pitch
angles and the formation of phase space density (PSD) holes in the gyrophase space (Omura et al., 2010;
Shoji et al., 2021), while phase-trapped electrons experience a decrease in pitch angle (Omura and Zhao,
2012; Zheng et al., 2019). At a =~ 0°, the force-bunched electrons are transported predominantly to higher
pitch angles; Bortnik et al. (2022) proposed that this nonlinear effect may result in precipitation blocking
due to the removal of electrons from the loss cone. Below the fundamental cyclotron resonance energy,
nonresonant scattering by amplitude-modulated waves takes place and may extend the energy range of
precipitating electrons down to hundreds of keV (Chen et al., 2016; An et al., 2022).

When the wave normal angle 6, (WNA) of EMIC waves increases and the propagation becomes oblique,
finite Larmor radius effects enable interaction with higher cyclotron harmonics. Wang et al. (2017a) studied
the interaction of electrons with moderately oblique monochromatic EMIC waves through nonlinear test-
particle simulations and quasilinear diffusive modeling. They have shown that with increasing 6}, harmonic
resonances at ultrarelativistic energies can lead to significant scattering loss, while the fundamental
resonance becomes weaker for oblique waves. Lee et al. (2018) analyzed WNA and ellipticity of a set
of EMIC waves detected by Van Allen Probe A, ran test-particle simulations of electron interaction with
very powerful and oblique EMIC waves, and highlighted the complexity of pitch-angle evolution due to
higher-order resonance with the elliptically polarized wave. They also emphasized the advective aspects
of nonlinear scattering and noted the importance of ellipticity and WNA distributions in modeling the
radiation belt electron transport.

In this paper, we perform test-particle simulations of nonlinear electron interactions with quasiparallel and
very oblique monochromatic EMIC waves, with the overall goal to describe the dependence of advection,
diffusion, and subsequent particle losses on the wave amplitude and wave normal angle — special attention
is given to the PSD evolution at low pitch angles. After describing the simulation setup in Section 2, we
analyze the average and standard deviation of equatorial pitch angle changes and show that for very oblique
waves and discuss the influence of higher harmonics on advection and diffusion 3.1. In Section 3.2, we
demonstrate through Liouville mapping of phase space density in backward-in-time simulations that the
force-bunching effects at low pitch angles are balanced out by transport from higher pitch angles and
that there is no precipitation blocking in the sense of decreasing precipitating electrons PSD below the
trapped PSD. Section 3.3 describes fractional resonances, a type of resonance acting below the fundamental
resonance energy, and considers their effects on subrelativistic electrons. A summary of the most salient
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results and the discussion of the impacts of our findings on radiation belt electron modeling can be found
in Section 4.

2 METHODS AND SIMULATION SETUP

Before choosing representative wave and plasma parameters for our particle simulation, we must first
consider which quantities can influence the behavior of resonant electrons. Wave amplitude By, controls the
transition from quasilinear to nonlinear interaction, and wave normal angle 6 is related to the perpendicular
component of the wave vector and associated harmonic resonances. Varying the values of By, or 0y leads
to major qualitative changes in the resonant behavior; therefore, they are the essential parameters in
our simulation. We choose four values of wave normal angle {5°,45°,70°,80°} to cover quasiparallel,
moderately oblique, and very oblique wave propagation. The WNA values are combined with three
values of amplitude {100 pT,400pT, 1.6 0T}, which approximately correspond to By, /Boeq ratios of
{0.04%, 0.16%, 0.64%} for equatorial field strength Boeq = 248 nT at L = 5. This choice of L-shell is
consistent with regions of enhanced EMIC wave activity identified by Meredith et al. (2014) and Jun et al.
(2021) in spacecraft measurements during active geomagnetic conditions.

There are also several parameters that influence the value of the minimum resonant energy, which is
given by the formula

nw§le — k”c\/rﬂﬂg + k22 — w2

l
w2 — k202

2
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E Rmin — TC

where m is the electron mass, c is the speed of light, k)| is the component of wave vector parallel to
By, w is the wave frequency, (1 is the local electron gyrofrequency, and n is an integer determining the
resonance harmonic (positive/negative for electrons streaming against/along a right/left-handed wave). The
energy Ermin is dependent on the normalized frequency w/(2, and through the cold plasma dispersion
relation k(w), it also depends on the electron plasma frequency wp. and the concentration of ions. These
dependencies are evaluated and plotted in Figure 1, where we plot Erpyiy with n = —1 for a monochromatic
left-handed EMIC wave propagating from the magnetic equator along a dipole field line up to magnetic
latitude A\, = 30°. We consider high (wpeo/€2e0 = 15) as well as low (wpeo/€2e0 = 5) density at the
equator, and we compare the high concentrations of ions (n,/n. = 0.77, nge/ne = 0.2, no/ne = 0.03),
which was used in the simulations of Jordanova et al. (2008) and Bortnik et al. (2022), with lower
concentrations (np/ne = 0.99, nye/ne = 0.005, no/n. = 0.005). Latitudinal dependence of density
follows the Denton et al. (2002) formula n, = nep(cos )\m)_za, with @ = 0.5 in the high-density case
and ¢ = 1.0 in the low-density case (and the relative ion concentrations remain constant). We observe
that changes to the density, ion concentration, and frequency band manifest mostly through a rescaling
of ERrmin. Therefore, we limit our investigations to the helium band and choose the higher values of
density (wpeo/S2eo = 15 ~ nep = 134 cm™?) and ion concentrations, in agreement with the observations of
Meredith et al. (2014) and Horwitz et al. (1981). The wave frequency is set to w /o = 0.80 ~ 0.76 Hz,
a slightly higher value that allows the waves to reach higher latitudes before experiencing the polarization
reversal.

Apart from the strong interaction near resonant energies, electrons can also experience nonresonant
scattering due to wave amplitude gradients (Chen et al., 2016) or, equivalently, due to the spectral
broadening of amplitude-modulated waves (An et al., 2022). To simplify our analysis, we suppress the
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nonresonant scattering by introducing a slow and smooth amplitude change at the edges of the wave packet.
This is done by multiplying the wave envelope by a half-period of the cos? function, with a field-aligned
distance from the minimum to the maximum of the function set to h = 2200 km. The envelope shape is
plotted in Figure 2a. The packet ends at a latitude where the normalized frequency reaches w/Q¢ = 1.25.
At this frequency, the helium wave is already right-handed, and the resonant energy of very oblique waves
rapidly increases (Stix, 1992).

The test-particle simulation method is based on the solution of the Lorentz force law by a relativistic Boris
algorithm with a phase angle correction, as described, e.g., by Zenitani and Umeda (2018). The components
of the electromagnetic wave field are defined according to the analysis of elliptically polarized waves
presented in Omura et al. (2019); see also Equations (5)—(8) and (12)—(17) in Appendix A. Wave packet
motion can be neglected on short timescales since the group velocity of EMIC waves is much smaller than
the velocity of relativistic electrons. In forward-in-time simulations, the particles start either at the equator
and propagate until they reach the end of the wave packet (or their mirror point) or they start at the end
of the wave packet and propagate back to the equator. Mirroring particles are not allowed to return to the
equator so that we can separate the resonant effects experienced by co-streaming and counter-streaming
electrons. In both cases, the initial particle energy is spaced logarithmically from 900 keV to 30 MeV with
96 bins, initial pitch angles go from 0° to 90° (or 180° to 90° for counter-streaming electrons) with 90
linear steps, and the initial gyrophases ¢ uniformly cover the full 360° angle with 72 steps. Note that the
grid boundaries in the (Ey, o, ¢) space represent bin edges. In backward-in-time simulations, the pitch
angle range is limited to 0° to 20° (or 180° to 160° for counter-streaming electrons) with 90 linear steps,
providing increased resolution of the loss cone (ay,ss = 3.6° at the equator and 6.1° at the end of the
packet). The time step of the Boris solver is adaptive and always stays at 128 steps per local electron
gyroperiod.

The backward-in-time simulations are used to map the phase space density of an initial, unperturbed
distribution to the final state and assess the PSD evolution due to resonant interactions (Nunn and Omura,
2015; Hanzelka et al., 2021). We assume that the initial hot (relativistic) distribution is in the form of a sum
of subtracted bi-Maxwellian distributions that preserves phase space density along adiabatic trajectories
(Summers et al., 2012; Omura, 2021). At a distance h, this distribution can be written for relativistic
momenta u = yvj and u; = yv, as

f(hywyuy) = Zfz (hy s ul) 2)

with
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We set N = 5 and choose the following values of distribution parameters: loss cone width 3; = 0.5 V4,
loss cone height §; = 1.0Vi, parallel and perpendicular thermal momenta Uy ; Jc = Upifc =
{0.2,0.5,1.0,2.5,9.0}, and hot electron densities nyc0; = {2.2,0.22,0.022,0.0022,2.2 - 10~7} cm ™3,
PSD inside the loss cone is set to zero for all values of h. The equatorial distribution is plotted in Figure 2b
in the (Ey, aipi) space. The energy profile up to 10 MeV is constructed to loosely follow the Van Allen
Probes measurements analyzed by Zhao et al. (2019); however, the energy distribution is of little importance
for EMIC-electron resonance since the acceleration caused by this interaction is negligible (Summers
et al., 1998). Line plots of pitch angle distributions for several initial energies are presented in Figure 2c.
Although each component of the initial distribution has a zero temperature anisotropy Ay = Ut2 /U t2| |~ 1,
the relativistic pitch angle anisotropy (Xiao et al., 1998) can be large due to the subtraction in the PSD
distribution model. This model is consistent with the assumption that previous weaker wave-particle
interactions already eroded the pitch angle profile.

3 RESULTS
3.1 Advection and Diffusion

When studying the nonlinear interactions between plasma waves and charged particles, it is illustrative
to start by inspecting individual trajectories. In Figure 3, we plot the spatial evolution of the equatorial
pitch angle for electrons propagating through a high-amplitude (By, / Boeq = 0.0064) moderately oblique
(6, = 45°) EMIC wave. The equatorial minimum resonance energy for this wave is Frpin &~ 3.3 MeV
for n = £1 and Ermin =~ 7.1 MeV for n = £2. Particles starting at the equator with initial pitch
angle o = 0.5° and energies Fy = 3.95 MeV experience a significant increase in equatorial pitch angle
Adeq ~ 11° due to the n = —1 resonance, with almost no dependence on the initial gyrophase (Figure 3a).
This is the advective behavior caused by force bunching, as previously described by Grach and Demekhov
(2020). Particles starting at larger pitch angles (ceq = 29.5°, Figure 3b) experience a large spread in ceq
across the gyrophases, exhibiting a predominantly diffusive behavior. The asymmetry in Aaeq towards
lower values is caused by phase locking of ¢ to the wave phase ¢, but the particles never become fully
phase-trapped in this particular case. In Figure 3c, we increase the initial energy to Fj = 8.51 MeV and
observe that particles first undergo scattering due to the n = —2 harmonic resonance and then encounter
the n = —1 resonance at latitudes from 11° to 16°, resulting in pitch-angle diffusion.

Figures 3d-3f show particle trajectories of electrons starting at the end of the wave packet and streaming
against the wave. Here, resonant interaction is enabled by the right-handed component of the elliptically
polarized wave. Keeping the initial energies and initial equatorial pitch angles similar to the co-streaming
case, we observe that the advective and diffusive effects of the n = 1 resonance are comparable to the
n = —1 resonance. However, the maximum change in pitch angle is smaller, and the phase-locking effect
does not appear. In the case with £y = 8.51 MeV, the counter-streaming particles first encounter the
stronger n = 1 resonance, and the weaker n = 2 resonance has then only a little effect on the spread in
Acveq.

To evaluate the pitch angle evolution of relativistic electrons across all initial pitch angles and energies,
we introduce two statistical measures: the average (Acweq), (first central moment), which is related to the
advection coefficient, and the standard deviation o, (ceq) (second central moment), which is related to the
diffusion coefficient. We intentionally eschew the standard advection and diffusion coefficients (Zheng
et al., 2019) as they are often bounce-averaged in practical applications, while we do not let the particles
finish the half-bounce, which is to separate between n > 0 and n < 0 resonances. The average change
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in equatorial pitch angle for co-streaming particles is plotted in Figure 4 in (v, F)) coordinates, with
each plot corresponding to one of the 3 combinations of wave amplitude and wave normal angle. Starting
with quasiparallel propagation (¢, = 5°, Figures 4a—4c), we first note the different scales of color bars,
which have a range of +max(,, . p,) [{Adeq)y| separately for each plot. An outstanding feature, high

positive advection, appears at low pitch angles near the n = —1 resonance, confirming the force-bunching
effects observed on trajectories in Figure 3a. Another prominent feature is the two red (positive) and blue
(negative) curved stripes that follow the dependence of n = —1 resonant energy on pitch angle. For the

case with the largest wave amplitude (Figure 4c), the negative advection at higher pitch angles dominates
over the positive one, indicating significant nonlinear phase-trapping effects.

Interaction with oblique waves (Figures 4d—41) introduces some new effects. First, we may notice the
alternating blue and red vertical lines at high pitch angles, with almost no dependence on energy. These are
the result of nonresonant oscillations induced by the parallel component of the wave field, and they would
almost disappear if the particles were allowed to bounce back to the equator — the lines are not relevant
for our analysis of the cyclotron resonance and will be omitted in the following presentation. Harmonic
resonances become visible at higher amplitudes, adding new pairs of positive and negative advective stripes
along the corresponding resonance energy curves. However, as the wave normal angle increases, advective
effects disappear at higher pitch angles; for 6. = 80°, the average change in pitch angle becomes negligible
for particles with a;j,; > 30°. Moreover, a fine stripe structure traversing the resonant energy curves appears
in the high-amplitude plots. These new effects will be explained below when discussing the diffusive
behavior, where their origin becomes more apparent.

The standard deviation in the equatorial pitch angle of co-streaming particles is plotted in Figure
5, following the panel format of Figure 4. The color bars of each individual panel go from zero to
MAaX (o Fy) 0,(0eq). Starting again with the quasiparallel propagation (6 = 5°, Figures 5a—5c), we
can see the suppressed diffusion at low pitch angles, consistent with the lack of spread in pitch angles
observed in the particle trajectories (Figure 3a). The largest values of 0, (aeq) are localized along the
resonance energy curve, with slight changes appearing for By, = 1.6nT at higher pitch angles, where
and phase-trapping and bunching effects may enhance or decrease the standard deviation. In the oblique
case, diffusion at higher pitch angles gets weaker with growing wave normal angle. Unlike in the analysis
of advection, we detect a clear structure of maxima and minima along each resonant curve, which is
related to the zeros of Bessel functions that arise in the derivation of harmonic resonances (see Appendix A,
Equations (9)—(11) and (20)—(22)). The fine structure appearing in the energy range of harmonic resonances
is now also more evident, especially in the high-amplitude case (Figures 5f, 5i, and 51). By inspecting
trajectory plots, its origin can be traced to multiresonance interactions, when particles phase-organized
by the resonance of order |n| at lower latitudes experience a |[n — 1| resonance at higher latitudes. Notice
that the fine structure is also present in the quasiparallel case, showing us that the harmonic resonances are
important even at WNA as low as 0 = 5°.

Concerning the strength of diffusion at lower pitch angles, the test-particle simulations show a decreasing
trend in o, (eq) With increasing WNA at energies close to the n = —1 resonance. Harmonic resonances
get stronger compared to the fundamental, but the overall diffusion at higher energies does not change
much because the increased strength of near-equatorial harmonic interaction is compensated by the weaker
fundamental resonance encountered at higher latitudes. An exception is the extreme ultrarelativistic energies
(Ex 2 15 MeV), where the interaction with very oblique waves causes slightly stronger diffusion (Figures
51 and 51). This behavior will impact the precipitation into the loss cone, as discussed in the next section.
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3.2 Phase Space Density near Loss Cone

The scattering effects analyzed in Section 3.1 transport particles into the loss cone and contribute thus to
the atmospheric precipitation of relativistic electrons. As described in Section 2, we trace particles back
in time from the end of the wave packet to the equator and map the PSD values of a known equatorial
distribution along particle trajectories to the starting point. The resulting PSD distributions at the end of
the packet are plotted in Figure 6 in the (enq, Fi) space, where aey,q is the initial pitch angle value in the
sense of backward-in-time propagation. Since the number density of relativistic electrons in our model is
not scaled to any specific spacecraft observation, we keep normalized phase space density units C_GQZ’O
used in the simulation code.

The quasiparallel EMIC wave manages to completely fill the loss cone near fundamental resonant energy
when its amplitude is set to By, = 400 pT (Fig. 6b). Increasing the amplitude to By, = 1.6 n'T extends the
range of energies with complete loss cone filling up to 10 MeV (Fig. 6¢). There are several noteworthy
features to this strongly perturbed PSD distribution. First, we observe that particles near Fy = 13 MeV
reach deeper into the loss cone, a feature not seen in the low-amplitude wave precipitation profile. This
irregularity arises from the fast polarization reversal experienced by quasiparallel waves, which abruptly
stops the resonant interaction — mild oscillations in o, (ceq) across energy were seen in the top left corners
of Figure Sa—5c, but the effect on precipitation becomes clear only for strong waves. Second, the energy
profile of trapped particles immediately above ay,¢s has a local maximum near the fundamental resonance
— this peak appears due to pitch angle anisotropy when particles from high PSD regions at higher pitch
angles undergo scattering towards lower pitch angles. Third, the pitch angle distribution at energies from
3 MeV to 10 MeV is flattened, signifying a marked decrease in pitch angle anisotropy. And fourth, as a
consequence of the third point, there is no apparent precipitation blocking — that is, phase space density
inside the loss cone reaches the value of trapped particle PSD.

The lack of precipitation blocking contradicts the predictions of Bortnik et al. (2022) and may seem
counterintuitive, especially after seeing the strong upward advection at low pitch angles in Figure 4c. To
explain this observation, we can consider the consequences of Liouville’s theorem (i.e., constancy of PSD
along phase space trajectories), which is known to hold in the Hamiltonian system of charged particles and
electromagnetic waves constituting a Vlasovian plasma (Ichimaru, 2004). Assume that a state has been
reached where the PSD of precipitating and trapped electrons are equal at a certain energy. Because EMIC
waves cannot efficiently accelerate electrons and change their energy, the PSD along trajectories will always
be the same. Therefore, no amount of force bunching or other nonlinear effects can disturb the uniform
pitch angle distribution. If the PSD in the loss cone were initially higher than outside, the EMIC-induced
scattering would mix the distribution and restore uniformity, decreasing thus the precipitating PSD, but it
would not push it below the value of trapped PSD. Nonuniformity along the field line could complicate
the argument if a broader range of v would be considered, but the spread in v at low pitch angles at a
fixed energy level is negligible. The seeming discrepancy between backward-in-time PSD mapping and the
transport coefficients from Section 3.1 can be resolved by considering the initial distributions of particles
in the forward simulation. A uniform distribution in (v, E, ¢) is not uniform in (v, vy, v;); consequently,
the number of particles per unit velocity space volume in the forward simulation is much higher at lower
pitch angles than at higher pitch angles. Symbolically, we can write the unit volume as (working in a
nonrelativistic setting for simplicity)

dV = dvzdvydv, = m =32, 2FsinadEy dy . 4)
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The sin « term in the Jacobian expresses the smallness of velocity space volume near o = (. Therefore, the
few test particles scattered into the loss cone can have the same weight as all the force-bunched particles
escaping from the loss cone.

The effect of increasing obliquity on the PSD evolution displayed in Figures 6d—61 agrees with the
analysis of diffusion from Section 3.1. The loss cone is only partially filled near the fundamental resonance
energy for waves with By, = 400 pT, and the range of complete loss cone filling with By, = 1.6nT
becomes narrower with increasing 6. The penetration of nonzero PSD into the loss cone at higher energies
turns out to be mostly independent of wave normal angle, except for ultrarelativistic energies, where the
very oblique waves show larger increases in precipitating PSD. The jagged boundary between finite and
zero values of PSD in the case of strong, oblique waves (mainly Figures 61 and 61) comes from the fine
multiresonance structure observed in corresponding diffusion plots in Figures 5i and 51. The weak losses
near half of the fundamental resonance energy are related to nonlinear fractional resonances, which will be
analyzed in depth in Section 3.3. Finally, we note that the rapid decrease of o, (ceq) With rising WNA at
higher pitch angles is not reflected in the PSD perturbations after a single quarter bounce but might become
important after multiple bounces due to the weak transport of particles from high-density regions of the
initial anisotropic distribution.

So far, we have investigated electron scattering and related losses for propagation along the wave.
However, as indicated by Figures 3d-3f, counter-streaming particles are also efficiently scattered by
oblique EMIC waves, and significant particle losses are to be expected. In Figure 7, we plot the quantities
(Acteq) s 0p(0eq), and f for electrons streaming against the medium-amplitude wave (By, = 400pT)
with oblique wave vectors. The quasiparallel case is omitted because the right-handed wave component
is negligible until the polarization crossover at higher latitudes is reached, where the resonant energies
are already near the upper limit of our Ey range. The first thing to notice is that the forward-in-time
propagating particles start away from the equator and have a limited range of equatorial pitch angles;
therefore, the resonance energy curves appear stretched in the (cvenq, Ex) space. Unlike in the co-streaming
case, the advection and diffusion caused by fundamental resonance grow with increasing WNA because the
polarization is becoming more linear and the right-handed wave component is getting larger. This behavior
is reflected in the PSD plots, where the precipitating particles can travel deeper into the loss cone when
interacting with very oblique waves. For 0, = 80°, the advection and diffusion (and, as a consequence, the
electron losses) become comparable to the co-streaming case, showing the importance of n > 0 resonances
for analysis for relativistic electron precipitation by oblique EMIC waves.

3.3 Nonlinear Fractional Resonances

In the discussion of Figures 61 and 61, we mentioned the surprising detection electron scattering into
loss cone at energies Iy ~ 2MeV, far below the fundamental resonance energy. These losses cannot
have origin in nonresonant scattering because we use a smooth amplitude distribution along h, and also
because the nonresonant scattering would show as a broadening of the fundamental resonance and not as a
separate peak in energy profile (An et al., 2022). Trajectories of particles with energies Ey = 1.83 MeV
and Ey = 2.12MeV propagating along the high-amplitude wave with 6, = 70° (Figures 8a and 8b)
reveal a spread in aeq that does not disappear even after the particles leave the wave field. This spread is
somewhat weaker than the oscillations caused by the fundamental cyclotron resonance. The oscillations
can be understood as the maximum possible nonresonant scattering in a wave with a rectangular amplitude
distribution along the field line.
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Since the spread in cvq is too small to be clearly visible in the o, (cweq) plot from Figure 5i, we re-plot the
diffusion with a logarithmic color bar and show the results in Figure 8c. It becomes apparent that we are
observing a new type of resonance with a minimum resonant energy near Ery,i, /2. This new resonance
causes much weaker scattering than the fundamental resonance, but is roughly comparable to nonresonant
oscillations. However, when we look at the particle trajectories and diffusion from the simulation with a
small-amplitude wave (By, = 100 p'T'), the new resonance becomes much weaker than the nonresonant
oscillations, and the corresponding o, (aeq) values are more than three orders of magnitude below the
fundamental resonance effect (Figure 8d—8f).

Based on the numerical observations presented in Figure 8, we identify the new behavior as the nonlinear
fractional resonance of order n = —1/2. A simplified analytical derivation is provided in Appendix A,
where we also identify fractional resonances of order n = {4+1/3,£1/2,+2/3,+3/2}, and suggest that
the nonlinear resonance energy spectrum is dense in the sense of rational numbers. These resonances
seem to be analogous to the subcyclotron resonance of electrons with whistler waves described within
the Hamiltonian framework by Fu et al. (2015). The concept of fractional resonances does not appear
in quasilinear theory because it arises from integration along perturbed trajectories (compare with the
integration along unperturbed trajectories employed in quasilinear theory as mentioned, e.g., in the
theoretical works of Kennel and Engelmann (1966) and Allanson et al. (2022)). In the nonlinear treatment
of whistler-electron scattering presented by Omura et al. (2019), an integer resonance is chosen first, and
the nonlinear scattering effects are obtained from perturbations of near-resonant electrons. Suppose we
instead implement a model of large perturbations without specifying a resonance velocity/energy, as in
the example given by Equations (26) and (27), and proceed to analyze power transfer between waves and
particles (which is directly related to pitch angle scattering through resonance diffusion curves as explained,
e.g., by Summers et al. (1998)). In that case, fractional resonances will arise from the Bessel function
expansion of gyrophase evolution. An important property of the n = —1/2 is the scaling of scattering
strength with the square of wave amplitude — theoretically proven in Equations (44) and (45) — which
differs from the known linear dependence for integer resonances. The nonlinear fractional resonances are
thus expected to play a role only in precipitation induced by very strong oblique waves.

4 SUMMARY AND DISCUSSION

We have numerically analyzed the dependence of relativistic electron scattering on the wave normal angle
and magnetic field amplitude of helium band EMIC waves. Unlike in the previous studies of Wang et al.
(2017a) and Lee et al. (2018), we allow for very oblique wave normal angles 6, = 70° and #,, = 80°, and
keep the amplitudes more moderate (By,/Boeq < 1%). The presented analysis of advective and diffusive
behavior is comparable to Bortnik et al. (2022), who, however, used much lower energy and pitch angle
resolution and did not include oblique waves. Our results can be divided into three blocks:

1. Confirmation of previous results:
a. Harmonic resonances n < —1 substantially affect the scattering of relativistic electrons at low pitch
angles for waves with wave normal angles as small as #,, = 5° (Wang et al., 2017a). The contribution
from n > 0 resonances requires at least moderate obliquity to become significant.

b. Positive advection of resonant particles at very low pitch angles was detected and shown to dominate
over diffusion as wave amplitude increases. This is the effect described as boundary reflection by
Zhu et al. (2020) and nonlinear force bunching by Grach and Demekhov (2020) and Bortnik et al.
(2022).
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c. The advective behavior of resonant particles can be positive or negative, depending on their initial
pitch angle and energy (Lee et al., 2018). Particles that start at energies lower than the resonant
energy for a given pitch angle will, on average (over gyrophases), experience a decrease in pitch
angle, while particles starting at higher energies will encounter the resonance curve at higher
latitudes and experience an average increase in pitch angle. This is visualized by the blue-red stripe
pairs in Figure 4.

d. Increasing obliquity weakens the effects of n = —1 resonance but enhances the resonant interaction
for [n| > 1 and n = 1 (Wang et al., 2017a).

e. Crossings of multiple resonance energies during one passage through the waves result in a more
stochastic pitch-angle evolution, described by Lee et al. (2018) as “complicated and time-dependent
phase trapping and bunching effects”. Under our simplified wave model, these multiresonance
effects appear after one quarter-bounce as a fine structure in the plots of advection and diffusion
when the EMIC wave is strong and oblique (Figures 41, 41, 51, and 51).

2. Disagreement with previous results:

a. Oblique waves seem to weaken the advection effects at low pitch angles, contrary to the observations
by Lee et al. (2018).

b. We do not observe any effects of precipitation blocking in the PSD analysis (Figure 6), in
disagreement with the suggestion presented in Bortnik et al. (2022) that force bunching caused by
strong EMIC waves will decrease the electron fluxes/PSD at low pitch angles.

3. New discoveries:

a. Electrons losses of relativistic electrons by quasiparallel waves are comparable to losses induced
by oblique waves (Figure 6). This behavior changes for ultrarelativistic electrons (Ey = 15MeV,
depending on wave parameters), where the very oblique waves cause stronger precipitation.

b. Very oblique waves cannot efficiently scatter electrons at higher pitch angles (a > 30° for 6y, = 80°,
see Figures 5j—51). Transport from high PSD regions at large pitch angles towards the loss cone is
facilitated only by quasiparallel waves.

c. Very oblique waves scatter co-streaming and counter-streaming electrons with similar efficiency
due to the high ellipticity, or in other words, due to comparable magnitude of right-handed and
left-handed amplitude components (compare Figure 6k with Figure 71).

d. High-amplitude oblique waves can scatter electrons below minimum resonant energy through
nonlinear fractional resonances. The pitch-angle changes caused by n = —1/2 scale with the square
of wave amplitude, faster than the linear scaling for n = —1 resonance.

When comparing our results to previous literature, a few points must be made to avoid confusion: Under
our sign convention, the interaction of right-handed waves with electrons happens at resonances of order
n > 1, and interaction with left-handed waves corresponds with n < 1, exactly opposite to the convention
used by Wang et al. (2017a). Also, unlike Wang et al. (2017a), we allow only one-quarter bounce, and so
0By/Oh > 0; in the southern hemisphere, the opposite sign of the By-field gradient would change the
effect of phase trapping on electron pitch angles. Furthermore, the strongest wave we use has a relative
amplitude By, /By = 0.64%, while Lee et al. (2018) go up to 10% (above the amplitude of the extremely
intense EMIC wave observations presented in Engebretson et al. (2015)); as a consequence, phase-trapping
has minimal impact on our PSD mapping results, especially for oblique waves.

The disagreement in the dependence of advection on obliquity between our results and Lee et al. (2018)
comes from the different approaches to wave modeling. Lee et al. (2018) implements one wave field that is
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ellipticaly polarized, but remains parallel, and another wave field where the wave normal angle is nonzero,
but the polarization remains circular. According to the cold plasma dispersion relation, which is strictly
followed in our study, oblique waves always have elliptical polarization (linear being considered as a
special case of elliptical), and parallel waves are always circularly polarized, except for the singularity at
the crossover frequency. Deviations from circular polarization decrease the advection effects, reconciling
our results with Lee et al. (2018).

The lack of precipitation blocking was demonstrated in Section 3.2 through numerical PSD mapping and
supported by arguments based on Liouville’s theorem. The concept of precipitation blocking was likely
first introduced by Grach and Demekhov (2020), who, however, concluded that due to competition between
phase trapping and force bunching, the precipitating fluxes would reach the strong diffusion limit, with
no apparent decrease near « = (°. Our observations corroborate this conclusion, except that the transport
of particles to low pitch angles is due to the symmetric (“diffusive”) scattering as observed in Figure 3b,
where the particles stay in the phase-trapping region only for a short time and do not become phase-locked.
Bortnik et al. (2022) suggested that Van Allen Probes (RBSP) observations of dips in precipitating flux by
Zhu et al. (2020) could be explained by force bunching. However, the EMIC-induced precipitating electron
flux shown in Zhu et al. (2020) has a local maximum at o = 0°, while the force bunching effects should be
most effective at removing particles from this region. The spacecraft observations are consistent with the
simulation results of Grach and Demekhov (2020), where the PSD distribution sometimes peaked inside
the loss cone. This effect is not clearly visible in the perturbed distribution from Figure 6¢, because it
requires strong phase trapping. Such trapping may be possible with the exceptionally high peak amplitudes
By /Bp > 1% reported by Zhu et al. (2020), but not with the more moderate values used in our simulations.
Recall that transport by phase trapping is nonlocal, allowing mixing of phase space density from distant
points along the field line, violating the assumption of a spatially localized electron bunch that we used in
our theoretical consideration of PSD evolution (Section 3.2). Finally, we must emphasize that the force
bunching does indeed remove particles from the loss cone, but the important quantity for precipitation is
the net effect of upward and downward pitch-angle motion.

Most of our new and original results are related to very oblique propagation, which was omitted in
previous literature on EMIC-induced precipitation. We have shown that precipitation of relativistic electrons
by very oblique waves is comparable to quasiparallel waves, except for electron energies corresponding to
high order resonances (n < —4). Note that we are not making a comparison to the routinely investigated
purely parallel waves with 6, = 0°, because in situ spacecraft measurements (Allen et al., 2015) always
show at least a small amount of obliquity. Nevertheless, when we consider the increased scattering effects
of very oblique waves on counter-streaming electrons, bounce-averaged diffusion might be significantly
increased compared to quasiparallel waves. Unfortunately, we do not know how strong the oblique EMIC
waves can be, as we are not aware of any study that would show the distribution of wave power over
WNA and frequencies. Van Allen Probes observations presented by Saikin et al. (2015) suggest that strong
helium-band waves (average wave power > 0.1 nT?/Hz) have lower average WNA than weak waves
(average wave power from 0.01 nT?/Hz to 0.1 nT?/Hz). Nevertheless, strong waves with 6, > 60° at
L = 5 were occasionally detected, justifying our parameter choice.

To our knowledge, the nonlinear fractional resonances were never described before in the context of EMIC-
electron interaction. They are, however, conceptually identical to the subcyclotron resonance of electrons
with whistler waves, which was studied by Fu et al. (2015). (Kramer et al., 2012) detected fractional
resonances in fusion devices in the context of ion drift-orbit resonance with magnetohydrodynamic waves.
Given the different physical setting, the theoretical approach taken by Kramer et al. (2012) is not the same
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as ours, but they arrive at a formula consisting of a multi-index sum over a product of Bessel functions,
not unlike our Equations (37)—(39). Nonlinear interactions at fractions of the plasma frequency were
theoretically described by Lewak and Chen (1969) and used the explain observations made by the Alouette
IT spacecraft. The EMIC-electron fractional resonances, especially the resonance of order n = —1/2,
might provide a possible explanation for the precipitation of subrelativistic electrons (Hendry et al. (2017),
Hendry et al. (2019), Capannolo et al. (2019), energies in hundreds of keV) if we consider a high-density
plasma where the fundamental resonance energy can drop to 1 MeV (compare with the w;,. dependence
plotted in Figure 1). However, to see if this mechanism is competitive with the nonresonant scattering
(Chen et al., 2016; An et al., 2022), we need to obtain a realistic distribution of wave power/amplitude over
wave normal angles, as mentioned above. Endeavors in this direction are left for future study.

A DERIVATION OF FRACTIONAL RESONANCES

The existence of fractional resonances from Section 3.3 can be derived from the equations of motion for an
electron interacting with an elliptically polarized wave. We start by defining the wave field

Ew = &E; siny — gE cosy) + ZE7 sin1), (5)
By, = 2By cos + gBy siny — 2B} cos ), (6)

where £}" < 0 and B < 0 for left-hand polarized waves. The three hatted vectors form the standard basis
of a Cartesian system. The wave phase seen by a particle with gyrophase ¢ is

Y =wt — kyz — kypr, sin @ + const. = g — Bsinp @)
and includes the effects of finite Larmor radius (FLR) py, through the quantity

_ UL kx

o=

®)

while ¢ represents the wave phase at the gyrocenter. The constant initial phase will be dropped in the
following analysis.

The equations of motion for an electron with the gyrocenter at x = y = 0 propagating through the wave
field on a homogeneous background field By || £ (field inhomogeneity is not important for the following
resonance spectrum analysis) can be written as

d(yv, : . :
(z: ) = % (vy BR sin(p — ) + v By sin(p + ¢) — EY sin) | ©)
d(~yv € . W oL:
%U = (U — v:)BE sin( — ) + (U, — v2) BY sin(p + ) (10)
dp e (Ur—v: oy B UL —v: _B‘Z” By
DT ( ot B cos(p — 1) + ot By cos(p + 1) > cos ) + > ) . adp
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Here we used the decomposition into left- and right-hand polarized components (Omura et al., 2019)

W s R w _ Pr T By
Egr = ER (&siny — gcosy) , ErR=—%—"" (12)
. R Ly — By
Ey = Ef (—&siny —gcosy) , L} = 5 (13)
s . w_ DBz + By
Br = B (£ cosy +gsiny), BR = — (14)
s o w_ Pz =By
By, = Bf' (£cosy — gsiny) , Bj = 5 (15)
(16)
and defined the ratios - .
Up = PR 2 BL (17)
Bﬁ, B]‘,:V’

which are related to phase velocities (they reduce exactly to phase velocities in case of circularly polarized

parallel-propagating waves). In further calculations, we will also use the normalized amplitude components
O = BRe/m, QO = Bl’e/m and QY = BYe/m.

The average change in electron kinetic energy per one wave period 7’ can be expressed as

T
(42, =5 [ -2
T 0
(18)

T
:_%/ dt (v (ER — EfY) cospsiny — vy (ER + EY)singcosy + v, E) sinv) |
0

where we used the decompositions from Equations (12)—(15). Let us denote the integrand I and restate it

in the form .

I = -7 (—vy (ERsin(e — ) + EY sin(p +v¢)) + v, EY sinv) . (19)

We may now apply the Jacobi-Anger expansion (Abramowitz and Stegun, 1965) and express the
trigonometric functions in terms of Bessel functions of the first kind,

sinp — ¢) = sin(p — ¥ + fsinp) = Z Jn-1(B)sinGy = > Ju(B)sinGuy (20)

n=—oo n=—oo

sin(p + ¢) = sin(p + ¢¥p — Bsinp) = Z Jn+1(8)sin G, = — Z Jn(B)sin Gp—1, 21

sin(t) = sin(¢¥p — [sin @) Z In(B)sin ¢y, , (22)
(23)

where
Cn=np —¥p (24)
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is the relative phase angle for the n-th resonance. Note that while the changes in kinetic energy of electrons
interacting with EMIC waves are typically negligible, these small energy changes are directly related to
large changes in pitch angle through the particle motion along resonant diffusion curves (Summers et al.,
1998).

The nonlinear effect of individual resonances is usually studied by performing an expansion in v, about

the n-th resonance velocity
1 Q
VRn:_<w+” e) . (25)
k. v

Here we instead expand the gyrophase to the first order of perturbations due to wave-particle interactions,
and plug them into the Jacobi-Anger expansions from Equations (20)—(22). Let us write ¢ ~ ¢g + (1 with

deg Qe

1 . (26)
der Uy Uz

= v — ) — —OQf 2
5 o cos(p — 1) ol R cos(p + 1), (27)

where we have used the inequalities |U1,| < |v,| and |URr| < |v;| for EMIC waves and relativistic electrons,
and we also removed the (27 term by focusing on low pitch angle regions where (27 < Q‘}“{’va /v . For
simplicity, we will further neglect the perturbations to v, and v . In the case of v |, the factors in front of
sines in Equation (10), divided by v, are the same as the factors in front of cosines in Equation (11),
suggesting that the relative perturbations in v | and ¢ are comparable. However, v | enters the computation
either through de; /dt, so we can consider that perturbation to be of second order, or through (3, which
simply scales the FLR effects and can be thus kept constant without losing information about resonant
behavior. In the case of v, the approximation can be justified only for low pitch angles since comparing the
factors in Equations (9) and (11) sets the requirement v, /v, < v, /v, (v, enters directly into ¢ through
k.z = k,v,t, so the perturbation would be of the first order if we did not use the low a approximation).

The cut off the perturbation expansion, we replace v by 1 in Equations (26) and (27). The perturbation
1 can then be obtained by integrating over time,

1 = —Rysin(po — ¥B) — L1 sin(ypo + ¥B) - (28)

Here we introduced the substitutions

v, QR

Ry = ; (29)
v
2 €2
Ly ===t (30)
V|V
where
ve1 = Qe Fw kv, 3D
is a quantity expressing the deviation from the fundamental resonances n = +1.
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475  Going back to the Bessel function expansion from Equations (20)—(22), we can now write

sin ¢, & sin (n(po + p1) — ¥B) = sin (nwo — nRysin(po — ¥p)) cos (—p — nlisin(po + ¥B)) +
+ cos (npo — nRy sin(pg — ¥p)) sin (=B — nl sin(pg + ¥B)) -

(32)
Using the second form of the expansions, we can expand each of the trigonometric functions from Equation
(32) into
sin (nypo — nRy sin(pg — ¥B)) Z Jr(nRy) sin (r(po — ¥B) — nyo) , (33)
r=—00
oo
cos (=g — nLysin(go +¢)) = > Ji(nLq)cos (I(o + ¥B) + ¥B) | (34)
l=—c0
oo
cos (npog — nRy sin(ypg — ¥B)) = Z Jr(nRy) cos (r(vo — ¥B) — nyo) , (35)
r=—00
sin (—yg — nLq sin(po + ¥B)) Z Ji(nLy)sin (I(po + ¥B) + ¥B) - (36)
l=—00

Since R; and L are proportional to the relative wave magnetic field By / By, we can limit the summations
to |r| < 1 and |l| < 1. As a further simplification, we will limit the resonance number n to —1, 0, 1, which
is a reasonable approximation when 3? < 1, i. e., when pitch angles are low and 6y, is not too close to
the resonance cone. We then insert the Equations (33)—(36) into Equations (32) and (20)—(22) and finally

obtain
sin(p — ) ~ Z In( n+1)R)J(n+1)Ly)sin((r—n+1—1)po+ (I —r+1)¢p),
n,rl=—1
(37)
sin(p +¥) ~ Z In(B)Jr(n— 1Ry J)(n—1)Ly)sin((r—n+1+1)po+ ({—7r+ D),
n,rl=—1
(38)
sin(t) Z Jn(B)Jr(nRy)Jy(nLy)sin ((r —n+Deo+ (I —r+ 1)¢p) . (39)
n,rl=—1
Comparing the prefactors of ¢ and v results in resonant fractions
r—n+1l-1
= 40
qr I—r+1 ’ (40)
r—n-+1l+1
= —— 41
qL i1 (41)
r—n+l
= 42
4qz I— a1 (42)
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Apart from the integer values (which represent fundamental and harmonic resonances), the fractions can
also evaluate to +1/3, +1/2, +2/3, and £3/2; other fractional values would appear if we extended the
summation range in n and removed the approximation 3% < 1.

Let us focus on the resonance —1/2 which contributes to electron diffusion near Fy = 2MeV in Figure
8c. The related relative phase angle g + 2 corresponds to resonance velocity

1 Q
VR-12 = . (W - 2—;) - (43)

Going back to the average change in energy defined in Equation (18), we can perform the Taylor expansion
of Bessel function to the first order and show that term with £} does not contribute to the —1/2 resonance,
while the E}¥ contributes to the integrand by

B evkev v, YT QR
2TQel/1 ’

(44)

where we have used Equations (29) and (8). The £ also has a nonzero contribution to the integrand,

ev? EY QY

) 45
2Tv v_q (45)

Due to the terms E}YQ and £ (), the energy change caused by —1/2 resonance scales with a square of
the wave amplitude. On the other hand, for the integer resonance terms with r = [ = 0, the quantities {2}
and 2} disappear, and the scaling reduces to the first power in amplitude. This analytical result explains
the diminishing of the —1/2 resonance in Figure 8 when the amplitude is decreased. Notice that due to the
term 1/v_1, fractional resonances very close to n = —1 retain non-negligible strength and contribute to
resonance broadening.

The derivation provided in this section works for whistler-mode waves as well, except for the
approximations Ur < v, U, < v,.
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Figure 1. Minimum resonant energies Frni, of electrons interacting with a left-hand polarized parallel
propagating EMIC wave. Each panel shows a map of energies in dependence on wave frequency and
magnetic latitude. (a) Minimum resonant energies for interaction with a helium-band wave in a high-density
plasma with a high relative concentration of heavier ions — these conditions are used in our simulations.
(b) Same as panel a, but in a low-density plasma. (c) Same as panel (a), but with a low concentration of
heavier ions. Panels (d)—(f) show ERy, for a hydrogen band wave under the same plasma conditions as
in panels (a)—(c), except for panel f, where both the electron density and heavier ion concentrations are
kept low. In all panels, dashed lines represent energy contours, and the solid red line signifies the crossover
frequency. Note that for oblique waves, the left-handed dispersion branch is coupled to the right-handed
branch, so the energies right of the red curve would have to be calculated for right-hand polarized waves.
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Figure 2. (a) Distribution of wave amplitudes along the field line. The wave experiences smooth growth
in region U, stays constant in region C' (1.6 nT in this example), and decreases back to zero in region D,
as shown by the dashed red line. The solid blue line shows the relative wave amplitude with respect to
the background field By. (b) Phase space density distribution at the equator plotted in the energy—pitch
angle space. The empty loss cone corresponds to the white region at ajpj < vjpss = 3.7°. Normalized PSD
units from the simulation code are used. (c) Line plots of pitch angle profiles from the previous panel for

representative energies. Note that the sin o term from Jacobian is not included; therefore, the decrease in
PSD near loss cone indicates positive pitch-angle anisotropy.
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Figure 3. Trajectory examples showing the change in equatorial pitch angle over latitude due to interaction
with a high-amplitude, moderately oblique wave (By /Boeq = 0.0064 and 6y = 45°). Panels (a)—(c) depict
electrons propagating along the wave (from the equator), while panels (d)—(f) show propagation against the
wave (towards the equator). In each panel, electrons have the same initial energy, pitch angle and latitude,
and the line colors represent the initial uniform sampling in gyrophase. Pairs of dashed lines represent the
approximate spatial interval on which the fundamental cyclotron resonance produces strong scattering; for
the harmonic resonances n = 42, the interval a delimited by dotted lines.
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Figure 4. Average change (Acwq), in electron equatorial pitch angle for propagation along the EMIC
wave packet (stopping point is the end of the wave packet or the mirror point). All particles start at
the equator, so the initial pitch angle aj,; on the abscissa is equal to the initial oeq. The columns are
parametrized by wave amplitude (left to right: 100 pT, 400 pT, and 1.6 n'T'), and the rows are parametrized
by wave normal angle (top to bottom: 5°, 45°, 70°, and 80°). The color bars associated with each panel
range from — max(,, . g,) [{Adeq)p| 0 +max(q, . p) [(Adeq)|. Vertical stripes at higher pitch angles
are related to nonresonant oscillations at mirror points and would disappear after a complete half-bounce.
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Figure 6. Electron phase space density distribution after resonant interaction with the EMIC wave
captured at the end of the wave packet. Range in pitch angles is limited to 0°-20° to focus on the loss cone.
Parametrization of rows and columns follows Figures 4 and 5, but because the co-streaming particles were
traced back in time, the pitch angle a,q on the abscissa now represents the initial value at the end of the
subpacket. The curious small bumps on the boundary between zero and finite PSD values near 2 MeV in
panels (), (i), and (1) arise due to fractional resonances — see Section 3.3 and Figure 8.
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Figure 7. Effect of resonant interactions on electrons propagating against the EMIC wave packet. Panel
formatting in the first, second, and third columns follows Figures 4, 5, and 6, respectively. Only a single
amplitude value is used, By, = 400 pT, and the wave normal parametrization over rows of panels skips
the quasiparallel case 6 = 5°, where the resonance effects would be negligible except for extremely
ultrarelativistic energies (Fy = 15 MeV). Note that because the electrons are now counter-streaming, the
pitch angles on the abscissas ajpj and aen,q Were swapped, and particles with initial equatorial pitch angles
> 39° are missing from the forward-in-time simulations.
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Figure 8. The behavior of fractional resonances explained by particle trajectories and standard deviations
in equatorial pitch angle for an EMIC wave with wave normal angle 6, = 70°. (a),(b) Changes in pitch angle
along the field line at energies well below the equatorial fundamental resonance energy Frmin ~ 4 MeV.
The wave amplitude is By, = 1.6 n'T. (c) Standard deviation in equatorial pitch angle plotted in logarithmic
scale that spans three orders of magnitude. Weak resonant effects near 2 MeV become apparent. (d)—(f)
Same as (a)—(c), but for a 16 times weaker wave. The resonant effects near FRr,i, /2 are now insubstantial
compared to the fundamental resonance.
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