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ABSTRACT2

We analyze the effects of electromagnetic ion cyclotron (EMIC) waves on relativistic electron3
scattering and losses in the Earth’s outer radiation belt. The EMIC emissions are commonly4
observed in the inner magnetosphere and are known to reach high amplitudes, causing significant5
pitch angle changes in >1 MeV electrons via cyclotron resonant interactions. We run test-particle6
simulations of electrons streaming through helium-band waves with different amplitudes and7
wave normal angles and assess the sensitivity of advective and diffusive scattering behavior8
to these two parameters, including the possibility of very oblique propagation. The numerical9
analysis confirms the importance of harmonic resonances for oblique waves, and the very oblique10
waves are observed to efficiently scatter both co-streaming and counter-streaming electrons.11
However, strong finite Larmor radius effects limit the scattering efficiency at high pitch angles.12
Recently discussed force bunching effects and associated strong positive advection at low pitch13
angles are, surprisingly, shown to cause no decrease in the phase space density of precipitating14
electrons, and it is demonstrated that the transport of electrons into the loss cone balances out15
the scattering out of the loss cone. In the case of high-amplitude obliquely propagating waves,16
weak but nonnegligible losses are detected well below the minimum resonant energy, and we17
identify them as the result of nonlinear fractional resonances. Simulations and theoretical analysis18
suggest that these resonances might contribute to subrelativistic electron precipitation but are19
likely to be overshadowed by nonresonant effects.20

Keywords: electron scattering, EMIC waves, nonlinear wave-particle interactions, test-particle simulation, radiation belts, fractional21
resonance, loss cone, electron precipitation22

1 INTRODUCTION

Electromagnetic ion cyclotron (EMIC) waves are naturally occurring electromagnetic emissions in Earth’s23
magnetosphere generated by unstable anisotropic hot ion populations (Kennel and Petschek, 1966;24
Anderson et al., 1996). Each ion component of the space plasma has a corresponding EMIC frequency25
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band located below the gyrofrequency of the ion, with the hydrogen band (H+) and helium band (He+)26
being the most commonly observed (Min et al., 2012; Meredith et al., 2014; Saikin et al., 2015; Wang et al.,27
2017b; Jun et al., 2021). In the outer radiation belt, the wave frequencies in the near-equatorial source28
(Loto’aniu et al., 2005; Allen et al., 2015) fall mainly into the Pc1 range 0.2–5 Hz (Saito, 1969; Usanova29
et al., 2012). Initially generated in the left-handed mode, the waves may convert to the right-handed mode30
at higher latitudes (Rauch and Roux, 1982; Perraut et al., 1984; Kim and Johnson, 2016). These polarized31
waves can scatter relativistic electrons (kinetic energies Ek around 1 MeV and larger) in pitch angle α32
through cyclotron resonant interactions (Summers et al., 1998; Horne and Thorne, 1998), which leads to33
significant losses of radiation belt electrons to the atmosphere (Thorne and Kennel, 1971; Usanova et al.,34
2014; Clilverd et al., 2015; Kurita et al., 2018; Li and Hudson, 2019).35

During geomagnetically active times, EMIC waves at lower L-shells (L < 6) can reach peak magnetic36
field amplitudes Bw above one percent of the background magnetic field strength B0 (Meredith et al.,37
2003; Engebretson et al., 2015). Trajectories of particles resonating with strong waves experience large38
perturbations, and a variety of associated nonlinear effects appear (Karpman, 1974; Artemyev et al., 2018;39
Grach et al., 2022). Phase-trapping of ions in the wave potential leads to nonlocal transport to higher pitch40
angles and the formation of phase space density (PSD) holes in the gyrophase space (Omura et al., 2010;41
Shoji et al., 2021), while phase-trapped electrons experience a decrease in pitch angle (Omura and Zhao,42
2012; Zheng et al., 2019). At α ≈ 0◦, the force-bunched electrons are transported predominantly to higher43
pitch angles; Bortnik et al. (2022) proposed that this nonlinear effect may result in precipitation blocking44
due to the removal of electrons from the loss cone. Below the fundamental cyclotron resonance energy,45
nonresonant scattering by amplitude-modulated waves takes place and may extend the energy range of46
precipitating electrons down to hundreds of keV (Chen et al., 2016; An et al., 2022).47

When the wave normal angle θk (WNA) of EMIC waves increases and the propagation becomes oblique,48
finite Larmor radius effects enable interaction with higher cyclotron harmonics. Wang et al. (2017a) studied49
the interaction of electrons with moderately oblique monochromatic EMIC waves through nonlinear test-50
particle simulations and quasilinear diffusive modeling. They have shown that with increasing θk, harmonic51
resonances at ultrarelativistic energies can lead to significant scattering loss, while the fundamental52
resonance becomes weaker for oblique waves. Lee et al. (2018) analyzed WNA and ellipticity of a set53
of EMIC waves detected by Van Allen Probe A, ran test-particle simulations of electron interaction with54
very powerful and oblique EMIC waves, and highlighted the complexity of pitch-angle evolution due to55
higher-order resonance with the elliptically polarized wave. They also emphasized the advective aspects56
of nonlinear scattering and noted the importance of ellipticity and WNA distributions in modeling the57
radiation belt electron transport.58

In this paper, we perform test-particle simulations of nonlinear electron interactions with quasiparallel and59
very oblique monochromatic EMIC waves, with the overall goal to describe the dependence of advection,60
diffusion, and subsequent particle losses on the wave amplitude and wave normal angle – special attention61
is given to the PSD evolution at low pitch angles. After describing the simulation setup in Section 2, we62
analyze the average and standard deviation of equatorial pitch angle changes and show that for very oblique63
waves and discuss the influence of higher harmonics on advection and diffusion 3.1. In Section 3.2, we64
demonstrate through Liouville mapping of phase space density in backward-in-time simulations that the65
force-bunching effects at low pitch angles are balanced out by transport from higher pitch angles and66
that there is no precipitation blocking in the sense of decreasing precipitating electrons PSD below the67
trapped PSD. Section 3.3 describes fractional resonances, a type of resonance acting below the fundamental68
resonance energy, and considers their effects on subrelativistic electrons. A summary of the most salient69
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results and the discussion of the impacts of our findings on radiation belt electron modeling can be found70
in Section 4.71

2 METHODS AND SIMULATION SETUP

Before choosing representative wave and plasma parameters for our particle simulation, we must first72
consider which quantities can influence the behavior of resonant electrons. Wave amplitude Bw controls the73
transition from quasilinear to nonlinear interaction, and wave normal angle θk is related to the perpendicular74
component of the wave vector and associated harmonic resonances. Varying the values of Bw or θk leads75
to major qualitative changes in the resonant behavior; therefore, they are the essential parameters in76
our simulation. We choose four values of wave normal angle {5◦, 45◦, 70◦, 80◦} to cover quasiparallel,77
moderately oblique, and very oblique wave propagation. The WNA values are combined with three78
values of amplitude {100 pT, 400 pT, 1.6 nT}, which approximately correspond to Bw/B0eq ratios of79
{0.04%, 0.16%, 0.64%} for equatorial field strength B0eq = 248 nT at L = 5. This choice of L-shell is80
consistent with regions of enhanced EMIC wave activity identified by Meredith et al. (2014) and Jun et al.81
(2021) in spacecraft measurements during active geomagnetic conditions.82

There are also several parameters that influence the value of the minimum resonant energy, which is83
given by the formula84

ERmin = mc2

nωΩe − k‖c
√
n2Ω2

e + k2‖c
2 − ω2

ω2 − k2‖c2
− 1

 , (1)

where m is the electron mass, c is the speed of light, k‖ is the component of wave vector parallel to85
B0, ω is the wave frequency, Ωe is the local electron gyrofrequency, and n is an integer determining the86
resonance harmonic (positive/negative for electrons streaming against/along a right/left-handed wave). The87
energy ERmin is dependent on the normalized frequency ω/Ωe, and through the cold plasma dispersion88
relation k(ω), it also depends on the electron plasma frequency ωpe and the concentration of ions. These89
dependencies are evaluated and plotted in Figure 1, where we plotERmin with n = −1 for a monochromatic90
left-handed EMIC wave propagating from the magnetic equator along a dipole field line up to magnetic91
latitude λm = 30◦. We consider high (ωpe0/Ωe0 = 15) as well as low (ωpe0/Ωe0 = 5) density at the92
equator, and we compare the high concentrations of ions (np/ne = 0.77, nHe/ne = 0.2, nO/ne = 0.03),93
which was used in the simulations of Jordanova et al. (2008) and Bortnik et al. (2022), with lower94
concentrations (np/ne = 0.99, nHe/ne = 0.005, nO/ne = 0.005). Latitudinal dependence of density95
follows the Denton et al. (2002) formula ne = ne0(cosλm)−2a, with a = 0.5 in the high-density case96
and a = 1.0 in the low-density case (and the relative ion concentrations remain constant). We observe97
that changes to the density, ion concentration, and frequency band manifest mostly through a rescaling98
of ERmin. Therefore, we limit our investigations to the helium band and choose the higher values of99
density (ωpe0/Ωe0 = 15 ∼ ne0 = 134 cm−3) and ion concentrations, in agreement with the observations of100
Meredith et al. (2014) and Horwitz et al. (1981). The wave frequency is set to ω/ΩHe0 = 0.80 ∼ 0.76 Hz,101
a slightly higher value that allows the waves to reach higher latitudes before experiencing the polarization102
reversal.103

Apart from the strong interaction near resonant energies, electrons can also experience nonresonant104
scattering due to wave amplitude gradients (Chen et al., 2016) or, equivalently, due to the spectral105
broadening of amplitude-modulated waves (An et al., 2022). To simplify our analysis, we suppress the106
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nonresonant scattering by introducing a slow and smooth amplitude change at the edges of the wave packet.107
This is done by multiplying the wave envelope by a half-period of the cos2 function, with a field-aligned108
distance from the minimum to the maximum of the function set to h = 2200 km. The envelope shape is109
plotted in Figure 2a. The packet ends at a latitude where the normalized frequency reaches ω/ΩO = 1.25.110
At this frequency, the helium wave is already right-handed, and the resonant energy of very oblique waves111
rapidly increases (Stix, 1992).112

The test-particle simulation method is based on the solution of the Lorentz force law by a relativistic Boris113
algorithm with a phase angle correction, as described, e.g., by Zenitani and Umeda (2018). The components114
of the electromagnetic wave field are defined according to the analysis of elliptically polarized waves115
presented in Omura et al. (2019); see also Equations (5)–(8) and (12)–(17) in Appendix A. Wave packet116
motion can be neglected on short timescales since the group velocity of EMIC waves is much smaller than117
the velocity of relativistic electrons. In forward-in-time simulations, the particles start either at the equator118
and propagate until they reach the end of the wave packet (or their mirror point) or they start at the end119
of the wave packet and propagate back to the equator. Mirroring particles are not allowed to return to the120
equator so that we can separate the resonant effects experienced by co-streaming and counter-streaming121
electrons. In both cases, the initial particle energy is spaced logarithmically from 900 keV to 30 MeV with122
96 bins, initial pitch angles go from 0◦ to 90◦ (or 180◦ to 90◦ for counter-streaming electrons) with 90123
linear steps, and the initial gyrophases ϕ uniformly cover the full 360◦ angle with 72 steps. Note that the124
grid boundaries in the (Ek, α, ϕ) space represent bin edges. In backward-in-time simulations, the pitch125
angle range is limited to 0◦ to 20◦ (or 180◦ to 160◦ for counter-streaming electrons) with 90 linear steps,126
providing increased resolution of the loss cone (αloss = 3.6◦ at the equator and 6.1◦ at the end of the127
packet). The time step of the Boris solver is adaptive and always stays at 128 steps per local electron128
gyroperiod.129

The backward-in-time simulations are used to map the phase space density of an initial, unperturbed130
distribution to the final state and assess the PSD evolution due to resonant interactions (Nunn and Omura,131
2015; Hanzelka et al., 2021). We assume that the initial hot (relativistic) distribution is in the form of a sum132
of subtracted bi-Maxwellian distributions that preserves phase space density along adiabatic trajectories133
(Summers et al., 2012; Omura, 2021). At a distance h, this distribution can be written for relativistic134
momenta u‖ = γv‖ and u⊥ = γv⊥ as135

f(h, u‖, u⊥) =
N∑
i=1

fi(h, u‖, u⊥) (2)

with136

fi(h, u‖, u⊥) =
nhe0i

(2π)3/2Ut‖iU
2
t⊥i(1− ρiβi)

exp

(
−

u2‖

2U2
t‖i

)
×

×
[
exp

(
−
(

1− B0eq/B0(h)

2B0(h)U2
t⊥i

+
B0eq

2B0(h)U2
t⊥i

)
u2⊥

)
−

− ρi exp

(
−

(
1− B0eq/B0(h)

2B0(h)U2
t‖i

+
B0eq

2βiB0(h)U2
t‖i

)
u2⊥

)]
.

(3)
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We set N = 5 and choose the following values of distribution parameters: loss cone width βi = 0.5 ∀i,137
loss cone height βi = 1.0 ∀i, parallel and perpendicular thermal momenta Ut‖i/c = Ut⊥i/c =138

{0.2, 0.5, 1.0, 2.5, 9.0}, and hot electron densities nhe0i = {2.2, 0.22, 0.022, 0.0022, 2.2 · 10−7} cm−3.139
PSD inside the loss cone is set to zero for all values of h. The equatorial distribution is plotted in Figure 2b140
in the (Ek, αini) space. The energy profile up to 10 MeV is constructed to loosely follow the Van Allen141
Probes measurements analyzed by Zhao et al. (2019); however, the energy distribution is of little importance142
for EMIC-electron resonance since the acceleration caused by this interaction is negligible (Summers143
et al., 1998). Line plots of pitch angle distributions for several initial energies are presented in Figure 2c.144
Although each component of the initial distribution has a zero temperature anisotropy At = U2

t⊥/U
2
t‖ − 1,145

the relativistic pitch angle anisotropy (Xiao et al., 1998) can be large due to the subtraction in the PSD146
distribution model. This model is consistent with the assumption that previous weaker wave-particle147
interactions already eroded the pitch angle profile.148

3 RESULTS

3.1 Advection and Diffusion149

When studying the nonlinear interactions between plasma waves and charged particles, it is illustrative150
to start by inspecting individual trajectories. In Figure 3, we plot the spatial evolution of the equatorial151
pitch angle for electrons propagating through a high-amplitude (Bw/B0eq = 0.0064) moderately oblique152
(θk = 45◦) EMIC wave. The equatorial minimum resonance energy for this wave is ERmin ≈ 3.3 MeV153
for n = ±1 and ERmin ≈ 7.1 MeV for n = ±2. Particles starting at the equator with initial pitch154
angle α = 0.5◦ and energies Ek = 3.95 MeV experience a significant increase in equatorial pitch angle155
∆αeq ≈ 11◦ due to the n = −1 resonance, with almost no dependence on the initial gyrophase (Figure 3a).156
This is the advective behavior caused by force bunching, as previously described by Grach and Demekhov157
(2020). Particles starting at larger pitch angles (αeq = 29.5◦, Figure 3b) experience a large spread in αeq158
across the gyrophases, exhibiting a predominantly diffusive behavior. The asymmetry in ∆αeq towards159
lower values is caused by phase locking of ϕ to the wave phase ψ, but the particles never become fully160
phase-trapped in this particular case. In Figure 3c, we increase the initial energy to Ek = 8.51 MeV and161
observe that particles first undergo scattering due to the n = −2 harmonic resonance and then encounter162
the n = −1 resonance at latitudes from 11◦ to 16◦, resulting in pitch-angle diffusion.163

Figures 3d–3f show particle trajectories of electrons starting at the end of the wave packet and streaming164
against the wave. Here, resonant interaction is enabled by the right-handed component of the elliptically165
polarized wave. Keeping the initial energies and initial equatorial pitch angles similar to the co-streaming166
case, we observe that the advective and diffusive effects of the n = 1 resonance are comparable to the167
n = −1 resonance. However, the maximum change in pitch angle is smaller, and the phase-locking effect168
does not appear. In the case with Ek = 8.51 MeV, the counter-streaming particles first encounter the169
stronger n = 1 resonance, and the weaker n = 2 resonance has then only a little effect on the spread in170
∆αeq.171

To evaluate the pitch angle evolution of relativistic electrons across all initial pitch angles and energies,172
we introduce two statistical measures: the average 〈∆αeq〉ϕ (first central moment), which is related to the173
advection coefficient, and the standard deviation σϕ(αeq) (second central moment), which is related to the174
diffusion coefficient. We intentionally eschew the standard advection and diffusion coefficients (Zheng175
et al., 2019) as they are often bounce-averaged in practical applications, while we do not let the particles176
finish the half-bounce, which is to separate between n > 0 and n < 0 resonances. The average change177
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in equatorial pitch angle for co-streaming particles is plotted in Figure 4 in (αini, Ek) coordinates, with178
each plot corresponding to one of the 3 combinations of wave amplitude and wave normal angle. Starting179
with quasiparallel propagation (θk = 5◦, Figures 4a–4c), we first note the different scales of color bars,180
which have a range of ±max(αini,Ek) |〈∆αeq〉ϕ| separately for each plot. An outstanding feature, high181
positive advection, appears at low pitch angles near the n = −1 resonance, confirming the force-bunching182
effects observed on trajectories in Figure 3a. Another prominent feature is the two red (positive) and blue183
(negative) curved stripes that follow the dependence of n = −1 resonant energy on pitch angle. For the184
case with the largest wave amplitude (Figure 4c), the negative advection at higher pitch angles dominates185
over the positive one, indicating significant nonlinear phase-trapping effects.186

Interaction with oblique waves (Figures 4d–4l) introduces some new effects. First, we may notice the187
alternating blue and red vertical lines at high pitch angles, with almost no dependence on energy. These are188
the result of nonresonant oscillations induced by the parallel component of the wave field, and they would189
almost disappear if the particles were allowed to bounce back to the equator – the lines are not relevant190
for our analysis of the cyclotron resonance and will be omitted in the following presentation. Harmonic191
resonances become visible at higher amplitudes, adding new pairs of positive and negative advective stripes192
along the corresponding resonance energy curves. However, as the wave normal angle increases, advective193
effects disappear at higher pitch angles; for θk = 80◦, the average change in pitch angle becomes negligible194
for particles with αini > 30◦. Moreover, a fine stripe structure traversing the resonant energy curves appears195
in the high-amplitude plots. These new effects will be explained below when discussing the diffusive196
behavior, where their origin becomes more apparent.197

The standard deviation in the equatorial pitch angle of co-streaming particles is plotted in Figure198
5, following the panel format of Figure 4. The color bars of each individual panel go from zero to199
max(αini,Ek) σϕ(αeq). Starting again with the quasiparallel propagation (θk = 5◦, Figures 5a–5c), we200
can see the suppressed diffusion at low pitch angles, consistent with the lack of spread in pitch angles201
observed in the particle trajectories (Figure 3a). The largest values of σϕ(αeq) are localized along the202
resonance energy curve, with slight changes appearing for Bw = 1.6 nT at higher pitch angles, where203
and phase-trapping and bunching effects may enhance or decrease the standard deviation. In the oblique204
case, diffusion at higher pitch angles gets weaker with growing wave normal angle. Unlike in the analysis205
of advection, we detect a clear structure of maxima and minima along each resonant curve, which is206
related to the zeros of Bessel functions that arise in the derivation of harmonic resonances (see Appendix A,207
Equations (9)–(11) and (20)–(22)). The fine structure appearing in the energy range of harmonic resonances208
is now also more evident, especially in the high-amplitude case (Figures 5f, 5i, and 5l). By inspecting209
trajectory plots, its origin can be traced to multiresonance interactions, when particles phase-organized210
by the resonance of order |n| at lower latitudes experience a |n− 1| resonance at higher latitudes. Notice211
that the fine structure is also present in the quasiparallel case, showing us that the harmonic resonances are212
important even at WNA as low as θk = 5◦.213

Concerning the strength of diffusion at lower pitch angles, the test-particle simulations show a decreasing214
trend in σϕ(αeq) with increasing WNA at energies close to the n = −1 resonance. Harmonic resonances215
get stronger compared to the fundamental, but the overall diffusion at higher energies does not change216
much because the increased strength of near-equatorial harmonic interaction is compensated by the weaker217
fundamental resonance encountered at higher latitudes. An exception is the extreme ultrarelativistic energies218
(Ek & 15 MeV), where the interaction with very oblique waves causes slightly stronger diffusion (Figures219
5i and 5l). This behavior will impact the precipitation into the loss cone, as discussed in the next section.220
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3.2 Phase Space Density near Loss Cone221

The scattering effects analyzed in Section 3.1 transport particles into the loss cone and contribute thus to222
the atmospheric precipitation of relativistic electrons. As described in Section 2, we trace particles back223
in time from the end of the wave packet to the equator and map the PSD values of a known equatorial224
distribution along particle trajectories to the starting point. The resulting PSD distributions at the end of225
the packet are plotted in Figure 6 in the (αend, Ek) space, where αend is the initial pitch angle value in the226
sense of backward-in-time propagation. Since the number density of relativistic electrons in our model is227
not scaled to any specific spacecraft observation, we keep normalized phase space density units c−6Ω3

e0228
used in the simulation code.229

The quasiparallel EMIC wave manages to completely fill the loss cone near fundamental resonant energy230
when its amplitude is set to Bw = 400 pT (Fig. 6b). Increasing the amplitude to Bw = 1.6 nT extends the231
range of energies with complete loss cone filling up to 10 MeV (Fig. 6c). There are several noteworthy232
features to this strongly perturbed PSD distribution. First, we observe that particles near Ek = 13 MeV233
reach deeper into the loss cone, a feature not seen in the low-amplitude wave precipitation profile. This234
irregularity arises from the fast polarization reversal experienced by quasiparallel waves, which abruptly235
stops the resonant interaction – mild oscillations in σϕ(αeq) across energy were seen in the top left corners236
of Figure 5a–5c, but the effect on precipitation becomes clear only for strong waves. Second, the energy237
profile of trapped particles immediately above αloss has a local maximum near the fundamental resonance238
– this peak appears due to pitch angle anisotropy when particles from high PSD regions at higher pitch239
angles undergo scattering towards lower pitch angles. Third, the pitch angle distribution at energies from240
3 MeV to 10 MeV is flattened, signifying a marked decrease in pitch angle anisotropy. And fourth, as a241
consequence of the third point, there is no apparent precipitation blocking – that is, phase space density242
inside the loss cone reaches the value of trapped particle PSD.243

The lack of precipitation blocking contradicts the predictions of Bortnik et al. (2022) and may seem244
counterintuitive, especially after seeing the strong upward advection at low pitch angles in Figure 4c. To245
explain this observation, we can consider the consequences of Liouville’s theorem (i.e., constancy of PSD246
along phase space trajectories), which is known to hold in the Hamiltonian system of charged particles and247
electromagnetic waves constituting a Vlasovian plasma (Ichimaru, 2004). Assume that a state has been248
reached where the PSD of precipitating and trapped electrons are equal at a certain energy. Because EMIC249
waves cannot efficiently accelerate electrons and change their energy, the PSD along trajectories will always250
be the same. Therefore, no amount of force bunching or other nonlinear effects can disturb the uniform251
pitch angle distribution. If the PSD in the loss cone were initially higher than outside, the EMIC-induced252
scattering would mix the distribution and restore uniformity, decreasing thus the precipitating PSD, but it253
would not push it below the value of trapped PSD. Nonuniformity along the field line could complicate254
the argument if a broader range of v‖ would be considered, but the spread in v‖ at low pitch angles at a255
fixed energy level is negligible. The seeming discrepancy between backward-in-time PSD mapping and the256
transport coefficients from Section 3.1 can be resolved by considering the initial distributions of particles257
in the forward simulation. A uniform distribution in (α,Ek, ϕ) is not uniform in (vx, vy, vz); consequently,258
the number of particles per unit velocity space volume in the forward simulation is much higher at lower259
pitch angles than at higher pitch angles. Symbolically, we can write the unit volume as (working in a260
nonrelativistic setting for simplicity)261

dV = dvxdvydvz = m−3/2
√

2Ek sinα dEk dϕ . (4)

Frontiers 7



Hanzelka et al.

The sinα term in the Jacobian expresses the smallness of velocity space volume near α = 0. Therefore, the262
few test particles scattered into the loss cone can have the same weight as all the force-bunched particles263
escaping from the loss cone.264

The effect of increasing obliquity on the PSD evolution displayed in Figures 6d–6l agrees with the265
analysis of diffusion from Section 3.1. The loss cone is only partially filled near the fundamental resonance266
energy for waves with Bw = 400 pT, and the range of complete loss cone filling with Bw = 1.6 nT267
becomes narrower with increasing θk. The penetration of nonzero PSD into the loss cone at higher energies268
turns out to be mostly independent of wave normal angle, except for ultrarelativistic energies, where the269
very oblique waves show larger increases in precipitating PSD. The jagged boundary between finite and270
zero values of PSD in the case of strong, oblique waves (mainly Figures 6i and 6l) comes from the fine271
multiresonance structure observed in corresponding diffusion plots in Figures 5i and 5l. The weak losses272
near half of the fundamental resonance energy are related to nonlinear fractional resonances, which will be273
analyzed in depth in Section 3.3. Finally, we note that the rapid decrease of σϕ(αeq) with rising WNA at274
higher pitch angles is not reflected in the PSD perturbations after a single quarter bounce but might become275
important after multiple bounces due to the weak transport of particles from high-density regions of the276
initial anisotropic distribution.277

So far, we have investigated electron scattering and related losses for propagation along the wave.278
However, as indicated by Figures 3d–3f, counter-streaming particles are also efficiently scattered by279
oblique EMIC waves, and significant particle losses are to be expected. In Figure 7, we plot the quantities280
〈∆αeq〉ϕ, σϕ(αeq), and f for electrons streaming against the medium-amplitude wave (Bw = 400 pT)281
with oblique wave vectors. The quasiparallel case is omitted because the right-handed wave component282
is negligible until the polarization crossover at higher latitudes is reached, where the resonant energies283
are already near the upper limit of our Ek range. The first thing to notice is that the forward-in-time284
propagating particles start away from the equator and have a limited range of equatorial pitch angles;285
therefore, the resonance energy curves appear stretched in the (αend, Ek) space. Unlike in the co-streaming286
case, the advection and diffusion caused by fundamental resonance grow with increasing WNA because the287
polarization is becoming more linear and the right-handed wave component is getting larger. This behavior288
is reflected in the PSD plots, where the precipitating particles can travel deeper into the loss cone when289
interacting with very oblique waves. For θk = 80◦, the advection and diffusion (and, as a consequence, the290
electron losses) become comparable to the co-streaming case, showing the importance of n > 0 resonances291
for analysis for relativistic electron precipitation by oblique EMIC waves.292

3.3 Nonlinear Fractional Resonances293

In the discussion of Figures 6i and 6l, we mentioned the surprising detection electron scattering into294
loss cone at energies Ek ≈ 2 MeV, far below the fundamental resonance energy. These losses cannot295
have origin in nonresonant scattering because we use a smooth amplitude distribution along h, and also296
because the nonresonant scattering would show as a broadening of the fundamental resonance and not as a297
separate peak in energy profile (An et al., 2022). Trajectories of particles with energies Ek = 1.83 MeV298
and Ek = 2.12 MeV propagating along the high-amplitude wave with θk = 70◦ (Figures 8a and 8b)299
reveal a spread in αeq that does not disappear even after the particles leave the wave field. This spread is300
somewhat weaker than the oscillations caused by the fundamental cyclotron resonance. The oscillations301
can be understood as the maximum possible nonresonant scattering in a wave with a rectangular amplitude302
distribution along the field line.303
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Since the spread in αeq is too small to be clearly visible in the σϕ(αeq) plot from Figure 5i, we re-plot the304
diffusion with a logarithmic color bar and show the results in Figure 8c. It becomes apparent that we are305
observing a new type of resonance with a minimum resonant energy near ERmin/2. This new resonance306
causes much weaker scattering than the fundamental resonance, but is roughly comparable to nonresonant307
oscillations. However, when we look at the particle trajectories and diffusion from the simulation with a308
small-amplitude wave (Bw = 100 pT), the new resonance becomes much weaker than the nonresonant309
oscillations, and the corresponding σϕ(αeq) values are more than three orders of magnitude below the310
fundamental resonance effect (Figure 8d–8f).311

Based on the numerical observations presented in Figure 8, we identify the new behavior as the nonlinear312
fractional resonance of order n = −1/2. A simplified analytical derivation is provided in Appendix A,313
where we also identify fractional resonances of order n = {±1/3,±1/2,±2/3,±3/2}, and suggest that314
the nonlinear resonance energy spectrum is dense in the sense of rational numbers. These resonances315
seem to be analogous to the subcyclotron resonance of electrons with whistler waves described within316
the Hamiltonian framework by Fu et al. (2015). The concept of fractional resonances does not appear317
in quasilinear theory because it arises from integration along perturbed trajectories (compare with the318
integration along unperturbed trajectories employed in quasilinear theory as mentioned, e.g., in the319
theoretical works of Kennel and Engelmann (1966) and Allanson et al. (2022)). In the nonlinear treatment320
of whistler-electron scattering presented by Omura et al. (2019), an integer resonance is chosen first, and321
the nonlinear scattering effects are obtained from perturbations of near-resonant electrons. Suppose we322
instead implement a model of large perturbations without specifying a resonance velocity/energy, as in323
the example given by Equations (26) and (27), and proceed to analyze power transfer between waves and324
particles (which is directly related to pitch angle scattering through resonance diffusion curves as explained,325
e.g., by Summers et al. (1998)). In that case, fractional resonances will arise from the Bessel function326
expansion of gyrophase evolution. An important property of the n = −1/2 is the scaling of scattering327
strength with the square of wave amplitude – theoretically proven in Equations (44) and (45) – which328
differs from the known linear dependence for integer resonances. The nonlinear fractional resonances are329
thus expected to play a role only in precipitation induced by very strong oblique waves.330

4 SUMMARY AND DISCUSSION

We have numerically analyzed the dependence of relativistic electron scattering on the wave normal angle331
and magnetic field amplitude of helium band EMIC waves. Unlike in the previous studies of Wang et al.332
(2017a) and Lee et al. (2018), we allow for very oblique wave normal angles θk = 70◦ and θk = 80◦, and333
keep the amplitudes more moderate (Bw/B0eq < 1%). The presented analysis of advective and diffusive334
behavior is comparable to Bortnik et al. (2022), who, however, used much lower energy and pitch angle335
resolution and did not include oblique waves. Our results can be divided into three blocks:336

1. Confirmation of previous results:337

a. Harmonic resonances n < −1 substantially affect the scattering of relativistic electrons at low pitch338
angles for waves with wave normal angles as small as θk = 5◦ (Wang et al., 2017a). The contribution339
from n > 0 resonances requires at least moderate obliquity to become significant.340

b. Positive advection of resonant particles at very low pitch angles was detected and shown to dominate341
over diffusion as wave amplitude increases. This is the effect described as boundary reflection by342
Zhu et al. (2020) and nonlinear force bunching by Grach and Demekhov (2020) and Bortnik et al.343
(2022).344
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c. The advective behavior of resonant particles can be positive or negative, depending on their initial345
pitch angle and energy (Lee et al., 2018). Particles that start at energies lower than the resonant346
energy for a given pitch angle will, on average (over gyrophases), experience a decrease in pitch347
angle, while particles starting at higher energies will encounter the resonance curve at higher348
latitudes and experience an average increase in pitch angle. This is visualized by the blue-red stripe349
pairs in Figure 4.350

d. Increasing obliquity weakens the effects of n = −1 resonance but enhances the resonant interaction351
for |n| > 1 and n = 1 (Wang et al., 2017a).352

e. Crossings of multiple resonance energies during one passage through the waves result in a more353
stochastic pitch-angle evolution, described by Lee et al. (2018) as “complicated and time-dependent354
phase trapping and bunching effects”. Under our simplified wave model, these multiresonance355
effects appear after one quarter-bounce as a fine structure in the plots of advection and diffusion356
when the EMIC wave is strong and oblique (Figures 4i, 4l, 5i, and 5l).357

2. Disagreement with previous results:358

a. Oblique waves seem to weaken the advection effects at low pitch angles, contrary to the observations359
by Lee et al. (2018).360

b. We do not observe any effects of precipitation blocking in the PSD analysis (Figure 6), in361
disagreement with the suggestion presented in Bortnik et al. (2022) that force bunching caused by362
strong EMIC waves will decrease the electron fluxes/PSD at low pitch angles.363

3. New discoveries:364

a. Electrons losses of relativistic electrons by quasiparallel waves are comparable to losses induced365
by oblique waves (Figure 6). This behavior changes for ultrarelativistic electrons (Ek & 15 MeV,366
depending on wave parameters), where the very oblique waves cause stronger precipitation.367

b. Very oblique waves cannot efficiently scatter electrons at higher pitch angles (α > 30◦ for θk = 80◦,368
see Figures 5j–5l). Transport from high PSD regions at large pitch angles towards the loss cone is369
facilitated only by quasiparallel waves.370

c. Very oblique waves scatter co-streaming and counter-streaming electrons with similar efficiency371
due to the high ellipticity, or in other words, due to comparable magnitude of right-handed and372
left-handed amplitude components (compare Figure 6k with Figure 7i).373

d. High-amplitude oblique waves can scatter electrons below minimum resonant energy through374
nonlinear fractional resonances. The pitch-angle changes caused by n = −1/2 scale with the square375
of wave amplitude, faster than the linear scaling for n = −1 resonance.376

When comparing our results to previous literature, a few points must be made to avoid confusion: Under377
our sign convention, the interaction of right-handed waves with electrons happens at resonances of order378
n > 1, and interaction with left-handed waves corresponds with n < 1, exactly opposite to the convention379
used by Wang et al. (2017a). Also, unlike Wang et al. (2017a), we allow only one-quarter bounce, and so380
∂B0/∂h > 0; in the southern hemisphere, the opposite sign of the B0-field gradient would change the381
effect of phase trapping on electron pitch angles. Furthermore, the strongest wave we use has a relative382
amplitude Bw/B0 = 0.64%, while Lee et al. (2018) go up to 10% (above the amplitude of the extremely383
intense EMIC wave observations presented in Engebretson et al. (2015)); as a consequence, phase-trapping384
has minimal impact on our PSD mapping results, especially for oblique waves.385

The disagreement in the dependence of advection on obliquity between our results and Lee et al. (2018)386
comes from the different approaches to wave modeling. Lee et al. (2018) implements one wave field that is387

Frontiers 10



Hanzelka et al.

ellipticaly polarized, but remains parallel, and another wave field where the wave normal angle is nonzero,388
but the polarization remains circular. According to the cold plasma dispersion relation, which is strictly389
followed in our study, oblique waves always have elliptical polarization (linear being considered as a390
special case of elliptical), and parallel waves are always circularly polarized, except for the singularity at391
the crossover frequency. Deviations from circular polarization decrease the advection effects, reconciling392
our results with Lee et al. (2018).393

The lack of precipitation blocking was demonstrated in Section 3.2 through numerical PSD mapping and394
supported by arguments based on Liouville’s theorem. The concept of precipitation blocking was likely395
first introduced by Grach and Demekhov (2020), who, however, concluded that due to competition between396
phase trapping and force bunching, the precipitating fluxes would reach the strong diffusion limit, with397
no apparent decrease near α = 0◦. Our observations corroborate this conclusion, except that the transport398
of particles to low pitch angles is due to the symmetric (“diffusive”) scattering as observed in Figure 3b,399
where the particles stay in the phase-trapping region only for a short time and do not become phase-locked.400
Bortnik et al. (2022) suggested that Van Allen Probes (RBSP) observations of dips in precipitating flux by401
Zhu et al. (2020) could be explained by force bunching. However, the EMIC-induced precipitating electron402
flux shown in Zhu et al. (2020) has a local maximum at α = 0◦, while the force bunching effects should be403
most effective at removing particles from this region. The spacecraft observations are consistent with the404
simulation results of Grach and Demekhov (2020), where the PSD distribution sometimes peaked inside405
the loss cone. This effect is not clearly visible in the perturbed distribution from Figure 6c, because it406
requires strong phase trapping. Such trapping may be possible with the exceptionally high peak amplitudes407
Bw/B0 > 1% reported by Zhu et al. (2020), but not with the more moderate values used in our simulations.408
Recall that transport by phase trapping is nonlocal, allowing mixing of phase space density from distant409
points along the field line, violating the assumption of a spatially localized electron bunch that we used in410
our theoretical consideration of PSD evolution (Section 3.2). Finally, we must emphasize that the force411
bunching does indeed remove particles from the loss cone, but the important quantity for precipitation is412
the net effect of upward and downward pitch-angle motion.413

Most of our new and original results are related to very oblique propagation, which was omitted in414
previous literature on EMIC-induced precipitation. We have shown that precipitation of relativistic electrons415
by very oblique waves is comparable to quasiparallel waves, except for electron energies corresponding to416
high order resonances (n < −4). Note that we are not making a comparison to the routinely investigated417
purely parallel waves with θk = 0◦, because in situ spacecraft measurements (Allen et al., 2015) always418
show at least a small amount of obliquity. Nevertheless, when we consider the increased scattering effects419
of very oblique waves on counter-streaming electrons, bounce-averaged diffusion might be significantly420
increased compared to quasiparallel waves. Unfortunately, we do not know how strong the oblique EMIC421
waves can be, as we are not aware of any study that would show the distribution of wave power over422
WNA and frequencies. Van Allen Probes observations presented by Saikin et al. (2015) suggest that strong423
helium-band waves (average wave power > 0.1 nT2/Hz) have lower average WNA than weak waves424
(average wave power from 0.01 nT2/Hz to 0.1 nT2/Hz). Nevertheless, strong waves with θk > 60◦ at425
L = 5 were occasionally detected, justifying our parameter choice.426

To our knowledge, the nonlinear fractional resonances were never described before in the context of EMIC-427
electron interaction. They are, however, conceptually identical to the subcyclotron resonance of electrons428
with whistler waves, which was studied by Fu et al. (2015). (Kramer et al., 2012) detected fractional429
resonances in fusion devices in the context of ion drift-orbit resonance with magnetohydrodynamic waves.430
Given the different physical setting, the theoretical approach taken by Kramer et al. (2012) is not the same431
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as ours, but they arrive at a formula consisting of a multi-index sum over a product of Bessel functions,432
not unlike our Equations (37)–(39). Nonlinear interactions at fractions of the plasma frequency were433
theoretically described by Lewak and Chen (1969) and used the explain observations made by the Alouette434
II spacecraft. The EMIC-electron fractional resonances, especially the resonance of order n = −1/2,435
might provide a possible explanation for the precipitation of subrelativistic electrons (Hendry et al. (2017),436
Hendry et al. (2019), Capannolo et al. (2019), energies in hundreds of keV) if we consider a high-density437
plasma where the fundamental resonance energy can drop to 1 MeV (compare with the ωpe dependence438
plotted in Figure 1). However, to see if this mechanism is competitive with the nonresonant scattering439
(Chen et al., 2016; An et al., 2022), we need to obtain a realistic distribution of wave power/amplitude over440
wave normal angles, as mentioned above. Endeavors in this direction are left for future study.441

A DERIVATION OF FRACTIONAL RESONANCES

The existence of fractional resonances from Section 3.3 can be derived from the equations of motion for an
electron interacting with an elliptically polarized wave. We start by defining the wave field

Ew = x̂Ew
x sinψ − ŷEw

y cosψ + ẑEw
z sinψ , (5)

Bw = x̂Bw
x cosψ + ŷBw

y sinψ − ẑBw
z cosψ , (6)

where Ew
x < 0 and Bw

y < 0 for left-hand polarized waves. The three hatted vectors form the standard basis442
of a Cartesian system. The wave phase seen by a particle with gyrophase ϕ is443

ψ = ωt− kzz − kxρL sinϕ+ const. ≡ ψB − β sinϕ (7)

and includes the effects of finite Larmor radius (FLR) ρL through the quantity444

β =
γv⊥kx

Ωe
, (8)

while ψB represents the wave phase at the gyrocenter. The constant initial phase will be dropped in the445
following analysis.446

The equations of motion for an electron with the gyrocenter at x = y = 0 propagating through the wave
field on a homogeneous background field B0 ‖ ẑ (field inhomogeneity is not important for the following
resonance spectrum analysis) can be written as

d(γvz)

dt
=

e

m
(v⊥B

w
R sin(ϕ− ψ) + v⊥B

w
L sin(ϕ+ ψ)− Ew

z sinψ) , (9)

d(γv⊥)

dt
=

e

m
((UR − vz)Bw

R sin(ϕ− ψ) + (UL − vz)Bw
L sin(ϕ+ ψ)) , (10)

dϕ

dt
=

e

m

(
UR − vz
γv⊥

Bw
R cos(ϕ− ψ) +

UL − vz
γv⊥

Bw
L cos(ϕ+ ψ)− Bw

z

γ
cosψ +

B0

γ

)
. (11)
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Here we used the decomposition into left- and right-hand polarized components (Omura et al., 2019)

ER = Ew
R (x̂ sinψ − ŷ cosψ) , Ew

R =
Ew
x + Ew

y

2
, (12)

EL = Ew
L (−x̂ sinψ − ŷ cosψ) , Ew

L =
Ew
y − Ew

y

2
, (13)

BR = Bw
R (x̂ cosψ + ŷ sinψ) , Bw

R =
Bw
x +Bw

y

2
, (14)

BL = Bw
L (x̂ cosψ − ŷ sinψ) , Bw

L =
Bw
x − Bw

y

2
(15)

(16)

and defined the ratios447

UR =
Ew
R

Bw
R

, UL =
Ew
L

Bw
L

, (17)

which are related to phase velocities (they reduce exactly to phase velocities in case of circularly polarized448
parallel-propagating waves). In further calculations, we will also use the normalized amplitude components449
Ωw
R = Bw

Re/m, Ωw
L = Bw

L e/m and Ωw
z = Bw

z e/m.450

The average change in electron kinetic energy per one wave period T can be expressed as451 〈
dEk

dt

〉
T

= − e
T

∫ T

0
dt(v ·Ew) =

= − e
T

∫ T

0
dt (v⊥(Ew

R − Ew
L ) cosϕ sinψ − v⊥(Ew

R + Ew
L ) sinϕ cosψ + vzE

w
z sinψ) ,

(18)

where we used the decompositions from Equations (12)–(15). Let us denote the integrand I and restate it452
in the form453

I = − e
T

(−v⊥ (Ew
R sin(ϕ− ψ) + Ew

L sin(ϕ+ ψ)) + vzE
w
z sinψ) . (19)

We may now apply the Jacobi-Anger expansion (Abramowitz and Stegun, 1965) and express the
trigonometric functions in terms of Bessel functions of the first kind,

sin(ϕ− ψ) = sin(ϕ− ψB + β sinϕ) =
∞∑

n=−∞
Jn−1(β) sin ζn =

∞∑
n=−∞

Jn(β) sin ζn+1 , (20)

sin(ϕ+ ψ) = sin(ϕ+ ψB − β sinϕ) = −
∞∑

n=−∞
Jn+1(β) sin ζn = −

∞∑
n=−∞

Jn(β) sin ζn−1 , (21)

sin(ψ) = sin(ψB − β sinϕ) = −
∞∑

n=−∞
Jn(β) sin ζn , (22)

(23)

where454
ζn = nϕ− ψB (24)
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is the relative phase angle for the n-th resonance. Note that while the changes in kinetic energy of electrons455
interacting with EMIC waves are typically negligible, these small energy changes are directly related to456
large changes in pitch angle through the particle motion along resonant diffusion curves (Summers et al.,457
1998).458

The nonlinear effect of individual resonances is usually studied by performing an expansion in vz about459
the n-th resonance velocity460

VRn =
1

kz

(
ω +

nΩe

γ

)
. (25)

Here we instead expand the gyrophase to the first order of perturbations due to wave-particle interactions,
and plug them into the Jacobi-Anger expansions from Equations (20)–(22). Let us write ϕ ≈ ϕ0 + ϕ1 with

dϕ0

dt
=

Ωe

γ
, (26)

dϕ1

dt
= − vz

γv⊥
Ωw
R cos(ϕ− ψ)− vz

γv⊥
Ωw
R cos(ϕ+ ψ) , (27)

where we have used the inequalities |UL| � |vz| and |UR| � |vz| for EMIC waves and relativistic electrons,461
and we also removed the Ωw

z term by focusing on low pitch angle regions where Ωw
z � Ωw

R,Lvz/γv⊥. For462
simplicity, we will further neglect the perturbations to vz and v⊥. In the case of v⊥, the factors in front of463
sines in Equation (10), divided by γv⊥, are the same as the factors in front of cosines in Equation (11),464
suggesting that the relative perturbations in v⊥ and ϕ are comparable. However, v⊥ enters the computation465
either through dϕ1/dt, so we can consider that perturbation to be of second order, or through β, which466
simply scales the FLR effects and can be thus kept constant without losing information about resonant467
behavior. In the case of vz , the approximation can be justified only for low pitch angles since comparing the468
factors in Equations (9) and (11) sets the requirement v⊥/vz � vz/v⊥ (vz enters directly into ψ through469
kzz = kzvzt, so the perturbation would be of the first order if we did not use the low α approximation).470

The cut off the perturbation expansion, we replace ψ by ψB in Equations (26) and (27). The perturbation471
ϕ1 can then be obtained by integrating over time,472

ϕ1 = −R1 sin(ϕ0 − ψB)− L1 sin(ϕ0 + ψB) . (28)

Here we introduced the substitutions

R1 =
vz
v⊥

ΩR

ν1
, (29)

L1 =
vz
v⊥

ΩL

ν−1
, (30)

where473
ν±1 = Ωe ∓ ω ± kzvz (31)

is a quantity expressing the deviation from the fundamental resonances n = ±1.474
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Going back to the Bessel function expansion from Equations (20)–(22), we can now write475

sin ζn ≈ sin (n(ϕ0 + ϕ1)− ψB) = sin (nϕ0 − nR1 sin(ϕ0 − ψB)) cos (−ψB − nL1 sin(ϕ0 + ψB)) +

+ cos (nϕ0 − nR1 sin(ϕ0 − ψB)) sin (−ψB − nL1 sin(ϕ0 + ψB)) .

(32)

Using the second form of the expansions, we can expand each of the trigonometric functions from Equation
(32) into

sin (nϕ0 − nR1 sin(ϕ0 − ψB)) = −
∞∑

r=−∞
Jr(nR1) sin (r(ϕ0 − ψB)− nϕ0) , (33)

cos (−ψB − nL1 sin(ϕ0 + ψB)) =
∞∑

l=−∞
Jl(nL1) cos (l(ϕ0 + ψB) + ψB) , (34)

cos (nϕ0 − nR1 sin(ϕ0 − ψB)) =
∞∑

r=−∞
Jr(nR1) cos (r(ϕ0 − ψB)− nϕ0) , (35)

sin (−ψB − nL1 sin(ϕ0 + ψB)) = −
∞∑

l=−∞
Jl(nL1) sin (l(ϕ0 + ψB) + ψB) . (36)

Since R1 and L1 are proportional to the relative wave magnetic field Bw/B0, we can limit the summations
to |r| ≤ 1 and |l| ≤ 1. As a further simplification, we will limit the resonance number n to −1, 0, 1, which
is a reasonable approximation when β2 � 1, i. e., when pitch angles are low and θk is not too close to
the resonance cone. We then insert the Equations (33)–(36) into Equations (32) and (20)–(22) and finally
obtain

sin(ϕ− ψ) ≈ −
1∑

n,r,l=−1
Jn(β)Jr((n+ 1)R1)Jl((n+ 1)L1) sin ((r − n+ l − 1)ϕ0 + (l − r + 1)ψB) ,

(37)

sin(ϕ+ ψ) ≈
1∑

n,r,l=−1
Jn(β)Jr((n− 1)R1)Jl((n− 1)L1) sin ((r − n+ l + 1)ϕ0 + (l − r + 1)ψB) ,

(38)

sin(ψ) ≈ −
1∑

n,r,l=−1
Jn(β)Jr(nR1)Jl(nL1) sin ((r − n+ l)ϕ0 + (l − r + 1)ψB) . (39)

Comparing the prefactors of ϕ0 and ψ results in resonant fractions

qR = −r − n+ l − 1

l − r + 1
, (40)

qL = −r − n+ l + 1

l − r + 1
, (41)

qz = −r − n+ l

l − r + 1
. (42)
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Apart from the integer values (which represent fundamental and harmonic resonances), the fractions can476
also evaluate to ±1/3, ±1/2, ±2/3, and ±3/2; other fractional values would appear if we extended the477
summation range in n and removed the approximation β2 � 1.478

Let us focus on the resonance −1/2 which contributes to electron diffusion near Ek = 2 MeV in Figure479
8c. The related relative phase angle ϕ0 + 2ψB corresponds to resonance velocity480

VR−1/2 =
1

kz

(
ω − Ωe

2γ

)
. (43)

Going back to the average change in energy defined in Equation (18), we can perform the Taylor expansion481
of Bessel function to the first order and show that term with Ew

R does not contribute to the −1/2 resonance,482
while the Ew

L contributes to the integrand by483

−
eγkxv⊥vzE

w
L Ωw

R

2TΩeν1
, (44)

where we have used Equations (29) and (8). The Ew
z also has a nonzero contribution to the integrand,484

−
ev2zE

w
z Ωw

L

2Tv⊥ν−1
. (45)

Due to the terms Ew
L Ωw

R and Ew
z Ωw

L , the energy change caused by −1/2 resonance scales with a square of485
the wave amplitude. On the other hand, for the integer resonance terms with r = l = 0, the quantities Ωw

R486
and Ωw

L disappear, and the scaling reduces to the first power in amplitude. This analytical result explains487
the diminishing of the −1/2 resonance in Figure 8 when the amplitude is decreased. Notice that due to the488
term 1/ν−1, fractional resonances very close to n = −1 retain non-negligible strength and contribute to489
resonance broadening.490

The derivation provided in this section works for whistler-mode waves as well, except for the491
approximations UR � vz, UL � vz.492
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Figure 1. Minimum resonant energies ERmin of electrons interacting with a left-hand polarized parallel
propagating EMIC wave. Each panel shows a map of energies in dependence on wave frequency and
magnetic latitude. (a) Minimum resonant energies for interaction with a helium-band wave in a high-density
plasma with a high relative concentration of heavier ions – these conditions are used in our simulations.
(b) Same as panel a, but in a low-density plasma. (c) Same as panel (a), but with a low concentration of
heavier ions. Panels (d)–(f) show ERmin for a hydrogen band wave under the same plasma conditions as
in panels (a)–(c), except for panel f, where both the electron density and heavier ion concentrations are
kept low. In all panels, dashed lines represent energy contours, and the solid red line signifies the crossover
frequency. Note that for oblique waves, the left-handed dispersion branch is coupled to the right-handed
branch, so the energies right of the red curve would have to be calculated for right-hand polarized waves.
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Figure 2. (a) Distribution of wave amplitudes along the field line. The wave experiences smooth growth
in region U , stays constant in region C (1.6 nT in this example), and decreases back to zero in region D,
as shown by the dashed red line. The solid blue line shows the relative wave amplitude with respect to
the background field B0. (b) Phase space density distribution at the equator plotted in the energy–pitch
angle space. The empty loss cone corresponds to the white region at αini < αloss = 3.7◦. Normalized PSD
units from the simulation code are used. (c) Line plots of pitch angle profiles from the previous panel for
representative energies. Note that the sinα term from Jacobian is not included; therefore, the decrease in
PSD near loss cone indicates positive pitch-angle anisotropy.
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Figure 3. Trajectory examples showing the change in equatorial pitch angle over latitude due to interaction
with a high-amplitude, moderately oblique wave (Bw/B0eq = 0.0064 and θk = 45◦). Panels (a)–(c) depict
electrons propagating along the wave (from the equator), while panels (d)–(f) show propagation against the
wave (towards the equator). In each panel, electrons have the same initial energy, pitch angle and latitude,
and the line colors represent the initial uniform sampling in gyrophase. Pairs of dashed lines represent the
approximate spatial interval on which the fundamental cyclotron resonance produces strong scattering; for
the harmonic resonances n = ±2, the interval a delimited by dotted lines.
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Figure 4. Average change 〈∆αeq〉ϕ in electron equatorial pitch angle for propagation along the EMIC
wave packet (stopping point is the end of the wave packet or the mirror point). All particles start at
the equator, so the initial pitch angle αini on the abscissa is equal to the initial αeq. The columns are
parametrized by wave amplitude (left to right: 100 pT, 400 pT, and 1.6 nT), and the rows are parametrized
by wave normal angle (top to bottom: 5◦, 45◦, 70◦, and 80◦). The color bars associated with each panel
range from −max(αini,Ek) |〈∆αeq〉ϕ| to + max(αini,Ek) |〈∆αeq〉ϕ|. Vertical stripes at higher pitch angles
are related to nonresonant oscillations at mirror points and would disappear after a complete half-bounce.
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Figure 5. Standard deviation σϕ(αeq) in electron equatorial pitch angle for propagation along the EMIC
wave packet. Same panel format as in Figure 4, but the color bars in each panel now go from 0 to
max(αini,Ek) σϕ(αeq).
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Figure 6. Electron phase space density distribution after resonant interaction with the EMIC wave
captured at the end of the wave packet. Range in pitch angles is limited to 0◦–20◦ to focus on the loss cone.
Parametrization of rows and columns follows Figures 4 and 5, but because the co-streaming particles were
traced back in time, the pitch angle αend on the abscissa now represents the initial value at the end of the
subpacket. The curious small bumps on the boundary between zero and finite PSD values near 2 MeV in
panels (f), (i), and (l) arise due to fractional resonances – see Section 3.3 and Figure 8.
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Figure 7. Effect of resonant interactions on electrons propagating against the EMIC wave packet. Panel
formatting in the first, second, and third columns follows Figures 4, 5, and 6, respectively. Only a single
amplitude value is used, Bw = 400 pT, and the wave normal parametrization over rows of panels skips
the quasiparallel case θk = 5◦, where the resonance effects would be negligible except for extremely
ultrarelativistic energies (Ek & 15 MeV). Note that because the electrons are now counter-streaming, the
pitch angles on the abscissas αini and αend were swapped, and particles with initial equatorial pitch angles
> 39◦ are missing from the forward-in-time simulations.
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Figure 8. The behavior of fractional resonances explained by particle trajectories and standard deviations
in equatorial pitch angle for an EMIC wave with wave normal angle θk = 70◦. (a),(b) Changes in pitch angle
along the field line at energies well below the equatorial fundamental resonance energy ERmin ≈ 4 MeV.
The wave amplitude is Bw = 1.6 nT. (c) Standard deviation in equatorial pitch angle plotted in logarithmic
scale that spans three orders of magnitude. Weak resonant effects near 2 MeV become apparent. (d)–(f)
Same as (a)–(c), but for a 16 times weaker wave. The resonant effects near ERmin/2 are now insubstantial
compared to the fundamental resonance.
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