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Key Points:

e Modulated electron precipitation from tens to hundreds of keV over L shells of 4-9 is
observed by ELFIN at low altitudes

e A good correlation is observed between the spatial variations of electron precipitation and
wave intensities of hiss, plume hiss, and chorus

e Quasi-linear modeling based on the observed wave and plasma parameters reproduced
the observed electron precipitation
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Abstract

Precipitation into the Earth’s atmosphere due to pitch angle scattering by plasma waves has been
recognized as one of the major loss mechanisms for energetic electrons. In this study, we
quantitatively evaluate their roles in precipitating electrons during a conjunction event with
modulated electron precipitation observed at low altitudes by Electron Loss and Fields
INvestigation (ELFIN) and three types of whistler mode waves (hiss, plume hiss, and chorus)
measured near the equator by Time History of Events and Macroscale Interactions during
Substorms (THEMIS). Electron precipitation was observed from~50 keV to <1 MeV with a
spatial modulation, suggested by a good correlation between L shell-sorted precipitation fluxes
and wave intensities. A quasi-linear analysis supports the observed energy range of precipitation
and the ratio of precipitating-to-trapped flux. Our findings reveal that the modulated energetic
electron precipitation is driven by hiss, plume hiss, and chorus waves.

Plain Language Summary

Energetic electrons precipitated from the inner magnetosphere into the upper atmosphere can
form diffuse and discrete aurora and modulate the ionospheric conductance. One of the major
drivers of electron precipitation is wave-particle interaction with whistler mode waves. In this
study, we use the ELFIN CubeSats to measure electron precipitation at low altitudes and the
THEMIS to provide wave and plasma measurements near the magnetic equator in the conjugate
locations. We find that the electron precipitation rate is highly correlated to the whistler mode
wave intensity near the equator. Through a quasi-linear analysis, we demonstrate that the
modulation of electron precipitation is driven by whistler mode hiss, plume hiss, and chorus
waves that occur in an extensive region of the Earth’s magnetosphere.

1 Introduction

Whistler mode waves are right-hand polarized electromagnetic waves with frequencies below
electron cyclotron frequency (e.g., Stix, 1992). Multiple types of whistler mode waves are
observed inside the Earth’s magnetosphere, including plasmaspheric hiss, plume hiss, and chorus
waves (e.g., Chan & Holzer, 1976; Horita, 1977; W. Li et al., 2019; Meredith et al., 2018;
Nakamura et al., 2018; Summers et al., 2007; Thorne et al., 1974). Among them, plasmaspheric
hiss (hiss for short) is typically incoherent with a broadband frequency structure typically from
20 to 2,000 Hz, and is observed inside the plasmasphere with a peak intensity near L ~3 on the
dayside (e.g., W. Li et al., 2015; Meredith et al., 2013; S. Zhang et al., 2021). Plume hiss, as
indicated by its name, is hiss wave in plasmaspheric plume regions extending to higher L shells
(e.g., Shi et al., 2019; W. Zhang et al., 2019). Chorus wave is a coherent whistler mode wave
with a frequency chirping feature that is mainly observed in low density trough regions with
stronger intensities in the midnight-dawn-noon sectors (e.g., W. Li et al., 2011, 2013; Meredith
etal., 2012, 2020, 2021; Ni et al., 2014; Shen et al., 2019).

Extensive studies have demonstrated that these three types of whistler mode waves can
efficiently drive electron precipitation from the Earth’s inner magnetosphere into the upper
atmosphere due to pitch angle diffusion through cyclotron and Landau resonant interactions with
energetic electrons (e.g., Kataoka et al., 2020; W. Li et al., 2019; Ma et al., 2020, 2021; Miyoshi
et al., 2015, 2021; Nishimura et al., 2010; Ozaki et al., 2019). Due to their similar frequency
range inside the Earth’s magnetosphere, they interact with energetic electrons with energies
ranging from several to hundreds of keV. During disturbed geomagnetic conditions (AE > 500
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nT), chorus waves drive 3-10 erg/cm?/s electron precipitation predominantly in the pre-dawn
sector at L > 4, while hiss and plume hiss drive 0.3-1 erg/cm?/s electron precipitation at lower L
shells (Ma et al., 2020, 2021). Based on both an event analysis and a statistical study, plume hiss
is suggested to be more efficient in driving electron precipitation than plasmaspheric hiss (W. Li
etal., 2019; Ma et al., 2021).

Modulated electron precipitation on ultra-low frequency (ULF) scales has been reported by
several studies with a period in the Pc4 or Pc5 frequency range (e.g., Brito et al., 2012; Jaynes et
al., 2015; Manninen et al., 2010; Motoba et al., 2013; Qin et al., 2021; Rae et al., 2007, 2018;
Spanswick et al., 2005; Xia et al., 2016; X. Zhang et al., 2019). During these reported events,
ULF oscillations modulated whistler mode wave amplitude and/or the size of the bounce loss
cone and hence modulated the electron precipitation rates. On a longer timescale, the so-called
‘breathing mode’, due to the solar wind buffeting of the magnetosphere, can also produce
modulated electron precipitation (e.g., Breneman et al., 2015).

However, the observed precipitation modulation cannot always be explained by temporal
variations due to ULF waves or solar wind variations. Furthermore, prior to the launch of
Electron Loss and Fields INvestigation (ELFIN), electron measurements at low altitudes
typically did not provide full pitch angle coverage with sufficient energy resolution to distinguish
precipitating electrons from trapped electrons without ambiguity. In this study, we take
advantage of the conjugate observation of electron distribution at low altitudes by ELFIN and
wave and plasma distributions near the equator by Time History of Events and Macroscale
Interactions during Substorms (THEMIS) to reveal the drivers of the modulated energetic
electron precipitation.

2 Modulated Electron Precipitation at Low Altitudes

We use low-altitude observations from the ELFIN CubeSats to provide measurements of
precipitating and mirroring energetic electrons over a broad L shell range (Angelopoulos et al.,
2020). ELFIN is a dual-probe CubeSat mission launched on September 15, 2018, orbiting at an
altitude of ~450 km with an orbital period of ~1.5 hours. Each probe is equipped with an
Energetic Particle Detector (EPD) that measures electrons from ~50 keV to 6 MeV with full
pitch angle coverage. The time resolution of ELFIN EPD data is ~0.14 s. In a full spin period (~3
s), there are ~20 electron measurements with varying looking directions. In this study, we binned
the data into each 3-second time window in 18 pitch angle sectors covering from 0 to 180
degrees.

Figure 1 presents the ELFIN measurements of electron distributions as well as the solar wind and
geomagnetic conditions during an interesting event, which occurred from 14:21 to 14:24 UT on
November 27, 2020. The solar wind dynamic pressure remained relatively steady in the range of
1.5-2.5 nPa over five hours prior to the observed precipitation event (Figure 1la). The
interplanetary magnetic field (IMF) was mostly southward until an hour before the event (Figure
la), which is preferential for substorm activity when electrons are injected towards Earth. The
Sym-H index, an indicator of the ring current strength, ranged from -24 to -8 nT, which was not
intense (Figure 1b). The AE index was continuously above 300 nT with the peak value reaching
~800 nT during the preceding five hours, indicating on-going substorm activity (Figure 1b).
ELFIN-A observed modulated trapped and precipitating energetic electron flux in this event
within three minutes covering L shells from 4 to 9 on the dayside at magnetic local time (MLT) ~
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11 hr (Figures 1c and 1d). The trapped electron flux was high (~60 keV to <1 MeV at L > 6, and
up to 3 MeV at L < 6), while the precipitating electrons were mainly below 1 MeV. The ratio of
precipitating-to-trapped electrons was approaching one at tens to hundreds of keV, indicative of
almost full loss cone, but remained < 0.1 at higher energies (Figure 1e). Electron pitch angle
distributions (Figures 1f—11i) exhibited asymmetric distributions with higher electron flux within
the loss cone (black solid lines) than that within the anti-loss cone (black dashed lines) at various
energy channels. However, electron precipitation at > 1 MeV was not intense and mostly
occurred near the edge of the bounce loss cone (Figure 11).

We suggest that the observed electron precipitation at tens to hundreds of keV energies is related
to pitch angle scattering by whistler mode waves, instead of electromagnetic ion cyclotron
(EMIC) waves, which typically account for electron precipitation at energies above several
hundreds of keV (e.g., Blum et al., 2015; Capannolo, Li, Ma, Shen, et al., 2019; Capannolo, Li,
Ma, Chen, et al., 2019; Jordanova et al., 2008; Z. Li et al., 2014; Miyoshi et al., 2008; Qin et al.,
2018; X.-J. Zhang et al., 2021).

3 Conjugate Observations of Plasma Waves near the Equator

To identify the driver of modulated energetic electron precipitation and determine whether the
observed modulation is spatial or temporal, we use plasma and wave measurements from the
electrostatic analyzer (ESA), solid state telescope (SST), search coil magnetometer (SCM) and
fluxgate magnetometer (FGM) instruments onboard one of the five THEMIS probes
(Angelopoulos, 2008; Auster et al., 2008; McFadden et al., 2008; Roux et al., 2008), which was
orbiting near the magnetic equator and had two tight conjunctions with ELFIN-A and ELFIN-B
(see Figure S2 in Supporting Information for ELFIN-B observations) near ~ 1423 and 1545 UT,
respectively (Figures 2a and 2b). During the two tight conjunctions, the separation between the
two probes is less than 1.5 hours in MLT. THEMIS-E took three hours (~1400 to 1700 UT) to
travel through L shells from 4 to 9, which is much longer than the ~3 minutes used by ELFIN at
low altitudes. Based on the total electron density inferred from the spacecraft potential, one can
see that THEMIS-E was traveling from the plasmasphere to plasmaspheric plume regions near
L~ 6 and then entered the plasma trough region at higher L shells (Figure 2c). Measurements of
wave magnetic and electric fields indicate the intensification of hiss, plume hiss, and chorus
waves in the three different regions, respectively (Figures 2d and 2e). The magnetic field data
from SCM on THEMIS-E are still pending calibration beyond 2017, although the relative
intensity showing wave activities is not affected (Tsai et al., 2022; X.-J. Zhang et al., 2022).
Measurements of magnetic spectral density from the Plasma Wave Experiment (PWE) onboard
Arase (Kasahara et al., 2018) during a conjunction period within this day (see Figure S1 in the
supporting information for detailed information) were used to calibrate the magnetic spectral
density values from THEMIS-E (e.g., Dudok de Wit et al., 2022; Santolik et al., 2021). The
magnetic spectral density was scaled up by a factor of 2 to match the observations from Arase
during the conjunction. Hiss and plume hiss were intense with wave amplitudes reaching ~ 100-
200 pT, while chorus waves were not strong (10 to 20 pT) (Figure 2f). These observations show
the plasma wave activity near the equatorial plane in the L shell range of 4 to 9, which is the
region where modulated electron precipitation was observed by ELFIN. Whistler mode waves,
including hiss, plume hiss, and chorus waves, with modulating amplitudes together with varying
plasma conditions at different L shells, may contribute to the observed modulated electron
precipitation. From ~16:00 UT to 18:30 UT (at L > 7.5), H" band EMIC wave activities were
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also observed by THEMIS-E with wave magnetic amplitudes, integrated over frequencies from
the helium gyrofrequency to the hydrogen gyrofrequency, less than 0.2 nT (not shown).

4 Quantification of Electron Precipitation Using Quasi-Linear Theory

In order to estimate the ratio of precipitating-to-trapped electron fluxes due to wave-particle
interactions, we apply the UCLA Full Diffusion Code (Ma et al., 2020, 2021; Ni et al., 2008,
2011) based on quasi-linear theory to compute the diffusion coefficients. We use wave spectra
and surrounding plasma parameters, including total electron density and magnetic field
magnitude, at three time snapshots (14:19 UT, 14:48 UT, and 15:45 UT, see orange dashed lines
in Figure 2) for hiss, plume hiss, and chorus waves, respectively. Survey mode plasma wave
measurements from THEMIS-E do not provide the wave normal angle (WNA) and the burst
mode was not operating during this event. Thus, we assume a gaussian distribution of WNA with
the peak WNA to be parallel to the magnetic field line and a WNA width of 30° (Hartley et al.,
2018; W. Li et al., 2011; Santolik et al., 2014; Taubenschuss et al., 2014). Resonant harmonic
numbers from -10 to 10 and magnetic latitudes within 50 degrees are used in the calculation
including effects from both cyclotron and Landau resonances.

The calculated bounce-averaged electron pitch angle diffusion rates are shown in Figures 3a—3c.
Parameters including L shell, background magnetic field magnitude, the ratio of plasma to
electron gyro frequency, and wave amplitude, used to calculate the pitch angle diffusion rates,
are included in Table S1 in the supporting information. For the three wave modes, the energies of
electrons subject to efficient scattering are in the range of several keV to hundreds of keV.
Landau resonance occurred at low energies or near pitch angles close to 90°. In this study, we
focus on the diffusion rates near the loss cone indicated by the magenta dashed lines to evaluate
electron precipitation. Among the three waves, chorus waves drive the least efficient pitch angle
scattering of electrons due to the low wave amplitude (19 pT). The hiss and plume hiss drive
more efficient pitch angle scattering given their large wave amplitudes (222 and 121 pT) at the
selected times.

The pitch angle diffusion rates at the loss cone and the strong diffusion limit (Dgp) for varying
energies are plotted in Figures 3d—f as red solid and dashed lines, respectively. The derived pitch
angle diffusion rate due to plume hiss is very close to the strong diffusion limit at tens to
hundreds of keV, although the diffusion rates due to all the three wave modes do not exceed the
strong diffusion limit. The diffusion rates decrease significantly at energies below 10 keV for
hiss and plume hiss waves but remain high down to ~4 keV for chorus waves since their upper
frequency limit is higher to interact with lower energy electrons. However, this difference cannot
be captured by ELFIN since electron measurements only extend down to ~60 keV.

Based on these diffusion rates near the loss cone, we calculate the loss cone filling index (Ni et
al., 2014), which is similar to the ratio of precipitating-to-trapped electrons from the ELFIN
observations, as following

2 [y Io[Zo(E)tlTdT
Iy[Zo(E)] ’

X(E) = (1)
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where [, is the modified Bessel function of the first kind, Z, = ’ﬁ is the square root of
aa~ILC

the ratio of strong diffusion limit and pitch angle diffusion rate at the loss cone at various
energies, and 7 is an integration variable. The calculated loss cone filling index is shown in
Figures 3d-3f as green lines. The peak loss cone filling index is around tens of keV and drops to
below 0.1 at 1 MeV for the three wave modes.

To better compare the observed and modeled electron precipitation, we binned observations from
both THEMIS and ELFIN and the modeling results into L-shell bins of 0.05 width, from L =4 to
L =9 (Figure 4). Note that the color bar in this plot represents the universal time (UT). Electron
density and wave amplitude variations (Figures 4a and 4b) near the edge of the plasmasphere and
plume regions become smoother and less distinct than those shown in Figure 2 due to binning.
Within the blue and orange shaded areas (corresponding to the region where hiss and chorus
waves were observed by THEMIS), THEMIS and ELFIN were located at a similar L shell and
UT. Within the green shaded region, THEMIS and ELFIN were crossing a similar L shell, but
with ~0.5 to 1 hr time difference. The observed electron precipitation at 100 keV shows a similar
trend to the observed whistler mode wave amplitude variations, especially during the two tight
conjunctions (Figure 4c). Figure 4d is the modeled loss cone filling index at 100 keV binned by
L shell, and it well reproduced the observed ratio of precipitating-to-trapped electron flux by
ELFIN-A. The hiss-driven precipitation leads to a ratio of precipitating-to-trapped electrons
reaching 0.8 with two peak structures, while chorus waves, in this case, only drive electron
precipitation with a ratio around 0.4. The modeled plume hiss-driven precipitation ratio is lower
than the observed, which may be due to the UT difference in this case. THEMIS provided plume
hiss measurements (~14:50 UT) ~30 minutes later than the ELFIN measurements of electron
precipitation (~14:23 UT) during the recovery of a substorm, indicated by the AE index (Figure
1b). The underestimated electron precipitation reproduced based on the THEMIS measurements
may be due to the decrease in plume hiss wave intensity or the narrowing of plumes due to the
temporal evolution. However, the trend of precipitation ratio as a function of L shell is overall
well reproduced. The peaks in L shell shift within 0.2 L are reasonable considering the
uncertainties in the IGRF magnetic field models. At the higher energy of 500 keV (Figures 4e
and 4f), the precipitation ratio becomes lower; it decreased to ~0.2 for hiss-driven precipitation
and ~0.1 for chorus-driven precipitation. Due to the low counts of electrons at high energies (>
100s keV), the obtained precipitation ratio at 500 keV shown in Figure 4e becomes sparse at L >
~7 during this event. Nevertheless, the available measurements show remarkable agreement
between the observations and modeling, especially in terms of the trend of precipitation ratio as a
function of L shell.

S Summary

In the present paper, we analyzed an intriguing event of modulated electron precipitation due to
whistler mode hiss, plume hiss, and chorus waves. The modulation of low-altitude electron
precipitation is highly correlated with spatial variations of whistler mode wave amplitudes of
hiss, plume hiss and chorus waves in the plasmasphere, plume and plasma trough, respectively.
Using quasi-linear modeling, the observed ratio of precipitating-to-trapped electrons is well
reproduced. These three types of whistler mode waves overall drive electron precipitation with
energies ranging from tens of keV to less than 1 MeV, while chorus waves drive electron
precipitation at slightly lower energies because of the higher wave frequency. The reproduced
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precipitation ratio (peaking at ~0.4) due to plume hiss is lower than the observed one (peaking at
~1), which is likely due to the ~0.5 hr difference in UT between THEMIS and ELFIN, and
associated variability of hiss wave intensity. The plume region may become narrower as time
goes on and the spatially averaged wave amplitude becomes smaller (Figure 4). However, the
two-peak structure is well reproduced. Moreover, plume hiss within the plume regions can still
produce a ratio of precipitating to trapped electrons close to 1 at 10s of keV, although they may
become narrower spatially (Figures 3b and 3e). Therefore, the plume hiss can drive very efficient
electron precipitation (Figure 3b), in agreement with previous studies (W. Li et al., 2019; Ma et
al., 2021) showing the importance of plume hiss in driving electron precipitation compared to the
other two whistler mode waves. Overall, the remarkable correlation between the ELFIN
observations of electron precipitation, THEMIS observations of whistler mode wave amplitudes,
and the modeled precipitation ratio suggests that the observed modulation of electron
precipitation is likely a spatial variation in this event.

These results, obtained by combining observations and modeling, suggest that whistler mode
waves, including hiss, plume hiss and chorus at various regions from plasmasphere, plume and
trough, contribute together to modulated electron precipitation (tens to hundreds of keV) into the
upper atmosphere in an extensive region of the coupled magnetosphere-ionosphere system. The
spatial variation of their wave amplitude and ambient plasma conditions affects the efficiency of
electron pitch angle scattering, which leads to the modulated energetic electron precipitation
observed at low altitudes. Since plasmaspheric hiss, plume hiss, and chorus occur over a wide
range of MLT sectors on the dayside, our findings imply that modulations of electron
precipitation caused by the three types of whistler mode waves are likely common in the broad
region of the dayside magnetosphere, particularly when a plume region exists.
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Figure 1. Solar wind, geomagnetic conditions, and ELFIN-A observations of precipitating and
trapped electrons at low Earth orbit. (a) Solar wind dynamic pressure (black) and interplanetary
magnetic field z component (blue) in GSM coordinates. (b) Geomagnetic Sym-H (black) and AE
indices (magenta). (¢) Trapped electron energy flux spectrogram with local pitch angles near 90°.
(d) Precipitating electron energy flux spectrogram with pitch angles inside the bounce loss cone.
(e) Ratio of downward moving (precipitating) electrons to trapped electrons. (f—i) Pitch angle
distribution of electrons for energy channels of 50-160 keV, 160-345 keV, 345-900 keV, and >
0.9 MeV, respectively. Here the black solid (dashed) line represents loss cone (anti-loss cone).



552

553
554
555
556
557
558
559
560
561
562

Confidential manuscript submitted to Geophysical Research Letters

THEMIS—E

r - — THEMIS-E
ELFIN-A
ELFIN-B

'

10° ] . L . L . 1 ) . . . T 1 . ) e
Plasmasphere Plume Trough
E ||;- I :1\?
< =
T Ei <
" 'w.ah N
5 Wi .F 9 |’i'wl‘ 5
= . £
= >
=
S
mﬁ
L 44 6.2
MLT 10 9 1.7
MLAT 4.8 0

2.
1400 50

UT
2020 Nov 27

Figure 2. Conjugate observations near the magnetic equator from THEMIS-E. (a) L shell and (b)
MLT for THEMIS-E (blue), ELFIN-A (red) and B (green) satellites. (c¢) Total electron density
inferred from the spacecraft potential. (d) Wave magnetic and (e) electric spectral intensities,
where the white solid, dashed and dash-dotted lines are equatorial electron gyrofrequency (fcc),
0.5 fee, and 0.05 fc., respectively. (f) Whistler mode magnetic wave amplitude integrated from 80
Hz to the lower value of 2,000 Hz and f... A horizontal bar between panels ¢ and d illustrate
different plasma regions, including plasmasphere (magenta), plume (blue), and plasma trough
(red). Three orange dashed lines mark the time snapshots used to calculate pitch angle diffusion
rates in Figure 3.
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Figure 3. Effects of whistler mode waves on energetic electrons based on quasi-linear theory. (a)
Pitch angle diffusion rates due to hiss waves, (b) plume hiss waves, and (c¢) chorus waves. (d)
Pitch angle diffusion rates due to the observed hiss waves (red solid line), the strong diffusion
rates (red dashed line) for electrons with pitch angles at the bounce loss cone, and the loss cone
filling index (green line). (e—f) Similar to the panel (d) but for plume hiss and chorus waves,
respectively.
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Figure 4. Comparison between the observed and the modeled electron precipitation over a large
L shell extent from 4 to 9 color-coded by UT. (a) Total electron density. (b) Whistler mode wave
magnetic amplitude. (c) Observed ratio of precipitating to trapped electrons at the 100 keV
energy channel. (d) Modeled ratio of precipitating to trapped electrons at the same energy as
shown in the panel (c). (e—f) Similar to panels (c—d) but for 500 keV electrons.
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Figure 3.
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Figure 4.
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