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Abstract 28 
Precipitation into the Earth’s atmosphere due to pitch angle scattering by plasma waves has been 29 
recognized as one of the major loss mechanisms for energetic electrons. In this study, we 30 
quantitatively evaluate their roles in precipitating electrons during a conjunction event with 31 
modulated electron precipitation observed at low altitudes by Electron Loss and Fields 32 
INvestigation (ELFIN) and three types of whistler mode waves (hiss, plume hiss, and chorus) 33 
measured near the equator by Time History of Events and Macroscale Interactions during 34 
Substorms (THEMIS). Electron precipitation was observed from~50 keV to <1 MeV with a 35 
spatial modulation, suggested by a good correlation between L shell-sorted precipitation fluxes 36 
and wave intensities. A quasi-linear analysis supports the observed energy range of precipitation 37 
and the ratio of precipitating-to-trapped flux. Our findings reveal that the modulated energetic 38 
electron precipitation is driven by hiss, plume hiss, and chorus waves. 39 

Plain Language Summary 40 
Energetic electrons precipitated from the inner magnetosphere into the upper atmosphere can 41 
form diffuse and discrete aurora and modulate the ionospheric conductance. One of the major 42 
drivers of electron precipitation is wave-particle interaction with whistler mode waves. In this 43 
study, we use the ELFIN CubeSats to measure electron precipitation at low altitudes and the 44 
THEMIS to provide wave and plasma measurements near the magnetic equator in the conjugate 45 
locations. We find that the electron precipitation rate is highly correlated to the whistler mode 46 
wave intensity near the equator. Through a quasi-linear analysis, we demonstrate that the 47 
modulation of electron precipitation is driven by whistler mode hiss, plume hiss, and chorus 48 
waves that occur in an extensive region of the Earth’s magnetosphere. 49 

1 Introduction 50 
Whistler mode waves are right-hand polarized electromagnetic waves with frequencies below 51 
electron cyclotron frequency (e.g., Stix, 1992). Multiple types of whistler mode waves are 52 
observed inside the Earth’s magnetosphere, including plasmaspheric hiss, plume hiss, and chorus 53 
waves (e.g., Chan & Holzer, 1976; Horita, 1977; W. Li et al., 2019; Meredith et al., 2018; 54 
Nakamura et al., 2018; Summers et al., 2007; Thorne et al., 1974). Among them, plasmaspheric 55 
hiss (hiss for short) is typically incoherent with a broadband frequency structure typically from 56 
20 to 2,000 Hz, and is observed inside the plasmasphere with a peak intensity near L ~3 on the 57 
dayside (e.g., W. Li et al., 2015; Meredith et al., 2013; S. Zhang et al., 2021). Plume hiss, as 58 
indicated by its name, is hiss wave in plasmaspheric plume regions extending to higher L shells 59 
(e.g., Shi et al., 2019; W. Zhang et al., 2019). Chorus wave is a coherent whistler mode wave 60 
with a frequency chirping feature that is mainly observed in low density trough regions with 61 
stronger intensities in the midnight-dawn-noon sectors (e.g., W. Li et al., 2011, 2013; Meredith 62 
et al., 2012, 2020, 2021; Ni et al., 2014; Shen et al., 2019). 63 
Extensive studies have demonstrated that these three types of whistler mode waves can 64 
efficiently drive electron precipitation from the Earth’s inner magnetosphere into the upper 65 
atmosphere due to pitch angle diffusion through cyclotron and Landau resonant interactions with 66 
energetic electrons (e.g., Kataoka et al., 2020; W. Li et al., 2019; Ma et al., 2020, 2021; Miyoshi 67 
et al., 2015, 2021; Nishimura et al., 2010; Ozaki et al., 2019). Due to their similar frequency 68 
range inside the Earth’s magnetosphere, they interact with energetic electrons with energies 69 
ranging from several to hundreds of keV. During disturbed geomagnetic conditions (AE > 500 70 
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nT), chorus waves drive 3-10 erg/cm2/s electron precipitation predominantly in the pre-dawn 71 
sector at L > 4, while hiss and plume hiss drive 0.3-1 erg/cm2/s electron precipitation at lower L 72 
shells (Ma et al., 2020, 2021). Based on both an event analysis and a statistical study, plume hiss 73 
is suggested to be more efficient in driving electron precipitation than plasmaspheric hiss (W. Li 74 
et al., 2019; Ma et al., 2021). 75 
Modulated electron precipitation on ultra-low frequency (ULF) scales has been reported by 76 
several studies with a period in the Pc4 or Pc5 frequency range (e.g., Brito et al., 2012; Jaynes et 77 
al., 2015; Manninen et al., 2010; Motoba et al., 2013; Qin et al., 2021; Rae et al., 2007, 2018; 78 
Spanswick et al., 2005; Xia et al., 2016; X. Zhang et al., 2019). During these reported events, 79 
ULF oscillations modulated whistler mode wave amplitude and/or the size of the bounce loss 80 
cone and hence modulated the electron precipitation rates. On a longer timescale, the so-called 81 
‘breathing mode’, due to the solar wind buffeting of the magnetosphere, can also produce 82 
modulated electron precipitation (e.g., Breneman et al., 2015). 83 

However, the observed precipitation modulation cannot always be explained by temporal 84 
variations due to ULF waves or solar wind variations. Furthermore, prior to the launch of 85 
Electron Loss and Fields INvestigation (ELFIN), electron measurements at low altitudes 86 
typically did not provide full pitch angle coverage with sufficient energy resolution to distinguish 87 
precipitating electrons from trapped electrons without ambiguity. In this study, we take 88 
advantage of the conjugate observation of electron distribution at low altitudes by ELFIN and 89 
wave and plasma distributions near the equator by Time History of Events and Macroscale 90 
Interactions during Substorms (THEMIS) to reveal the drivers of the modulated energetic 91 
electron precipitation. 92 
2 Modulated Electron Precipitation at Low Altitudes 93 

We use low-altitude observations from the ELFIN CubeSats to provide measurements of 94 
precipitating and mirroring energetic electrons over a broad L shell range (Angelopoulos et al., 95 
2020). ELFIN is a dual-probe CubeSat mission launched on September 15, 2018, orbiting at an 96 
altitude of ~450 km with an orbital period of ~1.5 hours. Each probe is equipped with an 97 
Energetic Particle Detector (EPD) that measures electrons from ~50 keV to 6 MeV with full 98 
pitch angle coverage. The time resolution of ELFIN EPD data is ~0.14 s. In a full spin period (~3 99 
s), there are ~20 electron measurements with varying looking directions. In this study, we binned 100 
the data into each 3-second time window in 18 pitch angle sectors covering from 0 to 180 101 
degrees. 102 

Figure 1 presents the ELFIN measurements of electron distributions as well as the solar wind and 103 
geomagnetic conditions during an interesting event, which occurred from 14:21 to 14:24 UT on 104 
November 27, 2020. The solar wind dynamic pressure remained relatively steady in the range of 105 
1.5-2.5 nPa over five hours prior to the observed precipitation event (Figure 1a). The 106 
interplanetary magnetic field (IMF) was mostly southward until an hour before the event (Figure 107 
1a), which is preferential for substorm activity when electrons are injected towards Earth. The 108 
Sym-H index, an indicator of the ring current strength, ranged from -24 to -8 nT, which was not 109 
intense (Figure 1b). The AE index was continuously above 300 nT with the peak value reaching 110 
~800 nT during the preceding five hours, indicating on-going substorm activity (Figure 1b). 111 
ELFIN-A observed modulated trapped and precipitating energetic electron flux in this event 112 
within three minutes covering L shells from 4 to 9 on the dayside at magnetic local time (MLT) ~ 113 
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11 hr (Figures 1c and 1d). The trapped electron flux was high (~60 keV to < 1 MeV at L > 6, and 114 
up to 3 MeV at L < 6), while the precipitating electrons were mainly below 1 MeV. The ratio of 115 
precipitating-to-trapped electrons was approaching one at tens to hundreds of keV, indicative of 116 
almost full loss cone, but remained < 0.1 at higher energies (Figure 1e). Electron pitch angle 117 
distributions (Figures 1f–1i) exhibited asymmetric distributions with higher electron flux within 118 
the loss cone (black solid lines) than that within the anti-loss cone (black dashed lines) at various 119 
energy channels. However, electron precipitation at > 1 MeV was not intense and mostly 120 
occurred near the edge of the bounce loss cone (Figure 1i). 121 

We suggest that the observed electron precipitation at tens to hundreds of keV energies is related 122 
to pitch angle scattering by whistler mode waves, instead of electromagnetic ion cyclotron 123 
(EMIC) waves, which typically account for electron precipitation at energies above several 124 
hundreds of keV (e.g., Blum et al., 2015; Capannolo, Li, Ma, Shen, et al., 2019; Capannolo, Li, 125 
Ma, Chen, et al., 2019; Jordanova et al., 2008; Z. Li et al., 2014; Miyoshi et al., 2008; Qin et al., 126 
2018; X.-J. Zhang et al., 2021). 127 

3 Conjugate Observations of Plasma Waves near the Equator 128 
To identify the driver of modulated energetic electron precipitation and determine whether the 129 
observed modulation is spatial or temporal, we use plasma and wave measurements from the 130 
electrostatic analyzer (ESA), solid state telescope (SST), search coil magnetometer (SCM) and 131 
fluxgate magnetometer (FGM) instruments onboard one of the five THEMIS probes 132 
(Angelopoulos, 2008; Auster et al., 2008; McFadden et al., 2008; Roux et al., 2008), which was 133 
orbiting near the magnetic equator and had two tight conjunctions with ELFIN-A and ELFIN-B 134 
(see Figure S2 in Supporting Information for ELFIN-B observations) near ~ 1423 and 1545 UT, 135 
respectively (Figures 2a and 2b). During the two tight conjunctions, the separation between the 136 
two probes is less than 1.5 hours in MLT. THEMIS-E took three hours (~1400 to 1700 UT) to 137 
travel through L shells from 4 to 9, which is much longer than the ~3 minutes used by ELFIN at 138 
low altitudes. Based on the total electron density inferred from the spacecraft potential, one can 139 
see that THEMIS-E was traveling from the plasmasphere to plasmaspheric plume regions near 140 
L~ 6 and then entered the plasma trough region at higher L shells (Figure 2c). Measurements of 141 
wave magnetic and electric fields indicate the intensification of hiss, plume hiss, and chorus 142 
waves in the three different regions, respectively (Figures 2d and 2e). The magnetic field data 143 
from SCM on THEMIS-E are still pending calibration beyond 2017, although the relative 144 
intensity showing wave activities is not affected (Tsai et al., 2022; X.-J. Zhang et al., 2022). 145 
Measurements of magnetic spectral density from the Plasma Wave Experiment (PWE) onboard 146 
Arase (Kasahara et al., 2018) during a conjunction period within this day (see Figure S1 in the 147 
supporting information for detailed information) were used to calibrate the magnetic spectral 148 
density values from THEMIS-E (e.g., Dudok de Wit et al., 2022; Santolík et al., 2021). The 149 
magnetic spectral density was scaled up by a factor of 2 to match the observations from Arase 150 
during the conjunction. Hiss and plume hiss were intense with wave amplitudes reaching ~ 100-151 
200 pT, while chorus waves were not strong (10 to 20 pT) (Figure 2f). These observations show 152 
the plasma wave activity near the equatorial plane in the L shell range of 4 to 9, which is the 153 
region where modulated electron precipitation was observed by ELFIN. Whistler mode waves, 154 
including hiss, plume hiss, and chorus waves, with modulating amplitudes together with varying 155 
plasma conditions at different L shells, may contribute to the observed modulated electron 156 
precipitation. From ~16:00 UT to 18:30 UT (at L > 7.5), H+ band EMIC wave activities were 157 
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also observed by THEMIS-E with wave magnetic amplitudes, integrated over frequencies from 158 
the helium gyrofrequency to the hydrogen gyrofrequency, less than 0.2 nT (not shown). 159 
4 Quantification of Electron Precipitation Using Quasi-Linear Theory 160 
In order to estimate the ratio of precipitating-to-trapped electron fluxes due to wave-particle 161 
interactions, we apply the UCLA Full Diffusion Code (Ma et al., 2020, 2021; Ni et al., 2008, 162 
2011) based on quasi-linear theory to compute the diffusion coefficients. We use wave spectra 163 
and surrounding plasma parameters, including total electron density and magnetic field 164 
magnitude, at three time snapshots (14:19 UT, 14:48 UT, and 15:45 UT, see orange dashed lines 165 
in Figure 2) for hiss, plume hiss, and chorus waves, respectively. Survey mode plasma wave 166 
measurements from THEMIS-E do not provide the wave normal angle (WNA) and the burst 167 
mode was not operating during this event. Thus, we assume a gaussian distribution of WNA with 168 
the peak WNA to be parallel to the magnetic field line and a WNA width of 30º (Hartley et al., 169 
2018; W. Li et al., 2011; Santolík et al., 2014; Taubenschuss et al., 2014). Resonant harmonic 170 
numbers from -10 to 10 and magnetic latitudes within 50 degrees are used in the calculation 171 
including effects from both cyclotron and Landau resonances. 172 

The calculated bounce-averaged electron pitch angle diffusion rates are shown in Figures 3a–3c. 173 
Parameters including L shell, background magnetic field magnitude, the ratio of plasma to 174 
electron gyro frequency, and wave amplitude, used to calculate the pitch angle diffusion rates, 175 
are included in Table S1 in the supporting information. For the three wave modes, the energies of 176 
electrons subject to efficient scattering are in the range of several keV to hundreds of keV. 177 
Landau resonance occurred at low energies or near pitch angles close to 90º. In this study, we 178 
focus on the diffusion rates near the loss cone indicated by the magenta dashed lines to evaluate 179 
electron precipitation. Among the three waves, chorus waves drive the least efficient pitch angle 180 
scattering of electrons due to the low wave amplitude (19 pT). The hiss and plume hiss drive 181 
more efficient pitch angle scattering given their large wave amplitudes (222 and 121 pT) at the 182 
selected times. 183 

The pitch angle diffusion rates at the loss cone and the strong diffusion limit (𝐷ௌ஽) for varying 184 
energies are plotted in Figures 3d–f as red solid and dashed lines, respectively. The derived pitch 185 
angle diffusion rate due to plume hiss is very close to the strong diffusion limit at tens to 186 
hundreds of keV, although the diffusion rates due to all the three wave modes do not exceed the 187 
strong diffusion limit. The diffusion rates decrease significantly at energies below 10 keV for 188 
hiss and plume hiss waves but remain high down to ~4 keV for chorus waves since their upper 189 
frequency limit is higher to interact with lower energy electrons. However, this difference cannot 190 
be captured by ELFIN since electron measurements only extend down to ~60 keV. 191 

Based on these diffusion rates near the loss cone, we calculate the loss cone filling index (Ni et 192 
al., 2014), which is similar to the ratio of precipitating-to-trapped electrons from the ELFIN 193 
observations, as following 194 

𝜒(𝐸) = ଶ ׬ ூబሾ௓బ(ா)ఛሿ∙ఛ∙ௗఛభబ ூబሾ௓బ(ா)ሿ       ,                                                  (1) 195 
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where 𝐼଴ is the modified Bessel function of the first kind, 𝑍଴ = ට ஽ೄವ(ழ஽ഀഀவ|ಽ಴) is the square root of 196 

the ratio of strong diffusion limit and pitch angle diffusion rate at the loss cone at various 197 
energies, and 𝜏 is an integration variable. The calculated loss cone filling index is shown in 198 
Figures 3d–3f as green lines. The peak loss cone filling index is around tens of keV and drops to 199 
below 0.1 at 1 MeV for the three wave modes. 200 

To better compare the observed and modeled electron precipitation, we binned observations from 201 
both THEMIS and ELFIN and the modeling results into L-shell bins of 0.05 width, from L = 4 to 202 
L = 9 (Figure 4).  Note that the color bar in this plot represents the universal time (UT). Electron 203 
density and wave amplitude variations (Figures 4a and 4b) near the edge of the plasmasphere and 204 
plume regions become smoother and less distinct than those shown in Figure 2 due to binning. 205 
Within the blue and orange shaded areas (corresponding to the region where hiss and chorus 206 
waves were observed by THEMIS), THEMIS and ELFIN were located at a similar L shell and 207 
UT. Within the green shaded region, THEMIS and ELFIN were crossing a similar L shell, but 208 
with ~0.5 to 1 hr time difference. The observed electron precipitation at 100 keV shows a similar 209 
trend to the observed whistler mode wave amplitude variations, especially during the two tight 210 
conjunctions (Figure 4c). Figure 4d is the modeled loss cone filling index at 100 keV binned by 211 
L shell, and it well reproduced the observed ratio of precipitating-to-trapped electron flux by 212 
ELFIN-A. The hiss-driven precipitation leads to a ratio of precipitating-to-trapped electrons 213 
reaching 0.8 with two peak structures, while chorus waves, in this case, only drive electron 214 
precipitation with a ratio around 0.4. The modeled plume hiss-driven precipitation ratio is lower 215 
than the observed, which may be due to the UT difference in this case. THEMIS provided plume 216 
hiss measurements (~14:50 UT) ~30 minutes later than the ELFIN measurements of electron 217 
precipitation (~14:23 UT) during the recovery of a substorm, indicated by the AE index (Figure 218 
1b). The underestimated electron precipitation reproduced based on the THEMIS measurements 219 
may be due to the decrease in plume hiss wave intensity or the narrowing of plumes due to the 220 
temporal evolution. However, the trend of precipitation ratio as a function of L shell is overall 221 
well reproduced. The peaks in L shell shift within 0.2 L are reasonable considering the 222 
uncertainties in the IGRF magnetic field models. At the higher energy of 500 keV (Figures 4e 223 
and 4f), the precipitation ratio becomes lower; it decreased to ~0.2 for hiss-driven precipitation 224 
and ~0.1 for chorus-driven precipitation. Due to the low counts of electrons at high energies (> 225 
100s keV), the obtained precipitation ratio at 500 keV shown in Figure 4e becomes sparse at L > 226 
~7 during this event. Nevertheless, the available measurements show remarkable agreement 227 
between the observations and modeling, especially in terms of the trend of precipitation ratio as a 228 
function of L shell. 229 

5 Summary 230 
In the present paper, we analyzed an intriguing event of modulated electron precipitation due to 231 
whistler mode hiss, plume hiss, and chorus waves. The modulation of low-altitude electron 232 
precipitation is highly correlated with spatial variations of whistler mode wave amplitudes of 233 
hiss, plume hiss and chorus waves in the plasmasphere, plume and plasma trough, respectively. 234 
Using quasi-linear modeling, the observed ratio of precipitating-to-trapped electrons is well 235 
reproduced. These three types of whistler mode waves overall drive electron precipitation with 236 
energies ranging from tens of keV to less than 1 MeV, while chorus waves drive electron 237 
precipitation at slightly lower energies because of the higher wave frequency. The reproduced 238 
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precipitation ratio (peaking at ~0.4) due to plume hiss is lower than the observed one (peaking at 239 
~1), which is likely due to the ~0.5 hr difference in UT between THEMIS and ELFIN, and 240 
associated variability of hiss wave intensity. The plume region may become narrower as time 241 
goes on and the spatially averaged wave amplitude becomes smaller (Figure 4). However, the 242 
two-peak structure is well reproduced. Moreover, plume hiss within the plume regions can still 243 
produce a ratio of precipitating to trapped electrons close to 1 at 10s of keV, although they may 244 
become narrower spatially (Figures 3b and 3e). Therefore, the plume hiss can drive very efficient 245 
electron precipitation (Figure 3b), in agreement with previous studies (W. Li et al., 2019; Ma et 246 
al., 2021) showing the importance of plume hiss in driving electron precipitation compared to the 247 
other two whistler mode waves. Overall, the remarkable correlation between the ELFIN 248 
observations of electron precipitation, THEMIS observations of whistler mode wave amplitudes, 249 
and the modeled precipitation ratio suggests that the observed modulation of electron 250 
precipitation is likely a spatial variation in this event. 251 

These results, obtained by combining observations and modeling, suggest that whistler mode 252 
waves, including hiss, plume hiss and chorus at various regions from plasmasphere, plume and 253 
trough, contribute together to modulated electron precipitation (tens to hundreds of keV) into the 254 
upper atmosphere in an extensive region of the coupled magnetosphere-ionosphere system. The 255 
spatial variation of their wave amplitude and ambient plasma conditions affects the efficiency of 256 
electron pitch angle scattering, which leads to the modulated energetic electron precipitation 257 
observed at low altitudes. Since plasmaspheric hiss, plume hiss, and chorus occur over a wide 258 
range of MLT sectors on the dayside, our findings imply that modulations of electron 259 
precipitation caused by the three types of whistler mode waves are likely common in the broad 260 
region of the dayside magnetosphere, particularly when a plume region exists. 261 
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Figure 1. Solar wind, geomagnetic conditions, and ELFIN-A observations of precipitating and 543 
trapped electrons at low Earth orbit. (a) Solar wind dynamic pressure (black) and interplanetary 544 
magnetic field z component (blue) in GSM coordinates. (b) Geomagnetic Sym-H (black) and AE 545 
indices (magenta). (c) Trapped electron energy flux spectrogram with local pitch angles near 90º. 546 
(d) Precipitating electron energy flux spectrogram with pitch angles inside the bounce loss cone. 547 
(e) Ratio of downward moving (precipitating) electrons to trapped electrons. (f–i) Pitch angle 548 
distribution of electrons for energy channels of 50-160 keV, 160-345 keV, 345-900 keV, and > 549 
0.9 MeV, respectively. Here the black solid (dashed) line represents loss cone (anti-loss cone).  550 
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Figure 2.
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Figure 3.
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Figure 4.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4

