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A LOCAL LANGLANDS PARAMETERIZATION
FOR GENERIC SUPERCUSPIDAL
REPRESENTATIONS OF p-ADIC G,

BY MicHAEL HARRIS, CHANDRASHEKHAR B. KHARE
AND Jack A. THORNE
WITH AN APPENDIX BY GORDAN SAVIN

ABSTRACT. — We construct a Langlands parameterization of supercuspidal representations of G
over a p-adic field. More precisely, for any finite extension K /Q, we will construct a bijection

Lg 1 AY(G2. K) — G°(G2. K)

from the set of generic supercuspidal representations of G,(K) to the set of irreducible continuous
homomorphisms p : Wx — G3(C) with Wk the Weil group of K. The construction of the map is
simply a matter of assembling arguments that are already in the literature, together with a previously
unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix.
The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting
theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent
from GL(7) to G».

RESUME. — Nous construisons une paramétrisation de Langlands des représentations supercuspi-
dales de G, sur un corps p-adique. Plus précisément, pour chaque extension K /Qp nous construisons
une application bijective

Lg : AY(Ga. K) — G%(Ga2. K)

de ’ensemble des représentations supercuspidales génériques de G, (K) vers ’ensemble des morphismes
continus et irréductibles p : Wg — G2(C), ou Wk désigne le groupe de Weil de K. Pour construire
cette application il suffit de combiner des arguments qui sont déja dans la littérature, plus un théoréme
inédit de G. Savin sur les correspondances théta exceptionnelles, qui est démontré dans un appendice
écrit par ce dernier. La démonstration de la bijectivité de 1’application est de nature arithmétique, et
utilise notamment des théorémes de relevement automorphes. Ceux-ci s’appliquent a notre probléme
grace a un résultat récent de Hundley et Liu sur la descente automorphe de GL(7) vers G».

M.H. was partially supported by NSF Grant DMS-1701651. C.K. was partially supported by NSF Grant DMS-
2200390. J.T.’s work received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 714405).
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258 M. HARRIS, C. B. KHARE AND J. A. THORNE

Introduction

The purpose of this article is to construct a Langlands parameterization of supercuspidal
representations of G, over a p-adic field. More precisely, for any finite extension K/Q, we
will construct a bijection

Lg : AY(G2. K) > G°(G2. K)

from the set of generic supercuspidal representations of G,(K) to the set of irreducible
continuous homomorphisms p : Wx — G,(C) with Wg the Weil group of K (more
precisely, the bijection is between sets of equivalence classes). The construction of the map
is simply a matter of assembling arguments that are already in the literature; the article [26]
effectively contains the construction, although it doesn’t specifically point out the applica-
tion to supercuspidal representations. The proof of surjectivity is an application of a recent
result of Hundley and Liu [24], which allows us to carry out a strategy, based on automorphy
lifting theorems, that was initially developed in [4] as an application of Vincent Lafforgue’s
global parameterization of automorphic representations over function fields. The proof
of injectivity also uses global arithmetic methods, including automorphy lifting theorems
and the Ramanujan conjecture for self-dual, regular algebraic automorphic representations
of GL(n), alongside known results on liftings (especially [36, 46]).

The parameterization is constructed in two steps. First, following[17, 11, 36], among other
references, we use the exceptional dual reductive pair (G2, PGSp(6)) in E5 to define local
and global correspondences from representations of G, to representations of PGSp(6). We
then lift to Sp(6) and use the functorial transfer of [8] to obtain an automorphic representa-
tion of GL(7). Using the local Langlands correspondence for GL(n), we can thus obtain a
parameterization of supercuspidal representations of G, by Galois parameters with values
in GL(7). We use a global argument and Chebotarev density (following [6]) to show that the
parameter takes values in the image of G, under its 7-dimensional irreducible representa-
tion r7.

The proof of surjectivity is arithmetic. For the moment, let K be a p-adic field and let p be
a continuous homomorphism

p: Wk — G,(C).
We assume p is irreducible: that its image is contained in no proper parabolic subgroup. Since
the image is finite, we may replace the coefficient field C by a sufficiently large finite field &
of characteristic £ # p. Following Moret-Bailly we show first that K may be viewed as
the completion at a p-adic place v of a totally real field F, and that p can be extended to a
surjective homomorphism Gal(F /F) — G, (k) that is odd, in an appropriate sense. We then
use the lifting method in [27] to lift p to a homomorphism 5 : Gal(F/F) — G,(W(k)) in
such a way that r; o ¢ is geometric, in the sense of Fontaine-Mazur, and Hodge-Tate regular.

Now we can apply automorphy lifting theorems, as in [3], to show that r; o p is
potentially automorphic — that its restrictions to appropriate totally real Galois exten-
sions F’/F are attached to a cuspidal cohomological self-dual automorphic representa-
tion 7’ of GL(7,AFs). Choosing F’ carefully, we can then descend 7’ to an automor-
phic representation 7" of GL(7, Afp~) over the fixed field F” of a decomposition group
Gal(F,,/F,) C Gal(F'/F). At this point we apply the result of Hundley and Liu to
show that 7" is in the image of the functorial transfer from G,(Ag~) to GL(7,Af~) of an
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LOCAL PARAMETERIZATION OF G» 259

automorphic representation I1 of G,(Af~), and we conclude by observing that the local
component IT, is supercuspidal and has parameter p. As a bonus, the construction of [24]
provides a globally generic IT, so we see that p is the parameter of a generic supercuspidal
representation.

There has been a good deal of work on the local representation theory as well as on the
automorphic theory of G,. Notably, the articles [11], [37], and [36] come very close to estab-
lishing a complete local Langlands correspondence for G, and to relate the correspondence
to the exceptional theta correspondence used here ) ; the article [24] comes very close to
characterizing the image of functoriality from G, to GL(7). The purpose of this article is
not to replace the articles just cited — indeed, the results of these articles are used crucially in
the proof of our main theorem — but rather to illustrate the possibility of applying a combi-
nation of arithmetic and automorphic methods to the local correspondence.
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Notation

If K is a perfect field, we will write I'x for its Galois group relative to a fixed alge-
braic closure. When K is a number field, we will fix an algebraic closure K/K, algebraic
closures K,/ K, for each place v of K, and embeddings K — K, extending K — K. These
choices determine embeddings 'y, — I'x for each place v of K. If v is a finite place, then
Ik, C Ik, is the inertia group.

We write € : [k — Z; for the £-adic cyclotomic character. By abuse of notation, we also
write € for the pushforward of this character to the group of units of any Z;-algebra.

If F is a totally real number field, » is an odd integer, and 7 is a cuspidal, regular algebraic
automorphic representation of GL(n, Ar) which is self-dual, in the sense that 7 =~ =V,
then for any isomorphism ¢ : Q, — C there is an associated semi-simple £-adic Galois
representation r,(w) : I'r — GL(n,Qy). This is characterized, up to isomorphism, by

(O While revising this article we learned of the new preprint [12] of Gan and Savin that establishes Howe duality
as well as a dichotomy result for these exceptional theta correspondences. It is likely that some of the arguments in
the present paper can now be simplified and many of the references can be consolidated. In the meantime, Gan and
Savin have released a new paper [13] containing a complete proof of the local Langlands correspondence for G,
over a p-adic field. The correspondence of [13], like the parametrization for generic supercuspidals given here, is
compatible with global correspondences. The methods of [13] are quite different from the ones presented here.
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260 M. HARRIS, C. B. KHARE AND J. A. THORNE

its compatibilty with the local Langlands correspondence for GL(n) at finite places. More
precisely, if v 1 £ is any finite place of F then there is an isomorphism

WD(r ()|, )T = reck, ().

(The notation here is as defined in [3, pp. 509-510]: WD denotes the Weil-Deligne represen-
tation associated to an £-adic representation, F-ss denotes the Frobenius-semisimplification
of a Weil-Deligne representation, and recr, is the local Langlands correspondence for the
group GL(n, Fy).)

There is an isomorphism r,(7r)¥ = r (7). We note that our representation r, () differs by
a Tate twist from the representation r; , () defined in [3, Theorem 2.1.1]. Our normalization,
which only makes sense when # is odd, suits our purposes here since we want representations
s which arise as functorial lifts from G, to give rise to Galois representations which are pure
of weight 0.

1. Galois parameterization of G,

Let G, be the split group of that type over Z. Let K be a local field of characteristic 0 and
let A¢ (G, K) denote the set of equivalence classes of generic irreducible admissible represen-
tations of G,(K) over C. If K is non-archimedean, we let Ag (G2. K) C Ag (G2, K) denote
the subset of supercuspidal representations. Let G(G,, K) denote the set of G,(C)-conjugacy
classes of G,-completely reducible parameters

p: Wk — G2(0),

and let G°(G,, K) C G(G», K) denote the subset of classes of G,-irreducible parameters. We
define G(GL(7), K) and G°(GL(7), K) similarly.

The aim of §1 is to collect lifting results scattered in the literature (among them [11, 16,
17, 19, 20, 23, 24, 31, 32, 36, 38]) to construct a map

(1) Lg : AYGr. K) - G°(Ga. K).

We begin by constructing a map

2) Ly 1 Ag (G2, K) — G(GL(7), K)

using purely local means. Conjugacy results for G, (see [18]) imply that the map
3) r1x 1 G(G2, K) — G(GL(7), K)

determined by the standard representation r; of G, is injective, so the main problem is to
show that £}, (Ag (G2, K)) lies in the image of r7 .. This we achieve using a global argument.

We note that if K is a local field of positive characteristic, Genestier and Lafforgue
construct the analogue of the map E’g in [14] without reference to the theta lift, and at the
same time show that its image is contained in the image of r7 ..
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LOCAL PARAMETERIZATION OF G» 261

1.1. Local generic theta lift

Let K be a local field of characteristic 0, and let E; (i = 6,7) denote the split adjoint
reductive group of that type. We set H; = PGL(3) (ifi = 6) and H; = PGSp(6) (if i = 7).
Let 6; x be the minimal representation of E;(K), which we consider by restriction to be a
representation of G, (K)x H; (K),i = 6,7. When K is archimedean we work with the Harish-
Chandra module of 8; g relative to a choice of maximal compact subgroup of E;(K) that
contains a chosen product of maximal compact subgroups of G,(K) and H; (K). Let 7 be an
irreducible admissible representation of G»(K), and let 6; g [,] denote the maximal quotient
of 6; x which is isotypic for 7 as representation of G,(K). Then we write

4) Ui k) =7 ® O; (1),

where ©; () is a smooth representation of H; (K).

ProrosiTION 1.2. — (1) Suppose that K is non-archimedean and that w is generic. Then
®7 () admits a unique generic subquotient.

(i1) Suppose that K = R and 7 is a discrete series representation. If ©; () admits a generic
constituent, then it is uniquely determined by r, up to isomorphism.

Proof. — Thefirst partis[11, Corollary 20]. This is based on Proposition 19 of [11], whose
proof there is sketched. The proposition is restated, with a complete proof, as Theorem A.9 of
Savin’s appendix. The second follows from the fact that ®;(;r) has regular integral infinites-
imal character determined by that of 7, hence any generic constituent of ®;(sr) must be
the unique discrete series representation with that infinitesimal character. We describe this
in more detail below. O

When ©7(7) has a unique generic subquotient, we denote it by 6;(x). We can specify
67 () precisely in two important special cases. First, the unramified, non-archimedean case:

ProposITION 1.3 ([16, Theorem 3.5], [37, Theorem 1.1]). — Suppose that K is non-
archimedean and that w is an unramified, generic representation of G,(K). Then 6;(w) is
the unramified representation of PGSp(6, K) determined by the embedding G, — Spin(7)
of L-groups.

Proof. — The article [16] determines the Satake parameter of the theta lift ®'(x) of 7
to GSp(6, K) by comparing the local Euler factors for the 8-dimensional Spin representation
of the Langlands dual group GSpin(7) of GSp(6) (see the displayed formula at the bottom
of p. 42 of [16]). The genericity of ®'(sr) is proved in the course of this comparison. The
representation ©’(sr) is pulled back from the representation ®;(x) of PGSp(6, K), which
implies that the Satake parameter of ®’ () lies in the subgroup Spin(7) of GSpin(7) and has
the indicated form. See also the proof of [26, Proposition 5.2]. O

Next, the real, discrete series case. We first recall an important fact. Let G be a quasi-
split connected reductive group over R such that G(R) admits discrete series representations,
and let K C G(R) denote a maximal compact subgroup. Let B C G(R) be a Borel
subgroup with unipotent radical N. Let Z(g) denote the center of the enveloping algebra
U(g) of the complexified Lie algebra of G. If 7 is an irreducible representation of G(R), we
let &, : Z(g) — C denote its infinitesimal character. We recall

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



262 M. HARRIS, C. B. KHARE AND J. A. THORNE

Fact 1.4. — If W is anirreducible (algebraic) representation of G, then, up to infinitesimal
equivalence, there is a bijection between Weyl chambers C for G, modulo the Weyl group of K,
such that all simple roots in the chamber are non-compact, and unitary representations (C, W)
of G(R) such that

— &w = Excw)-
— n(C, W) is generic.

Moreover, w(C, W) is a discrete series representation.

The experts tell us that the literature contains no explicit statement of this well-known
(and frequently cited) fact. At the request of the referee we provide a sketch. We thank
Gordan Savin and Jeff Adams for pointing out errors in our first attempt and providing some
missing references.

Salamanca-Riba proved in [35] that a unitary representation with infinitesimal character
&w is necessarily cohomological (an A4(A)). Now Theorem K of [29] asserts that a generic
representation is “large” in the sense of [44], and it thus follows from Theorem 6.2 of [44] that
a generic unitary representation of G(R) can never be a Langlands quotient of a reducible
principal series representation. But Theorem 6.16 of [45] implies that an A4 (1) is a (proper)
Langlands quotient unless g is a Borel subgroup. Thus a generic A4(4) is in the discrete
series, by our hypothesis on G. Then the bijection follows from [1, Lemma 5.7], which is a
restatement in more contemporary language of [44, Theorem 6.2] as applied to discrete series.

One checks that when G = G,(R) or G = PGSp(6, R), there is a unique Weyl chamber C
as in Fact 1.4; thus we may write 7w (W) instead of 7 (C, W). We follow the discussion in
[30] of the Conjecture of Gross, which identifies the Harish-Chandra parameters of the
generic discrete series of both groups explicitly. We fix normalizations, first for G,, and then
for PGSp(6). Let w; denote the highest weight of the irreducible 7-dimensional representa-
tion of G,, and let w, be the other fundamental weight. Given non-negative integers a, b we
let W(a, b) denote the irreducible representation of G, with highest weight aw, + bw,, and
write 7, 5 for m(W(a, b)), a discrete series representation of G, (R). It follows from Fact 1.4
that the generic representation for G, (R) with given infinitesimal character is unique; it is
the one with the marking (3) on p. 191 of [30]. For sufficiently regular infinitesimal character,
74 p belongs to the integrable discrete series [22]. Theorem 1.5 below is a partial confirmation
of Gross’s conjecture for generic discrete series.

We denote characters Z(sp(6)) — C in the standard way by triples («, 8, y) of integers
witha > 8 > y > 0 (cf. [30]), and let W(«, B, y) be the irreducible algebraic representation
of PGSp(6) with the corresponding infinitesimal character.

THEOREM 1.5. — Let a, b be non-negative integers; we assume 1, p, to be in the integrable
discrete series. Then
O7(map) =n(W(a+2b+3,a+b+2,b+1)).
Proof. — See [23, Theorem 5.4]. In more detail, let us use the superscript (?)¢ to denote
the compact form of a real reductive group. The article [23] treats the exceptional theta

correspondence (G, (R), PGSp(6, R)¢) (among others), [20] treats (among others) the corre-
spondence (G, (R)¢, PGSp(6,R)), and [30] treats the split case (G,(R), PGSp(6,R)) but
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LOCAL PARAMETERIZATION OF G» 263

only computes the correspondence for quaternionic discrete series of G»(R). However, as
observed in [30, p. 204], the correspondence of infinitesimal characters is independent of
real forms. The determination of the correspondence for infinitesimal characters of generic
discrete series is completed in [31] (see Table 1 on p. 375 of that paper).

By Fact 1.4 this suffices to identify 6;(,p), once we know that it is unitary. This is
where we use the hypothesis that 7, j is in the integrable discrete series. Under that hypoth-
esis, we can construct a globally generic cuspidal automorphic representation I1 of G,(Q)
with local component 7, at the real place, as in the proof of Proposition 1.11 below.
Theorem 1.7 then asserts that the global theta lift ®;(I1) of IT to an automorphic repre-
sentation of PGSp(6, Q) does not vanish and is cuspidal. In particular, the archimedean
component ®7(I1)s is generic and unitary. By Proposition 1.2 and the compatibility of
local and global correspondences, ®7(I1)s = 07(74,p); this completes the proof. O

REMARK 1.5.1. — Gross’s conjecture does not assume that m,; is in the integrable
discrete series and the hypothesis is certainly unnecessary. The argument above applies
whenever r, ; can be realized as a local constituent of a globally generic cuspidal automor-
phic representation. Undoubtedly this is always possible, but the construction we use here
requires the archimedean component to be in the integrable discrete series.

1.6. Global generic theta lift

Now let F be a totally real number field. When G = E;, we let A(G) denote the space
of automorphic forms on G(F)\G(AF), and we let 6, := g C A(G) denote the minimal
automorphic representation, as described in the article [16] (see also [17]). Let = be a cuspidal
automorphic representation of G,(Af). We define ®7(r) and G¢(xr) to be the spaces of
automorphic forms on H; = PGSp(6,Ar) and Hgs = PGL(3, AF), respectively, defined
to be the span of the functions ®;( fg, ¢), as fy € g and ¢ runs through the automorphic
forms in the space of the contragredient =V of 7, and where

®) ©i(fo.9)(h) = /[G ]fe(g,h)w(g)dg, h e Hi(AF).

Here the notation [y, is the standard abbreviation of [, ry\,()> @0d (g, /) is a variable
element of Go(Ar) x H;(Ar) C E;(Afr). In contrast to [17], we let ¢ to belong to 7¥
(or equivalently to the complex conjugate of ) to guarantee compatibility with the local
correspondence defined below.

THEOREM 1.7. — Let 1 be a cuspidal automorphic representation of Go(Af). Then:

(1) Let I be an irreducible subquotient of ©;(x). Then for each place v of F, 11, is an
irreducible subquotient of ®; (7).

(1) Suppose that 7 is globally generic and that n is a discrete series representation. Then
Q¢ () = 0, and ©7 (1) is cuspidal and globally generic. In particular, it is non-zero.

Proof. — The first part is a formal consequence of the definition. The second part is
a consequence of [17, Theorem B] (which shows that ®;(;r) is non-zero), the vanishing
of B¢ () (which follows from the fact that 7o, is discrete series, using the same argument
as in [26, §6]), and Theorem 1.4 of Savin’s appendix to this paper (which shows that ®; () is
globally generic). O
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We will only apply Theorem 1.7 in the case that = is a cuspidal, globally generic represen-
tation of G,(AF) such that m is discrete series. In this case, ®; () is a cuspidal, globally
generic representation of PGSp(6, Ar), and we write 6, () for the unique globally generic
cuspidal irreducible constituent of its restriction to Sp(6, F)\Sp(6, Ar). We observe that for
every place v of F, we have the equality 67(w,) = 67(r), (compatibility with local generic
theta correspondence).

1.8. Lifting to GL(7)

There are at least two ways of lifting from Sp(6) to GL(7) (see [8, 2]). We use the lifting
constructed in [8].

THEOREM 1.9. — Let K be a local field of characteristic 0. Then there exists a map ¥V from
the set of (isomorphism classes of ) generic irreducible admissible representations of Sp(6, K) to
the set of (isomorphism classes of ) generic irreducible admissible representations of GL(7, K).
The map V has the following properties:

(1) If K is non-archimedean then WV is injective.

(1) If K is non-archimedean and m is an unramified representation of Sp(6, K), then
W () is the unramified representation of GL(7, K) determined by the natural embedding
SO(7) — GL(7) of L-groups.

(i) If K = R and v is the generic discrete series representation of Sp(6, K) with infinitesimal
character (o, B, y), then V() is the unique generic representation of GL(7,R) which
is cohomological for the irreducible algebraic representation of GL(7,R) of highest
weight (@ =3, -2,y —1,0,1 — 9,2 — 8,3 — ).

(iv) Let F be a number field, and let T1 be a globally generic cuspidal automorphic repre-
sentation of Sp(6, Ar). Then there exist self-dual, cuspidal automorphic representations
Uy,..., U, of GL(n;,AF), where Y ._,n; = 7, with the following property: let
U =W, B..--BY,. Then for any place v of F, ¥, = W(I1,).

Proof. — The paper [8] defines the local functorial lift of a generic irreducible admissible
representation 7 of Sp(6, K) by agreement of L-functions and e-factors of pairs, see [8, Defi-
nition 7.1]. This lift is uniquely characterized by the local converse theorem for GL(7, K), and
[8, Proposition 7.5] asserts that it always exists. This defines the map W. The local converse
theorem for p-adic Sp(6, K), proved in [47], shows that W is injective in this case. The final
part of the theorem follows from [8, Theorem 7.2, Proposition 7.2]. O

1.10. Definition of £}, and L,

Let K be a non-archimedean local field of characteristic 0. We can now define the
promised map L, : Ag(G2,K) — G(GL(7),K). If 7 € A,(G2, K), then we define
L, () = recg (¥ (0))**, where o is the unique irreducible constituent of 67 () lsp(6.5) which
is generic (with respect to our fixed choice of Whittaker datum). This is independent of
the choice of Whittaker datum on Sp(6). The effect of semisimplification here is to remove
the nilpotent part of the Weil-Deligne representation recg (¥ (o)), necessary because of our
convention that G(GL(7), K) consists of equivalence classes of semisimple representations
of WK.
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The next step is to show that when 7 is supercuspidal, £}, () can be conjugated to take
values in G, (C). We will establish this using a global argument.

ProroOSITION 1.11. — Let 7 € Ag (G2, K). Then LY () lies in the image of r7 .

Proof. — Fix a totally real number field F with a finite place v such that F, 5 K. Let
ay,...,or be the real places of F. For eachi = 1,...,r, we choose a generic integrable
discrete series representation sr; of the (split) group G, (R). Fix a finite place w # v of F
of residue characteristic different from 2 and a generic supercuspidal representation iy,
of G, (Fy) with the property that 6; () is a supercuspidal representation of PGSp(6, Fy,).
(Such representations are constructed explicitly in the proof of Theorem 5.2 of [26], at least
when F,, = Qp, which we assume for convenience of reference.) By [25, Theorem 4.5] (see
also [43, Theorem 2.2]), we can find a cuspidal, globally generic automorphic representa-
tion IT of G2(AF) such that IT, = &, IT,, = my, and Iy, = 7; for eachi.

Then 6,(I1) is globally generic and cohomological, and its local component at w is super-
cuspidal, by construction. Applying Theorem 1.9 to the restriction of 6;(IT) to Sp(6,Ar),
we can find cuspidal, self-dual automorphic representations ¥y, ..., ¥, of GL(7, Ar) such
that W(6;(I1)) = ¥, B-.-H WY, is cohomological. In particular, each ¥; is cohomological up

to twist. Fixing an isomorphism ¢ : Q; — C, we get a compatible family r,(\V;) of n;-dimen-
sional representations with values in GL(n;, Q;). We get a representation

(6) r(I) := r(¥(4,(I1)) : Tr — GL(7. Q).

In fact, [6, Theorem 6.4] shows that the representation r,(IT) is conjugate to a representation
contained in r7(G»(Qy)), and such a representation is unique up to conjugation in G, (Qy)
(noting that the cuspidality of W plays no role in the proof of that theorem). Our proof is
now complete: we have rL(H)|iIS,FU =~ (" recp, (W(67()))* =~ t_lﬁ/g (), by definition, and

this shows that £}, () is conjugate to a representation valued in G2(C). O

PROPOSITION 1.12. — Let m € Ag(Gz, K), and let p : Wx — G»(C) be the unique
parameter, up to Go(C)-conjugacy, with ry o p = Ly (). Then p is irreducible.

Proof. — We split up into cases according to the dichotomy described in [36]. If 67 () is
supercuspidal then by [8, Theorem 7.2] there are self-dual, non-isomorphic supercuspidal
representations ¥y, ..., ¥, of GL(n;, K) with )\ _, n; = 7 and r7 o p conjugate in GL(7, C)
to B;_, reck (¥;). There is a unique way to conjugate such a parameter into SO(7, C), and it
is irreducible there (indeed, its centralizer is finite). It follows that p must also be irreducible
in this case.

If 6;(sr) is not supercuspidal, then [36, Proposition 3.6] shows that 6,(x) is a subquo-
tient of an unnormalized induction Ind}éisp © p ® |det|, where p is a supercuspidal
representation of PGL(3, K). By [8, Proposition 7.4], r; o p is conjugate in GL(7,C) to
reck (p) @ C @ recg (p)Y. Since reck(p) is irreducible and 3-dimensional, [36, Proposi-
tion 1.5] shows that the image of this representation is not contained in the image of any
Levi subgroup of G, so once again p must be irreducible. O
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We may therefore complete our definition of Lg as follows: if w7 € Ag (G2, K) then
Lg () is the unique parameter, up to conjugacy, with r7 o Lg(7) = L} (). We record the
following useful property of L.

PrROPOSITION 1.13. — Let € Ag (G2, K). and let R : G, — SO(7) be the unique non-
trivial homomorphism. Then 6 (1) is supercuspidal if and only if R o Lg () is SO(7, C)-irre-
ducible.

Proof. — This is a corollary of the proof of Proposition 1.12. O

2. Globalization of local G, parameters

Let G = G, be a split reductive group over Z of that type, let g denote its Lie algebra,
and let r; : G — GL(7) denote the standard 7-dimensional representation. We fix a split
maximal torus and Borel subgroup 7 C B C G. We may assume that r7(7T) is diagonal and
r7(B) is contained in the upper-triangular Borel subgroup of GL(7). Let A C ® = (G, T)
denote the corresponding root basis, and ® = ®* LI &~ the sets of positive and negative
roots. We label A = {o;, s} so that the fundamental weight w, is the highest weight of r;.
Let @1, 0w, € X« (T) denote the corresponding fundamental coweights, and let § = 1 + @s.

Let K be a finite extension of Q,, and let k be a finite field of characteristic £ # p. We
suppose given a continuous representation p : 'y — G(k) such that p(/g) has order prime
to £.

THEOREM 2.1. — There exists a totally real field F and a continuous representation
o : T'r — G(k) with the following properties:
(1) o(I'r) = G(k).
(1) £ splits in F. For each place v|€ of F, E|FF is G (k)-conjugate to §2oe.
(iii) For each place v|p of F, there is an isomorphism F,, =~ K such that E|I‘F is G(k)-conju-
gate to p. '
(iv) If v is a finite place of F such that v 1 Lp, then E|FF is unramified.

(v) For each place v|oo of F (which determines a complex conjugation ¢, € T'k,), 0(cy) is
G (k)-conjugate to §(—1).

Proof. — By weak approximation, we can find a totally real number field £/Q in which
£ splits, and such that for each v|p there is an isomorphism £, =~ K. The existence of an
extension F/E and a homomorphism ¢ : I'r — G(k) with the claimed properties then
follows from the main theorem of [33]. O

THEOREM 2.2. — Let @ : I'r — G(k) be a representation satisfying the conclusion of
Theorem 2.1, and suppose that £ > 28. Then there exist a finite extension E | Frac W (k) with
ring of integers O and a lift

o:Tr —> GO)
of @ with the following properties:

(1) o(I'r) contains a conjugate of G(Zy).
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(1) Foreach place v|€ of F, there exists g € G(O) such that go g_1 takes values in B((’))
Irs.

and the projection of 80|, 1 t0 T(O) equals 52 o e Consequently, r7 00|

crystalline ordinary ofHodge Tate weights {6,4,2,0,—2,—4,—6} (with respect to any
embedding F, — Q).

(iit) Foreachplacev|p of F, reduction modulo me induces an isomorphismo (IF,) = o(IF,).

(iv) For each finite place v { £p of F, I|r,. is unramified.
(v) For each place v|oo of F, o(cy) is G(O)-conjugate to §(—1).

Proof. — We first remark that our hypotheses imply that G(k) is its own derived group,
hence 6(I'r(¢,)) = G(k), and r7 o @ is absolutely irreducible (see [41]). This will be useful in
applying the results of [3] cited below. We next observe that [4, Proposition 6.7] shows that
any lift 0 of @ to G(O) has the property that o (I'r) contains a conjugate of G(Zy).

To construct a lift, we use the Khare-Wintenberger method (cf. [27, Theorem 3.7]).
Let C denote the category of complete local Noetherian W(k)-algebras with residue field k,
and let Defg : C — Sets denote the functor which assigns to any A € C the set of
ker(G(A) — G(k))-conjugacy classes of homomorphisms o4 : I'r — G(A) satisfying the
following conditions:

— For each place v|{ of F, there exists g € G(A) such that 80|, g~ ! takes values
in B(A), and the projection of goy |, g 1to T(A) equals §2 o e.

— For each place v|p of F, reduction modulo my4 induces an isomorphism
o4(Ir,) > o(IF,).

— For each finite place v { £p of F, OAlp,. is unramified.

Then ([34, Proposition 9.2]) Defg is represented by an object Rg € C, and there exists an
integer g > 0 such that Rg can be expressed as a quotient of W(k)[[X1,..., X,]] by g
relations. (Note that the local conditions are liftable local deformation conditions, in the
sense of [34], which are analyzed in [34, §4.1] and [34, §4.4]. The conditions £ > 28 and
£ split in F imply that conditions (REG) and (REG*) of [34, §4.1] hold.) To apply the
Khare-Wintenberger method, we must show that Rg is a finite W (k)-algebra. This will imply
that Rg is a finite flat complete intersection W (k)-algebra, and therefore that there exists
a finite extension W(k) — O and a homomorphism Rg — O, corresponding to a lift
o : I'r — G(O) with the desired properties.

To prove the finiteness of Rg, we must compare it with another deformation ring. Let
E/F be a totally imaginary quadratic extension in which the places of F above £ and p split;
then F isa CM field. Let7 = ry 0 0| . Then T is absolutely irreducible and 7¢ = 7" (where
¢ € Gal(E/F) is the non-trivial element) Let G; = (GL(7) x GL(1)) x {£1} denote the
group scheme defined in [3, §1.1]. It is equipped with a homomorphism v : G; — GL(1)
which is projection to GL(1) on the connected component and which sends —1 to —1. As
described there, T extends to a homomorphism 7 : I'r — G7(k) such that v o T = dg,F
and T(I'g) C GL(7,k). (We write 6g/r : Gal(E/F) — {%1} for the unique non-trivial
character.)
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Let S denote the set of places of F dividing £p. Fix for each v € S a place v of E lying
above v. Say that a finite totally real extension F’/ F is good if T(I'gs) = T(I'r), as subgroups
of G7(k),and ¢y & E' = EF'. If F' is a good extension then we write Sg- for the set of
places of F’ lying above a place of S, E/ = EF’, and S~ for the set of places of E’ lying
above a place v’ (some v € S). If v € Sp/ then we write vV for the unique place of Sy lying
above v. We then write Defg/ : C — Sets for the functor which assigns to any A € C the
set of ker(GL(7, A) — GL(7, k))-conjugacy classes of homomorphisms 74 : I'g — G7(A)
satisfying the following conditions:

— For each place v|¢ of F', t4 I defines an A-point of the ‘crystalline-ordinary’ lifting
Ef

ring R© described in [3, §1.4], with sets

7| A{H;}cr-ord
By

H; =1{6,4,2,0,-2,—4,—6}
of Hodge-Tate numbers (i : E; — Qy any embedding).
— For each place v|p of F’, reduction modulo ¢ induces an isomorphism
ta(lgy) = T(Ey).

— For each finite place v { £p of F’, 4|, is unramified.
7

— VOTYy = SE//F"
The functor Defg- is represented by an object Rgs € C (see [7, Proposition 2.2.9]). We claim
that the representation r; determines a natural map R — Rg. The only point to check
here is that if o4 : 'r — G(A) arises from a homomorphism Rg — A, then for any place
vl of F/,r70 OA|p defines a point of the ‘cr-ord’ lifting ring. This can be reduced to the
EL

universal case, meanivng we must show that the classifying morphism
N RE,SZOE
I
associated to r7 (where the first ring is the universal lifting ring for the GL(7)-representation
ry o 5|1‘ , as in [3, §1.2], and the second ring is the one defined in [34, Definition 4.1])
Ey

@) R
Vg 7

. . $2o0c .
factors through the quotient R;) o). RED| (H.cr-ord The ring R%’s € is formally
FE% FEL’ th FF{)

smooth over O, by [34,vProposition 4.4],soit suffices to show that the morphism (7) sends the

= . 0,520¢ . O .
Q¢-points of Spec RE|rF, into Spec RE|r (H;ycr-ord’ This follows from [15, Lemma 3.9].
v E%
If F = F’, the map RF — Rg is surjective (same proof as [4, Lemma 5.7]). For

any F’, the map Rpr — Rp — Rg is therefore a finite algebra homomorphism [3,
Lemma 1.2.3]. To finish the proof of the theorem, we therefore just need to show there exists
a good extension F’/F such that Rp- is a finite W(k)-algebra.

By [42, Theorem 10.2], this will follow if we can find a good extension F’/F and an
isomorphism ¢ : Q; — C such that ?|I‘E is the residual representation of an (-ordinary,
cuspidal, regular algebraic, polarizable automorphic representation of GL(7,Ags). The
existence of such a representation follows from [3, Proposition 3.3.1]. This completes the
proof. O
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THEOREM 2.3. — Let o : I'r — G(O) be as in Theorem 2.2. Let
o7 =r700:Tr = GL(7,0) — GL(7,Qy).

Then there exists a totally real Galois extension F'/ F, a cuspidal, cohomological automorphic
representation V(o) of GL(7, Af/), and an isomorphism Qp — C such that r,(V(0)) = 7l -
F/

Moreover, we can assume that V(o) is everywhere unramified.

Proof. — 1t follows from [3, Corollary 4.5.2] that there exists a totally real Galois exten-
sion F’/F, a cuspidal, cohomological automorphic representation ¥(o) of GL(7, Af/), and
an isomorphism Q; — C such that r,(¥(0)) = o|p,,- Moreover, for each place v’|€ of F’,
W(0), is unramified. We need to explain why W (o) can be chosen to be everywhere unram-
ified.

By weak approximation, we can find a totally real, Galois, soluble extension F”/F such
that for each finite place v’ { £ of F”, 7, is unramified. Let F! = F’ . F”. Then

F1/F'is asoluble, totally real extension, F'!/F is Galois, and o7 I is unramified at every
Fl

finite place not dividing £. We may therefore replace F’ by F! and ¥(o) by its base change
to F'! (which exists, by [3, Lemma 2.2.2], and which is everywhere unramified by local-global
compatibility). O

We now forget our existing assumptions and restate the above results in a form suitable
for application in §3.

THEOREM 2.4. — Let K be a finite extension of Qp, and let k be a finite field of character-
istic{ # p. Let p - Wx — Ga(W(k)) be a continuous homomorphism, irreducible over Q.
Then p(Ix) is finite; we assume that £ > 28 and that £ does not divide the order of p(Ix). Then
we can find the following data:

(1) A totally real number field L, together with a non-empty set . of p-adic places of L such
that for eachv € X, L, =~ K.

(1) A finite extension E/ Frac W (k) with ring of integers O and a continuous representation
o : 't = G2(0) of Zariski dense image such that for each place v € %, T\, and p

are G (O)-conjugate.

(1) A cuspidal, tempered, regular algebraic, self-dual automorphic representation V(o)
of GL(7,AL), unramified outside X, and an isomorphism ¢ : @4 —  C such that
r(¥(0)) =r7oo0.

Proof. — We begin with some remarks. First, p has finite image, and so extends to a
representation of 'k . Indeed, p(/x) is finite since r7 o p is semisimple; the £-adic monodromy
theorem implies the existence of a finite extension K’/ K such that r;7 o p(Ix’) is semisimple
and unipotent, hence trivial. Let ¢ € Wk be a Frobenius lift. Since p(/g) is finite, some
power p(¢)N centralizes p(Wk). Since p(Wk) is irreducible, this forces p(¢)V to lie in the
center of G, hence (since G is adjoint) to be trivial. Thus p(Wk) is finite.

Second, let p : Wx — Ga(k) denote the reduction of p modulo £. Then any mini-
mally ramified lift of p to G,(O) is G,(O)-conjugate to p. Indeed, [9, Lemma A.2]
shows that h°(T'x,gx) = O, hence (cf. [34, Lemma 4.17]) that the tangent space to the
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minimal deformation functor is trivial. This implies that any minimally ramified lift is even
ker(G,(O) — G,(k))-conjugate to p.
By Theorem 2.3, we can find the following objects:

— A totally real field F, and a totally real Galois extension F’/F.

— A continuous representation ¢ : I'r — G,(O) such that O|FF’ has Zariski dense
image, o is unramified outside £p, and for each place v|f of F, r; o 0|FFU is crystalline
with Hodge-Tate numbers {6, 4, 2,0, —2, —4, —6} (with respect to any embedding of F,
in Q).

— For each place v|p of F, an isomorphism F, =~ K such that o, and p are
G2 (0O)-conjugate.

— A cuspidal, regular algebraic, self-dual automorphic representation W(o) of

GL(7, Ar/) which is everywhere unramified and an isomorphism ¢ : Q;, — C such
that r,(¥(0)) = ry0 Olp -
F‘/

Let v” be a place of F’ lying above v, with v dividing p, and let D/, C Gal(F’/F) be the
decomposition group. We set F” = (F/)Pv/v and v” = v’|F,,. Then F)), =~ K and O|FF”
and p are G,(0O)-conjugate. Moreover, F’/F” is a soluble extension. By soluble descent
(see e.g., [3, Lemma 2.2.2]), there exists a cuspidal, regular algebraic, self-dual automorphic
representation W(o)” of GL(7, Ap~) such that r,(¥(0)") =~ r; 0 Olp,, Finally, we once
again use weak approximation, as in the proof of Theorem 2.3, to find a soluble totally real
extension L/F” in which v” splits and such that the base change ¥ (o) of W(o)” to L is
unramified away from v”. The proof is complete on taking X to be the set of places of L
lying above v”, and noting that [40, Corollary 1.3] shows that ¥ (o) is tempered. O

3. Automorphic descent from GL(7) to G,

The following theorem was recently proved by Hundley and Liu:

THEOREM 3.1. — Let F be a number field, and let U be a cuspidal automorphic represen-
tation of GL(7, Ar). Suppose that the following conditions hold.

(1) For almost all places v of F at which V,, is unramified, the Satake parameter of the local
component W, is conjugate, in GL(7, C), to an element of r7(G,(C)).
(ii) The partial L-function LS (s, W, A3) has a pole at s = 1, for some finite set S.
Then there exists a globally generic cuspidal automorphic representation I1 of G2(AF) such

that for all but finitely many places at which 1, is unramified, the Satake parameter of Wy, is
the image under r7 of the Satake parameter of 11,.

Moreover, if v is a finite place at which Uy, is both unramified and tempered, with Satake
parameter conjugate to an element of r7(G,(C)), then I, is unramified and the Satake
parameter of '\, is the image under r7 of the Satake parameter of T1,.
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Proof. — The theorem up to “moreover” is contained in [24, Theorem 6.1.17] [24,
Theorem 6.4.31] and [24, Theorem 6.5.6] (giving genericity, cuspidality and weak lifting,
respectively). If v is any finite place at which W, is unramified with Satake parameter conju-
gate to r7(G,(C)), then [24, Proposition 6.5.5] shows that IT, is the generic subquotient of
the unramified principal series representation of G, with Satake parameter corresponding
to that of W,,. If W, is tempered then this unramified principal series representation is also
tempered and irreducible, implying the final claim. O

We remark that if F is totally real and W is cuspidal and regular algebraic with infinites-
imal character “integral of G, type”, then I1,, must be discrete series. Indeed, the theta lift
of IT is an automorphic representation of PGSp(6) whose restriction to Sp(6) gives rise by
functorial transfer to an automorphic representation ¥’ of GL(7, A ) with the property that
the infinitesimal character of W/ is obtained from that of IT., by functoriality (cf. the discus-
sion in §1.1). By strong multiplicity one, ¥ = W', and the infinitesimal character of T, is
integral. Since IT is globally generic, fact 1.4 implies that I1, is discrete series.

COROLLARY 3.2. — Let L (a totally real number field), o : T1 — G»(Qy) (a continuous
homomorphism) and V(o) (a cuspidal tempered automorphic representation of GL(7, Ar) with
r7o0 = r(V(o))) be as in the statement of Theorem 2.4. Then there exists a globally generic,
cuspidal automorphic representation T1(c) of Go(Ayr) such that T1(0) o is discrete series and for
every place v of L at which V(o) is unramified, T1(0), is unramified and the Satake parameter
of V(o) is the image in GL(7, C) of the Satake parameter of T1(0),.

Proof. — Since the local parameter of W (o) at every place at which o is unramified factors
through r7(G,), V(o) satisfies hypothesis (i) of Theorem 3.1. If hypothesis (ii) is satisfied,
then W(o) is the functorial lift of some cuspidal I1(o). Finally, the temperedness of W (o)
will imply that W (o), is the lift of I1(c), for all unramified places v.

It remains to verify that (ii) is satisfied. Now L5(s, ¥(0),A3) = LS(s,A% o0 07) if S
contains all ramified places. Moreover, since 07 = r; o ¢ factors through r7(G,), it is well
known that

(®) A3 007 —> 07 ® Sym? o 07.

Thus
L5(s, W(0), A%) = L5 (s, W(0)) - LS(s, ¥(0), Sym?).

The first factor does not vanish at s = 1 by the theorem of Jacquet-Shalika and Shahidi,
whereas the second factor has a simple pole at s = 1 because W(o) is a self-contragredient
representation of an odd general linear group (cf. the discussion of [5, p. 139]). O

THEOREM 3.3. — Let K be a p-adic local field. Then the map
Lg : AY(G2. K) > G°(G2. K)

is surjective.
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Proof. — Let p : Wk — G2(C) be an irreducible representation. We will construct
T e Ag (G2, K) such that Lg(7) = p. Fix a prime £ > 28 which does not divide the
(finite) order of p(Wk), and let « : Q;, — C be an isomorphism. We may assume that (= p
takes values in G,(Zy). We take the totally real number field L and homomorphism o :
' — G2(0) as in Theorem 2.4, and apply Corollary 3.2. Thus there is a non-empty set X

of p-adic places of L, and for each v € ¥ an isomorphism K = L, such that (™' p, o,
are G,(0O)-conjugate. Fix a choice of v € ¥, and let # = I1(0),. We must show that = is
supercuspidal and that Lg () = p.

We first note that r,(I1(¢)) (defined as in the proof of Proposition 1.11) is G»(Q;)-conju-
gate to o; indeed, this can be checked at unramified places, so follows from [18]. We therefore
just need to check that 7 is supercuspidal. If 6; () is supercuspidal, then Proposition 3.4 of
[36] shows that 7 is also supercuspidal.

We can therefore assume that 6,(xr) is not supercuspidal. Thus its Jacquet module
Jp(67()) # O for some maximal parabolic subgroup P C PGSp(6). It follows from
[8, Proposition 7.5] that the image of the local parameter r; o p is contained in a proper
parabolic subgroup of SO(7). However, since the image of p is not contained in any proper
parabolic of G,, it follows from [36, Proposition 1.1] that P must be the Siegel parabolic
subgroup, with Levi quotient GL(3). In particular, Jp (6;(7r)) must be supercuspidal.

We now turn to the proof of [36, Proposition 3.6], specifically the discussion labeled
(Siegel) on p. 759, which computes Jp(67(x)). Although the running hypothesis in that
proposition is that 7 is supercuspidal, this hypothesis is only used in the first paragraph,
which cites [32, Theorem 5.3] to prove that, (modifying the notation of [32]), Jp (8 (7)) X7 is
a subrepresentation of (IT7)y,. Here I17 is the minimal representation of the adjoint split
group E; over the field K, and U5 is the unipotent radical of a specific maximal parabolic
subgroup of E; denoted Q7 (with Levi quotient isomorphic to Eg).

Suppose Jp(87(m)) W 7 is not a subrepresentation of (IT7)y,. Then the discussion on
p- 759 of [36] implies that Jp (67(7)) X 7 intertwines with one of the terms (1) or (2) of [32,
Theorem 5.3]. But we have seen that Jp (67 (7)) is supercuspidal, and this is incompatible with
the description of these terms, which are induced from proper parabolic subgroups of GL(3).

Thus Jp(67(r)) X 7 is a non-zero subrepresentation of (IT7)y,. The second displayed
formula on p. 759 of [36] then asserts that ¢(r) # 0, and moreover that Og() is a
supercuspidal representation of PGL(3, K). But then [11, Theorem 21] implies that 7 is
supercuspidal. O

4. Injectivity

Let K be a p-adic local field. The final step in our argument is to prove that the parame-
terization
Lg : AY(G2, K) > G°(G2, K)
is injective (hence bijective). We recall that if 7 € Ag, (G2, K), then 67(rr) is a representation
of PGSp(6, K). Its restriction to Sp(6, K) contains a unique generic constituent o, which lifts
to GL(7, K) by Theorem 1.9, and L, (7) is defined to be the unique G,-valued parameter
which is conjugate in GL(7, C) to the Galois parameter of the lift V(o) to GL(7, K).
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The lifting from generic representations of Sp(6, K) to representations of GL(7, K) is
injective. Savin-Weissman study the injectivity of the lift to PGSp(6, K) (see [36, Theorem 4.7]).
The problematic step for us is therefore restriction from PGSp(6, K) to Sp(6, K). Fortunately
this has been analyzed by Xu [46], and we will be able to prove injectivity by combining
these results with a global argument.

LEMMA 4.1. — Let w7’ € .Ag(Gz, K), and suppose that Lo () = Lg(n'). Then there
exists a quadratic character w : PGSp(6, K) — C* such that 6;(7) = 6;(n") Q w.

Proof. — Let o be the unique generic constituent of the restriction of 6;(x) to Sp(6, K),
and define ¢’ similarly. Then our hypothesis implies ¥(o) = W(o’), hence (Theorem 1.9)
o = o’. Then [46, Corollary 6.4] shows the existence of a character @ with the claimed
property. O

COROLLARY 4.2. — Let p € G%(G», K). Then the following are equivalent:
(i) L, (p) is a singleton.

(i) There exists w € .Ag (G2, K) such that Lg () = p, with the following property: for
any non-trivial character o : PGSp(6, K) — C*, either (a) 0;(w) = 0;(7) ® w or
(b) 67(1) ® w is not of the form 67(x’) for any ' € Ag(Gz, K).

Proof. — Suppose that (i) holds, and choose any = with Lg(7) = p. If 7/ € .Ag (G2, K)
and 07(7) ® w = 6;(x’) then (as L, is injective) we have 7 = n’, hence 6;(7) = 6;(7) @ w.

Suppose instead that (ii) holds, and let =’, n” € Ag (G2, K) be representations with
Lg(n') = Lg(n”) = p. Letn € .Ag (G2, K) be the given representation with L, () = p.
Thus there exist characters o', »” such that 6;(7’) =~ 6;(7) ® &/, 0;(n") = 6;(7) Q@ .
Consideration of possibilities (a) and (b) shows that 6;() = 64(x). By symmetry, we also
have 07 (rr) = 67(x”), hence 87(x’) = 07(x”"), hence n’ = =" by [36, Theorem 4.7]. O

We first dispense with the simplest case.

ProOPOSITION 4.3. — Letm, 7w’ € Ag, (G2, K), and suppose that Lq () = Lg(7"). Suppose
Sfurther that 07(r) is not supercuspidal. Then © = 7'

Proof. — Our hypotheses imply that 6;(x’) is also not supercuspidal. By [36, Theorem 3.9]
there exist supercuspidal representations 7, ¢’ of GL(3, K) of trivial central character such
that 6;(;r) is the generic subquotient of i E?Sp(@r, and similarly for 6;(z’) (and we use
normalized induction). The existence of an isomorphism 6;(7) ® w =~ 6;(n’) implies
that t ® w, 7’ are conjugate under the stabilizer in the Weyl group of PGSp(6) of the Levi
subgroup of Q3 (uniqueness of supercuspidal support). This in turn implies that 7 ® w is
isomorphic to one of 7/ or (z/)¥. This is a contradiction, because the central character

of T ® w is non-trivial. O

LEMMA 4.4. — To show that Ly is injective, it is enough to prove the following statement:

— Let p € G%Ga, K) be a parameter which remains irreducible in SO(7). Then there
exists a representation w € Ag (G2, K) such that Lgy(7) = p and for any character
o : PGSp(6,K) — C* such that 0;(wr) % 07(7) ® w, the Shahidi L-function
L(6;(7) ® w, Spin, s) is holomorphic at s = 0.
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The Shahidi L-function is the one defined in [36, §5.1] using the realization of GSp(6) as
a Levi subgroup of Fy.

Proof. — By Proposition 4.3, it’s enough to show that the condition (ii) of Corollary 4.2
holds for parameters p which are irreducible in SO(7). Then [36, Theorem 5.10] and [36,
Proposition 4.6] together show that the holomorphy of L(6;7() @ w, Spin, s) at s = 0 implies
that 6;(7) ® w does not have the form 6, (z’) for any 7’ € Ag (G2, K). O

PROPOSITION 4.5. — To show that Lg is injective, it is enough to construct for each
0 € G%(G,, K) which remains irreducible in SO(7) the following data:

(1) a totally real field F, together with a non-empty set ¥ of p-adic places of F and for
each v € X an isomorphism F, ~ K,

(i1) a cuspidal, globally generic automorphic representation w of Go(A ) which is unramified
outside X and discrete series at infinity;

(iii) for each character w : PGSp(6, K) — C*, a character
Q : PGSp(6, F)\PGSp(6,Af) — C*
which is unramified away from X and satisfies Q|PGSP(6,F1}) = w foreachv € X;

with the following property.

(iv) Let ¥ be the lift of m to GL(7,AF). Then V is cuspidal and there exists a prime £ # p
and an isomorphism v : Qp — C such that r, (\IJ)|WF =~ Yry0pforallv e X.

Proof. — Recall that 67(rr) is the globally generic, cuspidal lift of = to PGSp(6, Ar), and
W is the lift of the globally generic constituent of 6, (7)) Sp6.AF) to GL(7,AF). Fixvg € X,
and let  : PGSp(6, F,,) — C* be a character such that 07(m,,) % 67(my,) @ w. We
must show that the Shahidi L-function L(67(7y,) ® @, Spin, 5) is holomorphic at s = 0 (as
then the criterion of Lemma 4.4 will be satisfied with L, (7,,) = p). We note that 87(x,) is
supercuspidal for each v € X, by Proposition 1.13.

Invoking [39, Theorem 3.5], we have an identity
L=(67(rr) ® 2, Spin, 5)

©) Y(07(7)00 ® Qoo $) ]_[ y(07(my) @ w,5) = LE(07(7) ® 2, Spin, 1 —s)

VEX

where the y-factors are those of loc. cit. and L= denotes the prime-to-X-and-co L-function,
which is therefore a product of unramified local L-factors.

By [39, Proposition 7.3], the factors y(67(7,) ® w, s) (v € X) are rational functions of ¢,*
which are holomorphic at s = 0, and which vanish at s = 0 if and only if L(6;(,) ® w, Spin, s)
has a pole at s = 0. To prove the proposition, it will therefore be enough for us to show
that [[,cx ¥(67(7y) ® w,s) does not vanish at the point s = 0. The zeroes and poles
of y(07(71) 00 ® oo, §) lie on finitely many lines parallel to the real axis, so it is even enough
for us to show that the expression in (9) does not vanish at infinitely many points of the
form s = 2wik/logqy, (k € Z). This is what we will now do.

4¢ SERIE - TOME 56 — 2023 — N° 1



LOCAL PARAMETERIZATION OF G» 275

For any place v of F, we may identify the quotient PGSp(6, F,)/Sp(6, F) with
F)/(F))?; we may further identify Q with a quadratic character of GL7(A ), by composi-
tion with the determinant. Using the computation of unramified L-functions, the right-hand
side of (9) equals the quotient

LE(UQQ,s)LE(Q,s)
LEW®Q,1-5)LE(Q,1—y)
of standard L-functions. Using the functional equation for these standard L-functions, we
find that this equals

1—[ L,(V®Q,1—-5)L,(R2,1—15)
L, (¥ ®Q,5)L,(Q,5)

veEX

up to product with a meromorphic function with all of its zeroes and poles on the real
axis. Since w is non-trivial, each factor L,(2,1 — 5)/L,(£2, s) is holomorphic on the line
Re(s) = 0, with zeroes only possible at the points of (loggy) ™! (ni + 27iZ). If v € X then
the representation L (7r,,) has finite image, so Ly (WY @ 2,1 —5) = Ly((r70p) ® w, 1 —5) is
holomorphic and non-vanishing on the line Re(s) = 0. We are therefore reduced to showing
that

[1Lo(¥®Q.5) = Liy((r70.p) @ 0.5)

vEX
does not have poles at infinitely many points of the form s = 2xik/logq, (k € Z).
Equivalently, (7 o p) ® w does not contain the trivial representation of Wg.

Now we make use of [46, Corollary 4.2]. Writing R : G, — Spin(7) for the natural
homomorphism, it states that 67(my,) = 67(7y,) ® w if and only if R o p, (Ro p) ® w
are Spin(7)-conjugate. We are assuming that this is not the case. Lemma 4.6 below implies
that (r7 o p) ® w does not contain the trivial representation; and this completes the proof of
the proposition. O

LEmMMA 4.6. — Let T be a group, and let p : T' — G2(C) be a completely reducible
representation and w : I' — {x1} a non-trivial character such that R o p and (R o p) ® w
are not Spin(7)-conjugate. Then (r7 o p) ® w does not contain the trivial representation.

Proof. — Let R’ : Spin(7) — GL(8) be the spin representation, R” : Spin(7) — GL(7)
the vector representation. Then R o R = r7; @ C and R” o R = r7. In particular,
R o((Rop)®w) = (r70p) w @ w. We see that (r;70p) ® w contains the trivial representation
if and only if (R o p) ® w fixes a non-zero vector in the spin representation.

Since the stabilizers of non-zero vectors in the spin representation are exactly the
Spin(7)-conjugates of R(G,), we see that (r7 o p) ® w contains the trivial representa-
tion if and only if there exists g € Spin(7,C) such that Ad(g) o ((R o p) ® w) is valued
in R(G,(C)).

Suppose for contradiction that this is the case, and let o’ : T' — G5(C) be the homo-
morphism such that R o o’ = Ad(g) o (Ro p) ® w). Then r7 o o’ = Ad(R"(g)) o r7 o p.
By [18], this implies that p, p’ are themselves G,-conjugate, hence that R o p and R o p’ are
R(G,)-conjugate, hence that R o p and (R o p) ® w are Spin(7)-conjugate. This contradicts
our hypothesis. O
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To complete the proof of injectivity, it remains to construct data as in Proposition 4.5.
Given an irreducible representation p : Wx — G5 (C) which remains irreducible in SO(7),
Theorem 2.4 implies the existence of the following data:

(1) A totally real field F, together with a non-empty set X of p-adic places of F' and for
each v € ¥ an isomorphism F, = K.

(ii) A prime £ # p, an isomorphism: : Q; — C, and a homomorphism o : Tz — G2(Qy)

of Zariski dense image such that for each v € X, Oy, is conjugate to ¢~ ! p.

(iii) A cuspidal, regular algebraic, self-dual automorphic representation W of GL(7,AF)
such that r, (V) = r; o 0 and W is unramified outside X.

We choose for each character o : PGSp(6, K) — C* a globalization 2 such that for
each v € X, the restriction of Q to PGSp(6, F,) equals w. After making a quadratic base
change, split at X, we can assume moreover that each character €2 is unramified away from X.

Applying Theorem 3.1, we obtain a cuspidal, globally generic representation 7w of G, (AF),
unramified outside ¥ and discrete series at infinity. We have now constructed all of the
required data.

5. Final remarks

It is possible to use the same strategy of passing to GL(7), combined with properties
of L-functions, to show that no pure generic supercuspidal representation of G, is incor-
rigible, in the sense of [21]. But this can also be derived from the dichotomy of Savin
and Weissman [36] and any proof using L-functions ultimately reduces to the dichotomy

property.

Appendix
Genericity of a lift, by Gordan Savin
Let F be a global field and A its ring of adéles. The goal of the appendix is to show

that any generic cuspidal automorphic form on G,(A) lifts to a generic automorphic form
on PGSp¢(A).

A.1. Octonions and G,

We follow the exposition [38] and work over Q. Let H be the algebra of Hamilton quater-
nions, with the usual basis {1, 1, j, k}. The split octonion algebra over Q is @ = H & H with
multiplication

(a.b)-(c.d) = (ac + db,ad + cb).
If x = (a,b), let x = (a,—b). Then x — X is a linear anti-involution of O, defining norm
and trace maps

N:O— F, xtxx=2xx, TrT:0—-F, x+—>x-4+xXx
satisfying
N(x - y) = N(x)N(y), Tr(x - y) = Tr(y - x), Tr(x-(y-2) =Tr((x - y) - 2).
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Let/ = (0,1), so O has a basis {1,i, j, k,I,1i,lj,lk}. The following basis is particularly
useful.

1 1 1 1
si==G+1i), 2= +1j) s3==(k+1k), sa=-(1+10),
(10) 2 2 2 2

1 1 1
n= E(i —1li), = E(j —1lj), 1= E(k —1k). 1 5(1 =0).

The multiplication table for this basis is given in Table 1.

TABLE 1. Multiplication Table for Octonions

S1 S2 S3 |11 1 13 |Sq1l4

s11 0 —t3 | s4 0 0 |0 s¢
soltz 0 =111 0 s4 0O |0 5,
s3|—tx t1 0| 0 O 5410 53

hts O Hnho
| 0 f4 th 0
t3] 0 0 4|5 —s1 0 |13 0

(=)
(=)
5y
w
|
53
N

)
|
“n

w
)
Y

—

Sa4|1 §1 S22 83 0 0 0 S4 0
410 0 0|11 tr 13|01

Let R C O be the Z-lattice spanned by s; and ¢;. It follows, from the multiplication table,
that R is an order. It is maximal since the determinant of the trace pairing Tr(x-y) on R is 1.
Let Q° be the subspace of trace zero elements. For every subspace V C Q0 let V2 be the
subspace of all x € Q° such that x - y = O forall y € V. A subspace V C Q° on which
multiplication is trivial is at most 2-dimensional. (We call such a subspace a null space or a
null subspace.) Indeed, let (i, j, k) be a permutation of (1, 2, 3). Then from the multiplication
table we see that (s;)® = (s;,1;, %), and the null spaces of Q° which contain s; are all of the
form (s;,at; + bty) for fixed a,b € Q. Since G, the group of automorphisms of O, acts
transitively on (nonzero) elements of trace zero and norm zero, this phenomenon is generic.

The group G, has two conjugacy classes of maximal parabolic subgroups, and they can
be described as the stabilizers of null subspaces in Q°. Let V; C V5 be 1 and 2-dimensional
null subspaces. Let V3 = VlA D V,.Let Oy = L Uy and Q, = L, U, be the stabilizers of V;
and V5, respectively. The Levi factors L and L, are isomorphic to GL(V3/ V1) and GL(13),
respectively. The Borel subgroup Q¢ = LoUy = Q1 N Q> stabilizes the full flag

VicVacVsc Vi cvstcvit

in Q°, where V' stands for the orthogonal complement of V with respect to the trace pairing.
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A.2. Albert algebra and E-

This is an exceptional 27-dimensional Jordan algebra J over Q. It is the set of matrices

y Xy
A=|xBz|,
yZIa
where a, 8,y € Q and x, y, z € Q. We have a cubic form (the determinant) on J
det A = affy — aN(x) — BN(y) — yN(z) + Tr(xyz).
The group of similitudes of the cubic form is a reductive group of type Eg. Its orbits on J

are classified by the rank of the matrix 4. If A # 0 then A has rank one if A2 = Tr(A) - A.
Explicitly, this means that the entries of A satisfy the equalities

N(x) = By, N(y) = ya, N(z) = o, ax = zy, By = xz, yZ = yx.

Let G be the split, adjoint group of type E5. This group can be constructed from J by
the Koecher-Tits construction, see Section 3 in [28]. In particular, G has a pair of opposite
maximal parabolic subgroups P = MN and P = MN, N = J and N 2 J, such that the
conjugation action of M on N (this action is faithful since G is adjoint) gives an isomorphism
of M and the group of similitudes of the cubic form on J:

M =~ {g € GL(J) | forsome A € F*,det(gA) = Adet(A) forall A € J}.

The action of M on J resulting from the isomorphism N 2 J is dual to the action arising
from N. Observe that G, acts naturally on J (by acting on off-diagonal entries). This gives
an embedding of G, into M. Let M3, N3 and N3 be the centralizers of G, in M and N,
respectively. It is clear that N3 =~ J3 and N3 =~ Js, where J3 is the Jordan algebra of
symmetric 3 x 3-matrices. The group M3 is isomorphic to GL3. This isomorphism is realized
by observing that GL3 acts on J by similitudes

A det(g) 1gAg’

for all g € GL3. Thus the centralizer of G, in G is PGSpg with P; = M3 N3 and Py = M5N;
a pair of opposite maximal parabolic subgroups.

A.3. Minimal representation of G

Let F be a local field of characteristic 0. In this section J, G etc stand for their sets
of F-points. Fix ¢ : F — C*, a non-trivial unitary additive character. Every A € J defines
a character ¥4 of J

Ya(B) = ¥(Tr(4 0 B)) = ¥5(A)
for all B € J, where A o B denotes the Jordan multiplication. Via the isomorphism N =~ J
we view ¥4 a character of NV, and every unitary character of N is equal to ¥4 for some A. Let
Q C J be the set of rank one elements in J. We view @ C N, where N is the opposite of N. A
unitary model of the minimal representation is L2(2). Here only the action of the maximal
parabolic P = M N isobvious: Letn € N correspond to B € J via theisomorphism N == J.
Then, for f € L?(Q),
m(n) f(A) = yB(A) - f(A).
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Anym € M acts on N by conjugation, and therefore on  C J via the identification N = J.
Then, for f € L?(Q),

7(m) f(A) = x(m) f(m~" A),
where y is a positive character of M that we shall not need. We have the following, see
Propositions 7.2 and 8.3 in [28]:

THEOREM A.4. — Let Il be the subspace of G-smooth vectors in the minimal representation.
Then C2°(Q2) C I1 C C*®(R). If A € J is non-zero, then any continuous functional £ on T1
such that £(zw(n) f) = va(n)-£(f) foralln € N and f € I is equal to a multiple of the delta
functional

f = f(A4).
In particular, £ = 0 if A is not rank one. If F is p-adic, we moreover have an exact sequence
of P-modules
0—>CXl(Q)—~>1I —TIIy —0.

The representation I is spherical, and we describe a spherical vector in the p-adic case.
Let O be the ring of integers in F, w € O a uniformizing element and ¢ the order of the
residual field. The maximal order R in O defines an integral structure on J, let J(O) be the
lattice of O-points in J. The greatest common divisor of entries of A € J(O), is the largest
power w” dividing A, that is, such that A/w” isin J(O). We have the following Theorem 6.1
in [37]:

THEOREM A.5. — Assume F is a p-adic field. Assume the conductor of W is O. Then the
spherical vector in 1 is a function f° € C°°(Q2) supported in J(O). Its value at A € 2 depends
on the ged of entries of A. More precisely, if the ged of A is w", and q is the order of the residual
field, then

FoA) =143+ 430D,

A.6. Local non-vanishing
In this section F is a p-adic field. Let U3 C M3 be the maximal unipotent subgroup that,
via the isomorphism M3 =~ GLj given previously, is the group of matrices
lac
u=101»b
001
Then U = U;N3 is a maximal unipotent subgroup of PGSpg. We define a Whittaker
character ¥y on U as follows. For every u € Us, written as above, ¥y (u) = ¥(a + b).
For every u € N3, which we identify with B € J3 = N3, Yy (u) = ¥ g (B) where
000
E=1000
001
The following result was stated in Proposition 17 of [11] without a proof. We give details

following Theorem 7.1 in [15], where a version of this result was proved for groups over finite
fields.
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THEOREM A.7. — Let I1 be the minimal representation of G, U the maximal unipotent
subgroup of PGSpg and Yy the Whittaker character of U. Then there exists a maximal
unipotent subgroup Uy of G, and a Whittaker character Vg of Uy such that

- 1G
HUJI’U = 1ndU§ l//().

Proof. — We shall compute (U, ¥y)-coinvariants in two steps, (N3, ¥y )-coinvariants,
followed by (Ui, Y )-coinvariants. From Theorem A.4 it follows that

Ny = Ccoo(Q)Nw#U = C:o(w)

where w is the set of all rank one elements A such that ¢4 = ¥g on N3 =~ J3. This works
out to all

0 x —y
A= —-—x 0 z |€elJ,
y —z 1

where x, y, z € O satisfying
Tr(x) = Tr(y) = Tr(z) = 0,
x2 = y2 =72 = 0,
xz=xy =0,yz =x.

It is now useful to write @ = ' U »” where o’ is the open subset given by x # 0.
We claim that G, acts transitively on o’. To that end, we shall prove that x, y,z can be
G,-conjugated to the elements 51, 15, 3. Conjugate by an element in G, so that x = s;. Since
(s1)2 = (s1.12,13), the elements y,z must be contained in this 3-dimensional space. Let
Q1 = L1U; be the maximal parabolic subgroup of G stabilizing the line (s;), with the Levi
subgroup L; = GL((t,13)). The stabilizer of s1 in G, is LYTU; where LI = SL({t2,13)).
The octonion multiplication gives a skew-symmetric form on (s, £, 3)/(s1) valued in (s;).
Thus we can conjugate y, z by an element in LI to

y =1t +asyand z = t3 + bsy

for a,b € F. We still have the unipotent radical U; to work with. The derived subgroup [Uy, Uj]
acts trivially on (s1,7,,#3) and the 2-dimensional quotient U; /[U;, U;] acts simply transi-
tively on the pairs (a, b) € F? as above. This proves the claim. Note that we have also proved
that x, y, z are linearly independent if x # 0. The group Us C M3 acts on w, and hence on
the triples (x, y, z) of off-diagonal terms. Explicitly this action is

ul. (x,y,2) = (x,y + bx,z +ay + cx).
Hence U; acts freely on o', by the linear independence of x, y, z, but with large stabilizers
on w”, assuring that
Nuyy = C2 (@) vsyy -
Summarizing, the situation is very pleasant: G, acts transitively on ’, while U acts freely.

View o’ as the G,-orbit of 4y corresponding to the triple (x, y,z) = (s1, 22, 13). The triple
defines a partial flag

(s1) C (s1,12) C (51,12,13).
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Let Uy be the unipotent radical of the Borel subgroup in G stabilizing this flag. Observe that
any ug € Uy necessarily acts on the triple (s1, f2, #3) as an element u € Us. In fact, this action
can be made explicit for elements in simple root spaces of Uy since they are contained in the
Levi factors of the two maximal parabolic subgroups (GL({s1,#2)) and GL({t2, #3))):

(Sl,lz,t3) = (Sl,tz + A 'Sl,t3) and (Sl,lz,t3) = (S],[z,tg, + A '12)

where A € F. Hence we have a surjective homomorphism ¢ : Uy, — Us, such that the
pullback o of ¥y is a Whittaker functional on Uy. It follows that

My.y, 2 indg?2 (o). O

A.8. Global non-vanishing

Assume now that F is a global field, and let A be the ring of adéles over F. Let
I = @II, be the restricted tensor product of minimal representations over all local
places v of F. Every element in IT is a finite linear combination of pure tensors f = Q) fy,
where f, = f,” for almost all places v. There is a unique, up to a non-zero scalar, embedding

0: 1 — AG(F)\G(A))

of II into the space of automorphic functions of uniform moderate growth. We Fourier
expand 6( f) along N. More precisely, fix a non-trivial character ¥ : A/F — C*. Then, as
in the local case, any A € J(F') defines a character ¥4 of N(F)\N(A) by the isomorphism
N(A) = J(A). Let

(/) = [

N(F)\N(A

) 0(f)(ng)Ya(n) dn.
We have a Fourier expansion

0(/)(&) =0(o(@)+ Y, 0(f)ale)
A€Q(F)
supported on the set of rank one elements. Let A € Q(F). Observe that f +— 6(f)4(1) is
a continuous, (N(A), 14)-equivariant functional on I1. By uniqueness of local functionals,
Theorem A .4, there exists a non-zero scalar ¢4 such that 4(f)(1) = c4- f(A), forall f € II.
Hence

0(/)a(g) = ca- (x(g) f)(A)
for all f € IT and all g € G(A), where 7 denotes the action of g € G(A) on f € II. This
formula is particularly useful if g € G,(A). Then (7(g) f)(A) = f(g ' A), where g7 A4 is
the result of the natural action of g~! on the off-diagonal entries of A.

For every cusp form h € A(G2(F)\G2(A)) consider the function ©( f, #) on PGSpg(A)

defined by
o) = [ 00F) (g19)(e) d.
G2(F)\G2(A)

The function 8( f) is of moderate growth on G, hence it is also on G2(A) x PGSpg(A). In
particular, the integral converges absolutely, since % is a cusp form, and the output O( £, &) is
a function of uniform moderate growth on PGSp¢(A). Let Uy be the maximal unipotent
subgroup stabilizing the partial flag (s1) C (s1,22) C (51,22, t3). Let Uy C Uy be the stabilizer
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of the triple (s1, 2, #3). Then Uy / Uy is isomorphic to Uz and, via this isomorphism, the Whit-
taker character Yy of U(F)\U(A) transfers to a Whittaker character ¢ of Uy (F)\Up(A) as
in the local case. Let

hug,vo(8) = / h(ug)yo(u) du.

Uo(F)\Up(A)

THEOREM A.9. — Let Yy be the Whittaker character of U(F)\U(A). If hy,,y, 7# O then,
for some choice of f € 11,

O/ Muyy (1) = /U(F)\U(A) O(f: ) )Yy (u) du # 0.

Proof. — The first part of the proof involves using the Fourier expansion of 8( f) and
unfolding the integral. This follows closely the proof of the local Theorem A.7, and we shall
be brief. Firstly we integrate over N3(F)\N3(A). This reduces the Fourier sum to over the
subset w(F)

Of: Wy (1) = / 3 0N)a(@)h(g) ds.

G2(F)\G2 (A) Aew(F)

Write o = o’ U 0” as in the local case. We can ignore the sum over w” since it will vanish
after integrating over Uz (F)\Us(A). Also, ' (F) is the G, (F)-orbit of Ay corresponding to
the triple (x, y, z) = (s1, 2. t3) with the stabilizer Uj(F). Then

/G Y 0(Na@h(g) dg = ca,

[ F(g™ Ao)h(g) dg.
2(FN\G2(8) 4 iy U§(FI\Ga2(8)

We integrate over U (F)\Ug(A), and use that the function g — f (g~ Ap) is left U (A)-inva-
riant, hence

Flg™ A0h(e) dg = cay [ F(g™ Aoy (g) ds.

A f
* JuyFNGaa) U (A\Ga (4)

where h Ul is the constant term of & along U{. Finally, we integrate over U3 (F)\Us(A) against
the character /. Using the isomorphism Us = U,/ Uy, we obtain

O vy () = cay [ (@ (2) de.

Uy (M\G2(8)

where f is the product of
juo = | follugy™ Ao)o(u) du
Uy(Fu)\Uo(Fy)
Observe that f is a Whittaker function i.e., f (ug) = Vo(u) f (g), for all u € Uy(A). Hence

o/, Muy, (1) = CAO/ f(g)hUoﬂlfo(g) dg.
Uo(A\G2(4)

The next step is to show that this integral reduces to a finite number of places S, as in
Section 7 of [10]. Assume that S contains all archimedean places and, if v ¢ S, then

— fy is the spherical vector f,7,

— the cusp form % is G,(Oy)-invariant,
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— the conductor of ¥ restricted to Fy, is O,.

Let By be the Borel subgroup containing Uy. We fix a Levi factor Lg (a torus) so that it
stabilizes the lines through s1, #5, #3. Thus, if [, € Lo(F,) then
Loty = Ay - 1o, Iyts = Az - 13, Iys1 = (A2A3) - 51,

for some non-zero scalars A, and A3, where the last identity follows from s; = f,13.

LEMMA A.10. — If' v ¢ S then the Whittaker function f~v° is supported on Uy(F,)G2(0y)
and f2(1) = L.

Proof. — Let ord, denote the valuation on F,¥. Since £ is a spherical Whittaker function,
it is determined by its restriction to Lo(F,) and there it is supported on the cone consisting
of [, such that ord, (a1 (/y)) > 0 and ordy (2 (/y)) > 0 where o7 and a5 are the simple roots.
In terms of the explicit action of /,, on sy, t,, 3 described above, these inequalities are

ordy(A2) > ordy(A3) > 0.

Since f,’ is supported on the lattice J(O,), it is easily seen that, for any u, € Uy(Fy), the
function [, > £,>((uyly) "' Ap) is supported on the cone

ordy(A3), ordy(A3) < 0.

This completes the support part of the statement. Using again that f,’ is supported on the
lattice J(O,), the function uy, > f,2(uy; ! Ap), is supported on U} (F,)Uo(Oy) and this implies
that f,’(1) = 1, since the character g is trivial on Up(Oy). O

Let Ag be the product of F, over all v € S. The previous lemma implies that
O Mo (1) = ey [ F5 (&)t (@) d.
Up(As)\G2(As)
Since, by Theorem A.4, f, can be any smooth, compactly supported function on Q(Fy), for

every v € S, the integral can be arranged to be non-zero. This completes the proof of the
theorem. O

REMARK. — Note that O(f, h) is unramified for all v ¢ S.
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