The American Statistician

IME 7T » NUMBER 2 May 2023

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/Ioi/utas20

©

Taylor & Francis

Taylor & Francis Group

A Comparative Tutorial of Bayesian Sequential
Design and Reinforcement Learning

Mauricio Tec, Yunshan Duan & Peter Muller

To cite this article: Mauricio Tec, Yunshan Duan & Peter Muller (2023) A Comparative Tutorial
of Bayesian Sequential Design and Reinforcement Learning, The American Statistician, 77:2,
223-233, DOI: 10.1080/00031305.2022.2129787

To link to this article: https://doi.org/10.1080/00031305.2022.2129787

@ Published online: 31 Oct 2022.

\J
CA/ Submit your article to this journal &'

||I| Article views: 187

A
& View related articles &'

—
(%) View Crossmark data @
CrossM:

ssMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=utas20

THE AMERICAN STATISTICIAN
2023, VOL. 77, NO. 2, 223-233: Tutorial
https://doi.org/10.1080/00031305.2022.2129787

Taylor & Francis
Taylor & Francis Group

TUTORIAL

‘ '.) Check for updates ‘

A Comparative Tutorial of Bayesian Sequential Design and Reinforcement Learning

Mauricio Tec®®, Yunshan Duan®, and Peter Miiller®

aDepartment of Biostatistics, Harvard TH. Chan School of Public Health, Cambridge, MA; PDepartment of Statistics and Data Science, The University of

Texas at Austin, Austin, TX

ABSTRACT

Reinforcement learning (RL) is a computational approach to reward-driven learning in sequential decision
problems. It implements the discovery of optimal actions by learning from an agent interacting with an
environment rather than from supervised data. We contrast and compare RL with traditional sequential
design, focusing on simulation-based Bayesian sequential design (BSD). Recently, there has been an increas-
inginterest in RL techniques for healthcare applications. We introduce two related applications as motivating
examples. In both applications, the sequential nature of the decisions is restricted to sequential stopping.
Rather than a comprehensive survey, the focus of the discussion is on solutions using standard tools for
these two relatively simple sequential stopping problems. Both problems are inspired by adaptive clinical
trial design. We use examples to explain the terminology and mathematical background that underlie each
framework and map one to the other. The implementations and results illustrate the many similarities
between RL and BSD. The results motivate the discussion of the potential strengths and limitations of each

ARTICLE HISTORY
Received May 2022
Accepted September 2022

KEYWORDS

Bayesian methods;
Experimental design;
Reinforcement learning

approach.

1. Introduction

Sequential design problems (SDP) involve a sequence of deci-
sions D; with data Y; observed at every time step t = 1,...,T
(DeGroot 2004; Berger 2013). The goal is to find a decision rule
(Y1,...,Y:) — D;that maximizes the expected value of a utility
function. The utility function encodes an agent’s preferences as
a function of hypothetical future data and assumed truth. The
decision rule is prescribed before observing future data beyond
Y; — as the term “design” emphasizes—assuming a probabilistic
model with unknown parameters 0 that generate the future data.
For example, O can be the true effect of a drug. Figure 1(a)
summarizes the setup of a general SDP. As motivating examples
in the upcoming discussion we will use two examples of clinical
trial design, which naturally give rise to SDPs (Berry and Ho
1988; Christen and Nakamura 2003; Rossell, Miiller, and Rosner
2007). Both examples are about sequential stopping, that is,
the sequential decision is to determine when and how to end
the study. Figure 1(b) shows the setup of sequential stopping
problems.

Using these examples, we compare two families of simulation-
based methods for solving SDPs with applications in sequential
stopping. The first is simulation-based Bayesian Sequential
Design (BSD) (Miiller et al. 2007), which is based on Bayesian
decision theory (Berger 2013). The other approach is Rein-
forcement Learning (RL), a paradigm based on the interaction
between an agent and an environment that results in potential
rewards (or costs) for each decision. RL has recently been
proposed as a method to implement SDPs focusing on recent
advances in deep learning (Shen and Huan 2021), outside the

context of clinical studies. Earlier application of RL related to
clinical study design can be found in the dynamic treatment
regimes literature (Murphy 2003; Murphy et al. 2007; Zhao,
Kosorok, and Zeng 2009). There is a longstanding literature
on such problems in statistics; see the review by Parmigiani and
Inoue (2009, chap. 15) and the references therein. Implementing
RL and BSD in these two motivating example problems (using
standard algorithms) will illustrate many similarities between
the two frameworks, while highlighting the potential strengths
and limitations of each paradigm.!

A note about the scope of the upcoming discussion. It is
meant to highlight the similarities and differences of algorithms
in BSD and RL, and we provide a (partial) mapping of nota-
tions. There is no intent to provide (yet another) review of
BSD or RL and its many variations. This article focuses on a
few variations that best contrast the two traditions, and we try
to highlight the relative advantages of each method. In short,
BSD is better equipped to deal with additional structure, that
is, to include more details in the inference model. For example,
dealing with delayed responses in a clinical study, one might
want to include a model to use early responses to predict such
delayed outcomes. Or one might want to borrow strength across
multiple related problems. Doing so would also be possible in
RL, but it requires to leave the framework of Markov decision
processes underlying many RL algorithms (Gaon and Brafman
2020), and discussed below. On the other hand, RL allows

The implementation code is freely available at https://github.com/
mauriciogtec/bsd-and-rl.

CONTACT Mauricio Tec 8 mauriciogtec@hsph.harvard.edu @ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Cambridge, MA.

© 2022 American Statistical Association

224 M. TEC, Y. DUAN, AND P. MULLER

Unknown
params.

Data

Decisions A

(a) Generic SDP.

Rewards

!
History @f

Figure 1. Panel (a) shows the directed graph of a general SDP problem. In the figure, H; = {Y1,D1,Y>, ..

(b) Sequential stopping.

.,D¢_1, Yt} denotes the history or information set at decision time

t. There is an implicit arrow from every element of Hy onto D¢, summarily implied by the arrow Hy — Dy. In RL the utility function is usually written asasum G = Z,T:1 Re of
immediate rewards Rt (H;, D¢) (although it is usually called the return instead of the utility). Panel (b) shows a flow chart for the special case of sequential stopping problems,

with Dy = 0 indicating continuation. The node represents stopping the trial (t = T and Dy # 0).

computation-efficient implementations, and is routinely used
for much larger scale problems than BSD. The availability of
computation-efficient implementations is critical in applications
where sequential designs need to be evaluated for summaries
under (hypothetical) repeated experimentation. This is the case,
for example, in clinical trial design when frequentist error rates
and power need to be reported. The evaluation requires Monte
Carlo experiments with massive repeat simulations, making
computation-efficient implementation important.

BSD. BSD is a model-based paradigm for SDPs based on a
sampling model p(Y; | H;—y,D;—1,0) for the observed data
and a prior p(0) reflecting the agent’s uncertainty about the
unknown parameters.

To compare alternative decisions Dy, the agent uses an
optimality criterion that is formalized as a utility function
u(Yy,...,Yr,Dy,...,Dr,0) which quantifies the agents
preferences under hypothetical data, decisions and truth. It will
be convenient to write the utility as u(Hr, Dt = d,0), where
H; denotes the history Hy := (Y1, Dy, ..., D1, Y}) at decision
time t. Rational decision makers should act as if they were to
maximize such utility in expectation conditioning on already
observed data, and marginalizing with respect to any (still)
unknown quantities like future data or parameters (DeGroot
2004).

To develop a solution strategy, we start at time T (final hori-
zon or stopping time). Denote by U(Hrt,d) = E{u(Hr,Dr =
d,0) | Hr} the expected utility at the stopping time T. Then, the
rational agent would select D.(H7) = arg max,;U(HT, d) at the
stopping time. For earlier time steps, rational decisions derive
from expectations over future data, with later optimal decisions
plugged in,

U(Ht, d) = E{H(Ht,Dt = d, Yt+l(Dt = d),
D}, (Hi1(Dy = d)),...,Dp(Hp(Dy = d))ﬁ) | Hi} (1)
which determine the optimal decision (“Bayes rule”) as
D} (H;) = argmax,; U(H;, d). 2)

Here, we use a potential outcomes notation Hyy1(D; = d) to
emphasize that future history depends on the action D; = d
(Robins 1997), and similarly for other quantities. In the notation
for expected utility U(-), the lack of an argument indicates
marginalization (with respect to future data and parameters)

and optimization (with respect to future actions), respectively.
For example, in (1) expected utility conditions on H;, but
marginalizes w.r.t. future data Yy, and substitutes optimal
future decisions Dy ;.

Some readers, especially those familiar with RL, might won-
der why D; = d does not appear on the right-hand side
of the conditional expectation (as in RLs state-action value
functions). This is because in the BSD framework actions are
deterministic. There is no good reason why a rational decision
maker would randomize (Berger 2013). However, note that in
clinical studies randomization is usually included and desired,
but for other reasons—not to achieve an optimal decision, but to
facilitate attribution of differences in outcomes to the treatment
selection.

RL. RL addresses a wider variety of sequential problems than
BSD, provided one can formulate them as an agent interacting
with an environment yielding rewards R; at every time step.
Environments can be based on simulations. For example, pop-
ular successful RL applications with simulation-based environ-
ments include Atari video-games (Mnih et al. 2013), complex
board games like chess and Go (Silver et al. 2018), robotic tasks
(Tunyasuvunakool et al. 2020) and autonomous driving (Sallab
et al. 2017; Wurman et al. 2022).

Just as in BSD, the interactive setup for RL (transition and
rewards) can be defined by a sampling model and a prior over
0. The interaction replicates the decision process, shown in
Figure 1. Each draw 6 ~ p(0) constitutes a new instance or
episode of the environment. The RL agent seeks to maximize the
expected sum of rewards G = Zthl Ry, known as the return,
over an episode. The return G is the analogue of the utility
function.

Decision rules are called policies in RL. A (stochastic) policy
maps an observed history to a distribution over actions Dy ~
7 (- | Hy). The optimal policy 7, satisfies w, = argmax_E{G |
7}. As mentioned before, the notion of stochastic policies is
not natural in BSD with its focus on decisions that a rational
agent would take. In fact, under some regularity conditions it
can be shown that also the optimal RL policy is deterministic
(Puterman 2014). So why stochastic policies? Stochastic policies
in RL serve to implement exploration. In BSD it is assumed
that if exploration were called for, it would be recognized by the
optimal decision rule. While in theory this is the case, in practice

Table 1. A brief comparison of key quantities in BSD and RL.

THE AMERICAN STATISTICIAN 225

BSD RL
Yt data observed at time t
Ht = (Y1,D7...Dt_1,Yt) history (information set) at decision time t
Dt = D¢(Hy) action (decision) at time t
St = St(Hr) summary (sufficient) statistic state
Dyt (deterministic) action at time ¢ n/a @
indexed by parameter ¢ (policy)
(Dt | Hy) n/a (no randomization) (random) policy
bid n/a policy indexed by ¢
optimal decision/policy Bayes rule D* (Ht) (2) optimal policy 7 (Ht)
0 unknown parameter

(usually) required
Rt n/a (®
optimality criterion

n/a (deterministic D*)
n/a (deterministic D*)
U(Ht, D)

state-action value

state value

value under optimal
future actions

optimal value

J()

UHr, D* (Hp))

= E(u(Y, Dy, 0))
U(Ht,Dr) =
E{U(Hz£1(Dy)) | He}

Bellman equation/
backward induction

utility u(Y, D, 8) = u(H, Dy, 0)

optional

(immediate) reward at time t
total return G = 21(21 Re or
remaining return Gy = Z[:t Rk
Q" (Ht, D) = E{Gt | Ht, Dy, 7w}
V™ (Hy) = E{Gt | Ht, m}

Q™ (Ht, Dy)

V7 (He)
expectation under policy/decision indexed by ¢
= E{G | 7r¢}
Q" (H, D) =
E{Rt + V™ (Hey1) | Hy, Dy, 7w}

NOTE: Variations without time subindex ¢ refer to time-invariant versions. Using states S¢, in many instances an argument H; can be replaced by S;, as in D¢(S;), We use

Y=(Yq,...,Yr)etc.torefertolistsovert = 1,...,T.

(@ deterministic policies 7t (Ht) are not discussed in this review, but see Silver et al. (2014).

®) additive decomposition as u(Hr, Dt,6) = >_; R(Ht, D¢,) is possible, but not usually made explicit.

additional reinforcement of exploration is reasonable. Also, as
we shall see later, the use of stochastic policies facilitates the
search for optimal policies by allowing the use of the stochastic
gradient theorem.

Another close similarity of BSD and RL occurs in the defi-
nition of expected utility and the state-action value function in
RL. The state-action value function is Q™ (Hy, d) = E{Z,fzt Ry |
Hy,D; = d,n}. The value function of the optimal policy
Q™ (Hy, d) plays the same role as expected utility U(Hy, d) when
optimal decisions are substituted for future decisions Ds, s > t.
An important difference is the stochastic nature of 77 in the state-
value function, versus the deterministic decisions D; in BSD.

From this brief introduction one can already notice many
correspondences between the objects in RL and BSD. Table 1
shows a partial mapping between their respective terminologies.
Not all are perfect equivalences. Sometimes common use in
BSD and RL involves different levels of marginalization and/or
substituting optimal values. Some of the analogies in the table
will be developed in the remainder of the article.

2. Two Examples of Optimal Stopping in Clinical Trials

The two stylized examples introduced here mimic sequential
stopping in a clinical trial. The agent is an investigator who
is planning and overseeing the trial. The data Y; are clinical
outcomes recorded for each patient. In both cases D, refers to
a stopping decision after t (cohorts of) patients. Under con-
tinuation (D; = 0), the agent incurs an additional cost ¢; for
recruiting the next cohort of patients. Under stopping (D; # 0),
on the other hand, the agent incurs a cost if a wrong (precise
meaning to be specified) recommendation is made. At each time
the agent has to choose between continuing the study—to learn

more—versus stopping and realizing a reward for a good final
recommendation (about the treatment). Throughout we use the
notions of cost (or loss) and utility interchangeably, treating loss
as negative utility.

Example 1: A binary hypothesis. Consider the decision
problem of choosing between H; : 0 = 0; and H; : § = 6,. For
instance, 6 could represent the probability of a clinical response
for an experimental therapy. Assume a binary outcome Y; with
a Bernoulli sampling model p(Y; = 1 | 8) = 6 and a discrete
two-point prior p(0 = 01) = p(0 = 6;) = 5.

The possible decisions at any time are D; € {0,1,2}. Here
D; = 0 indicates continuation, D; = 1 indicates to terminate
the trial and report H; (0 = 6;), and D; = 2 means terminate
and report H»(6 = 6,). The utility function includes a (fixed)
sampling cost ¢ for each cohort and a final cost K > 0 for
reporting the wrong hypothesis. The utility function is

u(Hr, Dr,0) = —cT — K10 # 0p,).

3)

The relevant history H; can be represented using the summary
statistic ¢ = (t,) -, Yk/t), since this statistic is sufficient for
the posterior of 6. The implementations of simulation-based
BSD and RL use this summary statistic. The problem parameters
are fixed as ¢ = 1 and K = 100. Example trajectories of S;
assuming no stopping are shown in Figure 2(a).

Example 2: A dose-finding study. This example is a stylized
version of the ASTIN trial (Grieve and Krams 2005). The trial
aims to find the optimal dose for a drug from a set of candidate
doses X {xo,...,Xg} where xq 0 stands for placebo.
At each time t, a dose X; € X is assigned to the next patient
(cohort), and an efficacy outcome Y; is observed. The aim is to
learn about the dose-response curve f(X;) = E(Y; | X;), and

226 M. TEC, Y. DUAN, AND P. MULLER

1.00

N

075

Posterior mean (Sgs)

0.50

Running mean (p;)
o

0.25

0.00

b=-1.89, q=0.84] [b=2.56, g=1.27 | [b=1.11, g=0.74 |

Lo =N

Response (y)
o
!I
@
o
[}
=
w
L5
o
!I
o
o
o
el
1}
o
©
w
o
n
=)
&
Qo
n
o
o

]

0 10 20 30 40 50 0.25 0.50
Step (t)

(a) Example 1: trajectories

Posterior std. dev. (s;)

(b) Example 2: trajectories

Dose (x)

(c¢) Example 2: dose-response models

Figure 2. Data from the two sequential stopping examples. (a) and (b) are forward simulations assuming no stopping; (c) shows the implied dose-response curves for

different random draws of the prior.

more specifically, to find the dose xg5 (the ED95) that achieves
95% of the maximum possible improvement over placebo. Let
8¢ = f(xg) — f(xo) be the advantage over the placebo at dose
Xg. We set up a nonlinear regression Y; = f(X; | 0) + € with
€ ~ N(0,02) using a dose-response function

r

x
f(X|9)=a+bm 4)

with & = (a,b,q,7) and a prior p(6) = N(bo, diag(k%)). In
the PK/PD (pharmacokinetics/pharmacodynamics) literature
model (4) is known as the Ep,,, model (Meibohm and Derendorf
1997).

Similar to Example 1, Dy € {0, 1,2} with D; = 0 indicating
continuation, Dy = 1 indicating stopping the trial and recom-
mending no further investigation of the experimental therapy,
and D; = 2 indicating stopping and recommending for a follow-
up trial set up as a pivotal trial to test the null hypothesis Hy :
895 = 0. If continuing the trial, the next assigned dose is Xy =
min{X; + &, Xo5 ¢} where Xo5 is the latest estimate of the ED95,
and & is a maximum allowable dose escalation between cohorts.
If requiring a pivotal trial, Ny, g patients are assigned to the dose
Xo95,T, With Ny, g computed from the observed data to achieve a
desired power 1 — B at a certain alternative Hy : 6 = 0 for test
of size .. Details are given in Appendix A.

The utility function includes a patient recruitment cost of ¢
and a prize K > 0 if the null hypothesis Hy(895 = 0) is rejected
in the pivotal trial (meaning the agent found evidence of an
effective drug). Denote Ar = Pr(reject Hp in the 2nd trial |
Hr). At the stopping time T = min/{D; # 0}, utility is
calculated as

u(Hr, D7, 0)

_ —cT if Dr=1)
—cT + {—cNo,g(Hr) + KAr(Hy)} if Dy =2
In our implementation wefixa = 0,r = 1,0 = lin(4) andc =
1,K = 100 in (5), and § = 1, leaving the unknown parameters
0 = (b, 9), including the maximum effect b and the location of
the x50. The prior of & has mean 6y = (1/2,1) with variances
Ao = (1,1) and we add the constraintg > 0.1.

The summary statistic is Sy = (895, s5) where 8¢5 and ss are
posterior mean and standard deviation of 9s. Figure 2(b) shows

examples of trajectories of these summaries until some maxi-
mum time horizon T (i.e., assuming no stopping). The trajecto-
ries are created by sampling 6 from the prior, assigning doses
as described, and sampling responses using (4). Figure 2(c)
shows examples of the implied dose-response curve f(x |)
for different prior draws. Notice that the chosen summaries do
not capture the full posterior. The statistic S; is not a sufficient
statistic for the posterior. However, as shown in Appendix A,
Ny, and Ap, and therefore the utility, depend on the data only
through S;.

3. Simulation-based Bayesian Sequential Design

From the expected utility definition in (1), one immediately
deduces that

U(Hy, Dy = d) = E{U(H41(Dy = d),
D*(Hi41(Dy = d))) | He, (6)

with the expectation being with respect to future data and 0,
and substituting optimal choices for future decisions, s > t. In
words, for a rational agent taking optimal actions, the expected
utility given history H; must be the same as the expected utility
in the next step. Thus, one can (theoretically) deduce D} from
knowing the best actions for all possible future histories by
implementing backward induction starting with T. Equation (6)
is known as the Bellman equation (Bellman 1966).

Enumerating all histories is computationally intractable in
most realistic scenarios, rendering backward induction usually
infeasible, except in some special setups (Berry and Ho 1988;
Christen and Nakamura 2003). Simulation-based BSD comes to
help: instead of enumerating all possible histories, we compute
approximations using some simulated trajectories. The version
presented here follows Miiller et al. (2007). Similar schemes
are developed in Brockwell and Kadane (2003), Kadane and
Vlachos (2002), and Carlin, Kadane, and Gelfand (1998). We
use two strategies: first, we represent history H; through a (low-
dimensional) summary statistic S¢, as already hinted in Section 2
when we proposed the posterior moments of the ED95 response
for Example 2. The second—and closely related—strategy is to
restrict Dy to depend on H; only indirectly through S;. Two
instances of this approach are discussed below and used to solve
Examples 1 and 2.

3.1. Constrained Backward Induction

Constrained backward induction is an algorithm consisting of
three simple steps. The first step is forward simulation. Our
implementation here uses the assumption that the sequential
nature is limited to sequential stopping, so trajectories can be
generated assuming no stopping independently from decisions.
Throughout we use D; = 0 to denote continuation. Other
actions, D; # 0, indicate stopping the study and choice of
a terminal decision. The second step is constrained backward
induction, which implements (6) using decisions restricted to
depend on the history H; indirectly only through S;. The third
step simply keeps track of the best action and iterates until con-
vergence. We first briefly explain these steps and then provide
an illustration of their application in Example 1 and additional
implementation considerations.

Step 1. Forward simulation: Simulate many trajectories, say M,
until some maximum number of steps Tmax (e.g., cohorts in
a trial). To do this, each m = 1,..., M corresponds to a

different prior draw 6™ S p(©) and samples Yt(m) i
p(Yt('") |), t = 1,..., Tmax. For each m and t, we
evaluate and record the summary statistic ng) discretized
over a grid.

Step 2. Backward induction: For each possible decision d and
each grid value S = j, the algorithm approximates UGS, d) ~
U(S, d) using the forward simulation and Bellman equation
as follows. Denote with A; = {(m, t,) | SEVT) = j} the set of
forward simulations that fall within grid cell j. Then,

U =j,d)
T3¢ <lm) * o(m)
_ ﬁ Z(m,tm)eAj U(St,r,,nJrl’D (St,r,,n+1)) d=0

(7)
ﬁﬂzwmm&m%ﬂDm:dﬁwh d 0.

The evaluation under d = 0 requires the optimal actions
D}, 1 (St,+1)- We use an initial guess (see below), which is
then iteratively updated (see next).

Step 3. Iteration: Update the table D*(S) =
after step 2.

arg max, ﬁ(S, d)

Repeat Steps 2 and 3 until updating in step 3 requires no (or
below a minimum number of) changes of the tabulated D*(S).

Figure 3(a) shows the estimated utility function f](S, d) in
Example 1 using M = 1000, Trmay = 50 and 100 grid values
for the running average p; = Z,i:l Yi/t in § = (t,pp).
Optimal actions Dj (S) are shown in Figure 3(b). The numerical
uncertainty due to the Monte Carlo evaluation of the expecta-
tions is visible. If desired, one could reduce it by appropriate
smoothing (MacDonald, Ranjan, and Chipman 2015). One can
verify, however, that the estimates are a close approximation to
the analytic solution which is available in this case (Miiller et al.
2007).

We explain Step 2 by example. Consider Figure 3(b) and
assume, for example, that we need the posterior expected utility
of § = (t,pr) = (20,0.25). In this stylized representation, only
three simulations, A = {m;, my, m3} pass through this grid cell.
In this case, t,, = t = 20 for the three trajectories since t is part
of the summary statistic. We evaluate ﬁ(S, d=1)and ﬁ(S, d=

2) as averages % Dica u(S%), d,0(™). For f](S, d = 0), we first

THE AMERICAN STATISTICIAN 227

determine the grid cells in the next period for each of the three

(21, pgln)). We then look up the optimal
decisions D*(SZI,ng")) (using in this case t,, + 1 = 21) and
average % » /U(Zl,pgl"), D*(Zl,pgf))), asin (7).

Constrained backward induction requires iterative updates
of D*(S) and their values. The procedure starts with arbitrary
initial values for D*(S), recorded on a grid over S. For example,
a possible initialization is D*(S) = max .9 /U(S, d), maximizing
over all actions that do not involve continuation. With such
initial values, ’0(8, d) can be evaluated over the entire grid. Then,
for updating the optimal actions D*(S) one should best start
from grid values that are associated with the time horizon T, or
at least high t. This is particularly easy when t is an explicit part
of S, as in Example 1 with S; = (¢, p;). Another typical example
arises in Example 2 with Sy = (i, 01), the mean and standard
deviation of some quantity of interest. For large t we expect small
o1, making it advisable to start updating in each iteration with
the grid cells corresponding to smallest o;. We iterate until no
more (or few) changes happen.

The algorithm can be understood as an implementation
of (6).

Consider f(S,d) as an arbitrary function over pairs (S, d)
and the function operator Pf defined as (Pf)(S,d) =
maxy E[f(S,d')|S] where S is the summary statistic resulting
from sampling one more data point Y from the unknown 6 and
recompute S’ from S. Then Bellman equation (6) can be written
as U = PU. In other words, expected utility under the optimal
decision D* is a fixed point of the operator P. Constrained
backward induction attempts to find an approximate solution
to the fixed-point equation. The same principle motivates the
Q-learning algorithm in RL (Watkins and Dayan 1992) (see
Section 4). Backward induction is also closely related to the
value iteration algorithm for Markov decision processes (Sutton
and Barto 2018), which relies on exact knowledge of the state
transition function.

trajectories. SE}':J)rl =

3.2. Sequential Design with Decision Boundaries

Inspection of Figure 3(b) suggests an attractive alternative algo-
rithm. Notice the decision boundaries on § = (¢, p;) that trace
a funnel with an upper boundary w; (t) separating D* = 2 from
D* = 0, and a lower boundary w, (t) separating D* = 0 versus
D*=1.

Recognizing such boundaries suggests an alternative appro-
ach based on searching for optimal boundaries in a suitable
family {wg,1, wg2 | § € P}.

This approach turns the sequential decision problem of find-
ing optimal D*(S) into a nonsequential problem of finding an
optimal ¢* € ®. This method is used, for example, in Rossell,
Miiller, and Rosner (2007).

In Example 1, we could use

dJE—1
JT—1°

1-¢)vt—1

wi(t) = 1

wy(t) =1—

using a single tuning parameter ¢ € (0,1). Both functions
are linear in +/t — 1, and mimic the funnel shape seen in

228 (&) M.TEC, Y.DUAN, AND P. MULLER

Uty I

-150

-50 0 50 100

Running mean (py)

D=2

Decisions 0

1.00

Running mean (py)

0.00

20 30 40 50

Time step t

30 40 50 0 10

(a) BSD: expected utility estimates under constrained backward induction.

Value T
150 -100 50 0 50 100
D=0
1.00

2.
]
3

Running mean (py)
o o
N (42
(4] o

0

10 20 30

Time step t

40 50

(b) BSD: optimal actions.

D=2

1l 2

Decisions 0

1.00

P
o
5
a

Running mean (py)
o
o
o

e
N
a

0.00

0 10 20 30 40 50 0 1

Time step t

(c) RL: state-action value estimates with Q-learning

1.00 I 35
<075
e 240
s Decisions E
Q
E 050 0 3
2 1 i
§ | H 545
@ 025
-50
0.00
0 10 20 40 50 0.00

D=1
0O 20 30 40 5 0 10 20

30 40 10 20 30

Time step t

40 50

(d) RL: best actions.

— Mean of 1000 test episodes -- Best eval score

-30.09
-32.51
-35.0
-37.54
-40.04
-42.54
-45.0
-47.54
-50.01

Evaluation episode returns (Go)

30 0.25
Step (t)

(e) BSD: parametric boundary.

Decision boundary parameter (c)

(f) BSD: utility by parameter.

1e+06 26+06 3e+06

Simulation steps

0e+00

0.50 0.75 1.00

(g) RL: performance over training.

Figure 3. Example 1. Comparison of decision boundaries and fitted value functions/utilities.

Figure 3(b). The decision rules implied by these boundaries p ¢(ng) # 0} denote the stopping time under Dy. Then the

1S

1 ifpt < wi(t)
2
0

Dy(St) = if pr > wy(t)

otherwise.

Here, the additional subscript 4 in Dy (-) indicates that the deci-
sion follows the rule implied by decision boundaries w;(;).
Note that w;(1) = 1 and w,(1) = 0, ensuring continuation at
t=1.

For a given ¢, the forward simulations are used to evaluate

expected utilities under the policy Dy. Let Tg") min{t :

expected utility under policy Dy is

U(¢) = E(u(St,, Dy (St,),0)} ®)

where the expectation is with respect to data Y7 and 0. It is
approximated as an average over all Monte Carlo simulations,
stopping each simulation at 7™, as determined by the para-
metric decision boundaries,

M
U@ = (/M) 3 u(Spl, Dp(Sp), 6. (9)
m=1

Decisions 0 110 2
2-
2
S
& 11
(0]
€
8 , o<
g O] .
3 W\ A“'\;////‘
a Py
14 o
(‘Ww\\w‘//
0.25 0.50 0.75

Posterior std. dev. (s;s)

(a) BSD: parametric boundaries.

Figure 4. Optimal decisions in Example 2. Comparison of fitted decision boundaries.

Optimizing U(¢) w.rt. ¢ we find the optimal decision bound-
aries ¢* = arg max U(e). As long as the nature of the sequential
decision is restricted to sequential stopping, the same set of
Monte Carlo simulations can be used to evaluate all ¢, using
different truncation to evaluate U(¢). In general, a separate
set of forward simulations for each ¢, or other simplifying
assumptions might be required.

Figure 3(e) shows the decision boundaries for the best
parameter estimated at ¢* = 0.503 in Example 1. The estimated
values for ff(qb) are in Figure 3(f). In Figure 3(e), the boundaries
using constrained backward induction are overlaid in the image
for comparison. The decision boundaries trace the optimal
decisions under the backward induction well. The differences
in expected utility close to the decision boundary are likely
very small, leaving minor variations in the decision boundary
negligible.

The same approach is applied to the (slightly more complex)
Example 2.

Recall the form of the summary statistics S = (s3,4), the
posterior standard deviation and mean of the ED95 effect. We
use the boundaries

1(S) = —=biss + ¢, @2(S) = bass + ¢,
parameterized by ¢ = (b1, b2, ¢). The implied decision rules are
1 if§ < wi(ss)
Dy S =12

0 otherwise.

if 8 > wy(ss)

The results are in Figure 4(a). Again, the sequential decision
problem is reduced to the optimization problem of finding the
optimal ¢ in (9). Since now ¢ € R* the evaluation of U requires
a three-dimensional grid. To borrow strength from Monte Carlo
evaluations of (9) across neighboring grid points for ¢ we
proceed as follows. We evaluate ﬁ(q&) on a coarse 10 x 10 x 10
grid, and then fit a quadratic response surface (as a function of
¢) to these Monte Carlo estimates. The optimal decision ¢* is
the maximizer of the quadratic fit. We find ¢* = (b7, b3,¢*) =
(1.572,1.200,0.515) Instead of evaluating Uona regular grid
over ¢, one could alternatively select a random number of design
points (in ¢).

THE AMERICAN STATISTICIAN 229

111 2

Decisions 0

N
L

Posterior mean (8gs)

L=
f

'
—%
s

02 03 04 05 06 07 08 09
Posterior std. dev. (ss)

(b) RL: policy gradients

The use of parametric boundaries is closely related to the
notion of function approximation and the method of policy
gradients in RL, which will be described next.

4. Reinforcement Learning

The basic setup in RL is usually framed in terms of Markov deci-
sion process (MDP) (Puterman 2014). The Markov property
ensures that optimal decisions depend only on the most recently
observed state, enabling practicable algorithms. In this section
we first describe MDPs and how a sequential design problem
can be adapted to fit in this framework. Next, we discuss two
algorithms, Q-learning (Watkins and Dayan 1992) and policy
gradients (Grondman et al. 2012), implemented in Examples 1
and 2, respectively. Both methods are implemented using neural
networks. Throughout this section, the summary statistics S; are
referred to as states, in keeping with the common terminology
in the RL literature.

4.1. Markov Decision Processes and Partial Observability

The Markov property for a decision process is defined by the
conditions

P(St+1 | Hp, Dy) = p(St41 | St Dy)
and p(R; | Hy, Dy) = p(Ry | St, Dy);

that is, the next state S¢y; and the reward R; depend on the his-
tory only indirectly through the current state and action. When
the condition holds, the decision process is called an MDP. For
MDPs, the optimal policy is only a function of the latest state
St and not of the entire history H; (Puterman 2014). Many
RL algorithms assume the Markov property. However, many
sequential decision problems are more naturally characterized
as partially observable MDP (POMDP) that satisfy the Markov
property only conditional on some 6 that is generated at the
beginning of each episode. Such problems have been studied
in the RL literature under the name of Hidden-Parameter MDP
(HiMDP) (Doshi-Velez and Konidaris 2016).

There is a standard—Bayesian motivated—way to cast any
POMDP as an MDP using so-called belief states (Cassandra,

230 M. TEC, Y. DUAN, AND P. MULLER

Hidden parameter
Data
Rewards

Decisions

(a) SDP as generic HIMDP.

Figure 5. Belief MDP for the SDP.

Littman, and Zhang 1997). Belief states are obtained by includ-
ing the posterior distribution of unobserved parameters as a part
of the state. With a slight abuse of notation, we may write the
belief states as S = p(6 | H;). While the belief state is, in
general, a function, it can often be represented as a vector when
the posterior admits a finite (sufficient) summary statistic. The
reward distribution can also be written in terms of such belief
states as

p(R| S, Dy) = /gp(R | D1, 6) dp(6 | Hy). (10)
See Figure 5 for a graphical representation of an HIMDP and the
resulting belief MDP.

We implement this approach for Example 1. The reward is
chosen to match the definition of utility. It suffices to define it in
terms of 6 (and let the posterior take care of the rest, using (10)).
We use

R(d,0) = —cI(d = 0) — KI(0g # 0,d #0), (11)

as in (3). Next we introduce the belief states. Recall the notation
from Example 1. We have p(6 | S¢) = Bin(ps, p+(1 — ps)/t). The
summary statistic Sy = (¢, p;) is a two-dimensional representa-
tion of the belief state.

Considering Example 2, we note that the utility function (5)
depends on the state S only, and does not involve 6. We define

Rg(d,St) = —c1l(d = 0) + (—c2Ny,5(St) + KAR(S))I(d = 2).

(12)
While the reward is clearly Markovian, the transition probability
is not necessarily Markovian. This is the case because in this
example the posterior moments S; are not a sufficient statistic. In
practice, however, a minor violation of the Markov assumption
for the transition distribution does not seem to affect the ability
to obtain good policies with standard RL techniques.

4.2. Q-learning

Q-learning (Watkins and Dayan 1992; Murphy 2003; Clifton
and Laber 2020) is an RL algorithm that is similar in spirit to
the constrained backward induction described in Section 3.1.
The starting point is Bellman optimality equation for MDPs
(Bellman 1966). Equation (6) for the optimal D* and written for
MDPs becomes

Q™ (s,d) = E{Rt + maxg Q™ (St11,d") | S = s, Dy = d}, (13)

where the expectation is with respect to Ry and Sty . The optimal
policy is implicitly defined as the solution to (13).

Belief states
Se = p(6lHy)

(b) Resulting belief MDP.

Belief rewards
R(D;,8), 6 ~ p(61H,)

Decisions

Q-learning proceeds iteratively following the fixed-point
iteration principle. Let Q%) be some approximation of Q*. We
assume that a set of simulated transitions {(ss, dy, ¢, St+1))/, is
available. This collection is used like the forward simulations
in the earlier discussion. In RL it is known as the “experience
replay buffer;” and can be generated using any stochastic policy.
And suppose, for the moment, that the state and action spaces
are finite discrete, allowing to record Q® in a table. Q-learning
is defined by updating Q% as

Q™ V(s dy) < (1 —) QW sy, dy)

+ o {re + made(k) (st+1,d)}. (14)

Note the moving average nature of the update. The procedure
iterates until convergence from a stream of transitions.

Deep Q-networks (DQN) (Mnih et al. 2013) are an extension
of Q-learning for continuous states. A neural network is used
to represent Q(-). Let ¢® denote the parameters of the neural
network at iteration k. Using simulated transitions from the
buffer

DQN performs updates

B = argming Ty (re+ maxg Quun (Si1,) —~ Qp(Sp)
(15)

In practice, exact minimization is replaced by a gradient step
from mini-batches, together with numerous implementation
tricks (Mnih et al. 2013).

We implemented DQN in Example 1 using the Python pack-
age Stable-Baselines3 (Raffin et al. 2021). The experi-
ence replay buffer is continuously updated. The algorithm uses
a random policy to produce an initial buffer and then adds
experience from an e-greedy policy, where the current best
guess for the optimal policy is chosen with probability (1 — €),
and otherwise fully random actions are chosen with probability
€. Figure 3(c) shows O, the estimate of Q*, for each state and
action d € {0, 1,2}. Figure 3(d) shows the corresponding opti-
mal actions. Overall, the results are similar to the results with
constrained backward induction, but much smoother. Also,
notice that the solution under DQN is usually better in terms of
expected utility as shown in Figure 3(f), even in (out-of-sample)
evaluation episodes. This is likely due to the flexibility and high-
dimensional nature of the neural network approximation.

The better performance of RL comes at a price. First is sample
efficiency (the number of simulations required by the algorithm
to yield a good policy). The best Q is obtained after 2 million
sampled transitions. Data efficiency is a known problem in
DQN, and in RL in general (Yu 2018). In many real applications
investigators cannot afford such a high number of simulation

steps. Another limitation is training instability. In particular,
Figure 3(f) illustrates a phenomenon known as catastrophic
forgetting, which happens when additional training decreases
the ability of the agent to perform a previously learned task
(Atkinson et al. 2021). This can happen because of the instability
that arises from a typical strategy of evaluating performance
periodically and keeping track of the best performing policy
only. Several improvements over basic DQN have been pro-
posed, with improved performance and efficiency (Hessel et al.
2018).

4.3. Policy Gradients

The approach is similar to the use of parametric boundaries
discussed before. Policy gradient (PG) approaches start from
a parameterization 7y of the policy. Again, consider a neural
network (NN) with weights ¢. The goal of a PG method is to
maximize the objective

max J($) = E{G | 7). (16)

This objective is the analogue to maximizing U(¢) in (9), except
that here the stochastic policy 74 is a probability distribution on
decisions S;. The main characteristic of PG methods is the use
of gradient descent to solve (16).

The evaluation of gradients is based on the PG theorem
(Sutton et al. 1999),

T
Vol (@) = E { [Z Vg log g (Dy | st)} .G | rr¢} , (17)

t=1

where the total return G is a function G(t) of the entire trajec-
toryt = (81, Dy, . .., ST, D). Using gradients, PG methods can
optimize over high-dimensional parameter spaces like in neu-
ral networks. In practice, estimates of the gradient are known
to have huge variance, affecting the optimization. But several
implementation tricks exist that improve the stability and reduce
the variance. Proximal policy optimization (PPO) (Schulman
etal. 2017) incorporates many of these tricks, and is widely used
as a default for PG-based methods.

The PG theorem is essentially Leibniz rule for the gradient of
J(#).

With a slight abuse of notation, write g (7) for the distri-
bution of 7 induced by 7y for the sequential decisions. Then
Leibniz rule for the gradient of the integral gives

Vol (§) = Vg / Ty (T)G(T)dT = / Vg (T) - G(v) dr

= / (V¢ logn¢(r)) y(7) - G(7) dt
= E{Vglogmy(r) - G(1)},

where the expectations are with respect to the (stochastic) policy
7y over T. The log probability in the last expression can be
written as a sum of log probabilities, yielding (17).

PPO is implemented in Example 2 using Stable-
Baselines3 (Raffin et al. 2021). The results are shown
in Figure 4(b). Not surprisingly, the results are similar to

THE AMERICAN STATISTICIAN 231

those obtained earlier using parametric decision boundaries.
Interestingly, the figure shows that neural networks do not
necessarily extrapolate well to regions with low data. This
behavior is noticeable on the lower left corner of the figure,
where there could be data, but where it is never observed in
practice because of the early stopping implied by the boundaries.

5. Discussion

We have introduced some of the main features of RL and BSD in
the context of two optimal stopping problems. In the context of
these examples the two approaches are quite similar, including
an almost one-to-one mapping of terminology and notation, as
we attempted in Table 1. In general, however, the applicability,
especially the practical use of RL is much wider. The restric-
tion of the sequential problems to optimal stopping was only
needed for easy application of the BSD solution. In contrast, RL
methods are routinely used for a variety of other problems, such
as robotics (Tunyasuvunakool et al. 2020) autonomous driving
(Sallab et al. 2017; Wurman et al. 2022), and smart building
energy management (Yu et al. 2021). The main attraction of
BSD is the principled nature of the solution. One can argue
from first principles that a rational agent should act as if he or
she were optimizing expected utility as in (1). There is a well-
defined and coherent propagation of uncertainties. This might
be particularly important when the SDP and underlying model
are only part of a bigger problem. Overall, we note that the
perspective of one method, and corresponding algorithms can
be useful for improvements in the respective other method. For
example, policy gradients could readily be used to solve BSD if
randomized decision rules were used. The latter is usually not
considered. On the other hand, hierarchical Bayesian inference
models could be used to combine multiple sources of evidence
in making sequential decisions under RL, or multiple related
problems could be linked in a well-defined manner in a larger
encompassing model. For example, clinical trials are never car-
ried out in isolation. Often the same department or group might
run multiple trials on the same patient population for the same
disease, with obvious opportunities to borrow strength.

Appendix A. Details in Example 2

We assume a nonlinear regression sampling model

Ye=f(Xt|60) +e, e~ N(©0,02),

and the dose-response curve

r

X
Xt |0)=a+b—1t
S 10) = a+ bt

We fix a, 7,02, and put a normal prior on unknown parameters § =
(b, 9),

p(0) = N(6p, diag(2o)).

Sample size calculation. If at time T, the decision Dy = 2
indicates stopping and a pivotal trial is conducted to test Hp : 895 = 0
versus H) : 895 > 0. We need to determine the sample size Ny, g for
the pivotal trial that can achieve desired significance level « and power

232 M. TEC, Y. DUAN, AND P. MULLER

(1—p), and calculate the posterior predictive probability of a significant
outcome, Ag = Pr(reject Hy in the 2nd trial | Hr).

Let 895 and s5 denote the posterior mean and SD of §95. We calculate
power based on 895 = §*, where 8;‘5 = 895 — s5.

Now consider a test enrolling Ny g patients, randomizing Ny, g/2
at x = 0 (placebo) and Ny g/2 at the estimated ED95. Assuming
var(y;) = 1, we need

Neg = 4[(qa + 4p)/8*]

where gy is the « right tail cutoff for the N(0,1) and @ = 5% and
(1 — B) = 80% are the desired significance level and power (i.e., f =
0.2).

A significant outcome at the end of the second trial means data in
the rejection region. Let y;,y, denote the sample average of Ny g/2
patients each to be enrolled in the two arms of the second trial. Then
the rejection region is

R={(1 —y0)y/Na,g/4 = qu}.
Let ®(-) denote the standard normal cdf. Then

— o S\/Noz,ﬂ/4 —qa

N,
1+ Z‘ﬁsg

AR

Posterior simulation.
simulation:

We can implement independent posterior

(i) Generate g ~ p(q | H), using

p(H: | by g)p(h)
p(b|g,Hy)
(ii) Then generate b from the posterior conditional distribution b ~

p(b | g, Ht). Based on normal linear regression, the conditional
posterior is a univariate normal distribution.

p(q 1 Hy) ocp(He | q) - p(q) = P@

Acknowledgments

The authors gratefully thank Peter Stone and the Learning Agents Research
Group (LARG) for helpful discussions and feedback.

Disclosure Statement

The authors report there are no competing interests to declare

Funding

Yunshan Duan and Peter Miiller are partially funded by the NSF under
grant NSF/DMS 1952679.

ORCID

Mauricio Tec ‘2 https://orcid.org/0000-0002-1853-5842

References

Atkinson, C., McCane, B., Szymanski, L., and Robins, A. (2021), “Pseudo-
Rehearsal: Achieving Deep Reinforcement Learning without Catas-
trophic Forgetting,” Neurocomputing, 428, 291-307. [231]

Bellman, R. (1966), “Dynamic Programming’ Science, 153, 34-37.
[226,230]

Berger, J. O. (2013), Statistical Decision Theory and Bayesian Analysis, New
York: Springer. [223,224]

Berry, D. A., and Ho, C.-H. (1988), “One-Sided Sequential Stopping Bound-
aries for Clinical Trials: A Decision-Theoretic Approach,” Biometrics, 44,
219-227. [223,226]

Brockwell, A. E., and Kadane, J. B. (2003), “A Gridding Method for Bayesian
Sequential Decision Problems,” Journal of Computational and Graphical
Statistics, 12, 566-584. [226]

Carlin, B. P, Kadane, J. B, and Gelfand, A. E. (1998), “Approaches for
Optimal Sequential Decision Analysis in Clinical Trials,” Biometrics, 54,
964-975. [226]

Cassandra, A., Littman, M. L., and Zhang, N. L. (1997), “Incremental
Pruning: A Simple, Fast, Exact Method for Partially Observable Markov
Decision Processes,” in Proceedings of the Thirteenth conference on Uncer-
tainty in Artificial Intelligence, pp. 54-61. [230]

Christen, J. A., and Nakamura, M. (2003), “Sequential Stopping Rules for
Species Accumulation,” Journal of Agricultural, Biological, and Environ-
mental Statistics, 8, 184-195. [223,226]

Clifton, J., and Laber, E. (2020), “Q-learning: Theory and Applications,”
Annual Review of Statistics and its Application, 7,279-301. [230]

DeGroot, M. (2004), Optimal Statistical Decisions, New York: Wiley-
Interscience. [223,224]

Doshi-Velez, E, and Konidaris, G. (2016), “Hidden Parameter Markov
Decision Processes: A Semiparametric Regression Approach for Dis-
covering Latent Task Parametrizations,” in IJCAIL: Proceedings of the
Conference (Vol. 2016), pp. 1432. [229]

Gaon, M., and Brafman, R. (2020), “Reinforcement Learning with Non-
Markovian Rewards,” in Thirty-fourth AAAI Conference on Artificial
Intelligence. [223]

Grieve, A. P, and Krams, M. (2005), “ASTIN: A Bayesian Adaptive Dose-
Response Trial in Acute Stroke,” Clinical Trials, 2, 340-351. [225]

Grondman, I, Busoniu, L., Lopes, G. A., and Babuska, R. (2012), “A Survey
of Actor-Critic Reinforcement Learning: Standard and Natural Policy
Gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part C,
42,1291-1307. [229]

Hessel, M., Modaylil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., Horgan, D., Piot, B., Azar, M., and Silver, D. (2018), “Rainbow:
Combining Improvements in Deep Reinforcement Learning,” in Thirty-
second AAAI Conference on Artificial Intelligence. [231]

Kadane, J. B., and Vlachos, P. K. (2002), “Hybrid Methods for Calculating
Optimal Few-Stage Sequential Strategies: Data Monitoring for a Clinical
Trial,” Statistics and Computing, 12, 147-152. [226]

MacDonald, B., Ranjan, P.,, and Chipman, H. (2015), “GPfit: An R Package
for Fitting a Gaussian Process Model to Deterministic Simulator Out-
puts,” Journal of Statistical Software, 64, 1-23. [227]

Meibohm, B., and Derendorf, H. (1997), “Basic Concepts of Pharmacoki-
netic/Pharmacodynamic (pk/pd) Modelling,” International Journal of
Clinical Pharmacology and Therapeutics, 35, 401-413. [226]

Mnih, V., Kavukcuoglu, K,, Silver, D., Graves, A., Antonoglou, L., Wierstra,
D., and Riedmiller, M. (2013), “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint 1312.5602. [224,230]

Miiller, P, Berry, D. A., Grieve, A. P.,, Smith, M., and Krams, M. (2007),
“Simulation-based Sequential Bayesian Design,” Journal of Statistical
Planning and Inference, 137, 3140-3150. [223,226,227]

Murphy, S. A. (2003), “Optimal Dynamic Treatment Regimes,” Journal of
the Royal Statistical Society, Series B, 65, 331-355. [223,230]

Murphy, S. A., Oslin, D. W,, Rush, A.], and Zhuy, J. (2007), “Methodological
Challenges in Constructing Effective Treatment Sequences for Chronic
Psychiatric Disorders,” Neuropsychopharmacology, 32, 257-262. [223]

Parmigiani, G., and Inoue, L. (2009), Decision Theory: Principles and
Approaches, Chichester: Wiley. [223]

Puterman, M. L. (2014), Markov Decision Processes: Discrete Stochastic
Dynamic Programming, Hoboken, NJ: Wiley. [224,229]

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann,
N. (2021), “Stable-Baselines3: Reliable Reinforcement Learning Imple-
mentations,” Journal of Machine Learning Research, 22, 1-8. [230,231]

Robins, J. M. (1997), “Causal Inference from Complex Longitudinal Data,”
in Latent Variable Modeling and Applications to Causality, ed. M.
Berkane, pp. 69-117, New York: Springer. [224]

Rossell, D., Miiller, P., and Rosner, G. (2007), “Screening Designs for Drug
Development,” Biostatistics, 8, 595-608. [223,227]

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017), “Deep Rein-
forcement Learning Framework for Autonomous Driving,” Electronic
Imaging, 2017, 70-76. [224,231]

Schulman, J., Wolski, E, Dhariwal, P, Radford, A., and Klimov, O. (2017),
“Proximal Policy Optimization Algorithms,” arXiv preprint 1707.06347.
[231]

Shen, W,, and Huan, X. (2021), “Bayesian Sequential Optimal Experimental
Design for Nonlinear Models Using Policy Gradient Reinforcement
Learning,” arXiv preprint 2110.15335. [223]

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. Simonyan,
K., and Hassabis, D. (2018), “A General Reinforcement Learning Algo-
rithm that Masters Chess, Shogi, and go through Self-Play,” Science, 362,
1140-1144. [224]

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.
(2014), “Deterministic Policy Gradient Algorithms,” in Proceedings of
the 31st International Conference on International Conference on Machine
Learning, pp. 387-395. [225]

Sutton, R. S. and Barto, A. G. (2018), Reinforcement Learning: An Introduc-
tion (Vol. 5), Cambridge, MA: MIT Press, p. 31. [227]

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999), “Policy
Gradient Methods for Reinforcement Learning with Function Approxi-
mation,” in Advances in Neural Information Processing Systems (Vol. 12),
eds. S. Solla, T. Leen, and K. Miiller, MIT Press. [231]

THE AMERICAN STATISTICIAN 233

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez, S., Merel, J.,
Erez, T., Lillicrap, T., Heess, N., and Tassa, Y. (2020), “dm_control: Soft-
ware and Tasks for Continuous Control,” Software Impacts, 6, 100022.
[224,231]

Watkins, C. J., and Dayan, P. (1992), “Q-learning,” Machine Learning, 8,
279-292. [227,229,230]

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K.,
Walsh, T. J., Capobianco, R., Devlic, A., Eckert, E, Fuchs, E, Gilpin, L.,
Khandelwal, P,, Kompella, V., Lin, H. C., MacAlpine, P, Oller, D., Seno,
T., Sherstan, C., Thomure, M. D., Aghabozorgi, H., Barrett, L., Douglas,
R., Whitehead, D., Diirr, P, Stone, P,, Spranger, M., and Kitano, H. (2022),
“Outracing Champion Gran Turismo Drivers with Deep Reinforcement
Learning;” Nature, 602, 223-228. [224,231]

Yu, L, Qin, S., Zhang, M., Shen, C, Jiang, T., and Guan, X. (2021),
‘A Review of Deep Reinforcement Learning for Smart Building
Energy Management,” IEEE Internet of Things Journal, 8, 12046-12063.
[231]

Yu, Y. (2018), “Towards Sample Efficient Reinforcement Learning,” in Pro-
ceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence. [230]

Zhao, Y., Kosorok, M. R., and Zeng, D. (2009), “Reinforcement Learning
Design for Cancer Clinical Trials,” Statistics in Medicine, 28, 3294-3315.
[223]

