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Abstract. Optimized certainty equivalents (OCEs) are a family of risk measures widely used by both prac-
titioners and academics. This is mostly due to its tractability and the fact that it encompasses
important examples, including entropic risk measures and average value-at-risk. In this work we
consider stochastic optimal control problems where the objective criterion is given by an OCE risk
measure or, in other words, a risk minimization problem for controlled diffusions. A major difficulty
arises since OCEs are often time-inconsistent. Nevertheless, via an enlargement of state space we
achieve a substitute of sorts for time-consistency in fair generality. This allows us to derive a dynamic
programming principle and thus recover central results of (risk-neutral) stochastic control theory.
In particular, we show that the value of our risk minimization problem can be characterized as a
viscosity solution of a Hamilton--Jacobi--Bellman--Isaacs equation. We further establish a comparison
principle and uniqueness of the latter under suitable technical conditions.

Key words. risk measures, time-inconsistency, dynamic programming equation, comparison principle, viscosity
solutions, singular Hamiltonian
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1. Introduction and main results. Let T \in (0,\infty ) be a fixed deterministic time horizon
and (\Omega ,\scrF , P ) a given probability space equipped with the completed filtration (\scrF t)t\in [0,T ] of a
d-dimensional Brownian motion W . Further let \BbbA \subseteq \BbbR m be a compact and convex set, let \scrA 
be the set of \BbbA -valued progressively measurable processes, and assume that the functions b, \sigma 
satisfy

(Ab\sigma )

\left\{ 
   
   

(b, \sigma ) : [0, T ]\times \BbbR d \times \BbbR m \rightarrow \BbbR d \times \BbbR d\times d are jointly continuous and bounded;
| b(t, y1, a) - b(s, y2, a)| +\| \sigma (t, y1, a) - \sigma (s, y2, a)\| \leq c2(| t - s| + | y1  - y2| );
for each t, y the set K(t, y) :=

\Bigl\{ 
(b(t, y, a), \sigma \sigma \top (t, y, a)) : a \in \BbbA 

\Bigr\} 
is convex,

where we use \| \cdot \| to denote the operator norm. In particular, under condition (Ab\sigma ), for each
\alpha \in \scrA , the process Y y,\alpha is well-defined:

dY y,\alpha 
t = b(t, Y y,\alpha 

t , \alpha t) dt+ \sigma (t, Y y,\alpha 
t , \alpha t) dWt, Y y,\alpha 

0 = y.(1)
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746 J. BACKHOFF VERAGUAS, A. M. REPPEN, AND L. TANGPI

For the main results in this article we will have to strengthen assumption (Ab\sigma ) by additionally
assuming the following:

\bullet \sigma (t, y, a)\sigma \top (t, y, a) > 0 in the sense of positive definite matrices, namely, that \sigma (t, y, a)
is nondegenerate at each point (t, y, a).

\bullet \sigma (t, y, a) = \sigma (t, y), i.e., that \sigma only depends on time and space but not on the control.
This will be referred to as the uncontrolled \sigma case.

Our aim is to study the optimal control of the d-dimensional diffusion Y for a cost criterion
based on an optimized certainty equivalent (OCE) risk measure \rho . That is, for a given function
f , we focus on the optimal control problem1

(P) inf
\alpha \in \scrA 

\rho (f(Y y,\alpha 
T )).

We assume that f satisfies the condition

(Af) f : \BbbR d \rightarrow \BbbR is continuous, bounded from below, and with polynomial growth.

Problem (P) is a risk minimization one, with \rho (f(Y y,\alpha 
T )) representing the riskiness of f(Y \alpha 

T ).
The problem is then to determine the smallest possible risk and the control \alpha \ast leading to it.
In order to specify \rho , we start with a loss function l : \BbbR \rightarrow \BbbR . That is, a function satisfying
the usual assumptions
(Al)\biggl\{ 

l is increasing, convex, bounded from below with at most polynomial growth, and
l(0) = 0, l\ast (1) = 0, and l(x) > x for | x| large enough,

where l\ast denotes the convex conjugate of l defined as

l\ast (z) := sup
x\in \BbbR 

(xz  - l(x)), z \geq 0.

Note that l\ast is valued on the extended real line. The functional \rho : L0 \rightarrow \BbbR \cup \{ +\infty \} defined
by

(2) \rho (X) := inf
r\in \BbbR 

(\BbbE [l(X  - r)] + r)

is an OCE risk measure. In this interpretation we think of X as a financial/economic loss,
and \rho (X) represents the level of risk2 associated to X or the minimal capital required to make
X ``acceptable"" (see, e.g., [19] for details and [4, 2] for discussions on the interpretation of
OCEs). Notice that, restated for OCE risk measures, problem (P) takes the form

(3) inf
\alpha \in \scrA , r\in \BbbR 

(\BbbE [l(f(Y y,\alpha 
T ) - r)] + r).

Problems of type (P) are sometimes called risk-sensitive decision problems to emphasize
the fact that the objective is not to minimize the (linear) mathematical expectation \BbbE [f(Y y,\alpha 

T )],

1As usual, a running cost can also be included by adding an extra state variable.
2Strictly speaking, it is X \mapsto \rightarrow \rho ( - X) that is a risk measure, but we will work with \rho for notational conve-

nience.
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STOCHASTIC CONTROL OF OCEs 747

but rather a convex risk measure (however, the literature on risk-sensitive control overwhelm-
ingly focuses on the entropic risk measure obtained by choosing l(x) = ex  - 1). In risk-free
optimization problems one usually defines the value function

(Rf) \phi (t, y) = inf
\alpha \in \scrA 

\BbbE [f(Y t,y,\alpha 
T )],

where Y t,y,\alpha denotes the solution of (1) starting at time t from y, and derives the associated
Bellman equation. In contrast, in most cases (P) cannot be (directly) solved using Bellman's
equation as is done for (Rf). This is due to the lack of a property called time-consistency
for the operator \rho . In fact, unless the loss function l is linear or exponential, Bellman's
principle of optimality will not apply for problem (P), hindering the use of standard sto-
chastic control techniques to characterize the value of the problem and/or of the optimal
control.

Example 1.1. For l(x) = ex  - 1, the OCE \rho becomes the ``entropic"" risk measure. This
is essentially the only instance satisfying (Al) leading to a time-consistent risk measure (cf.
Remark 1.5). In fact, in this case \rho satisfies \rho (X) = log\BbbE eX so that, up to a logarithmic
transform, problem (P) reduces to a risk-free optimization problem. This problem is, for
instance, considered in [8] in the context of portfolio optimization. Another popular risk mea-
sure in economics (see, e.g., [24]) is the monotone mean-variance, obtained in our framework

by taking l(x) = ((x+1)+)2 - 1
2 . This leads to a time-inconsistent problem.

The aim of the present work is to show that problem (P) can be still tackled by stochastic
control techniques, in spite of time-inconsistency. The core idea is to enlarge the state space
of the problem and deploy the rich duality theory for risk measures. There are a number of
reasons why we think this is a relevant contribution, among which are the following:

\bullet It is important to know that problem (P) falls into the realm of the well-established
theory of stochastic control. I.e., there is no need for a radically new theory to deal
specifically with OCE risk minimization.

\bullet Our main results, Theorems 1.2 and 1.3 below, are a consequence of this stochastic
control perspective. Therein, we in fact identify a PDE characterizing problem (P).
This may be the basis of a future numerical method.

\bullet Our PDE will be of singular type, with a discontinuous Hamiltonian. Under suitable
assumptions we are able to obtain a comparison principle and therefore the uniqueness
for this PDE. This is remarkable given the singularity of the problem. Our comparison
result also provides comparison for the problem in [1] as a special case.

We refer the reader to the subsection ``Relation with the literature"" below for a brief
history on the idea of state space enlargement and for a summary of existing approaches to
risk minimization.

Main results. We propose that the value function of problem (P), in its incarnation (3),
should take the form

V (t, y, z) := inf
r\in \BbbR , \alpha \in \scrA 

(\BbbE [l(f(Y t,y,\alpha 
T ) - r)] + rz),(4)
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748 J. BACKHOFF VERAGUAS, A. M. REPPEN, AND L. TANGPI

where the z \in [0,\infty ) variable stands for the extension of the state space. Note that V (0, y, 1)
corresponds to the original problem. Through convex duality, we will see that this is a natural
guess since it opens up a stochastic game reformulation:

(5) V (s, y, z) = inf
\alpha 

sup
\beta 

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 
.

This will be made precise in Proposition 2.6, but for the time being it suffices to say that Z is
an auxiliary controlled density process coming from the dual representation of the OCE risk
measures.

Our existence result, Theorem 1.2, characterizes the putative value function in (4) as a
viscosity solution of a second order PDE of Hamilton--Jacobi--Bellman--Isaacs type, as can be
guessed from the game-theoretic reformulation (5). In some cases we prove this solution to be
uniquely determined. A major difficulty we encounter is that the (Hamiltonian of the) PDE
that naturally emerges from the duality theory (see (E) below) is discontinuous. We refer to
section 2 for the definition of viscosity solutions in this setting.

Let
\scrO := \BbbR d \times \scrO z and \scrO T := (0, T )\times \scrO 

and \scrO z := int dom(l\ast ) be the interior of the effective domain of l\ast .

Theorem 1.2. If assumptions (Al), (Af), and (Ab\sigma ) are satisfied and \sigma is uncontrolled
and nondegenerate, then it holds that

inf
\alpha \in \scrA 

\rho (f(Y t,y,\alpha 
T )) = V (t, y, 1),

where V , defined in (4), is a continuous viscosity solution of the Hamilton--Jacobi--Bellman--
Isaacs (HJBI) equation

(DPE)

\left\{ 
          
          

 - \partial tV  - inf
a\in \BbbA 

b(t, y, a)\partial yV  - 1

2
Tr
\Bigl( 
\sigma \sigma \top (t, y)\partial 2yyV

\Bigr) 

 - sup
\beta \in \BbbR d

\biggl( 
1

2
z2| \beta | 2\partial 2zzV + z \partial 2yzV \sigma (t, y)\beta 

\biggr) 
= 0 in \scrO T , (E)

V (T, y, z) = zf(y) - l\ast (z), (y, z) \in \scrO , (\partial TE)

V (t, y, z) = z\phi (t, y) - l\ast (z), (t, y, z) \in [0, T ]\times \partial \scrO . (\partial \scrO E)

Under slightly stronger conditions, the above value function is actually the unique viscosity
solution of the dynamic programming equation in a large class of functions.

Theorem 1.3. If in addition to the assumptions of Theorem 1.2 we assume that the domain
of l\ast is compact and f is linearly growing, then V is the unique continuous viscosity solution
with linear growth of (DPE).

We will see below that in general it holds that V (t, y, z) = inf\alpha \in \scrA \rho 
lz(f(Y t,y,\alpha 

T )), where
\rho lz is the OCE with loss function lz(x) := l(x/z). The variable z comes from the density
of a measure change that we use to extend the state space, thereby making the problem
time-consistent.
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STOCHASTIC CONTROL OF OCEs 749

The existence result applies to both cases in Example 1.1. Existence and uniqueness, on
the other hand, apply to the following important case.

Example 1.4. The average value-at-risk (AVaR) is arguably one of the most used risk
measures by practitioners in the financial and actuarial sectors and by their regulators. It is
obtained in our framework by taking

l(x) = x+/\gamma 

for some \gamma \in (0, 1). That is, \rho (X) = AVaR\gamma (X) is the AVaR at level \gamma . In this case, l\ast (z) = 0
if z \in [0, 1/\gamma ] and +\infty if z \in (1/\gamma ,\infty ). Thus, the domain of l\ast is the compact interval [0, 1/\gamma ].
Under the standing assumptions on (b, \sigma ) and as a consequence of Theorems 1.2 and 1.3, we
have that

V (s, y, z) = inf
\alpha \in \scrA 

AVaR\gamma z(zf(Y
s,y,\alpha 
T ))

is the unique continuous viscosity solution of the HJBI equation (DPE). In particular, V (0, y, 1)
= inf\alpha \in \scrA AVaR\gamma (f(Y

y,\alpha 
T )). Details are given at the end of section 3.

Remark 1.5. If the cost f is bounded, then the statement of Theorem 1.2 remains true
even if the loss function \ell does not satisfy the polynomial growth condition in (Al). This
allows us, for instance, to apply our result to the entropic risk measure discussed in Example
1.1.

Remark 1.6. If V is a classical solution of (DPE), then a verification argument implies
that \alpha (t, y, z) \in argmina\in \BbbA b(t, y, a)\partial yV (t, y, z), together with

\beta (t, y, z) \in argmax\beta \in \BbbR d

\biggl( 
1

2
z2| \beta | 2\partial 2zzV (t, y, z) + z \partial 2yzV (t, y, z)\sigma (t, y)\beta 

\biggr) 
,

is an optimal feedback control in the extended state space. Further, Example 1.4 is also
illustrative as it highlights how solving (DPE) provides more information than just the optimal
value of the problem: Following the discussion in [1, section 2.1.2] we have that if V is
differentiable, then \partial z V (0, y, 1) = inf\alpha \in \scrA VaR\gamma (f(Y

y,\alpha 
T )), i.e., the minimization of the value-

at-risk.

Let us now comment on the technical difficulties that we encounter when proving Theorems
1.2 and 1.3.

Remark 1.7. An essential difficulty in our analysis is the singularity of our Hamiltonian.
Indeed, the optimization over \beta causes discontinuity (and explosions) for \partial 2zzV = 0. This issue
is overcome for existence in Theorem 1.2 by slightly enlarging the class of viscosity solutions
with a weaker solution formulation (see, e.g., [14, section 9] for similar ideas). Nevertheless,
the irregularity of the Hamiltonian is still a major hurdle for uniqueness, especially in the
weaker solution formulation. In fact, the discontinuity of the PDE restricts the choice of
penalization functions in the comparison proof. Fortunately, it is possible to construct the
penalization functions in such a way that the points of interest in the proof are located where
the Hamiltonian is finite. Moreover, we also make ample use of the particular structure of the
PDE, in which the infimum and the supremum are separated.
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Relation with the literature. As already mentioned, we get around the problem of time-
inconsistency through an ``enlargement of the state space"" technique. This approach probably
originated (at least as far as risk-sensitive control problems are concerned) in the works [29, 28]
on optimizations of AVaR in a discrete-time model. The present article expands on the
work [1], where a state space enlargement was used to show that OCE risk measures can be
characterized by viscosity solutions of PDEs. In [1], the control is, so to speak, fixed. By
contrast, here we further consider optimal control of OCEs and investigate uniqueness of a
more general PDE than in [1]. Beyond [1], the work closest to ours is [25], proposing a related
PDE solution method. However, [25] starts by assuming classical solutions exist and considers
a jump-diffusion framework. Arguably, our work then formalizes some of the results in [25] in
the case without jumps.

Other approaches to time-inconsistency can be found, e.g., in [16, 22, 7] for approaches
based on equilibrium strategies and in [36, 6, 21] and the series of papers by Christensen
and Lindensj\"o [13, 12, 11] for approaches based on precommitted strategies. We further refer
to [3, 10, 32] for discrete-time formulations and to [26, 23] for continuous-time formulations.
Compared to these works, the theoretical appeal of our method is that it allows us to use
stochastic control arguments to deal with the risk-sensitive problem (P). Moreover, Theorem
1.2 is of practical interest since it transforms the (numerical) computation of the value of the
problem (P) into a question of numerical approximation of a PDE. For this reason, having
obtained uniqueness is a crucial first step in developing a PDE-based numerical method.

The central argument allowing for the enlargement of state space and hence leading to
Theorem 1.2 is to steer the minimization problem (P) into a stochastic differential game
through the dual representation of the risk measure \rho :

(6) \rho (X) = sup
Z\in L1

+

(\BbbE [XZ] - \BbbE [l\ast (Z)])

(see, e.g., [4]). Notice, however, that in the literature on stochastic differential games, admis-
sible strategies are often defined on much smaller sets. Most papers consider Elliott--Kalton
strategies introduced in [18] or ``elementary strategies"" (cf. [33]). Such formulations cannot be
adopted here since the differential game organically emerges from the problem. This should
also shed some light on the fact that the optimization problem (P) is characterized by an
HJBI equation and not a Hamilton--Jacobi--Bellman (HJB) equation. En route to the proof
of our existence result, we will also show (Proposition 2.6) that

inf
\alpha \in \scrA M,L

\rho (f(Y \alpha 
T )) = V (0, y, 1),

where \scrA M,L is the set of Markovian controls which are Lipschitz continuous. In other words,
the open-loop control problem and the Markov control problem have the same value. This is
a technical contribution which we also want to emphasize. The present paper extends [1] in
which a PDE characterization of \rho (f(Y \alpha 

T )) was obtained for a given (and fixed) \alpha \in \scrA M,L.
More precisely, the paper [1] is concerned with the evaluation of the riskiness of a given
contingent claim and shows that if this claim arises from a diffusion, then its riskiness can
be evaluated by solving an HJB equation. Here we go one step further by considering the

D
o
w

n
lo

ad
ed

 0
5
/3

1
/2

3
 t

o
 1

4
0
.1

8
0
.2

4
0
.1

2
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC CONTROL OF OCEs 751

controlled case in which an agent seeks to compute the minimum risk, and we complement [1]
by deriving uniqueness of the HJBI equation characterizing the value function of the problem.

Articles dealing with optimal control of AVaR include [29, 28, 10, 3] and [26]. The papers
[29, 28, 3] present discrete-time models and propose time-consistent reformulations allowing
to solve AVaR optimization problems. The articles [10] and [26] focus on computational
issues and propose algorithms allowing computation of value functions of AVaR optimization
problems despite the absence of dynamic programming principles. Interestingly, the article
[26] makes use of the bilevel optimization form of the (primal) problem, leveraging an HJB
PDE approach together with a gradient descent step for the outer minimization. Our article
can be seen as an alternative in which we explicitly do not reduce the dimensionality of our
HJBI PDE.

Outline. The remainder of this paper is dedicated to the proofs of our main results. In
section 2, we prove Theorem 1.2. There we also show that the open-loop and Markovian
problems have the same value. In the last section we prove a comparison theorem leading to
Theorem 1.3.

2. Characterization and existence. This section is dedicated to the proof of Theorem 1.2.
It will be split into several intermediate results. Theorem 1.3 is proved in the subsequent
section. For completeness, we recall the notion of viscosity solution we use in Theorem 1.2.
Here and in the rest of the paper, we denote by F and F the lower semicontinuous envelope
and the upper semicontinuous envelope of F , respectively.

Definition 2.1. Let F : [0, T ] \times \scrO \times \BbbR \times \BbbR \times \BbbR d \times \BbbR (d+1)\times (d+1) \rightarrow \BbbR be a given function.
An upper semicontinuous function V : [0, T ]\times \scrO \rightarrow \BbbR is said to be a viscosity subsolution of
the PDE

(7)

\left\{ 
   
   

F (t, y, z, V, \partial tV, \partial yV,D
2V ) = 0 in \scrO T ,

V (T, y, z) = \psi (y, z) = zf(y) - l\ast (z), (y, z) \in \scrO ,
V (t, y, z) = z\phi (t, y) - l\ast (z), (t, y, z) \in [0, T ]\times \partial \scrO 

if for all x0 = (s0, y0, z0) \in [0, T ]\times \scrO and \varphi \in C2([0, T ]\times \scrO ) such that x0 is a local maximizer
of V  - \varphi and \varphi (x0) = V (x0), if s0 = T we have V (x0) \leq \psi (y0, z0), if (y0, z0) \in \partial \scrO we have

V (x0) \leq z0\phi (s0, y0) - l\ast (z0),

and otherwise

F (x0, V (x0), \partial t\varphi (x0), \partial y\varphi (x0), D
2\varphi (x0)) \leq 0.

A lower semicontinuous function V is said to be a viscosity supersolution of (7) if for all
x0 = (s0, y0, z0) \in [0, T ]\times \scrO and \varphi \in C2([0, T ]\times \scrO ) such that x0 is a local minimizer of v - \varphi 
and \varphi (x0) = V (x0), if s0 = T we have v(x0) \geq \psi (y0, z0), if (y0, z0) \in \partial \scrO we have

V (x0) \geq z0\phi (s0, y0) - l\ast (z0),
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and otherwise

F (x0, V (x0), \partial t\varphi (x0), \partial y\varphi (x0), D
2\varphi (x0)) \geq 0.

A function is a viscosity solution if it is both a viscosity sub- and supersolution.

It should be noted that, as shown in [17, Lemma V.4.1], this definition of viscosity solutions
is equivalent to the definition using sub- and superjets given in Definition 3.2 below. For the
equation studied here, i.e., with F representing the left-hand side of (E), F is already upper
semicontinuous, and the upper semicontinuous envelope can be omitted. Moreover, F is locally
continuous around any point at which \partial zz\varphi < 0. Finally, for \partial zz\varphi \geq 0, F \equiv  - \infty and thus
trivially satisfies the condition for subsolutions. This is the relaxation needed for existence at
the points of discontinuity \partial zz\varphi = 0, with the burden instead shifted to the comparison proof.

Let \scrL be the space defined by

\scrL :=

\Biggl\{ 
\beta : [0, T ]\times \Omega \rightarrow \BbbR d, progressively measurable and \BbbE 

\int T

0
| \beta u| 2 du <\infty 

\Biggr\} 
.

It is well-known (see, e.g., [4]) that the functional \rho admits the convex dual representation

\rho (X) = sup
Z\in L1

+:\BbbE [Z]=1

(\BbbE [ZX  - l\ast (Z)]), X \in L\infty ,

and that, by monotone convergence, the representation easily extends to random variables X
that are bounded from below. Furthermore, in our Brownian filtration every random variable
Z \in L1

+ with \BbbE [Z] = 1 can be written as Z = Z0,1,\beta 
T with

(8) dZs,z,\beta 
t = \beta tZ

s,z,\beta 
t dWt, Zs,z,\beta 

s = z for some \beta \in \scrL .

Thus, by (6), the value function associated to the control problem (P) is given by

(9) V (s, y, z) = inf
\alpha \in \scrA 

sup
\beta \in \scrL 

\BbbE 

\Bigl[ 
Zs,z,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,z,\alpha 
T )

\Bigr] 
,

where Y s,y,\alpha denotes the solution of (1) on [s, T ] starting from Ys = y.
The rest of the proof is devoted to showing that V is a viscosity solution to (DPE). To that

end, it shall be useful to restrict the optimization problem to the so-called Markov controls,
which we define as

\scrA M := \{ \alpha : [0, T ]\times \BbbR d \rightarrow \BbbA , Borel measurable\} 

or to the more relevant subset

\scrA M,L = \{ \alpha : [0, T ]\times \BbbR d \rightarrow \BbbA , Lipschitz continuous\} .

The advantage of working with a control \alpha \in \scrA M,L is that the associated state process Y \alpha is
determined by coefficients satisfying the assumptions in [1]. This opens the way to leverage
some of the results obtained in [1] for the uncontrolled case.
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We will also consider the subset \scrL b of \scrL given by

\scrL b :=

\Biggl\{ 
\beta \in \scrL : sup

t\in [0,T ]
| \beta t| \in L\infty 

\Biggr\} 
.

Lemma 2.2. Suppose that (b, \sigma ) satisfy (Ab\sigma ). Take \beta \in \scrL b so that abusing notation, we
put \beta = \beta (W ), where \beta is a progressive bounded process on the canonical space C([0, T ];\BbbR d).

Given I \subset [0, T ],\Delta \subset \BbbR d compact, we write \Gamma for the set of the laws of all processes Y s,y,\alpha ,\beta 

constructed on some filtered probability space (\~\Omega , \~\scrF , \~P ) for which, for some s \in I, y \in \Delta , we

have Y s,y,\alpha ,\beta 
t := y if t \leq s, while for t > s,

dY s,y,\alpha ,\beta 
t = [b(t, Y s,y,\alpha ,\beta 

t , \alpha t) + \sigma \sigma \top (t, Y s,y,\alpha ,\beta 
t , \alpha t)\beta t( \~W )]dt+ \sigma (t, Y s,y,\alpha ,\beta 

t , \alpha t)d \~Wt

and where \alpha is some \~\scrF -progressive and \BbbA -valued process while \~W is some ( \~\scrF , \~P )-Brownian
motion. Then, for any \kappa \geq 1, the set \Gamma is compact in the \scrW \kappa -topology

3.

Proof. The drift and volatility terms of Y s,y,\alpha ,\beta 
t are bounded, as well as the initial condi-

tions (s, y). It follows from, e.g., [35] that \Gamma is relatively compact with respect to the weak
topology induced by continuous bounded functions on C([0, T ];\BbbR d). Since (b, \sigma ) are bounded it
follows from the classical Burkholder-Davis-Gundy (BDG) inequalities that \~\BbbE [supt\leq T

| Y s,y,\alpha ,\beta 
t | 1+\kappa ] \leq c for some constant c uniformly in \Gamma . From this it easily follows that \Gamma 

is also relatively compact with respect to the \scrW \kappa -topology.
To finish the proof it suffices to show that \Gamma is weakly closed. Take \{ sn, yn\} \subset I \times \Delta and

(\alpha n) progressive and \BbbA -valued possibly in different stochastic bases (\~\Omega n, \~\scrF n, \~Pn), respectively,
with a Brownian motion \~Wn, and suppose Law(Y sn,yn,\alpha n,\beta ) \rightarrow \BbbQ . By selecting a subsequence
we may suppose sn \rightarrow s \in I and yn \rightarrow y \in \Delta . We introduce

\=\Omega = C([0, T ];\BbbR d)\times C([0, T ];\BbbR d)\times \scrP ([0, T ]\times \BbbA )

with generic elements denoted \=\omega = (\omega 1, \omega 2, q). The space C([0, T ];\BbbR d) is equipped with its
canonical filtration, denoted (\scrF 1

t )t, and the space \scrP ([0, T ]\times \BbbA ) is equipped with the filtration
(\scrF 2

t )t, where \scrF 2
t is the sigma-algebra generated by the sets \{ q(J \times G) : J \subset [0, t], G \subset 

\BbbA measurable\} so that \=\Omega is equipped with the product filtration \=\scrF t = \scrF 1
t \times \scrF 1

t \times \scrF 2
t . We

embedd Law(Y sn,yn,\alpha n,\beta ) into \scrP (\=\Omega ) by considering Qn := Law(Y sn,yn,\alpha n,\beta , \~Wn, An), where
An = 1[0,T ]dt\delta \alpha n

t
. As the space \scrP ([0, T ]\times \BbbA ) is compact and since the second marginal of Qn

is fixed, up to taking a further subsequence we may assume Qn \rightarrow Q weakly. Necessarily the
first marginal of Q is equal to \BbbQ , the process \omega 2 is a ( \=\scrF , Q)-Brownian motion, and Q-a.s. the
first marginal of q is a Lebesgue measure on [0, T ].

3Pn \rightarrow P in this topology if and only if
\int 
FdPn \rightarrow 

\int 
FdP for any F \in C(C([0, T ];\BbbR d)) with

sup\omega \in C([0,T ];\BbbR d)
| F (\omega )| 

1+\mathrm{s}\mathrm{u}\mathrm{p}t\in [0,T ] | \omega t| \kappa 
< \infty . This convergence is metrized by the so-called \kappa -Wasserstein

(hence \scrW \kappa ) distance on the space of probability measures on C([0, T ];\BbbR d) for which the function \omega \mapsto \rightarrow 
supt\in [0,T ] | \omega t| 

\kappa is integrable. A set \Gamma is relatively compact in this topology if and only if it is tight and

limN\rightarrow \infty supP\in \Gamma 

\int 
\mathrm{s}\mathrm{u}\mathrm{p}t\in [0,T ] | \omega t| \geq N

supt\in [0,T ] | \omega t| 
\kappa dP (\omega ) = 0.
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In terms of the martingale problem, we have, for all t, a \geq 0, all continuous bounded func-
tions h : \=\Omega \rightarrow \BbbR which are \=\scrF t-measurable, and all \phi \in C(\BbbR d) twice-continuously differentiable
with bounded derivatives, that

\int 
h(\=\omega )[Mn,\phi 

t+a  - Mn,\phi 
t ]dQn = 0,(10)

where Mn,\phi 
t =Mn,\phi 

t (\=\omega ) is defined by

\phi (\omega 1
sn\vee t) - 

\int 

[sn,sn\vee t]\times \BbbA 

\biggl\{ \sum 

i

bi(r, \omega 
1
t , a)\partial i\phi (\omega 

1
t )

+
\sum 

i,j

(\sigma \sigma \top (r, \omega 1
t , a))ij

\biggl[ 
(\beta r(\omega 

2))j\partial i\phi (\omega 
1
t ) +

1

2
\partial 2i,j\phi (\omega 

1
t )

\biggr] \biggr\} 
q(dr, da).

Clearly Mn,\phi 
t converges uniformly to M\phi 

t defined by

\phi (\omega 1
s\vee t) - 

\int 

[s,s\vee t]\times \BbbA 

\biggl\{ \sum 

i

bi(r, \omega 
1
t , a)\partial i\phi (\omega 

1
t )

+
\sum 

i,j

(\sigma \sigma \top (r, \omega 1
t , a))ij

\biggl[ 
(\beta r(\omega 

2))j\partial i\phi (\omega 
1
t ) +

1

2
\partial 2i,j\phi (\omega 

1
t )

\biggr] \biggr\} 
q(dr, da),

the latter being jointly measurable in \=\omega and bounded. On the other hand, as a function of
(\omega 1, q) the same function is Q-almost continuous. By the last statement we mean that the
measure Q gives mass 1 to those q for which the first marginal is Lebesgue, and these are
in particular continuity points for the term (\omega 1, q) \mapsto \rightarrow 

\int 
\{ . . . \} dq above. Finally, since the

\omega 2-marginal is fixed, a standard Lusin argument and (10) allow us to conclude that
\int 
h(\=\omega )[M\phi 

t+a  - M\phi 
t ]dQ = 0.(11)

To finalize the proof, recall the convexity assumption in (Ab\sigma ) and the set K(t, y) defined
therein, which is not only convex but also compact by continuity of (b, \sigma ) and compactness of
\BbbA . After disintegration, we hence observe that Q-a.s,

\int 

\BbbA 

(bi(r, \omega 
1
r , a), \sigma \sigma 

\top (r, \omega 1
r , a))qr(da) \in K(r, \omega 1

r ).

Hence a measurable selection argument as in [5, Lemma 5] provides the existence of \alpha , some
\=\scrF -progressive and \BbbA -valued process, such that

\int 

\BbbA 

(bi(r, \omega 
1
r , a), \sigma \sigma 

\top (r, \omega 1
r , a))qr(da) = (bi(r, \omega 

1
r , \alpha r), \sigma \sigma 

\top (r, \omega 1
r , \alpha r)).

Observing that \phi (\omega 1
s\vee t) - M\phi 

t can be then written as

\int s\vee t

s

\left\{ 
 
 
\sum 

i

bi(r, \omega 
1
t , \alpha r)\partial i\phi (\omega 

1
t ) +

\sum 

i,j

(\sigma \sigma \top (r, \omega 1
t , \alpha r))ij

\biggl[ 
(\beta r(\omega 

2))j\partial i\phi (\omega 
1
t ) +

1

2
\partial 2i,j\phi (\omega 

1
t )

\biggr] \right\}  
 dr,
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we derive, from (11) and the correspondence between weak solutions and martingale problems,
that the process \omega 1, which we may relabel Y s,y,\alpha ,\beta , is under (\=\Omega , \=\scrF , \=P ) just as stated in this
lemma and has law \BbbQ as desired.

Remark 2.3. Note that the existence of optimal control in a weak sense for the control
problem (P) follows as a direct consequence of the above Lemma 2.2.

Lemma 2.4. If assumptions (Ab\sigma ), (Af), and (Al) are satisfied, then for every strategy
\alpha \in \scrA , there is a strategy \~\alpha \in \scrA M such that \rho (f(Y \alpha 

T )) = \rho (f(Y \~\alpha 
T )), where the process Y \~\alpha is

built on a possibly different probability space as in Lemma 2.2.

Proof. Given \alpha \in \scrA , we may apply [9, Corollary 3.7], which extends the original [20,
Theorem 4.6], to obtain the existence of functions \~b, \~\sigma such that the equation

d \~Yt = \~b(t, \~Yt)dt+ \~\sigma (t, \~Yt)d \~Wt

admits a weak solution (i.e., on some probability space with some Brownian motion \~W )
with one-dimensional marginals that coincide with those of Y \alpha . In particular, \~b(t, y) :=
\BbbE [b(t, Y \alpha 

t , \alpha t)| Y \alpha 
t = y] and \~\sigma \~\sigma \top (t, y) := \BbbE [\sigma \sigma \top (t, Y \alpha 

t , \alpha t)| Y \alpha 
t = y] so that (\~b(t, y), \~\sigma \~\sigma \top (t, y))

belongs to the convex compact set K(t, y) introduced in assumption (Ab\sigma ). Therefore, a
measurable selection argument as in [5, Lemma 5] allows us to find a Borel measurable function
\~\alpha : [0, T ]\times \BbbR d \rightarrow \BbbA such that \~b(t, y) = b(t, y, \~\alpha (t, y)) and \~\sigma \~\sigma \top (t, y) = \~\sigma \~\sigma \top (t, y, \~\alpha (t, y)). Thus,
\~\alpha \in \scrA M and \~Y = Y \~\alpha with

(12) dY \~\alpha 
t = b(t, Y \~\alpha 

t , \~\alpha (t, Y
\~\alpha 
t )) dt+ \sigma (t, Y \~\alpha 

t , \~\alpha (t, Y
\~\alpha 
t )) d \~Wt.

Since OCE risk measures are law invariant, we conclude that \rho (f(Y \alpha 
T )) = \rho (f(Y \~\alpha 

T )).

Lemma 2.5. Assume (Ab\sigma ), that \sigma is uncontrolled and nondegenerate, and that \alpha is a
measurable \BbbA -valued Markov control, and build Y \alpha on some probability space (\~\Omega , \~\scrF , \~P ). Then
there is a sequence \alpha n of Lipschitz \BbbA -valued Markov controls such that

\~\BbbE [F (Y y,s,\alpha n)] \rightarrow \~\BbbE [F (Y y,s,\alpha )]

for all F : C([s, T ];\BbbR d) \rightarrow \BbbR measurable and with at most polynomial growth.

Proof. Without loss of generality, take s = 0 and y = 0.
Step 0: It is enough to settle the question up to exit times. Suppose we have found a

sequence \alpha n of Lipschitz \BbbA -valued Markov controls such that

\~\BbbE [F (Y 0,0,\alpha n,R)] \rightarrow \~\BbbE [F (Y 0,0,\alpha ,R)](13)

for all R > 0 and all F : C([0, T ];\BbbR d) \rightarrow \BbbR measurable and with at most polynomial growth,
whereby Y 0,0,\alpha n,R (resp., Y 0,0,\alpha ,R) denotes the process Y 0,0,\alpha n (resp., Y 0,0,\alpha ) stopped at its
first exit from the ball with center the origin and radius R, if this time is smaller than T .

We remark that

lim
R\nearrow \infty 

sup
\=\alpha \in \{ \alpha n\} n\cup \{ \alpha \} 

\bigm| \bigm| \bigm| \bigm| \~\BbbE 
\Bigl[ 
1\{ \| Y 0,0,\=\alpha \| \infty \geq R\} \{ F (Y 0,0,\=\alpha ,R) - F (Y 0,0,\=\alpha )\} 

\Bigr] \bigm| \bigm| \bigm| \bigm| = 0
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by the polynomial growth of F , the precompactness established in Lemma 2.2, and the fact
that if

\tau R(\omega ) := inf\{ t \in [0, T ] : | \omega t| \geq R\} \wedge T,
then for all continuous paths \omega we have

1\{ \mathrm{s}\mathrm{u}\mathrm{p}t\in [0,T ] | \omega t\wedge \tau R(\omega )| \geq N\} sup
t\in [0,T ]

| \omega t\wedge \tau R(\omega )| \kappa \leq 1\{ \mathrm{s}\mathrm{u}\mathrm{p}t\in [0,T ] | \omega t| \geq N\} sup
t\in [0,T ]

| \omega t| \kappa .

From this remark, it is direct to drop the radius R from (13).

Step 1: Construction of the sequence (\alpha n). Define Y as the unique strong solution to dYt =
\sigma (t, Yt)d \~Wt, denote \BbbQ := Law(Y ) and \BbbQ t the t-marginal of \BbbQ . Call \mu (dt, dx) := \BbbQ t(dx)dt. We
will build \alpha n as stipulated such that \alpha n \rightarrow \alpha in L2(\mu ). By Lusin's theorem, for each \varepsilon we
find F\varepsilon \subset [0, T ]\times \BbbR d compact such that \mu (F\varepsilon ) \geq 1 - \varepsilon and \alpha | F\varepsilon is continuous. By the Tietze
extension theorem, particularly in the version of [15, Theorem 4.1], we build \alpha \varepsilon as a continuous
extension of \alpha | F\varepsilon , still \BbbA -valued since \BbbA is closed and convex. Via mollification we take
\alpha \varepsilon ,\eta \rightarrow \alpha \varepsilon , locally uniformly as \eta \rightarrow 0, each of which is smooth and \BbbA -valued since \BbbA is convex.
In particular \alpha \varepsilon ,\eta | F\varepsilon is Lipschitz and \alpha \varepsilon ,\eta | F\epsilon \rightarrow \alpha \epsilon | F\epsilon = \alpha | F\varepsilon uniformly as \eta \rightarrow 0. We can now
take by [27, Theorem 1] \=\alpha \varepsilon ,\eta a Lipschitz extension of \alpha \varepsilon ,\eta | F\varepsilon which is still \BbbA -valued since \BbbA is
closed and convex. With the help of \{ \=\alpha \varepsilon ,\eta \} \varepsilon ,\eta we can build a sequence \{ \alpha n\} n such that

\bullet \alpha n is Lipschitz and \BbbA -valued;
\bullet sup(t,x)\in F1/n

| \alpha n(t, x) - \alpha (t, x)| \leq 1/n.

From here it follows, since \BbbA is compact, that

\| \alpha n  - \alpha \| 2L2(\mu ) \leq 1/n2 \times (1 - 1/n) +
2

n
sup
x\in \BbbA 

| x| 2,

and so \alpha n \rightarrow \alpha in L2(\mu ). We remark that, by continuity and under the nondegeneracy
assumption on \sigma , the matrix \sigma \sigma \top is invertible and locally uniformly elliptic, the latter mean-
ing that for all t \in [0, T ] and | y| \leq R we have \sigma (t, y)\sigma \top (t, y) \geq \lambda RI for some \lambda R > 0. Hence
the same holds for \sigma . Thus for each R > 0, and recalling the notation for \tau R from Step 0, it
easily follows, from these considerations, the Lipschitz property of b, and It\^o isometry, that

lim
n

\int \tau R(Y )

0

\biggl\{ 
b(u, Yu, \alpha n(u, Yu))d \~Wu  - 1

2
| \sigma (u, Yu) - 1b(u, Yu, \alpha n(u, Yu))| 2du

\biggr\} 

=

\int \tau R(Y )

0

\biggl\{ 
b(u, Yu, \alpha (u, Yu))d \~Wu  - 1

2
| \sigma (u, Yu) - 1b(u, Yu, \alpha (u, Yu))| 2du

\biggr\} 
(14)

in L2 and so, up to taking a subsequence, almost surely as well.

Step 2: Representation via Girsanov's transform. Consider the stochastic exponentials

ZR
T := \scrE (

\int \tau R(Y )
0 \sigma (t, Yt)

 - 1b(t, Yt, \alpha (t, Yt))d \~Wt) and Z
n,R
T

:= \scrE (
\int \tau R(Y )
0 \sigma (t, Yt)

 - 1b(t, Yt, \alpha n(t, Yt))

d \~Wt) for an arbitrary R > 0 . By SDE estimates \{ Zn,R
T \} n is Lp-bounded for every p \geq 2.

Selecting subsequences (thanks to Alaoglu's theorem) and a diagonalization argument gives
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that Zn,R
T \rightarrow ZR in the weak topology of Lp for all p \geq 2, but by (14) we must have ZR = ZR

T .
We conclude in particular that

\~\BbbE 
\Bigl[ 
F (Y )Zn,R

T

\Bigr] 
\rightarrow \~\BbbE 

\Bigl[ 
F (Y )ZR

T

\Bigr] 
(15)

for F measurable and such that \~\BbbE [| F (Y )| q] <\infty for some q \in (1, 2]. If | F (\omega )| \leq c[1+supt | \omega t| k]
with k \in \BbbN , then \~\BbbE [| F (Y )| q] < \infty is guaranteed by the Burkholder-Davis-Gundy (BDG) in-

equality, as \sigma is bounded. Finally, observe by Girsanov's theorem that \~W\cdot  - 
\int \cdot \wedge \tau R(Y )
0 \sigma (t, Yt)

 - 1

b(t, Yt, \alpha (t, Yt))dt (resp., \~W\cdot  - 
\int \cdot \wedge \tau R(Y )
0 \sigma (t, Yt)

 - 1b(t, Yt, \alpha n(t, Yt))dt) is a ZR
T
\~P -Brownian mo-

tion (resp., a Zn,R
T

\~P -Brownian motion), and so on \{ t \leq \tau R(Y )\} we have that dYt =
b(t, Yt, \alpha (t, Yt))dt+\sigma (t, Yt)dBt forB a ZR

T
\~P -Brownian motion (resp., dYt = b(t, Yt, \alpha n(t, Yt))dt+

\sigma (t, Yt)dB
n
t for Bn a Zn,R

T
\~P -Brownian motion). Recalling from Step 0 the notation that R

as a superscript means the path stopped at its exit time from the ball of said radius, it fol-
lows by uniqueness in law (see [34, Theorem 5.6]) that \~\BbbE [F (Y R)Zn

T ] =
\~\BbbE [F (Y 0,0,\alpha n,R)] and

\~\BbbE [F (Y R)ZT ] = \~\BbbE [F (Y 0,0,\alpha ,R)]. This and (15), the latter applied to FR(\omega ) := F (\omega R) to be
precise, establish the validity of Step 0 and hence conclude the proof.

The following proposition shows that the open-loop and the Markovian formulations of
the control problem have the same value, and in fact the Markov controls can be chosen to
be Lipschitz.

Proposition 2.6. If assumptions (Ab\sigma ), (Af), and (Al) are satisfied and \sigma is uncontrolled
and nondegenerate, then

(16) V (s, y, z) = inf
\alpha \in \scrA M,L

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 

for all (t, y, z) \in [0, T ]\times \scrO .

Proof. It was shown in [1, Proposition 3.2] that if f is bounded and l satisfies (Al), then

\rho (f(Y s,y,\alpha 
T )) = sup

\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 

for every s, y, \alpha . Since f(Y s,y,\alpha 
T ) = limn\rightarrow \infty f(Y s,y,\alpha 

T ) \wedge n, it follows by monotone convergence
that the above holds for f bounded from below. Thus,

(17) V (s, y, z) = inf
\alpha \in \scrA 

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 
,

from which it follows that V is smaller than the right-hand side in (16).
Let us prove the reverse inequality. For every \varepsilon > 0, there is \alpha \in \scrA such that

V (s, y, z) \geq sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
(f(Y s,y,\alpha 

T ))Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 
 - \varepsilon = \rho lz(zf(Y s,y,\alpha 

T )) - \varepsilon ,

where the equality follows from [1, Proposition 2.8] and \rho lz is the OCE corresponding to the
loss function lz(x) := l(x/z). By Lemma 2.4, there is \~\alpha \in \scrA M such that \rho lz(zf(Y s,y,\alpha 

T )) =

\rho lz(zf(Y s,y,\~\alpha 
T )). Remark that Y s,y,\~\alpha is constructed on some (possibly different) stochastic
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basis (\~\Omega , \~\scrF , \~P ) and Brownian motion \~W . Furthermore, by Lemma 2.5, there is a sequence
\alpha n of \BbbA -valued Markov Lipschitz controls such that \~\BbbE [F (Y s,y,\alpha n)] \rightarrow \~\BbbE [F (Y y,s,\alpha )] for every
measurable, real-valued function F on C([s, T ],\BbbR d) with at most polynomial growth. Using
again [1, Proposition 2.8] and the fact that \rho lz is law-invariant, there is r \in \BbbR such that
denoting by \mu 

Y
s,y,\~\alpha 
T

the law of Y s,y,\~\alpha 
T , we have

V (s, y, z) \geq \rho lz(zf(Y s,y,\~\alpha 
T )) - \varepsilon \geq 

\int 
l(f(x) - r)\mu 

Y
s,y,\~\alpha 
T

(dx) + zr  - 2\varepsilon 

= \~\BbbE [l(f(Y s,y,\~\alpha 
T ) - r)] + zr  - 2\varepsilon .

Therefore, letting F (\omega ) = l(f(\omega T )  - r), which is continuous and with at most polynomial
growth under the assumptions on l and f , we have

V (s, y, z) \geq lim
n\rightarrow \infty 

\~\BbbE [l(f(Y s,y,\alpha n

T ) - r)] + zr  - 2\varepsilon 

\geq inf
\alpha \in \scrA M,L

inf
r\in \BbbR 

(\~\BbbE [l(f(Y s,y,\alpha 
T ) - r)] + zr) - 2\varepsilon 

= inf
\alpha \in \scrA M,L

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 
 - 2\varepsilon .

Dropping \varepsilon yields the desired result.

Lemma 2.7. If assumptions (Ab\sigma ), (Af), and (Al) are satisfied, then the function V is
real-valued and continuous on [0, T ]\times \scrO . Moreover, it holds that

(18) V (s, y, z) = z\phi (s, y) - l\ast (z) for all (t, y, z) \in [0, T ]\times \partial \scrO .

If the domain of l\ast is closed, then V is continuous on [0, T ]\times \scrO .

Proof. Since f is bounded from below we have V >  - \infty , and, by the polynomial growth
property of f and l and the representation (4), that V < \infty . Recall that due to the growth
conditions on b and \sigma the random variable Y s,y,\alpha 

T has moments of every order.
Step 1: Upper semicontinuity. Regarding the continuity statement, let (sn, yn, zn) be

a sequence converging to (s, y, z). For every \alpha \in \scrA , it follows by standard stability results
for SDEs (see, e.g., [31, section V.5]) that Y sn,yn,\alpha 

T converges to Y s,y,\alpha 
T in Lp for all p < \infty .

Thus, for every r \in \BbbR , by dominated convergence, continuity of l and f , and their polynomial
growth, we have that

lim sup
n\rightarrow \infty 

V (sn, yn, zn) \leq lim sup
n\rightarrow \infty 

\BbbE [l(f(Y sn,yn,\alpha 
T ) - r) + rzn]

= \BbbE [l(f(Y s,y,\alpha 
T ) - r) + rz].

This shows that

lim sup
n\rightarrow \infty 

V (sn, yn, zn) \leq V (s, y, z),

from which upper semicontinuity follows.
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Step 2: Lower semicontinuity on the interior. To prove lower semicontinuity, let (sn, yn, zn)
be a sequence converging to (s, y, z). For every n, there is \alpha n \in \scrA such that

V (sn, yn, zn) \geq \BbbE 

\Bigl[ 
Zsn,zn,\beta 
T f(Y sn,yn,\alpha n

T ) - l\ast (Zsn,zn,\beta 
T )

\Bigr] 
 - 1

n
for all \beta \in \scrL b.

Let Q be the probability measure absolutely continuous with respect to P and with Radon--
Nikodym density Zs,z,\beta 

T and WQ := W +
\int \cdot 
0 \beta u du. By Girsanov's theorem WQ is a Q-

Brownian motion and Y sn,yn,\alpha n

t = yn +
\int t
sn
b(u, Y sn,yn,\alpha n

u , \alpha n
u) + \sigma (u, Y sn,yn,\alpha n

u , \alpha n
u)\beta u du +\int t

sn
\sigma (u, Y sn,yn,\alpha n

u , \alpha n
u) dW

Q
u . Lemma 2.2 then ensures the existence of a control \alpha \in \scrA such

that, up to a subsequence, it holds that \BbbE Q[f(Y
sn,yn,\alpha n

T )] \rightarrow \BbbE Q[f(Y
s,y,\alpha 
T )]. Moreover, since

Zsn,yn,\beta 
T converges to Zs,y,\beta 

T in L2, \beta is bounded, and f is of polynomial growth, we have

\BbbE [Zsn,yn,\beta 
T f(Y s,y,\alpha 

T )] \rightarrow \BbbE [Zs,y,\beta 
T f(Y s,y,\alpha 

T )]. Therefore, it follows by triangular inequality that

\BbbE [Zsn,zn,\beta 
T f(Y sn,yn,\alpha n

T )] \rightarrow \BbbE [Zs,y,\beta 
T f(Y s,y,\alpha 

T )].

Hence, by continuity of l\ast on its domain, we have that

lim inf
n\rightarrow \infty 

V (sn, yn, zn) \geq \BbbE [Zs,y,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,y,z
T )],

and since \beta \in \scrL b was taken arbitrarily this allows us to conclude that

lim inf
n\rightarrow \infty 

V (sn, yn, zn) \geq V (s, y, z).

Step 3: Boundary value (18). Assume s < T and z \in \partial \scrO z. There are a \in [0,\infty ) and
b \in (0,\infty ] such that int dom(l\ast ) = (a, b). Thus, \partial \scrO z = \{ a, b\} if b < \infty and \partial \scrO z = \{ a\} 
otherwise. If a = 0 and b = \infty , it is clear, by (18), that z \in \partial \scrO z implies V (s, y, z) = l\ast (0).

Let us assume a > 0. If \beta \in \scrL is such that P \otimes dt(\beta t \not = 0) > 0, then P (Zs,1,\beta 
T \not = 1) > 0

because otherwise Zs,1,\beta 
t = 1 P -a.s. for every t \geq s and thus \beta = 0, a contradiction. And since

Zs,1,\beta 
T \not = 1 with positive probability, it follows that aZs,1,\beta 

T /\in dom(l\ast ) with positive probability.

In fact, if aZs,1,\beta 
T \in dom(l\ast ) \subseteq [a,\infty ), then aZs,1,\beta 

T \geq 1. Since Zs,1,\beta is a martingale starting at

1, this implies that Zs,1,\beta 
T = 1, a contradiction. Thus, \BbbE [aZs,1,\beta 

T f(Y s,y,\alpha 
T ) - l\ast (aZs,1,\beta 

T )] =  - \infty .

If \beta = 0, then \BbbE [aZs,1,0
T f(Y s,y,\alpha 

T ) - l\ast (aZs,1,0
T )] = a\BbbE [f(Y s,y,\alpha 

T )] - l\ast (a). Hence,

V (s, y, a) = inf
\alpha \in \scrA 

a\BbbE [f(Y s,y,\alpha 
T )] - l\ast (a) = a\phi (s, y) - l\ast (a).

The case 0 < b <\infty is handled analogously.
Step 4: Lower semicontinuity on the boundary. If the domain of l\ast is closed, upper

semicontinuity on [0, T ] \times \scrO follows exactly as in Step 1. As to lower semicontinuity, let
(sn, yn, zn) \in [0, T ]\times \scrO converge to (s, y, z) and z \in \partial \scrO z, Then, by definition of \phi ,

lim sup
n\rightarrow \infty 

V (sn, yn, zn) \geq lim sup
n\rightarrow \infty 

zn\phi (sn, yn) - l\ast (zn) = z\phi (s, y) - l\ast (z) = V (s, y, z)
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Consider the ``approximate value function""

(19) V n(s, y, z) := inf
\alpha \in \scrA 

sup
\beta \in \scrL n

\BbbE [Zs,z,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,z,\beta 
T )]

with \scrL n := \{ \beta \in \scrL b : | \beta | \leq n\} .
Proposition 2.8. If assumptions (Ab\sigma ), (Af), and (Al) are satisfied, then (V n) converges

pointwise to V .

Proof. It is clear that lim supn\rightarrow \infty V n \leq V pointwise on [0, T ]\times \BbbR d \times \scrO z.
Let us prove that lim infn\rightarrow \infty V n \geq V . Let \beta \in \scrL b. There is N such that \beta \in \scrL N . For

n \geq N , we can find \alpha n \in \scrA such that putting Y n := Y s,y,\alpha n
one has

1/n+ V n(s, y, z) \geq \BbbE 

\Bigl[ 
Zs,z,\beta 
T f(Y n

T ) - l\ast (Zs,z,\beta 
T )

\Bigr] 
.(20)

Hence, for \beta \in \scrL n fixed, it follows by Lemma 2.2 and Girsanov's theorem that there is \alpha \in \scrA 
such that, up to a subsequence, \BbbE 

\bigl[ 
Zs,z,\beta 
T f(Y n

T )
\bigr] 
\rightarrow \BbbE 

\bigl[ 
Zs,z,\beta 
T f(Y s,y,\alpha 

T )
\bigr] 
. Hence we may take

limit in the Y 's in (20) while leaving \beta fixed, obtaining

lim inf
n

V n(s, y, z) \geq \BbbE 

\Bigl[ 
Zs,z,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,z,\beta 
T )

\Bigr] 
.

Thus, since \beta was taken arbitrarily, we have

lim inf
n

V n(s, y, z) \geq sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
Zs,z,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,z,\beta 
T )

\Bigr] 
.

This yields
lim inf
n\rightarrow \infty 

V n(s, y, z) \geq V (s, y, z).

We now have the following dynamic programming principle for the function V .

Proposition 2.9. If assumptions (Ab\sigma ), (Af), and (Al) are satisfied and \sigma is uncontrolled
and nondegenerate, then the dynamic programming principle holds in the following form: For
all 0 \leq s \leq \theta \leq T we have

(21) V (s, y, z) = inf
\alpha \in \scrA s,\theta 

sup
\beta \in \scrL s,\theta 

b

\BbbE 

\Bigl[ 
V (\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
,

where \scrA s,\theta denotes the restriction of the elements in \scrA to the interval [s, \theta ], with a similar

notation for \scrL s,\theta 
b . Equation (21) also holds for V n (defined in (19)) instead of V , with \scrL s,\theta 

b

replaced by \scrL s,\theta 
n , and defined analogously.

Proof. By Proposition 2.6 we have that V (s, y, z) = inf\alpha \in \scrA M,L V \alpha (s, y, z) with

(22) V \alpha (s, y, z) := sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 

for each \alpha \in \scrA M,L. It was shown in [1, Corollary 3.8] that V \alpha satisfies the Dynamic Program-
ming Principle (DPP)

V \alpha (s, y, z) = sup
\beta \in \scrL s,\theta 

b

\BbbE [V \alpha (\theta , Y s,y,\alpha 
\theta , Zs,z,\beta 

\theta )].(23)
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Now let \varepsilon > 0. Then, there is a control \alpha \varepsilon \in \scrA M,L (depending also on s, y, z) such that
V (s, y, z) \geq V \alpha \varepsilon 

(s, y, z) - \varepsilon . Thus, we have

V (s, y, z) \geq sup
\beta \in \scrL s,\theta 

b

\BbbE 

\Bigl[ 
V \alpha \varepsilon 

(\theta , Y s,y,\alpha \varepsilon 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
 - \varepsilon 

\geq sup
\beta \in \scrL s,\theta 

b

\BbbE 

\Bigl[ 
V (\theta , Y s,y,\alpha \varepsilon 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
 - \varepsilon 

\geq inf
\alpha \in \scrA 

sup
\beta \in \scrL s,\theta 

b

\BbbE 

\Bigl[ 
V (\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
 - \varepsilon .

Sending \varepsilon to zero we conclude that the left-hand side in (21) is the greater one.
Let us now show the reverse inequality

(24) V (s, y, z) \leq inf
\alpha \in \scrA s,\theta 

sup
\beta \in \scrL s,\theta 

b

\BbbE 

\Bigl[ 
V (\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 

for all [s, T ]-valued stopping time \theta . To that end, let (s, y, z) \in [0, T ]\times \BbbR d\times \scrO z, \theta a [s, T ]-valued
stopping time, \alpha \in \scrA s,\theta , and \beta \in \scrL b. Notice that the set

\Biggl\{ 
K\gamma := \BbbE 

\biggl[ 
Z

\theta ,Z
s,z,\beta 
\theta ,\beta 

T f(Y
\theta ,Y

s,y,\alpha 
\theta ,\gamma 

T ) - l\ast (Z
\theta ,Z

s,z,\beta 
\theta ,\beta 

T ) | \scrF \theta 

\biggr] 
: \gamma \in \scrA \theta ,T

\Biggr\} 

is directed downward. In fact, let \gamma 1, \gamma 2 \in \scrA \theta ,T . Putting \gamma t := \gamma 1t 1\{ K\gamma 1<K\gamma 2\} 
+ \gamma 2t 1\{ K\gamma 1\geq K\gamma 2\} 

on \{ t \geq \theta \} and \gamma t = 0 on \{ t < \theta \} , it holds that \gamma \in \scrA \theta ,T and K\gamma \leq K\gamma 1 \wedge K\gamma 2
. Thus, there

is a sequence (\gamma n) in \scrA \theta ,T such that

lim
n\rightarrow \infty 

K\gamma n
= ess inf

\gamma \in \scrA \theta ,T

K\gamma .

By Lemma 2.2 and Girsanov's theorem, there is an admissible \=\gamma \in \scrA \theta ,T such that

lim
n\rightarrow \infty 

K\gamma n
= K\=\gamma P -a.s.

That is, ess inf\gamma \in \scrA \theta ,T
K\gamma = K\=\gamma . Using that \=\gamma is optimal, it follows that for \=\alpha := \alpha 1[0,\theta )+\=\gamma 1[\theta ,T ],

one has

\BbbE 

\Bigl[ 
Zs,y,\beta 
T f(Y s,y,\=\alpha 

T ) - l\ast (Zs,z,\beta 
T )

\Bigr] 
= \BbbE 

\Biggl[ 
\BbbE 

\biggl[ 
Z

\theta ,Z
s,z,\beta 
\theta ,\beta 

T f(Y
\theta ,Y

s,y,\alpha 
\theta ,\=\gamma 

T ) - l\ast (Z
\theta ,Z

s,z,\beta 
\theta ,\beta 

T ) | \scrF \theta 

\biggr] \Biggr] 

= \BbbE 

\Biggl[ 
ess inf
\gamma \in \scrA \theta ,T

\BbbE 

\biggl[ 
Z

\theta ,Z
s,z,\beta 
\theta ,\beta 

T f(Y
\theta ,Y

s,y,\alpha 
\theta ,\gamma 

T ) - l\ast (Z
\theta ,Z

s,z,\beta 
\theta ,\beta 

T ) | \scrF \theta 

\biggr] \Biggr] 

\leq \BbbE 

\left[ 
 ess sup
\beta \prime \in \scrL \theta ,T

b

ess inf
\gamma \in \scrA \theta ,T

\BbbE 

\biggl[ 
Z

\theta ,Z
s,z,\beta 
\theta ,\beta \prime 

T f(Y
\theta ,Y

s,y,\alpha 
\theta ,\gamma 

T ) - l\ast (Z
\theta ,Z

s,z,\beta 
\theta ,\beta \prime 

T ) | \scrF \theta 

\biggr] \right] 
 .
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Since \beta was taken arbitrarily, the last inequality implies

V (s, y, z) = inf
\alpha \in \scrA 

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
Zs,y,\beta 
T f(Y s,y,\alpha 

T ) - l\ast (Zs,z,\beta 
T )

\Bigr] 
\leq sup

\beta \in \scrL s,\theta 
b

\BbbE 

\Bigl[ 
V n(\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
.

The claim then follows since \alpha \in \scrA s,\theta was taken arbitrarily.
The proof for V n is the same.

Lemma 2.10. If (Al) and (Af) are satisfied, then for every (t, y), the function V (t, y, \cdot ) is
concave on \scrO z.

Proof. The proof follows from [1, Proposition 3.3], where it is shown that for every \alpha \in \scrA 
and z > 0 it holds that

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
f(Y s,y,\alpha 

T )Zs,z,\beta 
T  - l\ast (Zs,z,\beta 

T )
\Bigr] 
= \rho lz

\bigl( 
zf(Y s,y,\alpha 

T )
\bigr) 
,

where \rho lz is the OCE with loss function lz(x) := l(x/z). This representation and the definition
of OCE show that

V (s, y, z) = inf
\alpha \in \scrA 

inf
r\in \BbbR 

\bigl( 
\BbbE [l(f(Y s,y,\alpha 

T ) - r)] + zr
\bigr) 

from which concavity is easily derived.

We can finally produce the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us first use the inequality

(25) V n(s, y, z) \leq inf
\alpha \in \scrA 0,\theta 

sup
\beta \in \scrL n

\BbbE 

\Bigl[ 
V n(\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 

to show that V n is a viscosity subsolution of the HJBI equation
\left\{ 
      
      

 - \partial tV n  - infa\in \BbbA b(t, y, a)\partial yV
n  - 1

2 Tr
\Bigl( 
\sigma \sigma \prime (t, y)\partial 2yyV

n
\Bigr) 

 - sup\beta \in \BbbR d,| \beta | \leq n

\Bigl( 
1
2z

2| \beta | 2\partial 2zzV n + z \partial 2yzV
n\sigma (t, y)\beta 

\Bigr) 
= 0,

V n(T, y, z) = zf(y) - l\ast (z),

V n(t, y, z) = z\phi (z) - l\ast (z) on [0, T ]\times \BbbR d \times \partial \scrO z.

(26)

Hereby, we put Fn the function such that the first line in the PDE (26) is given by

Fn(t, y, z, \partial tV
n, \partial yV

n, D2V n) = 0.

Let \varphi \in C2 be a test function with bounded derivatives such that V n  - \varphi has a global
maximum at x = (s, y, z) \in [0, T ] \times \BbbR d \times \scrO z with V n(x) = \varphi (x). If s = T , then \varphi (x) =
zf(y) - l\ast (z).

If s < T and z \in \partial \scrO z, then it follows from Lemma 2.7 that V (s, y, z) = z\phi (s, y) - l\ast (z).
Assuming s < T and z /\in \partial \scrO z, then by (25), one has

0 \leq inf
\alpha \in \scrA 0,s+u

sup
\beta \in \scrL n

b

\BbbE 

\Bigl[ 
\varphi (s+ u, Y s,y

s+u, Z
s,z,\beta 
s+u ) - \varphi (s, y, z)

\Bigr] 
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for all u \in (0, T  - s). Let \alpha \in \scrA be arbitrary. Applying It\^o's formula to t \mapsto \rightarrow \varphi (t, Y s,y,\alpha 
t , Zs,z,\beta 

t )
yields

0 \leq sup
\beta \in \scrL n

b

\int s+u

s

\BbbE 

\Bigl[ 
b(t, Y s,y,\alpha 

t , \alpha t)\partial y\varphi (t, Y
s,y,\alpha 
t , Zs,z,\beta 

t ) + \partial t\varphi (t, Y
s,y,\alpha 
t , Zs,z,\beta 

t )

+
1

2
Tr(\partial yy\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )\sigma \sigma \prime (t, Y s,y,\alpha 
t )) +

1

2
\partial zz\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )| \beta t| 2(Zs,z,\beta 
t )2

+ \partial yz\varphi (t, Y
s,y,\alpha 
t , Zs,z,\beta 

t )\sigma (t, Y s,y,\alpha 
t )\beta tZ

s,z,\beta 
t

\Bigr] 
dt.(27)

Since \varphi and its derivatives are Lipschitz continuous, and by the Cauchy--Schwarz inequality
and classical SDE estimates, there is a continuous function t \mapsto \rightarrow R(t) with R(0) = 0, further
parametrized only by \sigma , s, b, \varphi , n, z, y, such that

0 \leq sup
\beta \in \scrL n

b

\int s+u

s

R(t - s) + \BbbE 

\Bigl[ 
\partial y\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )b(t, Y s,y,\alpha 
t , \alpha t) + \partial t\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )
\Bigr] 

+ \BbbE 

\biggl[ 
\partial yz\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )\sigma (t, Y s,y,\alpha 
t )\beta tZ

s,z,\beta 
t

+
1

2

\Bigl( 
Tr(\partial yy\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )\sigma \sigma \prime (t, Y s,y,\alpha 
t )) + \partial zz\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )| \beta t| 2(Zs,z,\beta 
t )2

\Bigr) \biggr] 
dt.

Observe that having a uniform bound on \beta was essential here. As a consequence, we have

0 \leq 
\int s+u

s

R(t - s) + \BbbE 

\biggl[ 
\partial y\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )b(t, Y s,y,\alpha 
t , \alpha t) + \partial t\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )

+
1

2
Tr(\partial yy\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )\sigma \sigma \prime (t, Y s,y,\alpha 
t ))

\biggr] 

+ \BbbE 

\biggl[ 
g(t, Y s,y

t )Zs,z,\beta 
t

+ sup
\beta \in \BbbR d:| \beta | \leq n

1

2
\partial zz\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )| \beta | 2(Zs,z,\beta 
t )2 + \partial yz\varphi (t, Y

s,y,\alpha 
t , Zs,z,\beta 

t )\sigma \beta Zs,z,\beta 
t

\biggr] 
dt.

Dividing by u, using dominated convergence, and letting u go to 0 give

Fn(s, y, z, \partial t\varphi (s, y, z), \partial y\varphi (s, y, z), D
2\varphi (s, y, z)) \leq 0

showing that V n is a viscosity subsolution of (26).
The viscosity subsolution property of V now follows by stability arguments. In fact, by

Proposition 2.8 and Lemma 2.7, the sequence of continuous functions (V n) increases pointwise
to the continuous function V . In combination with Dini's lemma it follows that (V n) converges
to V uniformly on compacts. Denote by F the function such that the first line in (DPE) is
given by F (t, y, z, \partial tV, \partial yV,D

2V ) = 0.
Let us be given a test function \varphi \in C2 such that V  - \varphi has a strict local maximum at x0 =

(s0, y0, z0) \in [0, T )\times \BbbR d \times \scrO z. It can be checked using stability arguments that the nonstrict
local maximum case can be obtained as a consequence of the strict case. Let Br(x0) := \{ x :
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764 J. BACKHOFF VERAGUAS, A. M. REPPEN, AND L. TANGPI

| x  - x0| \leq r\} with r small enough so x0 is the maximum of V  - \varphi on Br(x0). Denote by
xn = (sn, yn, zn) the point at which V

n - \varphi reaches its maximum in Br(x0). We may suppose
xn \rightarrow \=x. The uniform convergence on Br(x0) of V

n to V yields (V  - \varphi )(x) = lim(V n - \varphi )(x) \leq 
lim(V n  - \varphi )(xn) = (V  - \varphi )(\=x), and we conclude \=x = x0. As V n is a viscosity subsolution of
(26), \varphi satisfies

\partial t\varphi (xn) + inf
a\in \BbbA 

\biggl\{ 
b(sn, yn, a)\partial y\varphi (xn) +

1

2
Tr
\Bigl( 
\sigma \sigma \prime (sn, yn)\partial 

2
yy\varphi (xn)

\Bigr) 

+ sup
\beta \in \BbbR d,| \beta | \leq n

\biggl[ 
1

2
z2| \beta | 2\partial 2zz\varphi (xn) + z \partial 2yz\varphi (xn)\sigma (sn, yn)\beta 

\biggr] \biggr\} 
\geq 0 for all n \in \BbbN ,(28)

which implies

F (xn, \partial t\varphi (xn), \partial y\varphi (xn), D
2\varphi (xn)) \leq 0.

Therefore, taking the limit inferior on both sides leads to F (x0, \partial t\varphi (x0), \partial y\varphi (x0), D
2\varphi (x0)) \leq 0.

Let us now prove the supersolution property. That the boundary condition is satisfied
follows from Lemma 2.7. It remains to check the interior condition. To that end, we rely on
the half Dynamic Programming Principle (DPP)

(29) V (s, y, z) \geq inf
\alpha \in \scrA 

sup
\beta \in \scrL b

\BbbE 

\Bigl[ 
V (\theta , Y s,y,\alpha 

\theta , Zs,z,\beta 
\theta )

\Bigr] 
for all s, y, z

satisfied by V (see Proposition 2.9). From this property the proof of the supersolution property
follows by similar (and simpler) arguments as for the subsolution property. In fact, the stability
argument is not needed here since after applying It\^o's formula to a test function, we obtain
(27) with the reverse inequality and without the supremum over \beta .

Let us conclude this section by observing that it is common to write HJB equations with
possibly singular Hamiltonians as in the following form:

(30) \widehat F (t, y, z, \partial tV, \partial yV, \partial 2yyV, \partial 2zzV, \partial 2yzV ) = min\{ F,G\} (t, y, z, \partial tV, \partial yV, \partial 2yyV, \partial 2zzV, \partial 2yzV ) = 0

for a suitable function G and where F is the left-hand side in (E). The general idea be-
hind this alternative structure appears in [30, section 4.3]. It can be checked that, choosing
G(t, y, z, \partial tV, \partial yV, \partial 

2
yyV, \partial 

2
zzV, \partial 

2
yzV ) =  - \partial 2zzV , (30) is equivalent to our formulation of viscos-

ity solutions with upper and lower semicontinuous envelopes.

3. Comparison. In this final section we prove the comparison principle leading to the
proof of Theorem 1.3, i.e., the uniqueness claim. The following notation should simplify the
exposition of Theorem 3.3 below. Let \partial T\scrO T := (0, T ]\times \BbbR d\times \{ 0, c\} \cup \{ T\} \times \scrO be the parabolic
boundary of \scrO T . For any M \in \BbbR d+1\times d+1, we may write

M =

\Biggl[ 
Y X
X \prime Z

\Biggr] 
,

where Y \in \BbbR d\times d, X \in \BbbR d\times 1, and Z \in \BbbR . Hence, for \BbbR d \times \BbbR \ni (y, z) \mapsto \rightarrow \varphi (y, z) \in \BbbR and
M = D2\varphi , Y is the Hessian in the y variable, Z is the second partial derivative in z, and X is
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the vector of cross derivatives. In what follows, we will use the correspondenceM \updownarrow (Y, Z,X),
with the understanding that it extends to diacritics and subscripts, e.g., \^M \updownarrow ( \^Y , \^Z, \^X).

Let F be the function such that (E) is given by

F (t, y, z, \partial tV, \partial yV,D
2V ) = 0.

We note that the supremum can equivalently be taken over \beta \prime = z\beta , so we may drop the
z-dependence from the notation. Then, with

m\beta (t, y) =

\Biggl[ 
\sigma (t, y) \beta 

0 0

\Biggr] 
\in \BbbR (d+1)\times (d+1)

and Hz defined by the second equality,

F (t, y, pt, py,M) =  - pt  - inf
a\in \BbbA 

b(t, y, a)py  - Hz(t, y,M)

=  - pt  - inf
a\in \BbbA 

b(t, y, a)py  - sup
\beta \in \BbbR 

1

2
Trm\beta (t, y)

\top m\beta (t, y)M.

Recall thatHz andHz denote the upper and lower semicontinuous envelopes ofHz. Lemma 3.4
establishes sufficient conditions for Hz(t, y,Mu) - Hz(s, \nu ,Mv) to be suitably bounded.

The following lemma exploits the homogeneity of F to transform (E) into a form better
suited for proving comparison.

Lemma 3.1. If u is a subsolution (supersolution) to F (t, y, \partial tu, \partial yu,D
2u) = 0, then etu is

a subsolution (supersolution) to

(E\prime ) u+ F (t, y, z, \partial tu, \partial yu,D
2u) = 0.

Proof. We prove the statement for subsolutions; the proof for supersolutions is analogous.
For any (s, \upsilon , \zeta ), let \varphi be a viscosity test function touching etu from above at (s, \upsilon , \zeta ). Then
e - t\varphi touches u from above at (s, \upsilon , \zeta ), so, since u is a viscosity subsolution,

0 \geq F
\bigl( 
t, y, \partial t(e

 - t\varphi )(s, \upsilon , \zeta ), \partial ye
 - s\varphi (s, \upsilon , \zeta ), D2e - s\varphi (s, \upsilon , \zeta )

\bigr) 

= F
\bigl( 
t, y, e - s[ - \varphi (s, \upsilon , \zeta ) + \partial t\varphi (s, \upsilon , \zeta )], e

 - s\partial y\varphi (s, \upsilon , \zeta ), e
 - sD2\varphi (s, \upsilon , \zeta )

\bigr) 

= e - s\varphi (s, \upsilon , \zeta ) + e - sF
\bigl( 
t, y, \partial t\varphi (s, \upsilon , \zeta ), \partial y\varphi (s, \upsilon , \zeta ), D

2\varphi (s, \upsilon , \zeta )
\bigr) 
,

where we implicitly use that e - t is strictly positive so that the Hamiltonians in F are not
affected. After multiplication by es, this proves the claim.

The following definition will be useful in the proof of comparison. It mirrors the usual
definition but omits the derivatives that are not evaluated in F .
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766 J. BACKHOFF VERAGUAS, A. M. REPPEN, AND L. TANGPI

Definition 3.2. The so-called second order superjet, or superjet for short, of u at x =
(t, y, z) is defined as

\scrP 2,+u(x) = \{ (\partial t\varphi , \partial \varphi ,D2\varphi ) : \varphi \in C2([0, T ]\times \scrO )

and u - \varphi has a local maximum at x\} .

As per usual, we also define

\scrP 2,+
u(x) = \{ (pt, py,M) \in \BbbR \times \BbbR d \times \scrS (d+ 1) :

\exists (xn, pnt , pny ,Mn) \in \scrO T \times \BbbR \times \BbbR d \times \scrS (d+ 1)

such that (pnt , p
n
y ,M

n) \in \scrP 2,+u(xn)

and (xn, pnt , p
n
y ,M

n) \rightarrow (x, pt, py,M)\} ,

where \scrS (N) is the set of symmetric N \times N matrices. Finally, define the second order subjet

as \scrP 2, - u(x) =  - \scrP 2,+( - u)(x) and \scrP 2, - 
analogously.

As F and F are upper and lower semicontinuous, respectively, the limiting procedure in

the definition of \scrP 2,+
and \scrP 2, - 

does not pose a problem for defining viscosity solutions using
the superjets and subjets. This equivalent definition is standard, and the reader is referred to
[14] for details.

By Lemma 3.1, it is clear that if (E\prime ) has comparison, then so does the original equation.
In analyzing (E\prime ) there remains the difficulty that Hz is discontinuous and in particular that
it attains \infty . This problem is exacerbated by the fact that Hz(0) = 0 but Hz(0) = \infty .4 The

discontinuity problem is overcome by observing that  - Hz is finite for any element in \scrP 2, - 
(v),

as v is a supersolution, and, at the maximizer constructed in the proof, the same holds for

elements in \scrP 2,+
(u). The problem due to the semicontinuous envelope at M = 0 is overcome

by slight perturbations of the penalty functions. This has to be done with care, as otherwise
the property used in handling the discontinuity of Hz fails. These two techniques lead us to
the following theorem.

Theorem 3.3. Let u (v) be a linearly growing upper (lower) semicontinuous viscosity sub-
solution (supersolution) to (E\prime ) in \scrO T . If either u or v is continuous, then u \leq v on \partial T\scrO T

implies that u \leq v everywhere.

Before we begin the proof, in the following lemma we summarize one step used twice later
on.

Lemma 3.4. Let h : \BbbR d \rightarrow \BbbR a C2 function and

A =

\left[ 
    

D2h(y  - \iota )  - D2h(y  - \iota )
1/\varepsilon  - 1/\varepsilon 

 - D2h(y  - \iota ) D2h(y  - \iota )
 - 1/\varepsilon 1/\varepsilon 

\right] 
    

4By definition, Hz equals \infty whenever Z = 0 but X \not = 0. Hence, by choosing any limit of Z,X \rightarrow 0 with
these properties, it is clear that Hz(0) = \infty .
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for y, \iota \in \BbbR d. Suppose Mu and Mv are matrices satisfying

\Biggl[ 
Mu

 - Mv

\Biggr] 
\leq A+

\left[ 
    

D2g(y)

D2g(\iota )
 - 2\varepsilon 

\right] 
    + \gamma A2

for some arbitrary constant \gamma .
Let

\surd 
\Lambda be the bound on \sigma . That is, \| \sigma \| \leq 

\surd 
\Lambda . Whenever Hz(t, y,Mu) < \infty , it holds

that, for some constant C depending on D2h, \varepsilon , and \Lambda ,
(1) if \| D2h\| <\infty , then

Hz(t, y,Mu) - Hz(s, \iota ,Mv) \leq 4\Lambda \| D2h\| + \Lambda (\| D2g(y)\| + \| D2g(\iota )\| ) + \gamma C;

(2) if all quantities are implicitly parametrized by \varepsilon such that D2h(y  - \iota ) = 1
\varepsilon 
I and (t  - 

s)2 + | y  - \iota | 2 \in o(\varepsilon ) as \varepsilon \rightarrow 0, then

Hz(t, y,Mu) - Hz(s, \iota ,Mv) \leq o(\varepsilon 0) + \Lambda (\| D2g(y)\| + \| D2g(\iota )\| ) + \gamma C.

Proof. Using that

m\beta (t, y) - m\beta (s, \iota ) =

\Biggl[ 
\sigma (t, y) - \sigma (s, \iota ) 0

0 0

\Biggr] 
,

we multiply the matrices in the lemma by

\Biggl[ 
m\beta (t, y)

\top m\beta (t, y) m\beta (s, \iota )
\top m\beta (t, y)

m\beta (t, y)
\top m\beta (s, \iota ) m\beta (s, \iota )

\top m\beta (s, \iota )

\Biggr] 
,

complete the square, and take the trace to obtain

Tr
\bigl[ 
m\beta (t, y)

\top m\beta (t, y)Mu  - m\beta (s, \iota )
\top m\beta (s, \iota )Mv

\bigr] 

\leq Tr
\bigl[ 
(\sigma (t, y) - \sigma (s, \iota ))\top (\sigma (t, y) - \sigma (s, \iota ))D2h(y  - \iota ) - 2\varepsilon | \beta | 2

\bigr] 

+Tr
\bigl[ 
\sigma (t, y)\top \sigma (t, y)D2g(y) + \sigma (s, \iota )\top \sigma (s, \iota )D2g(\iota )

\bigr] 
+ \gamma C,

where C bounds the terms from A2, which is possible because A is bounded independently of
y and \iota . We note that \beta does not appear in the terms bounded by C. Because

Hz(t, y,Mu) - Hz(s, \iota ,Mv) \leq sup
\beta 

Tr
\Bigl[ 
m\beta (t, y)

\top m\beta (t, y)Mu  - m\beta (s, \iota )
\top m\beta (s, \iota )Mv

\Bigr] 

and only the term  - 2\varepsilon | \beta | 2 depends on \beta , the optimizer is \beta = 0.
Part (1) follows directly from the assumed bounds.
For part (2), the o(\varepsilon 0) term is obtained from the Lipschitz assumption on \sigma and the

assumed limiting behavior of h, y, and \iota as \varepsilon \rightarrow 0.
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In the comparison proof that follows, we proceed in steps: first we establish the bound
(31), which is then used later on to construct viscosity test functions and a contradiction. The
general structure for handling the y variable follows [14, section 5.D] but must be adjusted
to account for the discontinuity in the Hamiltonian. Indeed, whereas [14, equation (5.10)]
provides a bound for all variables ``doubled,"" due to our Hamiltonian, (31) cannot be adjusted
to include a doubling in the z-variable. This causes difficulties in the subsequent steps, where
the z-variable necessarily appears ``doubled."" The restriction that either u or v is continuous
is used precisely for this reason, because then (31) holds with the local modulus of continuity
added to the bound. Because this adjustment only holds locally, it introduces a dependence
between the penalization variables \delta and \varepsilon , which is the cause for the more carefully chosen
subsequence.

Proof of Theorem 3.3. As \~u = u  - \epsilon /t is also a subsolution, we have \~u \leq v for the full
boundary \partial \scrO T . The proof below could thus be completed for \~u instead of u with this stronger
assumption to obtain \~u \leq v in \scrO T , from which u \leq v in \scrO T follows from letting \epsilon \rightarrow 0. Hence,
without loss of generality, we may assume that u \leq v on \partial \scrO T . Moreover, since the domain of
l\ast is compact, we will denote it by [0, c] with c \geq 0.

Step 1. We begin by showing that for some E and K

(31) u(t, y, z) - v(t, \iota , z) - 2K| y  - \iota | \leq E <\infty for all (t, y, \iota , z) \in [0, T ]\times \BbbR d \times \BbbR d \times [0, c].

If (31) holds, we are done and proceed to Step 2. Otherwise, notice that the linear growth
implies the existence of an L > 0 such that

u(t, y, z) - v(s, \iota , \zeta ) \leq L(1 + | y| + | \iota | ) on [0, T ]\times \scrO \times [0, T ]\times \scrO .
We use this to define the following family of functions. For some constant C\eta and each R > 0,
let \eta R be a C2(\BbbR d) function with the properties (i) \eta R \geq 0, (ii) lim inf | x| \rightarrow \infty \eta R(x)/| x| \geq 2L,
(iii) | D\eta R(x)| + \| D2\eta R(x)\| \leq C\eta , (iv) limR\rightarrow \infty \eta R(x) = 0.

Now, let

\Phi K(t, y, \iota , z, \zeta ) = u(t, y, z) - v(t, \iota , \zeta ) - 2K
\sqrt{} 
1 + | y  - \iota | 2  - \eta R(y) - \eta R(\iota )

 - 1

2\varepsilon 
| z  - \zeta | 2 + \varepsilon \zeta 2,

where \varepsilon \in (0, 1). By the assumption on linear growth and condition (i) on \eta R, \Phi K attains a
maximum at some point (\^t, \^y,\^\iota , \^z, \^\zeta ).

Because (31) does not hold, at the maximum \Phi K(\^t, \^y,\^\iota , \^z, \^\zeta ) > E  - \eta R(\^y) - \eta R(\^\iota ) > 0 for
any R large enough. This implies that

1

2\varepsilon 
| \^z  - \^\zeta | 2 \leq u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ) - 2K

\sqrt{} 
1 + | \^y  - \^\iota | 2  - \eta R(\^y) - \eta R(\^\iota ) + \varepsilon \^\zeta 2,

which is bounded in \varepsilon for a fixed R, so lim\varepsilon \rightarrow 0 | \^z  - \^\zeta | \rightarrow 0. Hence, there exists \=z such that,
along a subsequence in \varepsilon \rightarrow 0, \^z, \^\zeta \rightarrow \=z. Furthermore, as \Phi K(\^t, \^y,\^\iota , \^z, \^\zeta ) \geq max\Phi K(t, y, \iota , z, z),

1

2\varepsilon 
| \^z  - \^\zeta | 2 \leq u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ) - 2K

\sqrt{} 
1 + | \^y  - \^\iota | 2  - \eta R(\^y) - \eta R(\^\iota ) + \varepsilon \^\zeta 2

 - max
[0,T ]\times \BbbR d\times \BbbR d\times [0,c]

\bigl( 
u(t, y, z) - v(t, \iota , z) - 2K

\sqrt{} 
1 + | y  - \iota | 2  - \eta R(y) - \eta R(\iota ) + \varepsilon z2

\bigr) 
,
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which converges to 0 by upper semicontinuity, because \^z, \^\zeta \rightarrow \=z. It follows that, by the
construction of \eta R, (31) is satisfied if and only if

(32) lim
R\rightarrow \infty 

lim
\varepsilon \rightarrow 0

\Phi K(\^t, \^y,\^\iota , \^z, \^\zeta ) <\infty .

We now split into cases, depending on whether there exists a divergent sequence of R such
that for each fixed R there exists a subsequence of \varepsilon \rightarrow 0 such that always either (\^t, \^y, \^z) or
(\^t, \^\iota , \^\zeta ) lies on \partial \scrO T . If so, then both sequences converge to boundary points as \varepsilon \rightarrow 0. By upper
semicontinuity and that (31) is satisfied on the boundary, u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ) - 2K

\sqrt{} 
1 + | \^y  - \^\iota | 2

is bounded from above for sufficiently small \varepsilon . As the bound depends only on the boundary
condition, it is independent of R, which implies (32) and thus also (31).

On the other hand, if no such limit of boundary points exists, then for sufficiently large
R and small \varepsilon , both (\^t, \^y, \^z) and (\^t,\^\iota , \^\zeta ) must be interior points. It holds for large R that

2K| \^y  - \^\iota | \leq u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ).

Since (\^t, \^y,\^\iota , \^z, \^\zeta ) is a maximum, by Ishii's lemma [14, Theorem 3.2],

(\^pt, \^py +D\eta R(\^y), \=Yu +D2\eta R(\^y), \=Zu, \=Xu) \in \scrP 2,+
u(\^t, \^y, \^z),

(\^pt, \^py  - D\eta R(\^\iota ), \=Yv  - D2\eta R(\^\iota ), \=Zv + 2\varepsilon , \=Xv) \in \scrP 2, - 
v(\^t,\^\iota , \^\zeta )

for \^py = 2KDx

\sqrt{} 
1 + | x| 2| x=\^y - \^\iota , \=Mu \leq \=Mv, and \=Zu \leq \=Zv. As v is a viscosity supersolution,

F \geq  - v >  - \infty . Consequently, this implies that \=Zv+2\varepsilon \leq 0 and thus Hz( \=Mu) is finite. Define
\^Mu by ( \=Yu + D2\eta R(\^y), \=Zu, \=Xu) and \^Mv by ( \=Yv  - D2\eta R(\^y), \=Zv + 2\varepsilon , \=Xv). Then \^Mu and \^Mv

satisfy the assumptions of Lemma 3.4 for some \gamma . In particular, for each \gamma , [14, Theorem 3.2]
gives a pair \^Mu and \^Mv with these properties, so \gamma C may be chosen as o(\varepsilon 0).

Hence, by the viscosity properties of u and v as well as Lemma 3.4(1),

u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ) \leq F
\bigl( 
\^t, \^\iota , \^pt, \^py  - D\eta R(\^\iota ), \^Mv

\bigr) 
 - F

\bigl( 
\^t, \^y, \^pt, \^py +D\eta R(\^y), \^Mu

\bigr) 

\leq sup
a\in \BbbA 

b(\^t, \^y, a)(\^py +D\eta R(\^y)) - sup
a\in \BbbA 

b(\^t,\^\iota , a)(\^py  - D\eta R(\^\iota ))

+ 4\Lambda \| D2h\| + \Lambda (\| D2\eta R(\^y)\| + \| D2\eta R(\^\iota )\| ) + o(\varepsilon 0) \leq E\prime .

As \^py is bounded independently of R and \varepsilon , E\prime depends on the model parameters, c1, c2, \Lambda ,
and C\eta , and is thus independent of R and \varepsilon . First letting \varepsilon \rightarrow 0 and then R \rightarrow \infty , it follows
that (32) holds. This proves (31).

Step 2. Suppose that there is a point (\=t, \=y, \=z) such that u(\=t, \=y, \=z)  - v(\=t, \=y, \=z) = 2\lambda > 0.
Let

\Phi (t, s, y, \iota , z, \zeta ) = u(t, y, z) - v(s, \iota , \zeta ) - 1

2\varepsilon 

\bigl( 
| t - s| 2 + | y  - \iota | 2 + | z  - \zeta | 2

\bigr) 

 - \delta (y2 + \iota 2) + \varepsilon \zeta 2

for parameters \delta \in (0, 1) and \varepsilon \in (0, 1). Then, for sufficiently small \delta > 0 and \varepsilon > 0,
\Phi (\=t, \=t, \=y, \=y, \=z, \=z) \geq \lambda . Because of the linear growth and the quadratic penalty, the semicontin-
uous function \Phi attains a positive maximum at a point (\^t, \^s, \^y,\^\iota , \^z, \^\zeta ), and the maximizers are
bounded for each \delta , uniformly in \varepsilon .
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We will now use the continuity assumption. It is clear from the arguments that follow
that it does not matter whether u or v is continuous, so without loss of generality, let u be
continuous. Then, by continuity and that the maximizers lie in a compact domain \scrO \delta 

T \times \scrO \delta 
T ,

there exist moduli of continuity m\delta such that

| u(\^t, \^y, \^z) - u(\^s, \^y, \^\zeta )| \leq m\delta (| \^t - \^s| , | \^z  - \^\zeta | )

for each \delta > 0 and all \varepsilon > 0. As a consequence of this and (31),

1

2\varepsilon 

\bigl( 
| \^t - \^s| 2 + | \^y  - \^\iota | 2 + | \^z  - \^\zeta | 2

\bigr) 
+ \delta (\^y2 + \^\iota 2) \leq u(\^t, \^y, \^z) - v(\^s, \^\iota , \^\zeta ) + \varepsilon \^\zeta 2

\leq E + 2K| \^y  - \^\iota | +m\delta (| \^t - \^s| , | \^z  - \^\zeta | ) + \varepsilon \^\zeta 2

\leq E +
1

4\varepsilon 
| \^y  - \^\iota | 2 + 4\varepsilon K2 +m\delta (| \^t - \^s| , | \^z  - \^\zeta | ) + \varepsilon \^\zeta 2.

It is thus clear that, for any \delta , lim\varepsilon \rightarrow 0 | \^t  - \^s| + | \^y  - \^\iota | + | \^z  - \^\zeta | = 0. As a consequence, for
each n \in \BbbN there exists \delta n and \varepsilon n such that the right-hand side is bounded and hence can be
chosen so that \delta n(\^y + \^\iota ) \leq 1/n for \varepsilon \leq \varepsilon n. Finally, for each \delta , the right-hand side of

1

2\varepsilon 

\bigl( 
| \^t - \^s| 2 + | \^y  - \^\iota | 2 + | \^z  - \^\zeta | 2

\bigr) 
\leq u(\^t, \^y, \^z) - v(\^t,\^\iota , \^\zeta ) - \delta (\^y2 + \^\iota 2) + \varepsilon \^\zeta 2

 - max
\scrO \delta 

T

(u(t, y, z) - v(t, y, z) - \delta (y2 + \iota 2) + \varepsilon z2)

is vanishing along a subsequence of \varepsilon \rightarrow 0, so we may pick \varepsilon n such that 1
2\varepsilon n

(| \^t - \^s| 2+ | \^y - \^\iota | 2) \leq 
1/n.

Step 3. We now split into two cases depending on whether there exists a \delta for which there
is a sequence (\varepsilon n)n\in \BbbN converging to 0 such that either (\^t, \^y, \^z) or (\^s, \^\iota , \^\zeta ) lies on \partial \scrO T for each
n. Notice that as \delta is fixed, they lie in a bounded subset of \partial \scrO T . Thus, along a subsequence,
(\^t, \^s, \^y,\^\iota , \^z, \^\zeta ) converges to (\~t, \~t, \~y, \~y, \~z, \~z) as \varepsilon \rightarrow 0. By the boundary conditions,

0 < \lambda \leq \Phi (\~t, \~t, \~y, \~y, \~z, \~z) \leq u(\~t, \~y, \~z) - v(\~t, \~y, \~z) \leq 0,

which is a contradiction.
Step 4. Otherwise, there exists a sequence (\varepsilon n, \delta n)n\in \BbbN , converging to (0, 0), for which

both (\^t, \^y, \^z) and (\^s,\^\iota , \^\zeta ) remain in the interior and, by the observations at the end of Step 2,
\delta n(\^y + \^\iota ) < 1/n, and 1

2\varepsilon n
(| \^t - \^s| 2 + | \^y  - \^\iota | 2) \leq 1/n. At each maximizer, by Ishii's lemma [14,

Theorem 3.2],

(\^pt, \^py + 2\delta n\^y, \=Yu + 2\delta nI, \=Zu, \=Xu) \in \scrP 2,+
u(\^t, \^y, \^z),

(\^pt, \^py  - 2\delta n\^\iota , \=Yv  - 2\delta nI, \=Zv + 2\varepsilon , \=Xv) \in \scrP 2, - 
v(\^s,\^\iota , \^\zeta )

with \^py = 1
\varepsilon n
| \^y  - \^\iota | , \=Mv \geq \=Mu, and \=Zu \leq \=Zv. Like in Step 1, v being a supersolution implies

\=Zv \leq  - 2\varepsilon , which ensures that Hz( \=Mu) < \infty . Again, define \^Mu by ( \=Yu + 2\delta nI, \=Zu, \=Xu) and
\^Mv by ( \=Yv  - 2\delta nI, \=Zv + 2\varepsilon , \=Xv). Repeating the same arguments as previously, \^Mu and \^Mv

satisfy the assumptions of Lemma 3.4 with \gamma C \in o(\varepsilon 0).
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Using the viscosity properties of u and v again and Lemma 3.4(2),

\lambda \leq u(\^t, \^y, \^z) - v(\^s, \^\iota , \^\zeta )

\leq F (\^s,\^\iota , \^pt, \^py  - 2\delta n\^\iota , \^Mv) - F (\^t, \^y, \^pt, \^py + 2\delta n\^y, \^Mu)

\leq  - inf
a\in \BbbA 

b(\^s, \^\iota , a)(\^py  - 2\delta n\^\iota ) + inf
a\in \BbbA 

b(\^t, \^y, a)(\^py + 2\delta n\^y) + 2\delta n\Lambda + o(\varepsilon 0)

\leq c2(| \^t - \^s| + | \^y  - \^\iota | )(\^py + 2\delta n\^y) + sup
a\in \BbbA 

4c1(1 + | a| )\delta n(\^\iota + \^y) + 2\delta n\Lambda + o(\varepsilon 0).

Since the right-hand side vanishes as n\rightarrow \infty , it follows that

\lambda \leq lim
n\rightarrow \infty 

u(\^t, \^y, \^z) - v(\^s,\^\iota , \^\zeta ) \leq 0,

which is a contradiction.

The conclusion that V is the unique viscosity solution in this class is obtained by twice
comparing V with any other candidate solution W using Theorem 3.3 to conclude that V \leq 
W \leq V . This procedure yields the following corollary.

Corollary 3.1. The value function V is the unique viscosity solution of linear growth.
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