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Abstract. Optimized certainty equivalents (OCEs) are a family of risk measures widely used by both prac-
titioners and academics. This is mostly due to its tractability and the fact that it encompasses
important examples, including entropic risk measures and average value-at-risk. In this work we
consider stochastic optimal control problems where the objective criterion is given by an OCE risk
measure or, in other words, a risk minimization problem for controlled diffusions. A major difficulty
arises since OCEs are often time-inconsistent. Nevertheless, via an enlargement of state space we
achieve a substitute of sorts for time-consistency in fair generality. This allows us to derive a dynamic
programming principle and thus recover central results of (risk-neutral) stochastic control theory.
In particular, we show that the value of our risk minimization problem can be characterized as a
viscosity solution of a Hamilton—Jacobi—-Bellman—Isaacs equation. We further establish a comparison
principle and uniqueness of the latter under suitable technical conditions.
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1. Introduction and main results. Let T € (0,00) be a fixed deterministic time horizon
and ({2, F, P) a given probability space equipped with the completed filtration (F);c[o,7] of a
d-dimensional Brownian motion W. Further let A C R™ be a compact and convex set, let A
be the set of A-valued progressively measurable processes, and assume that the functions b, o
satisfy

(b,0) : [0,T] x R x R™ — R? x R¥? are jointly continuous and bounded;
(Aba) ’b(t7y17 a) - b(say27 a)|+HU(t7y17a) - 0(37y27 CL)H < CQ(‘t - 8‘ + ‘yl - yZD;
for each ¢,y the set K(t,y) := {(b(t,y, a),o0 " (t,y,a)): a € A} is convex,

where we use || - || to denote the operator norm. In particular, under condition (Abo), for each
a € A, the process Y% is well-defined:

(1) AV = bt Y an) db + o (8, Y% ) AW, VP =y,
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For the main results in this article we will have to strengthen assumption (Abo) by additionally
assuming the following:

e o(t,y,a)a " (t,y,a) > 0 in the sense of positive definite matrices, namely, that o(t,y, a)
is nondegenerate at each point (t,y,a).

e o(t,y,a) = o(t,y), i.e., that o only depends on time and space but not on the control.
This will be referred to as the uncontrolled o case.

Our aim is to study the optimal control of the d-dimensional diffusion Y for a cost criterion
based on an optimized certainty equivalent (OCE) risk measure p. That is, for a given function
f, we focus on the optimal control problem'

(P) inf p(F(YV7).

We assume that f satisfies the condition
(Af) f:RY 5 R is continuous, bounded from below, and with polynomial growth.

Problem (P) is a risk minimization one, with p(f(Y;'®)) representing the riskiness of f(Y).
The problem is then to determine the smallest possible risk and the control o* leading to it.
In order to specify p, we start with a loss function [: R — R. That is, a function satisfying
the usual assumptions
(Al)
[ is increasing, convex, bounded from below with at most polynomial growth, and
{ [(0) =0, 1"(1) =0, and I(x) > z for |z| large enough,

where [* denotes the convex conjugate of | defined as

I*(2) :==sup(zz — l(z)), z>0.
z€eR
Note that [* is valued on the extended real line. The functional p : L — R U {+00} defined
by
(2) p(X) = inf (E[l(X —7)] +7)
reR
is an OCE risk measure. In this interpretation we think of X as a financial/economic loss,
and p(X) represents the level of risk? associated to X or the minimal capital required to make
X “acceptable” (see, e.g., [19] for details and [4, 2] for discussions on the interpretation of
OCEs). Notice that, restated for OCE risk measures, problem (P) takes the form
3 Yy, _

Q nE_ (EU(FE™) = )]+ 7).

Problems of type (P) are sometimes called risk-sensitive decision problems to emphasize
the fact that the objective is not to minimize the (linear) mathematical expectation E[f(Y}"")],

! As usual, a running cost can also be included by adding an extra state variable.
2Strictly speaking, it is X — p(—X) that is a risk measure, but we will work with p for notational conve-
nience.
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but rather a convex risk measure (however, the literature on risk-sensitive control overwhelm-
ingly focuses on the entropic risk measure obtained by choosing I(z) = e* — 1). In risk-free
optimization problems one usually defines the value function

(Rf) o(t,y) = inf BIf(Yz")),

where Y% denotes the solution of (1) starting at time ¢ from y, and derives the associated
Bellman equation. In contrast, in most cases (P) cannot be (directly) solved using Bellman’s
equation as is done for (Rf). This is due to the lack of a property called time-consistency
for the operator p. In fact, unless the loss function [ is linear or exponential, Bellman’s
principle of optimality will not apply for problem (P), hindering the use of standard sto-
chastic control techniques to characterize the value of the problem and/or of the optimal
control.

Ezample 1.1. For I(z) = e* — 1, the OCE p becomes the “entropic” risk measure. This
is essentially the only instance satisfying (Al) leading to a time-consistent risk measure (cf.
Remark 1.5). In fact, in this case p satisfies p(X) = logEeX so that, up to a logarithmic
transform, problem (P) reduces to a risk-free optimization problem. This problem is, for
instance, considered in [8] in the context of portfolio optimization. Another popular risk mea-
sure in economics (see, e.g., [24]) is the monotone mean-variance, obtained in our framework

by taking I(z) = W This leads to a time-inconsistent problem.

The aim of the present work is to show that problem (P) can be still tackled by stochastic
control techniques, in spite of time-inconsistency. The core idea is to enlarge the state space
of the problem and deploy the rich duality theory for risk measures. There are a number of
reasons why we think this is a relevant contribution, among which are the following:

e It is important to know that problem (P) falls into the realm of the well-established
theory of stochastic control. I.e., there is no need for a radically new theory to deal
specifically with OCE risk minimization.

e Our main results, Theorems 1.2 and 1.3 below, are a consequence of this stochastic
control perspective. Therein, we in fact identify a PDE characterizing problem (P).
This may be the basis of a future numerical method.

e Our PDE will be of singular type, with a discontinuous Hamiltonian. Under suitable
assumptions we are able to obtain a comparison principle and therefore the uniqueness
for this PDE. This is remarkable given the singularity of the problem. Our comparison
result also provides comparison for the problem in [1] as a special case.

We refer the reader to the subsection “Relation with the literature” below for a brief
history on the idea of state space enlargement and for a summary of existing approaches to
risk minimization.

Main results. We propose that the value function of problem (P), in its incarnation (3),
should take the form

(4) Vity,2) = _inf (B[ FOZP) =) +12),
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where the z € [0, 00) variable stands for the extension of the state space. Note that V(0,y, 1)
corresponds to the original problem. Through convex duality, we will see that this is a natural
guess since it opens up a stochastic game reformulation:

®) V(s,y,2) = infsupE O 25— (2577

This will be made precise in Proposition 2.6, but for the time being it suffices to say that Z is
an auxiliary controlled density process coming from the dual representation of the OCE risk
measures.

Our existence result, Theorem 1.2, characterizes the putative value function in (4) as a
viscosity solution of a second order PDE of Hamilton—Jacobi-Bellman—Isaacs type, as can be
guessed from the game-theoretic reformulation (5). In some cases we prove this solution to be
uniquely determined. A major difficulty we encounter is that the (Hamiltonian of the) PDE
that naturally emerges from the duality theory (see (E) below) is discontinuous. We refer to
section 2 for the definition of viscosity solutions in this setting.

Let

O:=R¥x0, and Or:=(0,T)x 0O

and O, := int dom(I*) be the interior of the effective domain of [*.

Theorem 1.2. If assumptions (Al), (Af), and (Abo) are satisfied and o is uncontrolled
and nondegenerate, then it holds that

inf YLV = Vit y, 1
;relAp(f( ) (t,y, 1),

where V', defined in (4), is a continuous viscosity solution of the Hamilton—Jacobi—Bellman—
Isaacs (HJBI) equation

-0V — Clblelg b(t,y,a)0,V — %Tr (aaT(t, y)(?;yv>
(DPE) — sup <1z2|ﬁ|20§ZV + z@ZZVJ(t,y)B> =0 in Op, (E)
BER4 2
V(T7 y,Z) = Zf(y) - l*(z)7 (ya Z) € Oa (aTE)
(V(ty,2) = 26(t,y) — "(2), (t,y,z) € 0,T] x 00. (OoE)

Under slightly stronger conditions, the above value function is actually the unique viscosity
solution of the dynamic programming equation in a large class of functions.

Theorem 1.3. If in addition to the assumptions of Theorem 1.2 we assume that the domain
of I* is compact and f is linearly growing, then V is the unique continuous viscosity solution
with linear growth of (DPE).

We will see below that in general it holds that V(¢,y,2) = infae p'* (f(Y:ﬁ’y’a)), where
pl= is the OCE with loss function I,(x) := I(x/z). The variable z comes from the density
of a measure change that we use to extend the state space, thereby making the problem
time-consistent.
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The existence result applies to both cases in Example 1.1. Existence and uniqueness, on
the other hand, apply to the following important case.

Ezample 1.4. The average value-at-risk (AVaR) is arguably one of the most used risk
measures by practitioners in the financial and actuarial sectors and by their regulators. It is
obtained in our framework by taking

() =2"/y

for some v € (0,1). That is, p(X) = AVaR,(X) is the AVaR at level 7. In this case, [*(2) =0
if z € [0,1/7] and 400 if z € (1/7,00). Thus, the domain of I* is the compact interval [0,1/~].
Under the standing assumptions on (b, o) and as a consequence of Theorems 1.2 and 1.3, we
have that

Vis,y,2) = inf AVaRy. (2 (V7))
ac

is the unique continuous viscosity solution of the HJBI equation (DPE). In particular, V' (0,y, 1)
= infyae 4 AVaR, (f(Y7®)). Details are given at the end of section 3.

Remark 1.5. If the cost f is bounded, then the statement of Theorem 1.2 remains true
even if the loss function ¢ does not satisfy the polynomial growth condition in (Al). This
allows us, for instance, to apply our result to the entropic risk measure discussed in Example
1.1.

Remark 1.6. If V' is a classical solution of (DPE), then a verification argument implies
that a(t,y, z) € argmin,c,b(t,y,a)0,V (t,y, z), together with

1
B(t,y, 2) € argmaxgcpa <222|ﬁ]28§ZV(t, Y, 2) + z@sz(t,y,z)a(t,y)ﬂ> ,

is an optimal feedback control in the extended state space. Further, Example 1.4 is also
illustrative as it highlights how solving (DPE) provides more information than just the optimal
value of the problem: Following the discussion in [1, section 2.1.2] we have that if V is
differentiable, then 9, V(0,y,1) = infoeca VaR, (f(Y£?)), i.e., the minimization of the value-
at-risk.

Let us now comment on the technical difficulties that we encounter when proving Theorems
1.2 and 1.3.

Remark 1.7. An essential difficulty in our analysis is the singularity of our Hamiltonian.
Indeed, the optimization over 3 causes discontinuity (and explosions) for 92,V = 0. This issue
is overcome for existence in Theorem 1.2 by slightly enlarging the class of viscosity solutions
with a weaker solution formulation (see, e.g., [14, section 9] for similar ideas). Nevertheless,
the irregularity of the Hamiltonian is still a major hurdle for uniqueness, especially in the
weaker solution formulation. In fact, the discontinuity of the PDE restricts the choice of
penalization functions in the comparison proof. Fortunately, it is possible to construct the
penalization functions in such a way that the points of interest in the proof are located where
the Hamiltonian is finite. Moreover, we also make ample use of the particular structure of the
PDE, in which the infimum and the supremum are separated.
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Relation with the literature. As already mentioned, we get around the problem of time-
inconsistency through an “enlargement of the state space” technique. This approach probably
originated (at least as far as risk-sensitive control problems are concerned) in the works [29, 28]
on optimizations of AVaR in a discrete-time model. The present article expands on the
work [1], where a state space enlargement was used to show that OCE risk measures can be
characterized by viscosity solutions of PDEs. In [1], the control is, so to speak, fixed. By
contrast, here we further consider optimal control of OCEs and investigate uniqueness of a
more general PDE than in [1]. Beyond [1], the work closest to ours is [25], proposing a related
PDE solution method. However, [25] starts by assuming classical solutions exist and considers
a jump-diffusion framework. Arguably, our work then formalizes some of the results in [25] in
the case without jumps.

Other approaches to time-inconsistency can be found, e.g., in [16, 22, 7] for approaches
based on equilibrium strategies and in [36, 6, 21] and the series of papers by Christensen
and Lindensjo [13, 12, 11] for approaches based on precommitted strategies. We further refer
to [3, 10, 32] for discrete-time formulations and to [26, 23] for continuous-time formulations.
Compared to these works, the theoretical appeal of our method is that it allows us to use
stochastic control arguments to deal with the risk-sensitive problem (P). Moreover, Theorem
1.2 is of practical interest since it transforms the (numerical) computation of the value of the
problem (P) into a question of numerical approximation of a PDE. For this reason, having
obtained uniqueness is a crucial first step in developing a PDE-based numerical method.

The central argument allowing for the enlargement of state space and hence leading to
Theorem 1.2 is to steer the minimization problem (P) into a stochastic differential game
through the dual representation of the risk measure p:

(6) p(X) = sup (E[XZ] - E[I"(Z)])
ZeLY

(see, e.g., [4]). Notice, however, that in the literature on stochastic differential games, admis-
sible strategies are often defined on much smaller sets. Most papers consider Elliott—Kalton
strategies introduced in [18] or “elementary strategies” (cf. [33]). Such formulations cannot be
adopted here since the differential game organically emerges from the problem. This should
also shed some light on the fact that the optimization problem (P) is characterized by an
HJBI equation and not a Hamilton-Jacobi-Bellman (HJB) equation. En route to the proof
of our existence result, we will also show (Proposition 2.6) that

inf p(f(Y7)) = V(0,9,1),

acAM.L

where AM:L is the set of Markovian controls which are Lipschitz continuous. In other words,
the open-loop control problem and the Markov control problem have the same value. This is
a technical contribution which we also want to emphasize. The present paper extends [1] in
which a PDE characterization of p(f(Y)) was obtained for a given (and fixed) a € AM:L.
More precisely, the paper [1] is concerned with the evaluation of the riskiness of a given
contingent claim and shows that if this claim arises from a diffusion, then its riskiness can
be evaluated by solving an HJB equation. Here we go one step further by considering the
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controlled case in which an agent seeks to compute the minimum risk, and we complement [1]
by deriving uniqueness of the HJBI equation characterizing the value function of the problem.

Articles dealing with optimal control of AVaR include [29, 28, 10, 3] and [26]. The papers
[29, 28, 3] present discrete-time models and propose time-consistent reformulations allowing
to solve AVaR optimization problems. The articles [10] and [26] focus on computational
issues and propose algorithms allowing computation of value functions of AVaR optimization
problems despite the absence of dynamic programming principles. Interestingly, the article
[26] makes use of the bilevel optimization form of the (primal) problem, leveraging an HJB
PDE approach together with a gradient descent step for the outer minimization. Our article
can be seen as an alternative in which we explicitly do not reduce the dimensionality of our
HJBI PDE.

Outline. The remainder of this paper is dedicated to the proofs of our main results. In
section 2, we prove Theorem 1.2. There we also show that the open-loop and Markovian
problems have the same value. In the last section we prove a comparison theorem leading to
Theorem 1.3.

2. Characterization and existence. This section is dedicated to the proof of Theorem 1.2.
It will be split into several intermediate results. Theorem 1.3 is proved in the subsequent
section. For completeness, we recall the notion of viscosity solution we use in Theorem 1.2.
Here and in the rest of the paper, we denote by F and F the lower semicontinuous envelope
and the upper semicontinuous envelope of F', respectively.

Definition 2.1. Let F : [0,T] x O x R x R x R% x RUFDX(d+D) 4 R pe o given function.
An upper semicontinuous function V : [0,T] x O — R is said to be a viscosity subsolution of
the PDE

F(t,y,2,V,0:V,0,V,D?V) =0 in O,
(7) V(T7 y72) = w(yvz) = Zf(y) - l*(z), (yvz) € @7
V(t,y,2) = z¢(t,y) — I*(2), (t,y,2) € [0,T] x 90

if for all xo = (80, %0, 20) € [0,T] x O and p € C%([0,T] x O) such that xo is a local mazimizer
of V.— ¢ and ¢(xo) = V(z0), if so =T we have V(xo) < 1(yo, 20), if (Y0, 20) € 0O we have

V(zo) < 209(s0,y0) — " (20),
and otherwise
F(wo, V (20), dup(0), dyp(0), D*p(x0)) < 0.
A lower semicontinuous function V is said to be a viscosity supersolution of (7) if for all
xo = (80,40, 20) € [0,T] x O and ¢ € C*([0,T] x O) such that zo is a local minimizer of v — ¢

and o(xo) = V(xo), if so =T we have v(xo) > ¥ (yo, 20), if (Yo, 20) € 00 we have

V(o) > 200(50,%0) — " (20),
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and otherwise

F(z0, V(z0), 0rp(x0), Bysp(x0), D*p(z0)) > 0.

A function is a viscosity solution if it is both a viscosity sub- and supersolution.

It should be noted that, as shown in [17, Lemma V.4.1], this definition of viscosity solutions
is equivalent to the definition using sub- and superjets given in Definition 3.2 below. For the
equation studied here, i.e., with F representing the left-hand side of (E), F' is already upper
semicontinuous, and the upper semicontinuous envelope can be omitted. Moreover, F' is locally
continuous around any point at which 0,,¢ < 0. Finally, for 0., > 0, F' = —o0 and thus
trivially satisfies the condition for subsolutions. This is the relaxation needed for existence at
the points of discontinuity 0., = 0, with the burden instead shifted to the comparison proof.

Let £ be the space defined by

T
L= {B 1[0, 7] x 2 — RY, progressively measurable and E/ |Bul? du < oo} )
0

It is well-known (see, e.g., [4]) that the functional p admits the convex dual representation

p(X)= sup  (E[ZX -I"(Z))), X €L,
ZeLl E[Z]=1

and that, by monotone convergence, the representation easily extends to random variables X
that are bounded from below. Furthermore, in our Brownian filtration every random variable
Z € L} with E[Z] = 1 can be written as Z = Z%:" with

(8) dzi*P = B z5%P aw,,  72*P =z for some B € L.
Thus, by (6), the value function associated to the control problem (P) is given by

(9) V(s, Y, Z) - lnf sup E [Z;:Z,ﬁf(yjf7y,a) _ l*(Z’;,Z,Oé)] 7
a€Ager

where Y*¥%% denotes the solution of (1) on [s,T] starting from Yy = y.

The rest of the proof is devoted to showing that V' is a viscosity solution to (DPE). To that
end, it shall be useful to restrict the optimization problem to the so-called Markov controls,
which we define as

AM = {a :[0,T] x R — A, Borel measurable}
or to the more relevant subset
AME — L4010, T] x R — A, Lipschitz continuous}.

The advantage of working with a control o € AM- is that the associated state process Y is
determined by coefficients satisfying the assumptions in [1]. This opens the way to leverage
some of the results obtained in [1] for the uncontrolled case.
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We will also consider the subset £ of £ given by

Ly = {B €L: sup |G € LOO}.

te[0,7)

Lemma 2.2. Suppose that (b,o) satisfy (Abo). Take B € Ly so that abusing notation, we
put 8= B(W), where B is a progressive bounded process on the canonical space C([0,T]; R?).

Given I C [0,T],A C R? compact, we write T for the set of the laws of all processes Y 5¥:2P
constructed on some filtered probability space (Q,]:", ]5) for which, for some s € I,y € A, we
have Yts’y’a’ﬁ =y if t < s, while fort > s,

Ay P = b, VPP ap) + o0 T (8, YV ) Bu(W)dt + o (Y0P, o) dW

and where o is some f—progressive and A-valued process while W is some (.7}, P)-Browm’an
motion. Then, for any k > 1, the set T' is compact in the Wy-topology®.

Proof. The drift and volatility terms of Yts’y’a’ﬁ are bounded, as well as the initial condi-
tions (s,y). It follows from, e.g., [35] that I" is relatively compact with respect to the weak
topology induced by continuous bounded functions on C([0, T]; RY). Since (b, o) are bounded it
follows from the classical Burkholder-Davis-Gundy (BDG) inequalities that E[sup,<s
Y, ¥ P15 < ¢ for some constant ¢ uniformly in . From this it easily follows that T
is also relatively compact with respect to the Wy-topology.

To finish the proof it suffices to show that I' is weakly closed. Take {s",y"} C I x A and
(o) progressive and A-valued possibly in different stochastic bases (Q", F", P™), respectively,
with a Brownian motion W, and suppose Law(st’yn’an’B ) — Q. By selecting a subsequence
we may suppose s” — s € I and y™ — y € A. We introduce

Q= C([0,T);RY) x C([0, T;RY) x P([0,T] x A)

with generic elements denoted @ = (w',w?,q). The space C([0,T];RY) is equipped with its
canonical filtration, denoted (F});, and the space P([0,T] x A) is equipped with the filtration
(F2);, where F7? is the sigma-algebra generated by the sets {¢(J x G) : J C [0,t],G C
A measurable} so that  is equipped with the product filtration F; = F} x F! x FZ. We
embedd Law(Y*"¥"") into P(Q) by considering Q" := Law(Y*" ¥ "8 " A") where
A" =119 dtdap. As the space P([0,T] x A) is compact and since the second marginal of Q"
is fixed, up to taking a further subsequence we may assume Q™ — ) weakly. Necessarily the
first marginal of Q is equal to Q, the process w? is a (F, Q)-Brownian motion, and Q-a.s. the
first marginal of ¢ is a Lebesgue measure on [0, 7.

3P, — P in this topology if and only if [FdP, — [FdP for any F € C(C([0,T];R%)) with

|F ()] . . . .
SUPLEC(0,TIRY) Theuprepp ol < OO This convergence is metrized by the so-called k-Wasserstein

(hence W) distance on the space of probability measures on C([0,T];R?) for which the function w
SUP;¢(o,7] |we|® is integrable. A set I' is relatively compact in this topology if and only if it is tight and

lim N 00 SUP per fs“pte[O,T] or|= N SUPefo.7] |we|"dP(w) = 0.
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In terms of the martingz_ﬂe problem, we have, for all ¢,a > 0, all continuous bounded func-
tions h :  — R which are F;-measurable, and all ¢ € C(R?) twice-continuously differentiable
with bounded derivatives, that

(10) [ @bzt - v iaqr = o
where M/™? = M"*(@) is defined by
P(w s"Vt / { Z bi(r, wta z¢(wt)
[s™,s™VE] XA

+ Sloo ety (5:)000) + 5% fatar:do)

Clearly M converges uniformly to M} defined by

b= [ {wat, Oio(wh)

[s,sVt]xA

# Sl sy (G saiotd) + 332,00 batardo),

the latter being jointly measurable in @ and bounded. On the other hand, as a function of
(w!,q) the same function is Q-almost continuous. By the last statement we mean that the
measure () gives mass 1 to those ¢ for which the first marginal is Lebesgue, and these are

in particular continuity points for the term (w!,q) — [{...}dg above. Finally, since the

w?-marginal is fixed, a standard Lusin argument and (10) allow us to conclude that

(1) [ r@ltf,, - 1f1a@ = o
To finalize the proof, recall the convexity assumption in (Abc) and the set K (t,y) defined

therein, which is not only convex but also compact by continuity of (b, o) and compactness of
A. After disintegration, we hence observe that Q-a.s,

/A(bi(r,wi,a), T(7" w,,a))qr(da) € K(r,w )

Hence a measurable selection argument as in [5, Lemma 5] provides the existence of «, some
F-progressive and A-valued process, such that

/A(bi(r,wi,a),aa—r(rw a))gr(da) = (bi(r,w%,aT),aUT(r,w},ar)).

Observing that ¢(wl,,) — Mf) can be then written as

sVt
/ S bt 0)oled) + 300 (reod 00y | (Br(eP))s056(h) + 508,6(b) | §
s i i,j
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we derive, from (11) and the correspondence between weak solutions and martingale problems,
that the process w', which we may relabel Y*%%# is under (Q, F, P) just as stated in this
lemma and has law Q as desired. [ |

Remark 2.3. Note that the existence of optimal control in a weak sense for the control
problem (P) follows as a direct consequence of the above Lemma 2.2.

Lemma 2.4. If assumptions (Abo), (Af), and (Al) are satisfied, then for every strategy
o € A, there is a strategy & € AM such that p(f(YR)) = p(f(YF)), where the process Y& is
built on a possibly different probability space as in Lemma 2.2.

Proof. Given o € A, we may apply [9, Corollary 3.7], which extends the original [20,
Theorem 4.6], to obtain the existence of functions b, & such that the equation

dY; = b(t, Y)dt + &(t, i) dW;

admits a weak solution (i.e., on some probability space with some Brownian motion W)
with one-dimensional marginals that coincide with those of Y. In particular, l;(t,y) =
E[b(t, Y, a)|V;* = y] and 66 ' (t,y) := E[oo " (t, Y, )|V, = 9] so that (b(t,y),56 " (t,y)
belongs to the convex compact set K (t,y) introduced in assumption (Abo). Therefore, a
measurable selection argument as in [5, Lemma 5] allows us to find a Borel measurable function
& :[0,T] x R — A such that b(t,y) = b(t,y, a(t,y)) and 66 (t,y) = 56 ' (t,y,a(t,y)). Thus,
a€AM and Y = Y% with

(12) AV =b(t, Y5, a(t, Y0 dt + o, Y1, a(t, YY) dW.

Since OCE risk measures are law invariant, we conclude that p(f(Y)) = p(f(Y)). |

Lemma 2.5. Assume (Abo), that o is uncontrolled and nondegenerate, and that o is a
measurable A-valued Markov control, and build Y* on some probability space (0, F, P). Then
there is a sequence ay, of Lipschitz A-valued Markov controls such that

E[F(Y¥son)] = E[F(Y¥*)]

for all F : C([s, T];R%) — R measurable and with at most polynomial growth.

Proof. Without loss of generality, take s = 0 and y = 0.
Step 0: It is enough to settle the question up to exit times. Suppose we have found a
sequence «y, of Lipschitz A-valued Markov controls such that

(13) E[F (00 R)] - BIF(yO0eR)

for all R > 0 and all F : C([0,T];R%) — R measurable and with at most polynomial growth,

whereby Y00anf (vesp., Y0.0%R) denotes the process Y90 (resp., Y00 stopped at its

first exit from the ball with center the origin and radius R, if this time is smaller than 7'
We remark that

lim sup
R/OO de{an}nu{a}

E [1 (o). srp{ F(Y 000 — F(Yovové‘)}} ‘ =0
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by the polynomial growth of F', the precompactness established in Lemma 2.2, and the fact
that if
Tr(w) :=1inf{t € [0,T] : |w¢| > R} AT,

then for all continuous paths w we have

K K
1{SuPze[0,T] |winrp(w) >N} SUP ‘wt/\TR("J)‘ < 1{SuPt€[0,T] lw¢| >N} SUp e "
t€[0,T] t€[0,T]

From this remark, it is direct to drop the radius R from (13).

Step 1: Construction of the sequence (ay,). Define Y as the unique strong solution to dY; =
o(t, Yt)th, denote Q := Law(Y") and Q; the t-marginal of Q. Call u(dt, dzx) := Q¢(dx)dt. We
will build «a;, as stipulated such that a;,, — « in L?(iz). By Lusin’s theorem, for each e we
find F. C [0,T] x R? compact such that u(F.) > 1 — ¢ and a|f. is continuous. By the Tietze
extension theorem, particularly in the version of [15, Theorem 4.1], we build a. as a continuous
extension of aff., still A-valued since A is closed and convex. Via mollification we take
Qe — O, locally uniformly as 7 — 0, each of which is smooth and A-valued since A is convex.
In particular ae,|F, is Lipschitz and a.,|F, — ac|r, = o|F. uniformly as n — 0. We can now
take by [27, Theorem 1] &, a Lipschitz extension of a. ,|r which is still A-valued since A is
closed and convex. With the help of {a¢,}c, we can build a sequence {ay,}, such that

e «, is Lipschitz and A-valued;
® SUD(4)er ), la, (t,2) — a(t,z)| < 1/n.

From here it follows, since A is compact, that

Jan — all3agy < 1/n® x (1= 1/n) + > sup Jaf?,
€A
and so a,, — « in L?(u). We remark that, by continuity and under the nondegeneracy
assumption on o, the matrix oo " is invertible and locally uniformly elliptic, the latter mean-
ing that for all ¢ € [0,7] and |y| < R we have o(t,y)o " (t,5) > Mgl for some A\g > 0. Hence
the same holds for o. Thus for each R > 0, and recalling the notation for 7z from Step 0, it
easily follows, from these considerations, the Lipschitz property of b, and It6 isometry, that

TrR(Y) -
lim/ {b(u7 Yo, an(U, Yu))qu - %’U(u, Yu)_lb(u7 Yo, an(u, Yu))’2du}
n 0
Tr(Y) - 1
0 = [ b Yot i~ oY Yoot Yo P
0

in L? and so, up to taking a subsequence, almost surely as well.

Step 2: Representation via Girsanov’s transform. Consider the stochastic exponentials
28 = e(Jy*Y) o(t, Y1) 710 (t, Vi, a(t, ¥))dWy) and Zp ™ = E(f77C) (2, Y3) 710 (1, Ve, an (8, 1))
dW,) for an arbitrary R > 0 . By SDE estimates {Z;’R}n is LP-bounded for every p > 2.

Selecting subsequences (thanks to Alaoglu’s theorem) and a diagonalization argument gives
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that Z;,E’R — Z® in the weak topology of LP for all p > 2, but by (14) we must have ZF = ZE.
We conclude in particular that

(15) i [F(Y)Z;:R] ) [F(Y)Zﬁ]

for F measurable and such that E[|F(Y)]9] < oo for some q € (1,2]. If |F(w)| < ¢[1+sup; |we|¥]
with k& € N, then E[|[F(Y)|?] < oo is guaranteed by the Burkholder-Davis-Gundy (BDG) in-
equality, as o is bounded. Finally, observe by Girsanov’s theorem that W, — fOATR(Y o(t,Y) !
b(t, Y, aft,Yy))dt (resp W, — fOMR(Y o(t, )" 'o(t, Vi, an(t, V3))dt) is a ZEP-Brownian mo-
tion (resp., a ZT’ P-Brownian motion), and so on {t < 7g(Y)} we have that dY; =
b(t, Yy, a(t,Vy))dt+o(t, Y;)dB, for B a ZF P-Brownian motion (resp., dY; = b(t, Yz, a (t, Y3))dt+
o(t,Y;)dB}y for B" a Z?’RP—Brownian motion). Recalling from Step 0 the notation that R
as a superscript means the path stopped at its exit time from the ball of said radius, it fol-
lows by uniqueness in law (see [34, Theorem 5.6]) that E[F (Y ®)Z}] = E[F(Y%0enR)] and
E[F(YR)Zy] = E[F(Y%%)]. This and (15), the latter applied to FF(w) := F(w™) to be
precise, establish the validity of Step 0 and hence conclude the proof. |

The following proposition shows that the open-loop and the Markovian formulations of
the control problem have the same value, and in fact the Markov controls can be chosen to
be Lipschitz.

Proposition 2.6. If assumptions (Abo), (Af), and (Al) are satisfied and o is uncontrolled
and nondegenerate, then

(16) V(s,y,2)= inf | sup E [f(Yi’y’“)Z?z’ﬁ - l*(Zzsﬂ’z’ﬁ)} for all (t,y,2) €[0,T] x O.

Proof. Tt was shown in [1, Proposition 3.2] that if f is bounded and [ satisfies (Al), then
pUFYVEH) = sup B |f(Vp") 2577 — 1'(2377)]
BEL
for every s,y, . Since f(Y2¥%) = lim,_y00 f(Y2¥"%) A, it follows by monotone convergence
that the above holds for f bounded from below Thus,

(17) V(s, Y, z) = 1nf sup E[f(Y Y, )Z;JZ’B _ l*(Z;’Z’B)}’
acA BELy

from which it follows that V' is smaller than the right-hand side in (16).
Let us prove the reverse inequality. For every € > 0, there is a € A such that

Visyn2) 2 sup B (OG0 257 =123 = e = o (1 (7)) — =
€Ly

where the equality follows from [1, Proposition 2.8] and p's is the OCE corresponding to the
loss function [,(z) := I(z/z). By Lemma 2.4, there is & € AM such that p=(2f(Y; ")) =
P (zf(Y70?)). Remark that Y*%@ is constructed on some (possibly different) stochastic
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basis (Q, F, P) and Brownian motion W. Furthermore, by Lemma 2.5, there is a sequence
o of A-valued Markov Lipschitz controls such that E[F(Y®¥%)] — E[F(Y¥%%)] for every
measurable, real-valued function ' on C([s, T],R?) with at most polynomial growth. Using
again [1, Proposition 2.8] and the fact that p's is law-invariant, there is 7 € R such that

denoting by Poys.0.6 the law of Y;’y’d, we have
T

Vi(s,y,2) > plz(zf(Yzfvyv@)) —e> /l(f(x) - T’)MY;,y,a<d$‘) +2r — 2¢

E[(f(Y24%) = )] + 2r — 2.

Therefore, letting F(w) = I(f(wr) — r), which is continuous and with at most polynomial
growth under the assumptions on [ and f, we have

V(s,y,2) > lim EI(f(Y7"") = r)] +2r — 2

n—o0

> inf inf (BI(F(Y2YY) — )] + 2r) — 2¢

QEAM’L reR

= inf su IE[ Yy zszB _px( gsmBy| _og)
aeAMvLﬁea f( T ) T ( T )

Dropping ¢ yields the desired result. |

Lemma 2.7. If assumptions (Abo), (Af), and (Al) are satisfied, then the function V is
real-valued and continuous on [0,T] x O. Moreover, it holds that

(18) V(s,y,2) = zd(s,y) —1"(2) forall (t,y,z)€[0,T] x 00.

If the domain of I* is closed, then V is continuous on [0,T] x O.

Proof. Since f is bounded from below we have V' > —oo, and, by the polynomial growth
property of f and [ and the representation (4), that V' < oco. Recall that due to the growth
conditions on b and o the random variable Y2*¥** has moments of every order.

Step 1: Upper semicontinuity. Regarding the continuity statement, let (s™,y",z") be
a sequence converging to (s,y,z). For every a € A, it follows by standard stability results
for SDEs (see, e.g., [31, section V.5]) that Y:,‘f"’yn’a converges to Y;7¥"“ in LP for all p < oo.
Thus, for every » € R, by dominated convergence, continuity of [ and f, and their polynomial
growth, we have that

limsup V(s",y", 2") < lim sup E[l(f(Y;n’yn’a) —r)+r2"
=E[(f(Y7") —r) +rz].
This shows that

limsup V(s",y", 2") < V(s,y, 2),

n—oo

from which upper semicontinuity follows.
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Step 2: Lower semicontinuity on the interior. To prove lower semicontinuity, let (s™, y", 2™)
be a sequence converging to (s,vy, z). For every n, there is o™ € A such that

V(s gy, 2") > Bz 0 pvsvteny - z*(z;"»z”ﬁ)] ~ 2 forall Be L

1
n
Let @ be the probability measure absolutely continuous with respect to P and with Radon—
Nikodym density ZF;’Z’B and W9 = W + Jo Budu. By Girsanov’s theorem W< is a Q-
Brownian motion and Y;* ¥ = yn 4 I blu, YoV o) 4 o(u, Y V" o) By du +
fstn o(u, e " " an) dWE. Lemma 2.2 then ensures the existence of a control o € A such
that, up to a subsequence, it holds that Eq[f(Yy ¥"*")] — Eq[f(Ya**)]. Moreover, since

Z;n’yn"g converges to Z%y,ﬂ in L%, B is bounded, and f is of polynomial growth, we have

E[Z5 VP f(Y24)] = B[Z5YP f(Y59)]. Therefore, it follows by triangular inequality that
BlzZy P0G - B2 ),
Hence, by continuity of [* on its domain, we have that

liminf V(s",y", 2") > E[Z3¥7 f(Y34) — 17(Z397),

n—o0

and since 8 € L, was taken arbitrarily this allows us to conclude that

liminf V(s",y", 2") > V(s,y, 2).
n—o0
Step 3: Boundary value (18). Assume s < T and z € 00,. There are a € [0,00) and

b € (0,00] such that int dom(l*) = (a,b). Thus, 00, = {a,b} if b < oo and 90, = {a}
otherwise. If a = 0 and b = oo, it is clear, by (18), that z € 00, implies V (s, y, z) = [*(0).
Let us assume a > 0. If 8 € £ is such that P ® dt(B: # 0) > 0, then P(Z;’l’ﬁ #1) >0
because otherwise Z; 18— 1 Poas. for every t > s and thus 8 = 0, a contradiction. And since
Z%l’ﬁ # 1 with positive probability, it follows that aZ;’l”B ¢ dom(I*) with positive probability.
In fact, if astil’B € dom(l*) C [a,00), then aZ:S'F’l’E > 1. Since Z*P is a martingale starting at
1, this implies that Z;’l”g = 1, a contradiction. Thus, ]E[aZ;’l’ﬁf(Y;’y’a) - l*(aZr;’l"B)] = —00.
If 8 =0, then E[aZy"° f(Y2¥%) — I*(aZ3™")] = aB[f(Y2V™)] — I*(a). Hence,

V(s,p,a) = inf aB[f(Y7)] = 1'() = ag(s.y) ~ I'(a).

The case 0 < b < oo is handled analogously.

Step 4: Lower semicontinuity on the boundary. If the domain of [* is closed, upper
semicontinuity on [0,7] x O follows exactly as in Step 1. As to lower semicontinuity, let
(s™,y™, 2") € [0,T] x O converge to (s,y,z) and z € JO,, Then, by definition of ¢,

limsup V(s",y", 2") > limsup 2" ¢(s", y") — I*(2") = zé(s,y) — 1" (2) =V (s,y, 2) [ ]

n—oo n—oo
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Consider the “approximate value function”

(19) V™ (s,y,2) i= inf sup E[Z3*" f(Y4) —1*(Z577))
aceA BEL
with £, := {8 € Ly : |B] < n}.
Proposition 2.8. If assumptions (Abo), (Af), and (Al) are satisfied, then (V™) converges
pointwise to V.

Proof. Tt is clear that limsup,,_,., V™ < V pointwise on [0,T] x R? x O,.
Let us prove that liminf,, o, V™ > V. Let 8 € L. There is N such that g € Ly. For
n > N, we can find a” € A such that putting Y™ := Y*%" one has

(20) 1/n+V"™(s,y,z) > E[stgzzﬁf(yTn) _ l*(Z;’Z”B)].

Hence, for 8 € L, fixed, it follows by Lemma 2.2 and Girsanov’s theorem that there is a € A
such that, up to a subsequence, E[Z;Z'Bf(YT")] — E[Z:‘;’z’ﬁf(Y;’y’a)] Hence we may take
limit in the Y’s in (20) while leaving § fixed, obtaining

lim inf V"(s,y, 2) > E| 237 f(030) = 1(2577)]
n
Thus, since [ was taken arbitrarily, we have
liminf V"(s,y,z) > sup E[Z;’Z’ﬁf(YTs’y’a) — l*(Z;’Z’ﬁ)}.
n BELy
This yields
. n S ‘
h,nni}géfv (Saya Z) = V(S7ya Z) [ ]
We now have the following dynamic programming principle for the function V.

Proposition 2.9. If assumptions (Abc), (Af), and (Al) are satisfied and o is uncontrolled
and nondegenerate, then the dynamic programming principle holds in the following form: For
all)0 < s <0 <T we have

(21) V(57y7 Z) = inf sup E V(07Y'937y,047 Z;,z,ﬁ)]’
OCEASﬂ Beﬂs’e
b

where Ag g denotes the restriction of the elements in A to the interval [s,0], with a similar

notation for L"Z’e. Equation (21) also holds for V™ (defined in (19)) instead of V', with EZ’9
5,0

replaced by Ly, and defined analogously.

Proof. By Proposition 2.6 we have that V(s,y, 2z) = inf ¢ ya,L V(s,y, 2) with

(22) Va(37y7 z) = sup E f(Y;,y,a)Z%z,B _ l*(Z;’Z’B)}
BELy

for each a € AME. Tt was shown in [1, Corollary 3.8] that V¢ satisfies the Dynamic Program-
ming Principle (DPP)

(23) VO (s,y,2) = sup E[V(0, Y, Z577)].
pecy?
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Now let ¢ > 0. Then, there is a control o € AMZ (depending also on s,,z) such that
V(s,y,z) >V (s,y,z) —e. Thus, we have

V(Sa Yy, Z) 2 sup E |:Va5 (9’ Y957y70‘57 Z;,Z,,B)] e
pecy?

> sup E[V(G,Y;’y’aE,Zg’z’ﬁ)} —e

> inf sup E{V(Q,Yes,y,a,zg,zﬁ)} — e

Sending ¢ to zero we conclude that the left-hand side in (21) is the greater one.
Let us now show the reverse inequality

(24) V(S,y7z) < inf sup E[V(Q’}/&&y,a’ Z;’Z’B)}

CVG.AS,Q ,BE[:S’G
b

for all [s, T]-valued stopping time #. To that end, let (s, y, z) € [0, T|xRIxO,, 0 a [s, T]-valued
stopping time, a € Ay, and S € L. Notice that the set

s,2,8 ERINe 5,2,
{KW = E[Z?ZG Cropt Ty ez fe] v e Ae,T}
is directed downward. In fact, let 4!, v% € Ag.r. Putting v, := %511{K71<K72} + ’71521{K,Y12K72}
on {t > 0} and 7 = 0 on {t < #}, it holds that v € Ay and K7 < K" A K. Thus, there

is a sequence (") in Ajgy  such that

. n .
lim K7 = essinf K.
n—oo ny_Aa’T

By Lemma 2.2 and Girsanov’s theorem, there is an admissible 4 € Ay 7 such that

lim K" = K7 P-as.

n—oo

That is, essinfye 4, , K7 = K7. Using that 7 is optimal, it follows that for a := al gy +71e,17s
one has

_ s,z,0 sy, — s,z,0
E Z;,y,ﬁf(yjf,y,oc) _ l*(z%z,ﬁ)] — E E |:Z/10—:Z9 7Bf(Y7€,Y9 ,'7) _ l*(qu’Ze ),8) ‘ f9:|]
. 0,250 8 o OV e 025708
= E|essinf | 2y f(Yp ) = 1"(Zy )| Fo
s,2,8 a1 ERTReY s,2,8 1
< E |esssupessinf E ZgJZe h f(YTe’Yg M- l*(Z;’ZG s ) | Fo
BIEE?T 'YEAG,T
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Since [ was taken arbitrarily, the last inequality implies

V(s,y,z) = inf sup E[Z?y,ﬁf(ng,y,a) _ l*(Z;;’Z’B)} < sup E[Vn(evygs’y@a Zg,zﬁ) .
a€A geL, geLy?

The claim then follows since a € A, g was taken arbitrarily.
The proof for V™ is the same. |

Lemma 2.10. If (Al) and (Af) are satisfied, then for every (t,y), the function V (t,y,-) is
concave on Q.

Proof. The proof follows from [1, Proposition 3.3|, where it is shown that for every o € A
and z > 0 it holds that

;ug E f(Y;’y’a)Z{SF’Z’B _ l*(Z;,z,B)} — ple (2f(V2Y)
€Ly

where p'* is the OCE with loss function [, (z) := [(z/z). This representation and the definition
of OCE show that

V(s,p,2) = inf inf (B(S(G) = )] +27)
from which concavity is easily derived. |
We can finally produce the proof of Theorem 1.2.
Proof of Theorem 1.2. Let us first use the inequality

(25> V"(s,y,z) < ér_}(f sup IE|:V7L(07Ye&yu7 Z;,z,ﬁ)]
aCAo,0 BeLm

to show that V™ is a viscosity subsolution of the HJBI equation
—0,V" —infaep b(t,y,a)0,V" — %Tr <UU'(t, y)@SyV")

(26) — SUPgcRY,|8|<n (%z2|ﬁ\28§ZV" + z@ZZV”J(t, y)ﬁ) =0,
V(T y,2) = 2f(y) — 1" (2),
Vi (t,y, 2) = z¢(2) — I*(2) on [0,T] x R¢ x 90O,
Hereby, we put F™ the function such that the first line in the PDE (26) is given by
F™(t,y,2,0,V",0,V",D*V") = 0.

Let ¢ € C? be a test function with bounded derivatives such that V™ — ¢ has a global
maximum at x = (s,,2) € [0,T] x RY x O, with V*(z) = p(z). If s = T, then ¢(z) =
2f(y) - I°(2).

If s < T and z € 00,, then it follows from Lemma 2.7 that V(s,y,2) = z¢(s,y) — *(2).

Assuming s < T and z ¢ 00;, then by (25), one has

0 dnf sup Blols +u V2 Z15) — ¢ls.9.2)
,s+u 17;

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/31/23 to 140.180.240.126 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC CONTROL OF OCEs 763

for all uw € (0,7 —s). Let a € A be arbitrary. Applying Itd’s formula to ¢ — o(t, Y;>¥%, Zf’z”B)
yields

s+u
0 < sup / E[b(tvyts’y’avat)ay@(t, YU 2050 + Oy (t, YU, 207P)
BeELY Js

1 1
5 Ty (6, Y0, 20 )00 (1Y) + 01, Y00, 250 By (272

(27) + Byt YV, Z;,zﬂ)U(t’ Yf’y’a)ﬁtzts’z’ﬂ] gt

Since ¢ and its derivatives are Lipschitz continuous, and by the Cauchy—Schwarz inequality
and classical SDE estimates, there is a continuous function ¢ — R(t) with R(0) = 0, further
parametrized only by o, s, b, ¢, n, z,y, such that

s+u
0= iy / R(t - 3) +E ayQO(tv Y;fs’y@v Zf’Zﬂ)b(tv Y;fs’y@v at) + atcp(tv Yts’y@v Zf’Zﬁ)}
BeELY Js

+ E |:ayzg0(t’ Y;S,Zh&’ ZtsVZ’IB)O_(t, }/;S)y7a)l8tZtS7zzﬁ
1
+ 5 (TI‘(@yy(,O(t, Y;S’yﬂ, Zts’z’ﬁ)O'O'/(t’ Y;S’y’a)) + 52290(75, Y;s,y,a, Zf,zﬁ)|ﬁt|2(zf,2ﬁ)2> :| dt.
Observe that having a uniform bound on [ was essential here. As a consequence, we have
s+u
0< / R(t—s)+E [@;‘P(ta Yo, ij’ﬂ)b(t, YV ap) + Opp(t, Y0, Zf’z’ﬂ)
S
1
5 Tr @y (Y7, 2050 (1, Y,))
+ E |:g(t’ }/;S7y)vazvﬁ
1 Y, 78,2, 2(75,2,8\2 Y, 78,2, s,2,8
+ sup 7822()0(75?}/;5 aZt )|B’ (Zt ) + 8ych(t7}/;f 7Zt )aﬂZt dt

BER™:|B|<n

Dividing by u, using dominated convergence, and letting « go to 0 give

F"(s,y,z, at90(57y7 Z)aay<P(5,?/7 Z)7D2§0(87y7 Z)) <0

showing that V™ is a viscosity subsolution of (26).

The viscosity subsolution property of V' now follows by stability arguments. In fact, by
Proposition 2.8 and Lemma 2.7, the sequence of continuous functions (V") increases pointwise
to the continuous function V. In combination with Dini’s lemma it follows that (V™) converges
to V' uniformly on compacts. Denote by F' the function such that the first line in (DPE) is
given by F(t,y,z,0,V,9,V,D*V) = 0.

Let us be given a test function ¢ € C? such that V —¢ has a strict local maximum at o =
(50,40, 20) € [0,T) x R? x O,. It can be checked using stability arguments that the nonstrict
local maximum case can be obtained as a consequence of the strict case. Let B, (xg) := {z :
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|x — z¢| < r} with r small enough so zg is the maximum of V' — ¢ on B,(xg). Denote by
Ty, = (Snsy Yn, 2n) the point at which V™ — ¢ reaches its maximum in B, (zp). We may suppose
%y, — Z. The uniform convergence on B, (xg) of V" to V yields (V —¢)(z) = im(V" —p)(z) <
Hm(V"™ — p)(x,) = (V — ¢)(Z), and we conclude & = xg. As V" is a viscosity subsolution of
(26), ¢ satisfies

. 1

Oyp(xy) + inf {b(sn, Un, @)Oyp(zp) + = Tr (O'U/(Sn, yn)aiycp(xn))
acA 2

1

o !

2|8120% o(x,) + z@izgp(:vn)a(sn, yn)ﬁ} } >0 forallneN,
BERY,|B|<n

which implies

F(mn,8tg0(xn),8yg0(:cn),D2g0(:En)) <0.

Therefore, taking the limit inferior on both sides leads to F(xo, 8:p(z0), Oyp(z0), D*p(z0)) < 0.

Let us now prove the supersolution property. That the boundary condition is satisfied
follows from Lemma 2.7. It remains to check the interior condition. To that end, we rely on
the half Dynamic Programming Principle (DPP)

(29) V(s,y,z) > inf sup E V(G,Y6‘97y’a,Z;’z’ﬁ)] for all s,y, z
aE.Aﬁeﬁb

satisfied by V' (see Proposition 2.9). From this property the proof of the supersolution property
follows by similar (and simpler) arguments as for the subsolution property. In fact, the stability
argument is not needed here since after applying Itd’s formula to a test function, we obtain
(27) with the reverse inequality and without the supremum over 5. [ |

Let us conclude this section by observing that it is common to write HJB equations with
possibly singular Hamiltonians as in the following form:

~

(30) F(t,y,z 0V,0,V,02,V,02,V,02,V) = min{F,G}(t,y, z,0,V, 0,V, 02, V,02,V,02,V) = 0

YYYy T T zz T Yz YYy v T zz T Yz

for a suitable function G and where F' is the left-hand side in (E). The general idea be-
hind this alternative structure appears in [30, section 4.3]. It can be checked that, choosing
G(t,y,2,0,V,0,V,07,V,02,V,02.V) = =92,V (30) is equivalent to our formulation of viscos-
ity solutions with upper and lower semicontinuous envelopes.

3. Comparison. In this final section we prove the comparison principle leading to the
proof of Theorem 1.3, i.e., the uniqueness claim. The following notation should simplify the
exposition of Theorem 3.3 below. Let drOr := (0, T] x R x {0, c} U{T} x O be the parabolic
boundary of Op. For any M € RH1x4+1 we may write

Y X

M=y 4

)

where Y € R4 X ¢ R and Z € R. Hence, for R x R > (y,2) — ¢(y,2) € R and
M = D?p, Y is the Hessian in the y variable, Z is the second partial derivative in z, and X is
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the vector of cross derivatives. In what follows, we will use the correspondence M «+ (Y, Z, X),
with the understanding that it extends to diacritics and subscripts, e.g., M < (Y, Z, X).
Let F be the function such that (E) is given by

F(t,y,2,0,V,0,V,D?V) = 0.

We note that the supremum can equivalently be taken over 5/ = 2, so we may drop the
z-dependence from the notation. Then, with

€ RUEFDX(d+1)

mi(t,y) = [““(; Ve

and H, defined by the second equality,

F(t7y,pt7py,M) = —Pt — égg b(ta y7a)py - Hz(ta y7M)

. 1
= —p; — inf b(t,y,a)p, — sup = Trmg(t, y)TmB(t, y) M.
achA BER 2

Recall that H, and H_ denote the upper and lower semicontinuous envelopes of H,. Lemma 3.4
establishes sufficient conditions for H,(t,y, M,) — H,(s,v, M,) to be suitably bounded.

The following lemma exploits the homogeneity of F' to transform (E) into a form better
suited for proving comparison.

Lemma 3.1. If u is a subsolution (supersolution) to F(t,y, Oyu, Oyu, D*u) = 0, then e'u is
a subsolution (supersolution) to

(E) u+ F(t,y, z, 0w, Oyu, D?u) = 0.

Proof. We prove the statement for subsolutions; the proof for supersolutions is analogous.
For any (s,v,(), let ¢ be a viscosity test function touching eu from above at (s,v,¢). Then
ety touches u from above at (s, v, (), so, since u is a viscosity subsolution,

0 2 F(ta Y, 8t(€_t§0)(8, v, C)? 8ye_sap(s, v, C)? Dze_sgp(sa v, C))
= F(ta Y, 6_5[_90(57 v, C) + 81‘/80(57 v, C)]) e’ y%p('s? v, C)a e_SDQSO(‘S? v, C))
= 67890(57 v, C) + eisF(t) Y, at@(S, v, C)v 82/90(87 v, C)? D290(87 v, C))a

where we implicitly use that e~! is strictly positive so that the Hamiltonians in F are not
affected. After multiplication by e®, this proves the claim. |

The following definition will be useful in the proof of comparison. It mirrors the usual
definition but omits the derivatives that are not evaluated in F'.
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Definition 3.2. The so-called second order superjet, or superjet for short, of u at x =
(t,y,z) is defined as

P2 Hu(z) = {0y, dp, D) : ¢ € C*([0,T] x O)

and u — ¢ has a local maximum at }.

As per usual, we also define

P u(x) = {(pr,py, M) € R x RY x S(d+1) :

3(a", i, pp, M™) € Op x R x R? x S(d + 1)
such that (pi',py, M") € PETu(z")
a’nd (Invp?)p27Mn) — ($7pt7py)M)}7

where S(N) is the set of symmetric N x N matrices. Finally, define the second order subjet
as P>~ u(z) = —P>*(—u)(x) and P analogously.

As F and F are upper and lower semicontinuous, respectively, the limiting procedure in
the definition of P~ and P>~ does not pose a problem for defining viscosity solutions using
the superjets and subjets. This equivalent definition is standard, and the reader is referred to
[14] for details.

By Lemma 3.1, it is clear that if (E') has comparison, then so does the original equation.
In analyzing (E’) there remains the difficulty that H, is discontinuous and in particular that
it attains oo. This problem is exacerbated by the fact that H,(0) = 0 but H,(0) = co.* The
discontinuity problem is overcome by observing that —H, is finite for any element in 52’_(0),
as v is a supersolution, and, at the maximizer constructed in the proof, the same holds for
elements in P F (u). The problem due to the semicontinuous envelope at M = 0 is overcome
by slight perturbations of the penalty functions. This has to be done with care, as otherwise
the property used in handling the discontinuity of H, fails. These two techniques lead us to
the following theorem.

Theorem 3.3. Let u (v) be a linearly growing upper (lower) semicontinuous viscosity sub-
solution (supersolution) to (E') in Op. If either u or v is continuous, then u < v on drOp
implies that u < v everywhere.

Before we begin the proof, in the following lemma we summarize one step used twice later
on.

Lemma 3.4. Let h: R - R a C? function and

D%h(y — 1) —D?h(y — 1)

1/e —1/e
~D?h(y — 1) D%h(y — 1)

—1/e 1/e

A=

“By definition, H, equals oo whenever Z = 0 but X # 0. Hence, by choosing any limit of Z, X — 0 with
these properties, it is clear that H.(0) = oo.
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for y,. € R Suppose M, and M, are matrices satisfying

M,
*Mv

for some arbitrary constant ~y.

Let /A be the bound on o. That is, ||o|| < VA. Whenever H,(t,y, M,) < oo, it holds
that, for some constant C' depending on D?h, €, and A,

(1) if ||D?h]| < oo, then

D%g(y)
+ ’yA2

D?g(v)
—2e

H(t,y, My) — Ha(s, 0, My) < 4A|D*R|| + A(|D?g(y) ]| + [D?9(0)])) +~C;

(2) if all quantities are implicitly parametrized by e such that D*h(y — 1) = é[ and (t —
5)2+ |y —t|?> € o(e) as e — 0, then

Ho(t,y, My) — Ha(s,0,My) < o(e”) + A(|D?g(y)|| + [|1D*g(0)]]) +~C.

Proof. Using that

mi(t,y) = mals,1) = ["“’y) A 8] ,

we multiply the matrices in the lemma by
T T
mga(t,y) mg(t,y) ma(s, i) mg(t,y)
ma(t,y) Tmg(s,0) ma(s, ) Tmg(s,0)|’
complete the square, and take the trace to obtain

Tr [mg(t, y)ng(t, y) M, —mg(s, L)ng(s, L)MU]
< Tr [(o(t,y) — o(s,0))  (a(t,y) — o(s, 1)) D*h(y — 1) — 2| B]?]
+Tr [o(t,y) "o (t,y)D?g(y) + o(s,1) " o(s,1)D*g(1)] +C,

where C bounds the terms from A2, which is possible because A is bounded independently of
y and ¢. We note that 5 does not appear in the terms bounded by C'. Because

(1, Ma) = H(s, 0, Mo) < sup T [t 0) T (t,) Ma = ms(s,) T, )0

and only the term —2¢|3|? depends on 3, the optimizer is 3 = 0.

Part (1) follows directly from the assumed bounds.

For part (2), the o(¢”) term is obtained from the Lipschitz assumption on ¢ and the
assumed limiting behavior of h, y, and ¢ as € — 0. |
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In the comparison proof that follows, we proceed in steps: first we establish the bound
(31), which is then used later on to construct viscosity test functions and a contradiction. The
general structure for handling the y variable follows [14, section 5.D] but must be adjusted
to account for the discontinuity in the Hamiltonian. Indeed, whereas [14, equation (5.10)]
provides a bound for all variables “doubled,” due to our Hamiltonian, (31) cannot be adjusted
to include a doubling in the z-variable. This causes difficulties in the subsequent steps, where
the z-variable necessarily appears “doubled.” The restriction that either u or v is continuous
is used precisely for this reason, because then (31) holds with the local modulus of continuity
added to the bound. Because this adjustment only holds locally, it introduces a dependence
between the penalization variables  and e, which is the cause for the more carefully chosen
subsequence.

Proof of Theorem 3.3. As 4 = u — €/t is also a subsolution, we have 4 < v for the full
boundary dOp. The proof below could thus be completed for @ instead of u with this stronger
assumption to obtain 4 < v in O, from which v < v in O follows from letting ¢ — 0. Hence,
without loss of generality, we may assume that u < v on dOp. Moreover, since the domain of
I* is compact, we will denote it by [0, ¢] with ¢ > 0.

Step 1. We begin by showing that for some E and K

(31) w(t,y,z) —v(t,t,z) —2K|ly — 1| < E < oo forall (t,y,t,2) € [0,T] x R? x R? x [0, ¢].

If (31) holds, we are done and proceed to Step 2. Otherwise, notice that the linear growth
implies the existence of an L > 0 such that

u(t,y,z) —v(s,t,{) < L1+ |y|+ |¢]) on [0,T] x O x [0,T] x O.

We use this to define the following family of functions. For some constant ), and each R > 0,
let nr be a C2(RY) function with the properties (i) nr > 0, (ii) liminf|, o nr(2)/|2] > 2L,
(it}) [ Dyg(a)] + [ D*nr(@) | < Gy, (iv) limpesoo nr(z) = 0.

Now, let

Pr(t,y,1,2,0) =u(t,y,z) —v(t, ¢, () —2K/1+ |y — ¢|*> = nr(y) — nr()
1
- 27€|Z - C’2 + €C27

where € € (0,1). By the assumption on linear growth and condition (i) on ng, ®x attains a
maximum at some point (£, 9, i, 2, é)

Because (31) does not hold, at the maximum ®x (4, 7,7,2,0) > E — nr(§) — nr(i) > 0 for
any R large enough. This implies that

1. A o I — . R A
5ol = (P <t §,2) = vt 6,Q) = 2K/ 1+ [ = i* = na(9) — e (i) + ¢,

which is bounded in ¢ for a fixed R, so lim._,g |2 — CA | — 0. Hence, there exists z such that,
along a subsequence in € — 0, 2, — z. Furthermore, as ® (£,9, 4, 2,() > max ®g (t,y, 1, 2, 2),

1, . o . I — - R R o
278|Z - €|2 < u(ta Y, Z) - ’U(t,L,C) —2K+/1+ |y - L|2 - ﬁR(y) - UR(L) + 542

_ max u(t,y,z) —v(t,i,z) —2K\/1+ |y —t|? — _ . +£z2,
[O,T]dedex[o,c](( v, %) ( ) ly —[* = nr(y) —nr() )
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which converges to 0 by upper semicontinuity, because 2,5 — z. It follows that, by the
construction of ng, (31) is satisfied if and only if

(32) lim lim @ (£,9,%,2,¢) <

R—00 e—0

We now split into cases, depending on whether there exists a divergent sequence of R such
that for each fixed R there exists a subsequence of € — 0 such that always either (£, 2) or
(1, g: ) lies on 0O7. If so, then both sequences converge to boundary points as e — 0. By upper
semicontinuity and that (31) is satisfied on the boundary, u(f, §, 2)—v(f, i, () —2K /1 + [ — i|2
is bounded from above for sufficiently small . As the bound depends only on the boundary
condition, it is independent of R, which implies (32) and thus also (31).

On the other hand, if no such limit of boundary points exists, then for sufficiently large
R and small ¢, both (£,¢, %) and (£, 1, é) must be interior points. It holds for large R that

Since (t,7,1%, 2,¢) is a maximum, by Ishii’s lemma [14, Theorem 3.2],

(Pr> By + Dnr(9), Yu + D*nr(9), Zu, Xu) € P~ u(t, 9, 2),
(Pr> y — Dnr(2), Yo — D*ng(i), Zy + 26, X,) € P~ 0(f, 0, )

for py = 2KDy\/1+ |2[?|4—g—iy My < My, and Z, < Z,. As v is a viscosity supersolution,
F > —v > —o0. Consequently, this implies that Zy+2¢ < 0 and thus H,(M,,) is finite. Define
M, by (Yy + D*g(4), Zu, X.) and M, by (Y, — D*ng(4), Z, + 2¢,X,). Then M, and M,
satisfy the assumptions of Lemma 3.4 for some 7. In particular, for each +, [14, Theorem 3.2]
gives a pair M, and M, with these properties, so /C may be chosen as o(g?).

Hence, by the viscosity properties of u and v as well as Lemma 3.4(1),

u(t,§,2) —v(t,,¢) < F(L,i,pe. by — Dnr(i), My) — E (&9, pr. by + Dnr(9), M)
< sup b(fa ga a)(ﬁy + DT]R(@)) — Sup b(fv Z? )( DT]R(Z))
a€h a€A
+4A[|D?h|| + A(ID*nr@)I + | D*nr@)]) + o(?) < E'.

As py is bounded independently of R and e, E’ depends on the model parameters, c1, c2, A,
and €}, and is thus independent of R and €. First letting ¢ — 0 and then R — oo, it follows
that (32) holds. This proves (31).

Step 2. Suppose that there is a point (¢,7, z) such that u(t,y,z) — v(t,7,2) = 2\ > 0.
Let

1
(I)(tvsvya Ly %, C) = U(t,y, Z) - U(vaa C) - 27€(|t - 5’2 + ‘y - L|2 + ’Z - <|2)
—6(y° +4%) +eC?

for parameters § € (0,1) and ¢ € (0,1). Then, for sufficiently small 6 > 0 and ¢ > 0,
O (t,t,9,7,2,2) > \. Because of the linear growth and the quadratic penalty, the semicontin-
uous function ® attains a positive maximum at a point (£, 3,7, £, 2, C ), and the maximizers are
bounded for each §, uniformly in €.
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We will now use the continuity assumption. It is clear from the arguments that follow
that it does not matter whether u or v is continuous, so without loss of generality, let u be
continuous. Then, by continuity and that the maximizers lie in a compact domain O% X O%,
there exist moduli of continuity mgs such that

[u(f, 9, 2) = u(3,9, O < ma(|f = 3], 12 = )
for each 6 > 0 and all € > 0. As a consequence of this and (31),

1,2 A . . .
o ([E= 317 19 = 2" + 2 = (?) + (" + %) < (.5, 2) = v(5,0,C) +eC*

< E+2K|[j — il + ms([f — 3], |2 = ¢]) + (2

1 . . A
< B+ | — i + 42K + ms(|f = 31,12 — {]) + .

It is thus clear that, for any &, lim. o |f — §| + |§ — i| + |2 — | = 0. As a consequence, for
each n € N there exists §,, and &, such that the right-hand side is bounded and hence can be
chosen so that 6, (g + ) < 1/n for € < g,. Finally, for each §, the right-hand side of

1
2;(!

t—

~ ~ ~

P45 — i+ 12 =% <uld,9,2) —v(t,5,C) — (5% + %) + el

- rré%x(u(t, Yy, 2) — v(t,y, 2) — 0(y* + 12) +e2?)
T
is vanishing along a subsequence of € — 0, so we may pick &, such that 5 (\t— 82 +|g—1%) <
1/n.

Step 3. We now split into two cases depending on whether there exists a § for which there
is a sequence (£, )nen converging to 0 such that either (£, 3, 2) or (5,%,¢) lies on dOr for each
n. Notice that as § is fixed, they lie in a bounded subset of O7. Thus, along a subsequence,
(t,5,9,0, 2, f) converges to (t,t,7,7, %, %) as € — 0. By the boundary conditions,

0< A< ®t4,9,7,%,2) <ult,j,2) —v(t,g,2) <0,

which is a contradiction.

Step 4. Otherwise, there exists a sequence (e, 0p)nen, converging to (0,0), for which
both (Z,9, 2) and (3, i, 5) remain in the interior and, by the observations at the end of Step 2,
On(9+1) < 1/n, and 5 (\t — 8>+ |9 — i*) < 1/n. At each maximizer, by Ishii’s lemma [14,
Theorem 3.2],

A A P 5 B2+t oA A
(Bes Dy + 2009, Yo + 20,1, Zy, Xu) € P ( 9, 2),
(Pt Py — 2008, Yy — 2601, Zy + 26, X,) € P (5,0, C)
with p, = i\gj —i|, My, > My, and Z, < Z,. Like in Step 1, v being a supersolution implies
Z, < —2¢, which ensures that H,(M,) < co. Again, define M, by (Y, + 20,1, Zu,X ) and

M, by (Y, — 26,1, 72, + 2¢,X,). Repeating the same arguments as previously, M, and M,
satisfy the assumptions of Lemma 3.4 with vC € o(e?).
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Using the viscosity properties of u and v again and Lemma 3.4(2),

A<t g,2) —v(3,i,Q)
< F( i, b, 13 — 20,0, My) — F(&,9, pr, by + 2003, My,)
( ,a)(py — 20,0) + mf b(f, 3, a)(py + 26,7) + 20, A + 0(€°)

— 1) (py + 25ny) + Sup der1 (1 +a|)on (i + ) + 20,A + 0(50).

| /\

Since the right-hand side vanishes as n — oo, it follows that

~

A< lim u(t, 9,2) —v(3,i,¢) <0,

n—oo

which is a contradiction. [ |

1]

[9]

(10]

(11]
(12]
(13]

(14]

The conclusion that V' is the unique viscosity solution in this class is obtained by twice
comparing V with any other candidate solution W using Theorem 3.3 to conclude that V <
W < V. This procedure yields the following corollary.

Corollary 3.1. The value function V' 1is the unique viscosity solution of linear growth.

J.
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