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Embryonic development is a complex phenomenon that integrates genetic
requlation and biomechanical cellular behaviors. However, the relative
influence of these factors on spatiotemporal morphogen distributions is not
well understood. Bone Morphogenetic Proteins (BMPs) are the primary
morphogens guiding the dorsal-ventral (DV) patterning of the early zebrafish
embryo, and BMP signaling is regulated by a network of extracellular and
intracellular factors that impact the range and signaling of BMP ligands.
Recent advances in understanding the mechanism of pattern formation
support a source-sink mechanism, however, it is not clear how the source-
sink mechanism shapes the morphogen patterns in three-dimensional (3D)
space, nor how sensitive the pattern is to biophysical rates and boundary
conditions along both the anteroposterior (AP) and DV axes of the embryo,
nor how the patterns are controlled over time. Throughout blastulation and
gastrulation, major cell movement, known as epiboly, happens along with the
BMP-mediated DV patterning. The layer of epithelial cells begins to thin as they
spread toward the vegetal pole of the embryo until it has completely engulfed
the yolk cell. This dynamic domain may influence the distributions of BMP
network members through advection. We developed a Finite Element Model
(FEM) that incorporates all stages of zebrafish embryonic development data and
solves the advection-diffusion-reaction Partial Differential Equations (PDE) in a
growing domain. We use the model to investigate mechanisms in underlying
BMP-driven DV patterning during epiboly. Solving the PDE is computationally
expensive for parameter exploration. To overcome this obstacle, we developed
a Neural Network (NN) metamodel of the 3D embryo that is accurate and fast
and provided a nonlinear map between high-dimensional input and output that
replaces the direct numerical simulation of the PDEs. From the modeling and
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acceleration by the NN metamodels, we identified the impact of advection on
patterning and the influence of the dynamic expression level of regulators on
the BMP signaling network.

KEYWORDS

bone morphogenetic proteins (BMP), zebrafish, finite element method, FEM, growing
domain model, neural network model

Introduction

Morphogens are signaling molecules that form a spatial
pattern over a field of cells or tissue, often as the result of the
interplay of reaction and transport processes (Lander et al., 2002)
(Umulis and Othmer, 2015). In zebrafish, patterns of gene
expression along the dorsal-ventral (DV) body axis are
regulated by Bone Morphogenetic Proteins (BMPs), a member
of the TGF-f super-family of signaling molecules (Tucker et al.,
2008). In early embryonic development, BMP signaling patterns
DV axis formation in both invertebrates and vertebrates (De
Robertis and Sasai, 1996; Holley and Ferguson, 1997). Different

molecules regulate the BMP signaling network by enhancing,
lessening, or refining the level of BMP signaling at multiple levels
(Wang etal., 2014). Most BMP signaling inhibitors act by directly
binding BMP ligands to prevent them from binding their
(Chd), (Nog),
Crossveinless2, Follistatin, Sizzled, and Twisted gastrulation.
(Dal-Pra et al., 2006; Dutko and Mullins, 2011; Khokha et al.,
2005; Umulis et al., 2009; Wagner et al., 2010; Little and Mullins,
2006; Tuazon and Mullins, 2015; Umulis et al, 2009;
Madamanchi et al., 2021). On the other hand, Chordin can be
cleaved by the metalloproteases Tolloid and BMP1a, releasing

receptors, including Chordin Noggin

Chordin-bound BMP ligand and allowing it to bind receptors

FIGURE 1

Cell migrations and Peclet Number during epiboly. (A) Cell movement on animal-vegetal direction. Color scale indicates the instantaneous
velocity at corresponding stage. (B) Smoothed velocity map during epiboly, (C) FEM mesh growth during epiboly (D) Cell distribution and traces with
Péclet number (color bar) at 5.3 hpf on spherical coordinate. (E) Cell distribution and traces with Péclet number (color bar) at 9 hpf on spherical
coordinate. (F) Spherical coordinate used in the system el: Elevation angle, az: Azimuth angle.
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and signals (Blader et al., 1997; Piccolo et al., 1997). On the cell
membrane, BMP signaling is propagated by the binding of BMP
dimers to Type I and II (serine/threonine kinase) receptors form
higher order tetrameric complexes and phosphorylate
intracellular Smads (Smad5 in zebrafish) (Karim et al., 2021).
Phosphorylated -Smad (P-Smad) accumulates in the nucleus and
regulates differential gene expression. (von Bubnoff and Cho,
2001).

In our previous work, we developed data-based 1D and 3D
finite-difference models to investigate the mechanisms of BMP-
mediated DV patterning in blastula embryos to early gastrula
embryos at 5.7 h post-fertilization (hpf) before the initiation of
BMP-mediated feedback (Zinski et al., 2017; Li et al., 2020).
However, the BMP signaling plays a crucial role in patterning the
ventral cell fate through gastrulation, where the regions of the
embryo over which BMP is patterning are rapidly changing as the
cells stream and converge (Figure 1A). Throughout blastulation
and gastrulation, major cell movement, known as epiboly,
happens along with the BMP-mediated DV patterning
(Figure 1A). This dynamic domain may influence the
distributions of BMP network members. During epiboly, the
regions of the embryo where BMP is patterning are rapidly
changing as the cells stream and converge during gastrulation.
Cell flow may contribute to morphogen dispersion through
active transport, where we consider the influence of advection
on reaction-diffusion dynamics. One of the core questions we
want to answer through this study is how the cell movement
during epiboly affects the BMP gradient formation. This project
aims to investigate the multiscale regulatory network of the BMP
signaling dynamics along with the biophysical deformation of the
embryo tissue during epiboly. Recent advances in understanding
the mechanism of pattern formation support a source-sink
mechanism (Tuazon et al., 2020; Zinski et al., 2017), however,
it is not clear how the source-sink mechanism shapes patterns in
3D, nor how sensitive the pattern is to biophysical rates and
boundary conditions along both the anteroposterior (AP) and
DV axes of the embryo.

In this study, we present a 3D growing domain PDE-based
modeling framework to simulate the BMP patterning and epiboly
process during the blastula to gastrula stages of zebrafish
development. These models provide a framework to elucidate
how different mechanisms and components work together in 3D
to create and maintain the BMP gradient in the zebrafish embryo.
We are interested in how the cellular movements impact the
formation of gradients by contributing an advective term
whereby the morphogens are swept with the moving cells as
they move vegetally. To model the complex process of the BMP
patterning process during epiboly, we combined a variety of data
and technology into our modeling system. Dynamic cell imaging
data are used to quantify the cell movement during epiboly (Keller
et al, 2008). We evaluated the accuracy of the mesh updating
compared to the advection caused by cell movement and its role in
embryonic patterning. Quantitative whole-mount RNA scope data
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of bmp2b, chordin, noggin, sizzled, and phosphorylated-SMAD
data are collected and analyzed precisely to test the hypotheses of
the gradient formation mechanism in our model.

Mechanism-based PDEs of biological signaling networks
involve many coupled variables through nonlinear relations
and many parameters. The type of nonlinear PDEs appearing
in morphogenesis and pattern formation have to be solved
numerically with methods such as the finite difference method
or the finite element method. Because of the high dimensionality
of the input parameters specifying the PDEs, parameter
calibration through random search involves running millions
of PDE simulations (Zinski et al., 2017). Even with the unrealistic
assumption that a single PDE evaluation takes on the order of
seconds, the computational cost for the calibration task quickly
adds up to weeks or longer. Model calibration often requires the
screening of a massive parameter space due to the complexity of
the system and the limitations of experimental evidence, thus
solving PDE models can be a computationally intensive task. We
present a novel approach to using NN surrogate models to
accelerate the computationally intensive PDE simulations. Our
goal is to develop a complete advection-diffusion-reaction model
that incorporates all stages of zebrafish embryonic development
data. By combining the biophysics of epiboly with the regulatory
dynamics of the BMP network, we can test complex models to
investigate the consistent spatiotemporal DV patterning in the
early zebrafish embryo.

Method and results
Cell movement during epiboly

To estimate the potential role of advection in shaping the
BMP gradient in early development, we analyzed the cell
movement trend and the significance of advective transport
during epiboly through cell migration trace data from 3.5 to
9.6hpf has been collected by Keller et al. (2008) (Figure 1A). To
ignore the individual differences in embryo shape, we consider
the embryo as a spherical shape. Individual cell traces have been
mapped to the standard sphere and fitted to a smooth parametric
function to extract the overall trend of the cell movement during
epiboly. We then calculated the cell movement along with the
azimuth and elevation directions through spherical coordinates
and found that the average velocity in the elevation direction is
much higher than the velocity in the azimuth direction. This
indicates that the majority of cells move directly from the animal
pole toward the vegetal with some dorsal stream only after 50%
epiboly. We also found that before 30% epiboly the cells close to
the animal pole are more likely to move randomly. After 40%
epiboly and with the start of gastrulation, the cell velocity has a
dramatic increase, and most of the cells are moving straight
toward the vegetal pole. Also, after 50% epiboly, the cell
movement polarized while DV patterning is ongoing. In
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(A—D), Normalized mRNA distribution map for BMP, Chd, Nog, and Szl at 4.7, 5.7 and 6.3 hpf. (E) Original whole mount embryo RNAscope
image for bmp2b, chordin, and sizzled at 5.7 hpf. (F) Expression map for FEM model for BMP, Chd, Nog and Sizzled at 3 hpf. (G) The extracellular BMP

regulators explored in this paper, adapted from (Tuazon et al., 2020)

particular, the cells in the dorsal region move relatively faster
than the cells located in the ventral region, leading to a closed
point of epiboly that does not locate exactly 180 from the
animal pole.

To decide whether the advective transport caused by the cell
the BMP
concentration profile during blastula stages, we estimated the

movement or diffusive transport dominates

average Péclet number which is a nondimensional measure of
how dominant advection is over diffusion and is obtained

Frontiers in Systems Biology

through Eq. 1, based on the cell tracing data from 3.5 to 9 hpf
(Supplementary Material). The diffusion rate of BMP in
extracellular space is set to 4.4 um?/s , based on the previous
study (Pomreinke et al., 2017; Zinski et al., 2017; Li et al., 2020;
Tuazon et al.,, 2020), while the velocity of the cells (which is
assumed to drive the advection of the BMP) is on the order 10~
pm/s. Figure 1D, illustrates the cell trace by 5.7 and 9 hpfon a 2D
map of elevation and azimuth directions, the color scale
represents the Péclet number based on the cell velocity. The
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median blastula stage Peclet number is 0.28 among all trackable
cell traces in the embryo, Figure 1D. Looking at only the region
near the margin (where the DV axis specification occurs), it is
0.380. These numbers support the assumption of diffusion
dominance prior to 50% epiboly. With a Péclet number in the
measured rates for the blastula stage, the time scale for diffusion
is about 2-3 times shorter than for advection, suggesting that the
advective term is a minor contributor to flux. Thus, for the
blastula stage embryo, we can assume this problem as a moving
domain non-advection problem. However, later
that the Péclet
approximately equal to or larger than 1 throughout the entire

during
gastrulation, we found number is
embryo, suggesting that the advective term is a major contributor
to flux, suggesting the need to account for both advection and
diffusion.

The velocity map was calculated based on the average
instantaneous cell velocities from the cell traces and created a
general cell velocity map (Figure 1B). The map can be read by
the FEM mesh and directly guide the mesh movement and
drive the movement of the growing domain to closely match
the experimental observations and also generate the
advective transport of the proteins through our advection-
diffusion and reaction model (Figure 1C) (Supplementary

Material).

Whole mount embryo expression map

Quantified confocal fluorescent image data of brmp2b mRNA
expression can provide the input profile to the BMP source term
in the model. To determine the values for the source terms in the
model, we imaged the spatial domains for expression of bmp2b,
chd, nog, and sizzled mRNA at embryonic stage 4.7 h through the
RNAscope method. Figure 2E, illustrates the whole-mount
RNAscope image of bmp2b, chordin, and sizzled mRNA at
5.7 hpf. Multiple individual mRNAs can be simultaneously
detected by the RNAscope method at the cellular level in
whole-mount embryos. bmp2b mRNA started to express since
the zygotic stage, showing an obvious gradient pattern higher in
the ventral, whereas chd mRNA expressed in the dorsal at 5.7 hpf.
We developed an image process framework to quantitively
analyze the mRNA expression of different genes in different
stages, the averaged expression map (Figures 2A-D) was
obtained from 45 individual embryos data from different
stages (4.7, 5.7, 6.3 hpf). The expression map was generated
based on the relative intensity of individual mRNA levels and
the data was normalized between 0 and 1.2 to represent the
relative expression level over the embryo. The details of the
experimental imaging processes of the RNAscope method can be
found in Supplementary Material. We used the range of mRNA
expression to represent the protein secretion of different species
in the model and the readout of secretion level in the FEM mesh
were shown in Figure 2F. The expression level was interpolated
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between the individual maps of different timepoints, the
expression for all the mRNA was set to start at 3hpf. To
control the relative level of different mRNA expressions, the
expression level was scaled by the individual production rate in
the PDEs which was screened in the range of 107 to 10° nM/s.

Growing domain FEM model

Compare to our previous finite difference approach, the
coupled PDE system is solved with a mass-conservative
growing mesh finite element scheme. To keep the solution of
the diffusion-reaction part robust in the presence of extreme
deformation, we adopt a library for automatic remeshing of
triangular surfaces embedded in 3D space (Brochu and
Bridson, 2009). Triangles with small areas or poor aspect
ratios can adversely affect collision detection, topological
operations, and any boundary-integral-based simulation. To
improve the quality of the surface discretization, Brochu, et al.
use a few common operations like edge flip, edge split, edge
collapse, etc.

Arbitrary Lagrangian-Eulerian (ALE) is a method that allows
the mesh to move arbitrarily, with the two limiting cases reducing
to the Lagrangian and Eulerian formulations. In the Eulerian-
based finite element formulation the computational system is
fixed in space, on the other hand, in Lagrangian-based finite
element formulation the computational system is attached to the
material in a so-called reference configuration such that the
geometry can always be tracked to that reference geometry.
An ALE mesh is such that the mesh can be moved arbitrarily,
relative to either the solid or fluid domains under consideration
(Benson, 2013; Iber et al., 2014). Here we discuss the FEM
solution for the diffusion-reaction system problem on the
fixed mesh at each single time interval. In the case of the
advection-diffusion-reaction system problem we consider an
ALE formulation

o¢

Zi, (=@ V-V KV f =0

1
Where.

¢ is a scalar field denoting the concentration of certain
species.

x are the coordinates of the reference mesh (the mesh at
time t).

u is the velocity of the fluid.

1 is the velocity of the mesh.

k is the diffusion coefficient.

f is the source term (include all the expression term and
reactions term).

In particular, we consider that the advection term, which is
driven by the fluid velocity relative to the mesh, can be removed
from Eq. 1 by moving the mesh together with the fluid.
Furthermore, the assumption is that the fluid velocity is given
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by the cell velocity map. Thus, by moving the mesh according to
the cell velocity map we can ignore the advection term in Eq. 1.

Then, for time t we have the general form of reaction-
diffusion system with,

%% ~V.-kVé-f=0

dtl. @

After solving Eq. 2, the mesh movement driven by the cell
velocity map takes care of the advection. This algorithm can be
thought of as a staggered solution scheme in which we solve the
diffusion and advection sequentially. Coupled continuous partial
differential equations (PDEs), in the form of Eq. 2, include
diffusion and chemical reactions between secreted components
and cellular feedback for cooperative repression activation of
feedback targets.

The production of BMP, Chordin, and Noggin was
determined by the whole mount embryo expression map from
the previous section (Figure 2). Sizzled is a metalloprotease
inhibitor that binds the active site of Tolloid to prevent them
from cleaving the Chordin and Chordin-BMP complex (Martyn
and Schulte-Merker, 2003; Muraoka et al., 2006). To simulate the
feedback mechanism for Sizzled at the gastrula stage, we updated
the model to explicitly simulate the enzyme saturation kinetics to
model Chordin proteolysis by Tolloid and the distinct
competitive inhibition of Tolloid by Sizzled (Figure 2G). The
governing equation solved through blastula to gastrula stage are
listed below:

0B
E:V'DBVB'FM'VB'F(/SB—]CIB'C'F k,lBC—sz'N
+k BN +A)+ —————-Tld- BC — k,B 3)
E
aC
==V -DVC+u-VC+¢.—kB-C+ k.BC-1;
1
c————=—-Tld-C-k.C 4
T+ G B @
ON
5=V DyVN+u-WN+ ¢y ~kB-N+k:BN kN (5)
0BC
TZV'DBCvBC‘FU'VBC‘Fle'C— k,lBC—Al
. -Tld - BC — kpcBC 6
1+%+BISLC BC ()
0BN
S = V- DpVBN +u- VBN + kB N kBN ~ kpyBN
7)
a8 V,-B"
E—V-DSVS+M~VS+kn+Bn—kSS (8)
oTld
—=V-DT1dVTld+u-VTld+¢Tld—kT1dTld (9)

ot

BMP ligand, Chordin, Noggin, and Sizzled are denoted by B,
C, N, and S, and the complexes of BMP-Chordin and BMP-
Noggin are denoted by BC and BN, respectively. DX represents
the diffusion rate for individual species, we use 4.4 um?/s for
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BMP and 7 um?/s for Chordin due to the previous result
(Pomreinke et al.,, 2017; Zinski et al., 2017). The competitive
inhibition kinetics for Sizzled competitively binds with Chordin

be A - %
(Inomataetal., 2013) The A term represents the maximum
degradation velocity of Chordin or BMP-Chordin by the
proteinase Tolloid (Ay,A;), as well as the Michaelis constants
of Tolloid (kmt). Since the sizzled expression is induced by BMP
signaling (Inomata et al., 2013), we applied Sizzled expression to

proteinases  can described  as

the model based on BMP signaling levels represent as the gene

control feedback term which is described by the Hill equation
VB

(K/B0) "+B" *

maximum of BMP. Thus, in general, parameter screen we first

Vs. is the maximum of Sizzled expression, B0 is the

run each parameter case with Chd mutant and Chd/Szl mutant to
estimate the parameter for running the Wild Type (WT) case.
We fix Vs. = 100 and n = 4 based on Tuazon et al.” calculations
which account for distribution of sizzled mRNA compared
directly to the stage-matched distribution of P-Smad5 (Tuazon
etal, 2020). Domain growth reflects the cell migration and mitosis
during epiboly (Figures 1A,B). An initial geometry consisting of
triangle meshes represents the hemispherical cap of the zebrafish
embryo at 4.7 hpf and the mesh evolves as the embryo changes
during epiboly (Figure 1C). As the edges of the growing membrane
move down the yolk, the mesh is continuously updated to
maintain a high-quality discretization. The set of Eqs 3-9 are
solved on this moving domain and the results of a representative
set of simulations are shown in Figure 3A.

Firstly, we used a small range parameter screening for the
wild-type, Chd LOF (lost of function) and Chd + Sizzled LOF
embryo model with 2000 different parameter sets. The parameter
ranges keep consistent with the ranges listed in Supplemetary
Table S1. We have a total of 21 unknown parameters with a large
dimensional parameter space. On the other hand, the 3D models
are computationally intensive, thus, we applied Latin Hypercube
Sampling (LHS) scheme to sample the parametric space. LHS
samples the parametric space with a given number of samplers in
an arbitrary number of dimensions, whereby each sample is the
only one in each axis-aligned hyperplane containing it. This can
ensure that relatively smaller sampling parameter sets can
represent the real variability of the parametric space. 8,000+
(including mutants’ case) parameter sets have been tested with
the power of the supercomputer cluster at Purdue University.
These results are prepared as the training set to the neural
network (NN) surrogate model that is introduced later.

Domain change and advection play a role
in BMP gradient formation

For testing the contribution of advective transport during
epiboly, we examine our model over two types of mesh schemes
under the same simulation setting, the growing domain mesh
with mesh movement based on cell velocity map as “advection
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Dorsal

Comparison of growing domain advection model (A), fixed domain diffusion only model (B) and Diffusion only with internal moving boundary

(C) of BMP concentration profile in 3D lateral view. Figure (C) was plot in a dense mesh since it has difficult to converge under a loose mesh.
Comparison of the relative BMP profile on Marginal region (D) and Central (E) region red lines represent the gowning domain simulation result of BMP
concentration on marginal region and central region, blue lines represent the fixed domain diffusion only simulation result of BMP
concentration on marginal region and central region, for 4.7,5.3,5.7,6.3 hpf.

on” model (Figure 3A), the fixed domain mesh (no velocity field
applied) (8 hpf) without advection as the “advection off” model
(Figure 3B), and the fixed domain without advection but with an
internal moving boundary match with the epiboly as the
“advection off with internal boundary” model (Figure 3C). As
shown in Figure 3, as the input expression profiles and the
parameters in the governing equations remain the same, both
the growing-domain advection model and the fixed-domain
diffusion only model, reaches the similar max level of BMP
concentration by the end of the simulation at 8hpf, the total
mass is conserved in the system. However, the BMP gradient over
the domain has an obvious different profile between these two
scenarios. Compare to Figures 3A, B has a clear wider range of
BMP concentration; this occurs due to both the domain growth
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and the active transport in the horizontal direction. For the case
where the advection was turned off, we add an internal boundary
by turning off the diffusion at the yolk region of the embryo
(Figure 3C), without the advection, the BMP will remain high
where it is expressed even with the diffusion is still on at the cell
region. Figures 3E,F shows that the BMP level on the margin is
much lower for the fixed-domain case than the growing domain
case while the central profile remains slightly lower but not as low
as the margin profile. This is caused by the relatively larger domain
for the fixed-domain case at the beginning of the simulation. The
same amount of the BMP ligand could diffuse further with a larger
domain. Thus, the domain change and the advection that matches
the epiboly and cell flow in early development contributed to the
formation of the BMP concentration gradient.
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TABLE 1 Comparison of 3D sequence prediction between our NN model (with varying #nodes) and the baseline Linear Regression model. Number of
parameters shows the size of model (larger number means larger model). Training/testing error are the average t+standard deviation among
3 repetitions with random data split. Lower training/testing error means better performance.

Method Number of parameters

in millions (M)

Training error

Testing error CPU lantency in

miliseconds (ms)

Linear Regression 0.075 0.023 + 0.002 0.025 + 0.003 0.018
NN (#nodes = 256) 1611 0.00083 + 0.00004 0.00087 + 0.00003 0.064
NN (#nodes = 512) 5.055 0.00052 + 0.00006 0.00051 + 0.00003 0.193
NN (#nodes = 1,024) 17.447 0.00029 + 0.00001 0.00032 + 0.00002 0.899

Neural network model

Solving PDE models can be a computationally intensive task.
In our cases, the PDE models accounting for realistic geometries,
more proteins, other physical phenomena, and geometric and
constitutive nonlinearities, the brute-force approach is simply
infeasible. The individual simulation takes around 5-15 min
CPU time, limited computational power restricted the ability to
optimize the model in the large parameter space. As mentioned,
there are 21 unknown parameters in this specific model, and to
optimize the model effectively it may need to run millions of
cases to cover the hyperdimensional parameter space. This is
impossible even with the supercomputer cluster. Our approach
is to approximate the numerical simulation of a PDE system by
another, simpler model - a metamodel. Machine learning and
data analytics have yielded transformative results across
multiple scientific fields due to the explosive growth of
available data and computing resources. Here, we apply
machine learning methods to accelerate the parametric
screening of the advection diffusion model. Training a deep
learning algorithm enables us to accurately identify a nonlinear
map between high-dimensional input and output data pairs that
replaces the direct numerical simulation of the PDEs. Here, we
use neural network (NN) proxies to build these metamodels.

To build the neural network (NN) model, we use the
27 parameters (21 unknown parameters with extra parameters
indicates of WT and mutant type) as the input and predict the
PDE simulated BMP at four stages: 4.7.5.3.5.7.6.3 hpf with the
output dimension in total of 2,664. Among the total of
8,471 samples, including WT, Chd LOF (Lost of function)
and, Chd + Sizzled LOF, we did a random split of data into
90% for training and 10% for testing, which results in
7,623 samples for training and 848 samples for testing. We
repeat the process 3 times and report the average results and
standard deviation in the following table. We include a linear
regression model as the baseline, and evaluate our model with
varying #nodes. The evaluation metric is mean squared
error (MSE).

The results in Table 1 show a significant improvement in
prediction performance using our NN model. We further
conduct a f-test between linear regression and NN (#nodes =
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512) and get a p-value of 1.210* which verifies the
improvement of our NN model in the prediction of the 3D
sequence of PDE simulated BMP. Furthermore, we report the
number of parameters and CPU latency of the comparing
models. For NN models, the training/testing error shows a
decreasing trend as the size of the model grows, which means
alarger NN model has a high capacity to fit the 3D sequence data.
Moreover, we observe that the CPU latency increases linearly
w.r.t. the number of parameters. All NN models can be trained
efficiently in a very short time. It takes 5-15 min in CPU time for
a single PDE simulation with our FEM solver, on the other hand,
it only takes 1.82 s (CPU) to run 100,000 predictions with our
trained NN model which is 10 M times faster compared with
PDE simulations. The fast and accurate performance of NN
further validates that it is promising to use NN as a metamodel of
the 3D embryo to replace the direct numerical simulation of the
PDEs. We also include the plot of 3D sequences at four stages
from our NN model in the following figure and show that the NN
model can very well approximate the PDE simulated BMP
(Figure 4B).

Wild type parameter screening

Parameter screening was performed with a trained surrogate
model. Latin-hypercube sampling was applied over the
21 unknown parameters with 1,000,000 different parameters
set, we only screened the cases with the WT scenario and the
BMP distribution results were compared with the P-Smad profile
for 4.7, 5.3, 5.7, and, 6.3 hpf, as same as the PDE simulation
results analyzing process. This approach accelerates our
optimization process over 1 M times.

P-Smad image data that contains specific information on
BMP signaling in space and time were quantitatively analyzed
with our nuclei segmentation method (Wu et al.,, 2021; Zinski
etal.,2017). The P-Smad data was applied as a scalar for the data-
model comparisons against the wild-type signaling profiles. We
compared the gradient profile with the normalized P-Smad
profile on 4.7, 5.3, 5.7 and, 6.3 hpf for model validation. For
direct comparison, BMP simulation results were interpolated on
evenly distributed points consisting of experimental P-Smad
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FIGURE 4
(A), Neural network structure of 3D embryo prediction at four stages. The neural network consists of several fully connected layers and is
optimized based on the mean squared error between the predicted the simulated BMP value (B), Plot of the NN-predicted BMP and PDE-simulated
BMP at Marginal region four stages comparison between simulation results (normalized) and NN prediction results.
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Column (A), Averaged and normalized P-Smad5 profile at 4.7, 5.3, and 5.7 hpf and 6.3 hpf. Column (B), Normalized simulation result of a wild
type case 4.7, 5.3, and 5.7 hpf and 6.3 hpf. Column (C), Relative differences between simulation results and P-Smad5 level. Positive error indicates the
experimental data are higher than simulation results, negative error indicates the experimental data are lower than simulation results.
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results. We identified the simulations generating BMP profiles
that fit the P-Smad5 gradient at 4.7, 5.3, 5.7, and 6.3 hpf as
measured by a low normalized root mean squared deviation
(NRMSD) for the WT The simulated BMP
concentration level and measured P-Smad5 profiles are

scenario.

normalized between 0 and 1 to calculate the relative error
between each profile for the entire domain (Figure 5C).

We verified the NN predicted results with the original FEM
simulation with the best fitted parameter set. Contrary to
expectations, we were not able to find a best-fitted parameter
along with all the sample points over the 3D simulation domain for
all the specific stages we are testing. As shown in Figure 5, we found
that many cases of the simulation results show good fits with
P-Smad distribution on the marginal region and have a consistent
relative maximum BMP level overlapped with the P-Smad5 profile
at all four stages. However, the larger errors happen in the ventral-
animal region for all the relatively better fitting results. We
examined the reason that caused the high BMP level in the
ventral-animal region in our model, and we found that the
input expression map of BMP in 6.3 hpf has a relatively higher
expression level in the ventral-animal region than the margin
region. This is different from 5.7 hpf which has higher BMP in
marginal region. This could be caused by the experimental
limitations with our confocal imaging and the limits of imaging
due to the geometry and size of the embryo. We image the whole
mount embryo with the animal to vegetal position, the laser power
drop-off as the laser scans deeper in the z-stack, also, with the
spherical shape of the embryo, the thickness of the tissue that the
laser needs to get through is much thicker at the marginal region.
We then collected a lateral view in the bmp2b expression at the
margin only, it shows that the margin has strong bmp expression.
So, it is possible that our incorrect bmp2b expression map led to a
high BMP in the ventral animal region. In this case, we tested a
possible expression map that might reveal the real expression level,
we found that with a higher margin expression level of BMP, we
can find a parameter set that fits better than our current best-fitting
model (Supplementary Material).

Discussion

We introduced our newly developed framework with a 3D
growing domain finite element model combined with an NN
surrogate model to simulate the BMP regulation network in
the early zebrafish embryo. Compared to our earlier approach
(Zinski et al., 2017; Li et al., 2020; Tuazon et al., 2020), this
model included cell advective transport due to the large cell
migration during epiboly in addition to the diffusion-reaction
system. We are interested in how the cellular movements
impact the formation of gradients by contributing an
advective term whereby the morphogens are swept with the
moving cells as they move vegetally. To test the contribution
of advection, we first gathered dynamic cell imaging data from
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(Keller etal., 2008) and post-processed the data to quantify the
cell movement during epiboly. Additionally, we performed
quantitative whole-mount RNAscope imaging to get data of
bmp2b, chordin, noggin, sizzled, and P-Smad. We tested how
the cell movement driven advection contributes to the BMP
gradient formation during epiboly. The results show strong
evidence that advection contributes to the formation of the
BMP gradient, and it should not be ignored when modeling
this system. This is in contrast with earlier work in the field
which has largely ignored advection and focused on reaction-
diffusion systems on fixed domains. Indeed, our non-
dimensional analysis in Figure 1 already showed that based
on the Péclet number, calculations based on the cell speeds
and known diffusion rates for BMP, diffusion might be
dominant prior to 50% epiboly, but advection becomes
significant after 50% epiboly. Our moving domain FE
framework can be further improved to include more
realistic shapes and individual cell movement, yet, even
with the simplifying assumptions, it constitutes a necessary
step in the modeling of zebrafish embryo patterning due to its
ability to account for the competing roles of advection and
diffusion.

We also present a novel approach to the Neural Network
model to accelerate the computationally intensive 3D PDE
simulations. This surrogate model can obtain high accuracy
resulting in a condensed time that is 1 M times faster than our
FEM PDE solver. This framework works requires a certain
amount of simulation results to perform the training for NN.
Machine learning and in particular neural networks have
emerged as powerful tools in biophysics to discover
patterns from data, perform optimization, and accelerate
computationally expensive physics solvers (Peng et al,
2020). Our previous work in this regard already showed the
ability of long short-term memory (LSTM) a special type of
neural network model specifically designed to work with
sequential data which allowed it to capture accurately the
dynamics of 1D reaction-diffusion systems (Burzawa et al.,
2020). In this work we leverage the multilayer perceptron
(MLP) type of neural network due to the output data was on a
spherical domain that does not maintain the sequential
feature.

With the help of the NN surrogate model, we screened the
unknown parameter space for WT embryos in processible
parameter sets by using LHS sampling and the NN surrogate
model. The current WT screening result matches the P-Smad
data on the animal region and is highly correlated to the mRNA
expression map obtained through whole-mount RNA scope data
through confocal microscopy. As the collection of late-stage
embryo data through confocal imaging data was limited as
epiboly proceeds, we could find the best fitting parameter set
in our model reflected the spatiotemporal P-Smad level changes.
However, the fit was not perfect. We showed that laser drop-off
might be contributing to inaccuracies in the expression map, and
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with this hypothesis we showed that a possible expression map
with a stronger activation at the margin, supported by our
observations, can lead to better fits of the P-Smad profile over
the entire embryo (see Supplementary Material). Thus, by
combining the biophysics of epiboly with the regulatory
dynamics of the BMP network, our current 3D growing
domain model provides a framework for testing multiscale
data-driven questions during zebrafish epiboly that have been
out of reach with previous modeling efforts (Warga and Kimmel,
1990; Campinho et al.,, 2013; Hernandez-Vega et al., 2016).
There has been an emerging effort to combine mathematical
multiscale modeling with machine learning models. Our study in
applying the NN model to accelerate the parameter identification
in PDE based model can improve the ability in massive search
with high dimensional parameter space. This approach can
further help us answer more remaining questions in the field,
for instance, how the morphogen gradients scale within
individual embryos as the size of the tissues and organisms
are growing, and furthermore to improve multi-objective
which
competing mechanistic models of BMP gradient formation

optimization approaches can aid in evaluating

and deciphering the common principles between different
species. In addition, this method can be widely applied in
different fields of that
dimensional parameter optimization.

require that require a highly
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