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Abstract
We propose a PDE-constrained shape registration algorithm that captures the deformation and growth of biological tissue 
from imaging data. Shape registration is the process of evaluating optimum alignment between pairs of geometries through 
a spatial transformation function. We start from our previously reported work, which uses 3D tensor product B-spline basis 
functions to interpolate 3D space. Here, the movement of the B-spline control points, composed of an implicit function 
describing the shape of the tissue, yields the total deformation gradient field. The deformation gradient is then split into 
growth and elastic contributions. The growth tensor captures the addition of mass, i.e. growth, and evolves according to a 
constitutive equation which is usually a function of the elastic deformation. Stress is generated in the material due to the 
elastic component of the deformation alone. The result of the registration is obtained by minimizing a total energy functional 
which includes: a distance measure reflecting similarity between the shapes, and the total elastic energy accounting for the 
growth of the tissue. We apply the proposed shape registration framework to study zebrafish embryo epiboly process and 
tissue expansion during skin reconstruction surgery. We anticipate that our PDE-constrained shape registration method will 
improve our understanding of biological and medical problems in which tissues undergo extreme deformations over time.

Keywords  Adaptive refinement · Surface registration · Tissue expansion · Truncated hierarchical B-splines · Zebrafish 
epiboly · Growth and remodeling · Isogeometric analysis

1  Introduction

Shape registration is the process by which two or more 
geometries are aligned and deformed to achieve accurate 
correspondence. Given a pair of geometries, namely the 
source and target geometry, it is desirable to construct spatial 
transformations which are regular, smooth and result in one-
to-one maps between shapes. These smooth and invertible 
spatial transformations are also known as diffeomorphisms 
[1, 2]. Registration based on free-form deformation (FFD) 
using B-splines has emerged recently as a powerful tool in 
image analysis due to the smoothness and local control of 
B-spline basis functions [3–7]. In our earlier work [8], we 
developed a registration framework based on B-splines, 
which allowed smooth, diffeomorphic and large deforma-
tions of 3D space. One of our main contributions in that 
earlier work was local refinement using truncated hierar-
chical B-splines (THB-splines) to maximize computational 
efficiency. THB-splines were used to automatically refine 
regions where significant deformation was expected. In addi-
tion to the spatial transformations being diffeomorphic, it 
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is desirable to simultaneously achieve physically realistic 
maps  [9, 10]. Many physical processes involve the solution 
of partial differential equations (PDEs). Therefore, a key 
need in image analysis is the integration of PDE constraints 
on segmentation and registration frameworks.

Imaging data for biomedical applications include con-
focal microscopy, magnetic resonance images (MRI), and 
computer tomography (CT) scans, among others. In some 
situations, longitudinal data is available, i.e. images of the 
same tissue at multiple time points. For example, longitudi-
nal MRI scans of cancerous tumors or aneurysms are used 
clinically to determine the timing of intervention [11, 12]. 
Longitudinal imaging data is also used to understand funda-
mental processes of biological systems, such as quantifica-
tion of embryo morphogenesis from confocal microscopy 
images [13]. Registration of longitudinal imaging data ena-
bles quantitative analysis of shape changes in development 
or disease [14]. Imaging data alone, however, is only one 
piece of the puzzle. A range of physical phenomena accom-
pany the geometric changes seen in 3D images. Chiefly, tis-
sues deform and carry stress in response to applied forces 
and constraints. Then, mechanical cues lead to tissue adapta-
tion through the addition of mass -referred to as growth- and 
remodeling of material properties [15, 16].

Computational models of growth and remodeling have 
been developed over the past couple of decades to better 
characterize tissue biomechanics and mechanobiology [17, 
18]. A common approach to model growth and remodeling 
is through finite element simulations [19, 20]. Unfortunately, 
uncertainty in material parameters and boundary conditions 
prevents accurate representation of a biological system, and 
a simplified model is typically used instead. For instance, 
in our previous work on skin growth in tissue expansion we 
have modeled skin as an idealized flat piece of tissue [15].

There exists a gap at the intersection of computational 
modeling of growth and remodeling biomechanics and the 
registration of longitudinal imaging data of biological sys-
tems. To fill this gap, we propose a novel shape registra-
tion framework to capture the deformation of biological 
tissue from imaging data while satisfying the finite growth 
framework within continuum mechanics [21]. For the reg-
istration framework, we start from our previously reported 
work using THB-splines  [8, 22, 23]. The tissue is consid-
ered as a hyperelastic solid and hyperelastic strain energy 
is the constraint to model physically realistic deformations, 
e.g. [9]. Different from previous work, in our framework we 
capture both growth and remodeling of tissues by includ-
ing the multiplicative split of the deformation gradient field. 
The split of the deformation gradient into growth and elastic 
contributions is akin to finite deformation plasticity [24]. 
Linear momentum balance is sought, with the stress being a 
function of the elastic deformation only. The growth tensor, 
on the other hand, obeys an ordinary differential equation 

(ODE) encoding morphogenesis and mechanobiology infor-
mation. We apply the novel shape registration framework to 
study the growth of biological tissues in two applications: 
skin expansion and zebrafish embryo growth.

2 � Methods

We consider source and target geometries as B1 and B2 . Func-
tions S1(�) and S2(�) with � ∈ ℝ

3 coordinates of 3D space 
are implicit representations of the source and target geom-
etries, respectively. Namely, B1 ≡ {� ∈ ℝ

3 s.t. S1(�) = 1} 
is the source geometry, while B2 ≡ {� ∈ ℝ

3 s.t. S2(�) = 1} 
is the target geometry. The goal of the shape registration 
framework is to evaluate an optimal spatial transformation 
mapping �(�) that is smooth and diffeomorphic, resulting in 
accurate alignment of the shapes matched: � = �(�) which 
can be checked through the implicit function by achieving 
S2(�(�)) = S1(�) (Fig. 1).

2.1 � Spatial transformation and THB‑splines

Due to the inherent smoothness and local control proper-
ties of B-splines, we utilize free-form deformation [3, 5] to 
evaluate the spatial transformation function. In free-form 
deformation, the B-spline control grid overlays the 3D space 
which has coordinates � . The grid is deformed through the 
spatial transformation �(�) . Note that the entire grid defor-
mation is described by �(�) , whereas the points of the source 
image (the reference body) are only the subset � that satis-
fies S1(�) = 1 . The initial 3D space is parameterized as

where � is the 3D space, �m are the initial set of control 
points, Bm,p are basis functions which are evaluated on a 
parameter domain � = [u, v,w] . In fact, we choose � = � 
as the parameter domain itself, and in that case the con-
trol points �m need to be picked as the Greville abscissae 
[25, 26]. Nb represents the total number of trivariate basis 
functions. Bm,p(�) is the tensor product of pth order uni-
variate B-spline basis functions Ni,p(u) , Nj,p(v) and Nk,p(w) 
defined on the open knot vectors U = {u1,⋯ , un1+p+1} , 
V = {v1,⋯ , vn2+p+1} and W = {w1,⋯ ,wn3+p+1

} span-
ning the 3D space in u, v and w directions, respectively. 
Here n1 , n2 and n3 are the number of univariate basis func-
tions in each parametric direction. Each B-spline Ni,p(u) 
in this parametric domain has local support defined as 
supp(Ni,p(u)) = [ui, ui+p+1] . Given that initial representation 
of 3D space, the spatial transformation function can be writ-
ten as

(1)� =

Nb∑

m=1

�mBm,p(�),
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where �m are the new locations of the control points. Note, 
therefore, that the functions are still defined in terms of the 
initial parameterization, but the movement of the control 
points now leads to a different set of coordinates � . The use 
of the lower case � and � is used to encompass the entire 
deformation of the initial 3D space parameterization, but 
we emphasize again that the source geometry we are inter-
ested are only the points � such that S1(�) = 1 and the target 
geometry are the points � such that S2(�) = 1.

We carry out local refinement using truncated hierar-
chical B-splines (THB-splines) [27] in this manuscript for 
the evaluation of spatial transformation function. Through 
local refinement, only the regions near the shape bounda-
ries are refined to capture highly localized deformations 
[22, 23, 28–30]. We explain the implementation of local 
refinement using THB-splines through an example of 
a univariate B-spline basis function for two refinement 
levels. Consider univariate B-splines at two parametric 
domains, a coarser ( Ω0 ) and finer domain ( Ω1 ). We can 
represent each basis function at the coarser level l as the 
linear combination of B-splines at finer refinement level 
l + 1 [31]. In addition to the coarser level B-spline which 
is substituted by finer B-splines, the basis functions with 
partial support in the local support of the coarser B-spline 
are truncated. Such refinability property is given as

(2)� = �(�) =

Nb∑

m=1

�mBm,p(�),

where Wi,j are the subdivision coefficients determined 
using the knot insertion algorithm and nc is the num-
ber of children B-splines. To determine the refinement 
criterion in the registration framework, we first evalu-
ate Ig = |∇(Sl

2
(�(�)) − S1(�))| at the center point of each 

B-spline control grid element. For each B-spline, we 
evaluate the average of Ig in its support domain, denoted 
as Gj . We refine the B-spline basis function which satis-
fies Gj > 𝜌Gmean , with � being a parameter that controls the 
amount of refinement and Gmean being the average value of Ig 
over the entire domain [22]. We use THB-splines to capture 
larger deformations on coarser grids and fine-scale, localized 
deformations on finer grids. Local refinement is performed 
when the image residuals ( ||Rimg|| ) do not reduce further at 
a specific refinement level.

2.2 � Registration framework

Resuming from the definition of geometry above, � ∈ B1 
denotes the initial configuration, �(�) maps the deformation 
of the initial configuration to the target configuration B2 . The 
total deformation gradient is defined as � = ∇��(�) . The 

(3)Nl
i,p
(u) =

nc∑

j=1,supp(N
(l+1)

j,p
(u))∉Ω1

Wi,jN
(l+1)

j,p
(u),

Fig. 1   Schematic diagram of 
shape registration. The B-spline 
grid overlays the source and 
target geometries. The spatial 
mapping �(�) is evaluated that 
corresponds to the best match. 
Complex and large deformation 
is captured using THB-spline 
grid as shown from the initial 
and final overlap between the 
geometries
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multiplicative split into growth and elastic components is car-
ried out in order to model growth [32]. This is akin to plasticity 
[24],

where �� is the deformation tensor associated with hyper-
elastic deformation and �� is the deformation tensor asso-
ciated with growth. The determinant of total deformation 
gradient can also be similarly split as J = JeJg , where Je 
and Jg correspond to the elastic and growth volume changes 
respectively as shown in Fig. 2A. For the examples shown 
in this manuscript, the biological tissue is considered to be 
neo-Hookean hyperelastic material, but this can easily be 
exchanged for other material models used for soft tissue 
[33]. The strain energy of the neo-Hookean solid is defined 
as

where � and � are Lame’s parameters. �e is the elastic right 
Cauchy–Green tensor defined as �� = ��T��.

In the proposed method, the weak form of mechanical 
equilibrium is evaluated using the B-spline basis functions. 
Our approach follows existing finite element implementations 
of growing tissue [15], but within the isogeometric analysis 
framework [22]. Given �(�) , the elastic energy functional 
( EREG ) is defined as

where Ω is the entire space considered in terms of the coor-
dinates � . The use of S1(�) inside of the integral essentially 
computes the elastic strain energy as if it was integrated over 
B1 rather than the whole space Ω . Note that the hyperelastic 
strain energy is a function of the elastic part of the defor-
mation. However, the elastic deformation �e is a function 

(4)� = ����,

(5)Ψe =
1

2
� (tr(��) − 3) − � ln (Je) +

�

2
(ln (Je))2,

(6)EREG = ∫
Ω

S1(�)Ψ
e(�e) dΩ,

of both the total deformation transformation �(�) , as well 
as the growth deformation �g . Therefore, to evaluate the 
elastic deformation we need to also specify how growth 
changes over time. Usually, growth is prescribed as a local 
change through an ordinary differential equation (ODE) that 
describes the rate of growth [17, 19]. In particular, assuming 
volumetric growth, the growth tensor can be expressed in 
terms of a single scalar [20]

where � is the identity and the total growth is now in terms 
of the scalar �g . The ODE for growth changes over time is

where k is a rate parameter and �crit is a parameter that spec-
ifies that growth only takes place beyond a critical value 
of deformation. Note that the growth rate is actually cou-
pled to the elastic deformation, in this case to the elastic 
volume change, �e = Je = det�e . Thus, the discretization 
and integration algorithms will determine how to solve the 
registration problem. In this work, the energy in Eq. (6), 
is evaluated at fixed growth. In other words, given a fixed 
field for �g(�) , the elastic deformation can be considered a 
function of the total deformation alone through �e = ��g−1 , 
with � = ∇��(�) showing the explicit dependence on the 
deformation. Separately, given a total deformation as fixed, 
i.e. for a fixed deformation �(�) , the growth field can be 
updated point-wise with a forward Euler scheme

where the subscript n denotes the previous time step, time 
t, and n + 1 is the time step t +△t . Thus, the solution of 
the registration problem including elastic deformation and 
growth is done in a staggered manner as indicated in Fig. 2B. 
Given the elastic energy and growth problems, the registra-
tion problem can be introduced by considering the energy 

(7)�g = �g�,

(8)𝜃̇g = k(𝜃e − 𝜃crit ) ,

(9)�
g

n+1
(�) = �g

n
(�) +△t S1(�)k

[
J(�)�g

n
(�) − 1

]
,

Fig. 2   A schematic of multiplicative split of the deformation gradient 
� into growth ( �� ) and elastic part ( �� ). B schematic diagram show-
ing the staggered solution of the elastic deformation and growth prob-
lems within the shape registration framework. The deformation of the 

source to the target is divided into intermediate stages. This can be 
achieved by either creating linear interpolations ( I1, I2,… In ) of the 
geometry from source to target, or increasing the image error penalty 
� monotonically, e.g. linearly
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coming from the mismatch between the deformed source 
and target geometries

This is the standard image energy in our previous work 
and other registration work [22, 23]. Usually, regulariza-
tion terms are added to the image energy mismatch. These 
regularization terms penalize changes in the first and second 
derivatives of the transformation map, which are reminiscent 
of an elastic energy penalty [34]. We also employ a regulari-
zation over the entire deformation �(�) , as will be seen soon. 
Considering the image mismatch energy, the elastic energy 
introduced in Eq. (6), and the regularization of the comple-
ment of B1 , the total energy functional reads

� is the weighting parameter associated with the image mis-
match error, � and �1 are the weighting parameters for the 
hyperelastic energy constraint and regularization over the 
rest of the space. Both integrals are over Ω but the multipli-
cation of the integrands by either S1(�) or (1 − S1(�)) effec-
tively leads to integrals over B1 and its complement in Ω.

The minimization of the energy functional is carried 
out using L2 gradient flow algorithm [34]. The control 
points are updated using a dynamic scheme in the direc-
tion of the variation of the energy functional to changes 
in �(�) [35]

where �i is a particular control point and � denotes a pseudo-
time variable for the dynamic relaxation of the energy func-
tional. On the right-hand side, Bi(�) is the corresponding 
basis function, � is the second Piola Kirchhoff stress field, 
and ��i is the variation of the Euler Lagrange strain tensor 
for the corresponding variation of the ith control point. We 
remark again that the minimization of Eq. (11) is done at 
fixed growth, and the growth ODE is evaluated in a stag-
gered manner with respect to the registration steps, as shown 
in Fig. 2.

(10)E(�(�)) = ∫
Ω

(S1(�) − S2(�(�)))
2 dΩ.

(11)

E(�(�)) =� ∫
Ω

(S1(�) − S2(�(�)))
2 dΩ + � ∫

Ω

S1(�)Ψ
e dΩ

+ �1 ∫
Ω

(1 − S1(�))Ψ
e dΩ.

(12)

��i

��
=� ∫

Ω

2(S1(�) − S2(�))∇S2(�)Bi(�) dΩ

+ 2 � ∫
Ω

S1(�)� ∶ ��� dΩ + 2 �1 ∫
Ω

(1 − S1(�))� ∶ ��� dΩ,

3 � Benchmark examples

In this section, we demonstrate the results of the registra-
tion framework on benchmark geometries. Here, we vali-
date the results of our registration framework with analyti-
cal solutions before moving on to realistic applications.

3.1 � Benchmark examples without growth

In Figs. 3, 4, 5, we first carry out shape registration by con-
sidering only hyperelastic deformation without growth. 
Following cases are shown: Fig. 3 homogeneous volumet-
ric expansion of the sphere, Fig. 4 uniaxial expansion of a 
rectangular plate, and Fig. 5 bending of a rectangular plate. 
The implicit function representing the 3D solid for Figs. 3, 
4 is evaluated on a grid resolution of 50 × 50 × 50 pixels 
and the initial B-spline control grid has 10 × 10 × 10 ele-
ments. The grid resolution for the implicit function in Fig. 5 
is 100 × 100 × 100 pixels and the initial B-spline control grid 
has 12 × 12 × 12 elements. The Lame parameters � and � are 
both equal to 1 Pa. Local refinement is carried out on three 
refinement levels. We set a higher value of � for increasing 
refinement levels to prevent introducing a large number of 
control points at higher refinement levels.

In Fig. 3A, the radius of source geometry is 15 m while 
the target geometry has a radius of 18 m shown in Fig. 3B. � 
is set as 8 intially and doubled every refinement level. � and 
�1 are set as 1 and 0, respectively. The pseudo-time step for 
dynamic relaxation Δ� is set as 0.005. The analytical solu-
tion of the volumetric deformation of the sphere has defor-
mation gradient components ( Fx,x , Fy,y and Fz,z ) equal to 1.2. 
The local volumetric change is uniform and equal to 1.728. 
The initial overlap between the source and target images is 
depicted in Fig. 3C, while the result of registration is shown 
in Fig. 3D. From the contours of deformation gradient com-
ponent Fx,x and local volumetric change J shown in Fig. 3E, 
F, we can see that we achieve homogeneous deformation 
within most of the region inside the sphere and the values of 
Fx,x and J at the center are equal to 1.188 and 1.677, respec-
tively, as desired. The contour of strain energy is depicted in 
Fig. 3G, further showing the mostly uniform deformation. 
Lastly, the deformed grid after the third refinement level is 
shown in Fig. 3H, where it can be seen that refinement of the 
mesh is necessary at the boundaries of the sphere.

The uniaxial test case is summarized in Fig. 4. The ini-
tial plate image has dimensions 19 × 19 × 9 m, while the 
target image of the plate is 23 × 19 × 9 m, seen in Fig. 4A, 
B. The initial and final state of the registration algorithm 
is depicted in Fig. 4C, D where it can be seen that the 
source image has been successfully deformed to match the 
target. A uniform deformation is expected in the interior 
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Fig. 3   Benchmark example of uniform volumetric sphere expansion 
with hyperelastic regularization without growth. A Sphere image 
(source) of radius 15 m, B sphere image (target) of radius 18 m, C 
initial difference between the source and target images, D final dif-

ference between the source and target images, E the deformation gra-
dient along X-direction ( Fx,x ) contour, F local volumetric change (J) 
contour, G strain energy contour ( Ue ) and H THB-spline grids after 
third refinement level

Fig. 4   Benchmark example of uniform uniaxial expansion of a rec-
tangular plate with hyperelastic regularization without growth. A 
plate image (source) of dimension 19 × 19 × 9 m, B plate image (tar-
get) of dimension 23 × 19 × 9 m, C initial difference between the 

source and target images, D final difference between the source and 
target images, E the deformation gradient along X-direction ( Fx,x ) 
contour, F local volumetric change (J) contour, G strain energy con-
tour ( Ue ) and H THB-spline grids at the end of the registration



3915Engineering with Computers (2022) 38:3909–3924	

1 3

of the domain, which can be seen in the contours for one 
of the deformation gradient components and the volume 
change, Fig. 4E, F. The strain energy contour in Fig. 4G 
shows some small regional variation with slightly more 
strain energy at the boundaries.

In Fig.  5A, the source geometry is a rectangu-
lar plate. For the target geometry we calculate the 
new positions ( �1 ) by applying the deformation at 
each vertex in the source geometry ( � = [x, y, z] ) as 
�1 = [a y sin(a x) +

1

a
y sin(a x), a y cos(a x) +

1

a
y cos(a x), z] , and we 

set a = 1 to generate the image in Fig. 5B. We set the initial 
value of � as 1 and double it every 500 iterations. Since we 
have large deformation in this benchmark example, we set 
� to a higher value of 2. A systematic test of the regulariza-
tion parameters is covered later on in the manuscript. The 
final overlap between the images after registration is shown 
in Fig. 5D. Based on the deformation applied on the plate, 
the bottom layer undergoes compression while the top layer 
undergoes tension. This can be seen in the deformation gra-
dient component Fy,y in Fig. 5E. There is a radial increase in 
the local volumetric change from the bottom to the top layer. 
At a particular radial distance, the local volumetric change 
remains uniform, and this matches well with a pure bend-
ing deformation. There are some boundary effects that are 
noticeable in the strain energy contour in Fig. 5G where it 
can be seen that there is an excessive distortion of the mesh 
right at the sharp corners of the two images. Thus, regis-
tration of other geometries with sharp corners undergoing 

significant displacement might require special treatment in 
the future.

3.2 � Parameter tuning

The parameter � controls the relative weight of the hyper-
elastic energy in the solid with respect to the energy of the 
image mismatch. Increasing this parameter can result in slow 
convergence and higher registration error, while a small 
value can lead to unrealistic movement of the control points 
during registration and overlapping of control grids, result-
ing in high strain energy that is slow to converge. Intuitively, 
when the variation of the energy is considered, Eq. (12), the 
energy from the image mismatch leads to an applied exter-
nal pressure or traction at the boundary of the elastic body. 
The variation of the hyperelastic energy leads to the weak 
form of linear momentum balance in Eq. (12), i.e. internal 
forces due to the deformation of the elastic body. If B1 is too 
stiff relative to the applied force from the image mismatch, 
which is effectively controlled by � , the tractions obtained 
from the image mismatch are unable to deform the body. 
The opposite case, when B1 is too soft relative to the image 
mismatch residual, leads to excessively large tractions at the 
boundary �B1 which compromise the stability and conver-
gence of the scheme.

In Fig. 6, the residuals associated with the image mis-
match energy, strain energy, and the total energy for different 
values of � ranging from 0 to 100 are plotted. The contours 
associated with local volumetric change are shown in Fig. 6. 

Fig. 5   Benchmark example of bending deformation of a rectangular 
plate with hyperelastic regularization without growth. A plate image 
(source), B plate image (target) after bending deformation is applied, 
C initial difference between the source and target images, D final dif-

ference between the source and target images, E the deformation gra-
dient along Y-direction ( Fy,y) contour, F local volumetric change (J) 
contour, G strain energy contour ( Ue ) and H THB-spline grids at the 
end of the registration
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As can be seen in Fig. 6A, we show the residuals associated 
with the image mismatch energy as we increase � . For � = 0 
the image residual drops very quickly as there is absolutely 
no constraint on the type of deformation that is admissible. 

However, we can see from the local volumetric change 
contour in Fig. 6E that only the outer region is deformed. 
Correspondingly, the hyperelastic strain energy residual for 
� = 0 reaches its maximum value in Fig. 6B because this 

Fig. 6   Residual plots for the volumetric expansion of the sphere as 
initially shown in Fig.  3 but exploring the change in the hyperelas-
tic regularization parameter � ranging from 0 to 100. A the norm of 
the residual due to image error ( ||Rimg|| ), B the norm of the residual 
due to hyperelastic strain energy ( ||Rreg|| ), C the norm of the resid-

ual due to hyperelastic strain energy multiplied with the parameter � 
( � ||Rreg|| ), D the norm of the residual of the total energy ( ||Rtotal|| ). 
E–K Local volumetric change contour plots for � equal to 0, 1.5, 2.5, 
3, 50 and 100
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deformation is not the expected uniform deformation from 
momentum balance. As we increase the value of � , the reg-
istration leads to a uniform deformation inside the sphere, 
as desired. However, as explained, there is a trade-off. For 
a very high � value shown in Fig. 6J, there is essentially 
no deformation. In principle, any 𝛽 > 0 should lead to the 
uniform deformation that is expected in this benchmark 
case, as long as the registration is perfectly achieved. How-
ever, if 𝛽 > 0 but small, the dynamic update can be slow to 
converge. The optimum � should be small enough to allow 
for deformation of the solid and minimization of the image 
energy. Concurrently, � should be high enough to prevent 
initial excessive distortion and allow for rapid stabilization 
to a steady state. For the sphere case, and the shear modu-
lus � chosen, an optimal range of � is 2 to 3. In this range, 
� ∈ [2, 3] , the residuals in Fig. 6E converge to the same 
value within 500 iterations and the J contour is uniform 
inside the sphere see Fig. 6G.

3.3 � Benchmark example with growth

In Fig. 7, we carry out shape registration of the uniform 
sphere expansion, similar to Fig. 3, but also considering 
volumetric growth. We show the homogeneous volumet-
ric expansion of a sphere with the addition of volumetric 
growth from radius of 10 and 15 m. Because growth needs 
to be integrated over time, we split the total deformation into 
multiple stages; the radius is increased by 1 m in each stage. 
Growth is observed over a time duration of 5 s. The growth 
rate k is set as 2 s−1 and time step for growth update is set as 
△t = 0.1 s. � and �1 are set as 1 and 2.5, respectively. Here 
we are adding higher regularization in the region outside the 
evolving sphere so that there is not much overlap of grids 
and its accumulation over interpolations. We remark that the 
source geometry in each stage remains fixed while the target 
is linearly interpolated.

The total volume change ( � ) value at the center of 
the sphere increases from 1 to 3.04 as the sphere radius 

Fig. 7   Homogeneous volumetric expansion of sphere from radius 10 
m to radius 15 m combining both hyperelastic and growth deforma-
tion. The local volumetric change contours associated with total ( � ), 
elastic ( �e ) and growth deformation ( �g ) for each linearly interpolated 
stage are shown in A1–A5, B1–B5 and C1–C5, respectively. The 

residual curve for hyperelastic strain energy associated with homo-
geneous volumetric expansion of sphere example is shown in D and 
the plot of total deformation ( � ), elastic deformation ( �e ), and growth 
deformation ( �g ) at the center of the sphere with respect to time is 
shown in E 
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increases. For each stage, the field is fairly uniform inside 
the sphere, with some small artifacts at the boundary, see 
Fig. 7A1–A5. The elastic part of the total volume change 
( �e ) is shown in Fig. 7, from B1 to B5, while the growth 
field ( �g ) is depicted in Fig. 7 from C1 to C5. Note how the 
total deformation increases directly based on the registration, 
i.e. the total change in the sphere radius is directly driven 
by the increasing size of the target. However, at the end of 
each interpolation we update the growth field by point-wise 
integration of the growth equation. Growth, thus, increases 
over time, but lags behind the total deformation. The elastic 
deformation field in Fig. 7B1–B5 is such that � = �e�g.

The residuals associated with the hyperelastic strain 
energy at all the interpolated stages ( ||Rreg|| ) are shown 
in Fig. 7D. Note how the residuals evolve discontinuously 
over the iterations for two reasons. First, for a given target, 
the parameter � is adjusted at multiple stages to gradually 
drive the image registration. Second, once registration is 
converged for a given target, the growth field is updated and 
the target is then also updated before resuming the itera-
tions. In the end, we are only interested in the deformation 
field and growth fields at the end of the registration for each 
interpolation of the target. This is shown in Fig. 7E, where 
the total deformation, elastic deformation, and growth defor-
mation are plotted over time for a point at the center of the 
sphere. As pointed out in the contours, the overall volume 
change follows what is expected from the gradual change in 
the target from 10 to 15 m. The growth �g lags with respect 
to the total deformation, as it needs to satisfy the ODE in 
Eq. (8). Lastly, the elastic deformation is such that � = �e�g 
is satisfied.

4 � Modeling epiboly in zebrafish embryos

Embryonic development involves cell proliferation and 
resulting tissue growth which results in large deformations 
over time. The initial major morphogenetic movement dur-
ing the gastrulation stage of embryonic development in some 
organisms is termed epiboly where the blastoderm grows 
and covers the yolk. In zebrafish, epiboly involves an organ-
ized movement of embryonic cells between 4.3 and 10 h post 
fertilization (hpf) during which a layer of epithelial cells, are 
also referred to as the Enveloping Layer (EVL), spreads and 
covers the yolk cell [36–38]. At the start of the epiboly pro-
cess, the blastoderm, a single multilayer of cells is located 
at the animal pole of the embryo on top of the yolk cell. 
As proliferation takes place, the EVL thins and increases in 
area [38]. The yolk syncytial layer (YSL) stays in contact 
with the yolk cell, causing spherical spreading observed 
in microscopy images such as in [36, 37]. In addition to 
cell proliferation, other mechanisms that contribute to the 

epiboly process are the polymerization of actin filaments at 
the leading edge of the EVL, and myosin-driven contraction 
on the actin belt that forms at junction between the EVL and 
the YSL [38, 39].

We are interested in capturing the continuous change in 
shape during zebrafish embryo development, particularly 
during epiboly, with our shape registration framework. The 
dataset consists of light sheet microscopy images of early 
stage zebrafish embryo development from [40, 41]. Addi-
tionally, we analyzed the cell proliferation data from [13] to 
develop an accurate and physically-realistic spatial mapping 
between pairs of datasets of cell positions captured through 
in vivo imaging at different stages of the epiboly process. 
The positions of cell nuclei ranging from 100 to 1450 min 
post fertilization (mpf) at 90 s intervals were collected from 
whole-mount live light-sheet microscopy images [13]. By 
imposing that the deformation across the different stages of 
epiboly has to satisfy the momentum balance of an elastic 
body as well as the growth given by cell division, we seek 
to learn the spatial distribution of elastic deformation that is 
expected during this crucial stage in embryo development.

The cell position data in Fig. 8A1–A5 was first converted 
to a volumetric mesh and also an implicit representation 
for surface registration at different stages of the epiboly as 
shown in Fig. 8D1–D4. The resolution for the implicit rep-
resentations of the geometries were 100 × 100 × 100 pixels 
each. Not all time points in the data set were used. Surfaces 
were reconstructed for: 241, 301, 361, 421 and 481 mpf. 
The source geometry is the image obtained at 241 mpf and 
the target geometries are at the remaining time frames. The 
number of cell nuclei and cell division rate was calculated 
at each time frame as shown in Fig. 8B, C. For registration, 
the B-spline grid was initially set to 16 × 16 × 16 elements 
and, during registration, three refinement levels were done. 
The Lame’s parameters � is set as 0.1 Pa and � set as 1 Pa. 
� is set as 2 and doubled every 2000 iterations. � and �1 are 
set as 1 and 2.5, respectively.

The total registration process is carried out in multiple 
stages, where the source geometry is fixed and the target 
geometry is updated with the corresponding time frames. 
In between the different stages we assume perfect plastic 
deformation and reset the control points while keeping the 
intermediate, registered image. The plastic deformation 
is assumed based on the growth of the embryo, which is 
imposed through the known increase in cell number at dif-
ferent time points during epiboly (see Fig. 8B). The volu-
metric change due to growth, �g , is assumed to be uniform 
throughout the volume of the tissue. We calculate �gn at time 
n as �gn = N

(n)

cell
∕N0

cell
 , where N(n)

cell
 and N(0)

cell
 are the cell counts 

at time n and 241 mpf, respectively.
As seen from the registered meshes in Fig. 8D1–D4, we 

can observe the spreading and thinning of the embryonic 
tissue as the epiboly progresses. From the registered meshes, 
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we can show that the proposed registration framework, by 
imposing the linear momentum residual as a driving force, 
predicts a spatially heterogeneous distribution of strains. 
The main results of the registration with this constraint are 
the contours for the strain energy ( Ue ) (Fig. 8E1–E4) and 
total volume change (J) (Fig. 8F1–F4) fields. We also plot 
the contours of growth ( �g ) for the corresponding registered 
geometries at different stages of the epiboly in Fig. 8G1–G4. 
However, as mentioned, the growth field is not an output in 
this case, but rather it is imposed from the available data. 
From the local volumetric change contours, we can see 
that maximum deformation occurs near the leading edge 
of epiboly. Remarkably, this is the region over which actin 

polymerization and myosin-driven contraction have been 
observed in experiments [38, 39]. Therefore, our registration 
suggests that physically realistic deformations that match 
the overall shape changes in epiboly are those with increas-
ing strain near the leading edge. Intuitively, past the equator 
point, increases in the area due to cell division cannot con-
tinue to spread over the yolk cell without some elastic defor-
mation present. Mechanistically, the elastic strains needed 
to continue the spread of the EVL past the equator could 
come in part from the actomyosin ring at the leading edge 
of the EVL. These observations should of course be further 
refined and compare against new experimental data, but it 
should be highlighted how coupling the observed changes 

Fig. 8   Modeling of epiboly process. A1–A5: quantitative cell posi-
tion data obtain from whole mount live light sheet microscopy images 
of cell nuclei during epiboly [13] at 241, 301, 361, 421 and 481 mpf. 
B nuclei number during epiboly from 241 to 526  mpf. C cell divi-
sion rate during epiboly. D1–D4: evolving implicit representation 
after registration shown at corresponding stages. E1–E4: cross sec-

tions of the evolving meshes showing the strain energy contours from 
241 to 481 mpf predicted by the registration framework. F1–F4: cross 
sections of the evolving meshes showing the local volume change as 
predicted by the registration framework. G1–G4: cross sections of the 
evolving meshes showing the growth �g contours imposed based on 
the available data for cell division rates during epiboly
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in geometry with a registration framework including some 
of the physics of the process offers a new tool to gain deeper 
insights into the fundamental mechanisms that control early 
embryo development.

5 � Tissue expansion for reconstructive 
surgery

Tissue expansion is a clinical procedure used to grow new 
skin in situ which can be used in reconstructive surgeries 
[42]. Skin responds to sustained stretches by permanently 
increasing its area. The sustained stretches of skin are 
achieved by balloon-like devices called tissue expanders, 
which are inserted subcutaneously and inflated gradually 
over months [43]. Applications of this technique include 
breast reconstruction after mastectomy [44], repair of large 
congenital defects [45], and skin grafting in burn patients 
[46]. We have previously reported the development of an 
experimental model of tissue expansion in the swine [47]. 
Briefly, Yucatan minipigs were tatooed with four 10 × 10cm2 
grids on the back. Tissue expanders of dimensions 4 × 6cm2 
were placed in subcutaneous pockets while contralateral 
sides served as controls. In our previous work [48], we have 
fitted B-spline surfaces to the skin patches at different time 
points during the protocol, and used these B-spline surfaces 
to calculate the relative deformation during tissue expansion. 
However, to then calibrate our mechanobiological model of 
skin growth, we have separately built finite element models 
to solve the forward problem, i.e. how the tissue is deformed 
and grows in response to tissue expansion, see [48]. The 
main limitation of the approach in [48] is that the forward, 
finite element model, uses a simplified mesh of the skin and 
assumes it is a flat piece of tissue. Instead, the ideal analy-
sis would be to simultaneously perform the registration and 
solving the PDEs for tissue deformation and growth. The 
registration framework presented here is the perfect tool for 
this application.

The main stages of the protocol for the tissue expansion 
in the swine are shown in Fig. 9. The expander was dilated 
at 30 cc pressure in a single step over a period of 7 days. The 
stages of skin expansion were captured using three dimen-
sional (3D) photographs. The 3D photographs were used 
to fit cubic B-spline surfaces [48]. We start with the pre-fill 

geometry which is the reference configuration. Note that this 
configuration is assumed to be a stress-free state since it is 
imaged at the start of the tissue expansion. The deforma-
tion of the pre-fill stage to the post-fill stage is assumed to 
be purely an elastic deformation, i.e. no growth, because 
the post-fill image is taken immediately after inflation when 
the tissue has had no time to grow. Since the skin is a thin 
surface, in this application we are more interested in the area 
change after expansion. Given the unit surface normal �0 in 
the source geometry and the total deformation gradient � , 
we evaluate the area change as

where �e and �g are the elastic area change and growth 
area change, respectively. For the second stage, post-fill to 
TE-end, both elastic deformation and growth are consid-
ered. Thus, we introduce the growth tensor for area growth 
�g =

√
(𝜗g)� + [1 −

√
(𝜗g)]�0 ⊗ �0 [15, 49]. Update of the 

scalar growth variable is done with the same ODE as in Eq. 
(8).

Given the spline surfaces from [48], we add a thin layer 
of thickness 0.2 cm and construct an image as an implicit 
representation of the shape. We assume that the normal �0 
is constant along with the thickness and consistent with the 
normal map of the original B-spline surface. To ensure this, 
we invert the surface normal vectors at the bottom layer to 
keep them in the same direction as the top layer. Then, using 
Gaussian filter with standard deviation � = 1.5 , we interpo-
late the normal vector so that it is uniform across the thick-
ness of the implicit representation.

In Fig. 10, we perform surface registration from the pre-
fill to post-fill stage. For this stage the grid resolution for the 
implicit function is 100 × 100 × 100 pixels and the initial 
THB-spline control grid for registration has 16 × 16 × 16 
elements which are then locally refined up to three refine-
ment levels during registration. � is set as 8 and doubled 
every 375 iterations whereas � and �1 are set as 1 and 10, 
respectively. Here since we only model pure elastic defor-
mation, we show the contours of the total area change ( � ) 
and the strain energy Ue . From the overlap of the registered 
geometry with the target geometry before and after registra-
tion in Fig. 10C, D, we can see that the registration frame-
work can accurately capture the target geometry even if there 

(13)� = ‖cof(�) ⋅ �0‖ = �e �g,

Fig. 9   Tissue expansion protocol. B-spline surfaces obtained at four configurations: before the dilation of the expander (pre-fill), after dilation of 
expander (post-fill), at the end of the tissue expansion protocol (TE-end) and after skin excision (ex-vivo)
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is a large and complex tissue deformation. From Fig. 10E, 
we can see higher area change is observed near the apex of 
the expander. From Fig. 10F, we also see that strain energy 
is higher not only close to the apex of the expander but near 
the skin patch boundary, which is also undergoing large 

deformation. The spatial distribution of the area change over 
the skin matches our previous work [47, 48].

In Fig. 11, we demonstrate the results from the surface 
registration framework from the pre-fill stage all the way to 
the TE-end stage. Registration is carried out in two steps. We 

Fig. 10   Shape registration for the modeling of skin growth during 
tissue expansion between the pre-fill and post-fill stages. A Contours 
of the implicit representation of the source geometry; and B target 
geometry. C Initial overlap between the source and target geometry; 
and D overlap between the registered implicit function and the tar-

get geometry. E Area change due to elastic deformation ( �e ) which 
is also the area change due to total deformation is plotted over the 
implicit representation. No growth is considered here. F Strain energy 
( Ue ) is plotted over the implicit representation. G THB-spline grid 
after three refinement levels

Fig. 11   Shape registration for the modeling of skin growth during 
tissue expansion between the pre-fill and TE-end stages. A Contours 
of the implicit representation of the source geometry; and B target 
geometry. C initial overlap between the source and target geometry; 

and D overlap between the registered implicit function and the target 
geometry. E area change due to elastic deformation ( �e ); F the strain 
energy ( Ue ); and G the area change due to growth ( �g)
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first deform the source image of the pre-fill to a first target, 
the post-fill image, considering only elastic deformation as 
shown before. But then we continue with the registration and 
change the target to the TE-end geometry, and we consider 
both elastic and growth deformations in this second stage. 
We evaluate the registration for two refinement levels at the 
second stage with an initial grid of 12 × 12 × 12 elements. 
The growth rate � is set as 0.018 h−1 and �crit is set as 1. 
Since it is difficult to evaluate interpolated stages between 
the source and target geometry for this example, we set � as 
0.1 initially and slowly increase it by 0.05 every 10 itera-
tions. Growth update is also carried out every 10 iterations 
over 7 days. We plot the elastic and growth area change 
along with the strain energy contours. Here, we can see that 
both the elastic and growth area changes are higher near 
the apex of the expander. This is expected as the maximum 
stretch occurs near the apex, thus, integration of Eq. (8) 
results in more skin growth in this region. This is again con-
sistent with our previous work [48].

6 � Discussion and conclusions

In this article, we propose a novel shape registration frame-
work to capture the deformation of biological tissues from 
imaging data while satisfying linear momentum balance and 
accounting for permanent deformations due to growth. The 
problem is set up as a strain energy minimization problem 
with a penalty for the image mismatch. The deformation of 
the image is done using THB-splines with local refinement. 
The control points of the THB-spline grid are updated in 
a dynamic relaxation scheme based on a variation of the 
energy. The variational approach effectively produces a 
residual vector for internal forces due to the tissue defor-
mation, and a residual vector of external forces from the 
image mismatch. After checking that the algorithm worked 
as intended on benchmark examples, we applied the shape 
registration framework to study the growth of biological 
tissues in two applications: tissue expansion and zebrafish 
embryo epiboly.

Registration frameworks that can account for physical 
phenomena are being actively developed for a range of appli-
cations such as tumor growth and mapping of cardiac strains 
in the beating heart [50–52], to name a couple of examples. 
Here, our contribution is on combining the registration prob-
lem with the consideration of linear momentum balance and 
tissue growth. The theoretical framework for tissue growth 
used here follows a long stride of developments since the 
introduction of the multiplicative split of the deformation 
gradient to model growth by Rodriguez et al. [32]. Over the 
past couple of decades, this multiplicative split into growth 
and elastic deformations has been widely used to model the 
growth of a large class of tissues, e.g. airways [53], heart 

[19], and the brain [54]. Numerically, modeling of growing 
soft tissues has been done primarily with the finite element 
method [55]. We show the corresponding implementation 
in the context of isogeometric analysis frameworks, which 
have gained increasing popularity due to the high continuity 
of basis functions [27]. The multiplicative growth frame-
work is certainly not the only theory to describe the evolv-
ing mechanics of living matter. For instance, mixture the-
ory approaches are an alternative formulation that could be 
incorporated with our framework in the future [56]. In addi-
tion to growth, many soft biological tissues exhibit in vivo 
prestrain [57]. Our framework can be modified to include 
prestrain fields as shown in the Supplement.

Another key feature of the proposed framework is the 
use of THB-splines with local refinement. We have done 
extensive work on registration with THB-splines [22], where 
we have shown that the isogeometric framework allows for 
smooth registration mappings and can handle extreme defor-
mations. The use of THB-splines allows for local refinement 
and an efficient numerical implementation. These features 
are maintained in the formulation shown here. The code is 
made publicly available through the Github link at the end 
of the article.

There are certainly some limitations of the framework. 
The dynamic update is such that it eventually converges to 
satisfy linear momentum balance and approaches the desired 
registered image. However, because the dynamic relaxation 
arises from gradient-descent of competing energy terms 
instead of the imposition of hard constraints, there is no exact 
satisfaction of the image alignment problem. In other words, 
the image mismatch is penalized, but cannot be driven to be 
exactly zero. This limitation of dynamic relaxation methods 
for image registration is common beyond the method shown 
here [8, 23, 34, 35]. Nonetheless, as the image mismatch 
penalty is increased over several iterations, the source image 
is adequately mapped onto the target as shown in our exam-
ples. Another limitation of the dynamic relaxation approach 
is that it is sensitive to the parameters that control the rela-
tive weight between the image and hyperelastic residuals. As 
shown, when the image residual is scaled to be large relative 
to the hyperelastic residual, the deformation of the grid is 
physically unrealistic. Even though, even in such cases the 
continuous relaxation of the elastic energy should eventu-
ally converge to the equilibrium solution, this can take a 
large number of iterations. Furthermore, since an explicit 
scheme is used, the time step is subjected to stability consid-
erations. We explored the relative scaling of the image and 
hyperelastic residuals to inform our choice of parameters in 
the examples, but a change in the formulation, away from 
the dynamic relaxation approach and towards the solution 
of the equilibrium problem would be one alternative to deal 
with existing limitation. Nevertheless, by manually tuning 
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the parameters, we were able to get excellent registration 
results within a few hundred iterations.

In certain biological tissues, elastic deformation and 
growth can result in shape bifurcations and singular shapes, 
for example changes in shape topology can occur. The 
proposed registration framework cannot capture topology 
changes. However, as a result of modeling tissues as highly 
deformable hyperelastic materials with the deformation 
driven by the mismatch between source and target geom-
etries, the proposed approach can indeed capture large as 
well as localized changes in shape evolution as showcased 
in the examples. The framework uses local refinement to 
effectively capture these highly localized changes on finer 
B-splines grids.

A limitation of the current framework is that it cannot 
perform surface registration. Here, 3D volumetric shapes 
are needed and represented as 3D implicit scalar functions, 
which are subsequently utilized to measure distance mis-
match error between shapes in the energy functional. How-
ever, the energy functional can be modified to measure the 
distance between two surfaces. So the framework can also 
handle surface registration in the future.

The real-world impact of the framework is showcased 
in the two application examples. Zebrafish embryo devel-
opment is an ideal biological system to understand the 
mechanical cues that lead to morphogenesis. Given growth 
measured from cell division and the images of the evolv-
ing embryo shape from light-sheet microscopy, we used our 
registration framework to predict elastic deformation profiles 
during epiboly. Interestingly, our prediction is that the elas-
tic deformation is not homogeneous. Instead, the analysis 
predicts that elastic deformations are needed at the leading 
edge of the EVL as it passes the equator and continues to 
engulf the yolk cell. This observation aligns with the exist-
ence of an actomyosin ring which is thought to contract 
at the leading edge of the EVL guiding the overall shape 
change of the embryo [38, 39]. The other application shown 
here is skin growth in tissue expansion. We have done work 
characterizing skin growth on a porcine animal model [47]. 
For the porcine model, we tattoo grids on the backs of the 
animals, which allows us to easily reconstruct B-spline sur-
faces [58]. However, to being able to translate the analysis 
to the clinical setting it is indispensable to have a registra-
tion framework that works in the absence of tattooed grids. 
Additionally, in our previous work we have calibrated our 
models of skin growth using finite element models of ideal-
ized geometries [48]. The registration method in the pre-
sent allows us to do the analysis of skin growth in the same 
geometries that are available from 3D photography instead 
of the simplified models. We found more deformation at the 
apex, which have independently seen in our previous work, 
and we consequently predict more growth at apex, which is 

also consistent with our finite element model of the idealized 
geometry [47, 48].

In conclusion, we anticipate that our PDE-constrained 
shape registration method accounting for growth of living 
tissue will offer a new tool to the community to better under-
stand the adaptation of tissues to mechanical cues in devel-
opment, health and disease.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00366-​022-​01682-x.
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