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Abstract

The Baxter permuton is a random probability measure on the unit square which
describes the scaling limit of uniform Baxter permutations. We determine an explicit
formula for the density of the expectation of the Baxter permuton. This answers a ques-
tion of Dokos and Pak (Online J Anal Comb 9:12, 2014). We also prove that all pattern
densities of the Baxter permuton are strictly positive, distinguishing it from other per-
mutons arising as scaling limits of pattern-avoiding permutations. Our proofs rely on a
recent connection between the Baxter permuton and Liouville quantum gravity (LQG)
coupled with the Schramm-Loewner evolution (SLE). The method works equally well
for a two-parameter generalization of the Baxter permuton recently introduced by the
first author, except that the density is not as explicit. This new family of permutons,
called skew Brownian permuton, describes the scaling limit of a number of random
constrained permutations. We finally observe that in the LQG/SLE framework, the
expected proportion of inversions in a skew Brownian permuton equals * 2}29 where
0 is the so-called imaginary geometry angle between a certain pair of SLE curves.
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1 Introduction

Baxter permutations were introduced by Glen Baxter in 1964 [12] while studying
fixed points of commuting functions. They are classical examples of pattern-avoiding
permutations, which have been intensively studied both in the probabilistic and com-
binatorial literature (see e.g. [19, 23, 30, 34, 37, 46, 68]). They are known to be
connected with various other interesting combinatorial structures, such as bipolar ori-
entations [17], walks in cones [60], certain pairs of binary trees and a family of triples
of non-intersecting lattice paths [46], and domino tilings of Aztec diamonds [34].

In recent years there has been an increasing interest in studying limits of random
pattern-avoiding permutations. One approach is to look at the convergence of relevant
statistics, such as the number of cycles, the number of inversions, or the length of the
longest increasing subsequence. For a brief overview of this approach see e.g. [27,
Section 1.4]. The more recent approach is to directly determine the scaling limits of
permutation diagrams. Here given a permutation o of size n, its diagram is an x n table
with n points at position (i, o (i)) foralli € [n] := {1, 2, ..., n}. (See Fig. 12, p. 33,
for an example.) Their scaling limits are called permutons. See e.g. [27, Section 2.1]
for an overview of this approach; and Sect. 1.1.2 and Appendix A for an introduction
to permutation pattern terminology.

Dokos and Pak [42] studied the expected limiting permuton of the so-called doubly
alternating Baxter permutations. The authors raised the question of proving the exis-
tence of the Baxter permuton as the scaling limit of uniform Baxter permutations, and
determine its expected density. The existence of the Baxter permuton was established
in [25] based on the bijection between Baxter permutations and bipolar orientations.
In [28], a two-parameter family of permutons called the skew Brownian permuton
was introduced. This family includes the Baxter permuton and a well-studied one-
parameter family of permutons, called the biased Brownian separable permuton ( [13,
14]), as special cases.

By [48, 60], the scaling limit of random planar maps decorated with bipolar
orientations is described by Liouville quantum gravity (LQG) decorated with two
Schramm-Loewner evolution (SLE) curves. In [28], the author built a direct con-
nection between the skew Brownian permuton (including the Baxter permuton) and
SLE/LQG (see also [20] for further developments). The main goal of the present paper
is to use this connection to derive some properties of these permutons. In particular, we
find an explicit formula for the density of the intensity measure of the Baxter permuton
(see Sect. 1.1.1 for definitions), which answers the aforementioned question of Dokos
and Pak. We also prove that all (standard) pattern densities of the Baxter permuton are
strictly positive. The second result extends to the skew Brownian permuton except in
one case where it is not true, namely for the biased Brownian separable permuton.

In the rest of the introduction, we first state our main results on the Baxter permuton
in Sect. 1.1. Then, in Sect. 1.2, we recall the construction of the skew Brownian
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permuton and state the corresponding results. Finally, in Sect. 1.3 we review the
connection with LQG/SLE and explain our proof techniques.

1.1 Main results on the Baxter permuton

A Baxter permutation is a permutation which satisfies the following pattern avoidance
property.
Definition 1.1 A permutation o is a Baxter permutation if it is not possible to find
i <j<ksuchthato(j+1) <o(i) <o) <o(j)oro(j) <o) <o(i) <
o(j+1).

Note that there are finitely many Baxter permutations of size n. Therefore it makes
sense to consider a uniform Baxter permutation of size n.

A Borel probability measure 1 on the unit square [0, 1]? is a permuton if both of
its marginals are uniform, i.e., w([a, b] x [0, 1]) = w([0, 1] X [a, b]) = b — a for
any 0 < a < b < 1. A permutation ¢ can be viewed as a permuton f, by uniformly

distributing mass to the squares {[%, rlT X [U("nﬁ, "r(l—")] : 1 € [n]}. More precisely,

wa(A)=nY Leb ([ — 1)/n.i/n] x [(@(i) — D)/n,o(i)/n] N A),

i=1

where A is a Borel measurable set of [0, 1]2.

For a deterministic sequence of permutations o,,, we say that o, converge in the
permuton sense to a limiting permuton , if the permutons j4,, induced by o, converge
weakly to u. The set of permutons equipped with the topology of weak convergence
of measures can be viewed as a compact metric space.

Theorem 1.2 ([25, Theorem 1.9]) Let 0, be a uniform Baxter permutation of size n.
; d

The following convergence w.r.t. the permuton topology holds: (15, — g, where g

is a random permuton called the Baxter permuton.

We present our main results on the Baxter permuton in the next section.

1.1.1 The intensity measure of the Baxter permuton
The Baxter permuton pp is a random probability measure on the unit square (with

uniform marginals). Our first result is an explicit expression of its intensity measure,
defined by E[ug](+) := E[up(-)], which answers [42, Question 6.7].

Theorem 1.3 Consider the Baxter permuton |1 g. Define the function

« ) 1 3rx ! _r2+)£27rx n _<x;r)2 (1)
x,r) == || —=——=1])e 7 e~ . .
P 2 2t

Then the intensity measure B[ g is absolutely continuous with respect to the Lebesgue
measure on [0, 112. Moreover, it has the following density function

min{x,y}
pB(x,y) = Cf / p(y — 2,01, £2)p(z, €2, £3)p(x — 2, £3, £4)
max{0,x+y—1} R4
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Fig.1 From left to right: The diagrams of the densities pg'l(x, y), pg'4(x, ¥), pg's(x, y),and pp(x,y)

p(l+z—x—y,4a4,01) d1dlrdl3dlsdz, (1.2)
where c is a normalizing constant.

Remark 1.4 As discussed in Sect. 3.3.3, further computation of the integral (1.2) is
tricky, as it involves integrating a four-dimensional Gaussian in the first quadrant.
Nevertheless, this integral in RI can be expressed as the volume function (and its
derivatives) of a three-dimensional spherical tetrahedron as given in [7, 73].

We highlight that the intensity measure of other universal random limiting per-
mutons has been investigated in the literature. For instance, the intensity measure of
the biased Brownian separable permuton, was determined by Maazoun in [67]. We
recall that the biased Brownian separable permuton ug, defined for all ¢ € [0, 1],is a
one-parameter universal family of limiting permutons arising form pattern-avoiding
permutations (see Sect. 1.2 for more explanations). In [67, Theorem 1.7], it was proved
that for all g € (0, 1), the intensity measure E[Mg] of the biased Brownian separable
permuton is absolutely continuous with respect to the Lebesgue measure on [0, 1]%.
Furthermore, IE[/L%] has the following density function

min{x,y}
phx.y) = f

max{0,x+y—1}
3¢%(1 — q)*da

2 1—a)? 2 1—a2\2/2"
2rat —a)(1 = x =y + @)y - a)2(L + E0 4 Ly (508

The proof of [67, Theorem 1.7] relies on an explicit construction of the biased Brownian
separable permuton ,u% from a one-dimensional Brownian excursion decorated with
i.i.d. plus and minus signs. To the best of our knowledge this proof cannot be easily
extended to the Baxter permuton case. Figures 1 and 2 below for some plots of pp(x, y)
and pg (x, ¥) using numerical approximations of the integrals.

1.1.2 Positivity of pattern densities for the Baxter permuton
Our second result is Theorem 1.7 states that the Baxter permuton a.s. contains a

positive density of every possible (standard) pattern. To state our result, we first define
the permutation induced by & points in the square [0, 112 Recall that [n] = {1, ..., n}.
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Fig.2 Some sections of the densities pg's (x, y) and pp(x,y). From left to right: In red (resp. in blue) we

plot the diagrams of pJ- (x, x) (resp. pp (x. x)), p% (x, 1/2) (resp. pp(x, 1/2)), and p (x, 1/4) (resp.
pp(x, 1/4))

Definition 1.5 Let (xX,y) = ((x1, y1),---, (xk, Yk)) = (xi, yi)ie[k] be a sequence
of k points in [0, 1]* with distinct x and y coordinates. The x-reordering of (%, y),
denoted by (x(;), y(i))iefx] is the unique reordering of the sequence (X, y) such that
X1y < -+ < x). The values (y(), ..., Yk)) are then in the same relative order as
the values of a unique permutation of size k, called the permutation induced by (X, ¥)
and denoted by Permy (X, ¥) = Permy ((x;, yi)ie[k])-

We now define the random permutation of size k induced by a deterministic per-
muton.

Definition 1.6 Let © be a deterministic permuton and k € Z.. Let ()?, )7_) =
(X, Yi)ie[k) be an i.i.d. sequence with distribution p. We denote by Permy (1, X, Y)
the random permutation induced by (X, ¥).

We will also consider random permutations induced by random permutons . In
order to do that, we need to construct a sequence (X;, Y;);c[x), where the points
(Xi, Y;) are independent with common distribution @ conditionally on w. This is
possible up to considering a new probability space where the joint distribution of
(m, (X;, Yi)iepk)) is determined as follows: for every positive measurable functional
H: M x[0,11* > R,

k
BLH (1, (Xi, Yo)iew)] = E []E [/{0 - H (s (i yien) | | wdxi, dyi) M:|:| :
’ i=1

We now recall some standard notation related to permutation patterns; see
Appendix A for more details. Let S, be the set of permutations of size n and
S = UneZ>0 S, be the set of permutations of finite size. Fix k < nand o € S,.
Given a subset / of cardinality k of the indices of o, the pattern induced by I in o,
denoted pat; (o), is the permutation corresponding to the diagram obtained by rescal-
ing the points (i, o(i));c; in a |I] x || table (keeping the relative position of the
points). If pat; (o) = w € Sk we will say that (o (i));es is an occurrence of  in o.
We denote by occ(ir, o) the number of occurrences of a pattern 7 in a permutation o.
Moreover, we denote by occ(rr, o) the proportion of occurrences of 7 in o, that is,

occ(m, o)

(&)

oce(m, o) =
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We finally recall an important fact about permuton convergence. Suppose (o), is a
sequence of random permutations converging in distribution in the permuton sense to

a limiting random permuton &, i.e. [s, 1) . Then, from [14, Theorem 2.5], it holds
that (6¢c(7, 0,)) ;s converges in distribution in the product topology as n — 0o to
the random vector (0¢c(7, 1)), s, Where the random variables occ(r, () are defined
for all 7 € S as follows
oee(, p) = P(Permy (1, X, ¥) = 7|p)
k
= '/[0’1]2/( ]l{Permk((Xis)’i)ie[k])=77} 1—[ pdxi, dy). (1.3)

i=1

Theorem 1.7 For all patterns w € S, it holds that
occ(m, ug) >0 a.s.

Our result is quenched in the sense that for almost every realization of the Bax-
ter permuton x4 p, it contains a strictly positive proportion of every pattern 7 € S.
Since pattern densities of random permutations converge to pattern densities of the
corresponding limiting random permuton, we have the following corollary of Theo-
rems 1.2 and 1.7.

Corollary 1.8 Let 0, be a uniform Baxter permutation of size n. Then, for all w € S,
we have that

lim oce(m,0,) >0  a.s.
n—0oo

1.2 Positivity of pattern densities for the skew Brownian permuton

Permuton limits have been investigated for various models of random permutations.
For many models, the permuton limits are deterministic, for instance, Erdos-Szekeres
permutations [75], Mallows permutations [86], random sorting networks [38], almost
square permutations [18, 33], and permutations sorted with the runsort algorithm
[1]. For random constrained permutations which have a scaling limit, the limiting
permutons appear to be random in many cases. In [28] a two-parameter family of
permutons, called the skew Brownian permuton, was introduced to cover most of the
known examples.

The skew Brownian permuton i, 4 is indexed by p € (-1, 1] and g € [0, 1], and
—1,2,1/2 coincides with Baxter permuton. We now recall the construction of the skew
Brownian permuton for p € (—1, 1) and ¢ € [0, 1]. This is only for completeness
since at the technical level we will use an alternative definition coming from SLE/LQG
which has proven to be equivalent to Definition 1.9 below; see Sect. 1.3. We do not
recall the p = 1 case as our theorem only concerns p € (—1, 1).

For p € (—1,1), let (W,(#))ier-, = (Xp(t), Yp(2)):er-, be a two-dimensional
Brownian motion of correlation p. This is a continuous two-dimensional Gaus-
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sian process such that the components X, and Y, are standard one-dimensional
Brownian motions, and Cov(X,(t), Y,(s)) = p - min{t, s}. Let (E,(¢)):¢[0,1] be a
two-dimensional Brownian loop of correlation p. Namely, it is a two-dimensional
Brownian motion of correlation p conditioned to stay in the non-negative quadrant
R2>0 and to end at the origin, i.e. E,(1) = (0,0). For ¢ € [0, 1], consider the solu-
tions of the following family of stochastic differential equations (SDEs) indexed by
u € [0, 1] and driven by E, = (X, Y)):

(u) ()
dZylq (1) =1 50 (1o dYp®) = 1w\ 0 dX,() + Qg =1 -dL?0(0), 1€ @, 1),
Zpg(® =0, 1€ 10,ul

(1.4)

(1) . . . .
where LZr4(t) is the symmetric local-time process at zero of ng;, ie.

(u) 1 !
L% a(t) = lim — | 1 ds.
© si%zs/o [Zh©e-ca)™

The solutions to the SDEs (1.4) exist and are unique thanks to [28, Theorem 1.7]. The

collection of stochastic processes {Zf,”,;} o is called the continuous coalescent-
uel0,1]

walk process driven by (E,, q). Here {Zé’fé } 0.1] is defined in the following sense:
uell,

for a.e. w, Zl(ff; (w) is a solution for almost every u# € [0, 1]. For more explanations
see the discussion below [28, Theorem 1.7]. Let

02,,(1) = Leb ({x € 0,01 28 (0) <0} U fx € [1. 1112, x) 2 0}) 1 € [0,11.

Definition 1.9 Fix p € (—1,1) and ¢ € [0, 1]. The skew Brownian permuton of
parameters p, ¢, denoted 1, 4, is the push-forward of the Lebesgue measure on [0, 1]
via the mapping (I, ¢z, ), that is

1oa () = (L @z, ,)x Leb() = Leb ({7 € [0, 11] (1, ¢z, , (1) € -}) .

We mention that it is also possible to generalize the previous construction when p =
1. Then the permuton (1,4 coincides with the biased Brownian separable permuton

ué_q of parameter 1 — ¢ mentioned before; see [28, Section 1.4 and Theorem 1.12]
for further explanations.

We now summarize the list of known random permutations which have the skew
Brownian permuton as scaling limit. Uniform separable permutations [13] converge to
w1,1/2. Uniform permutations in proper substitution-closed classes [14, 16] or classes
having a finite combinatorial specification for the substitution decomposition [15]
converge (under some technical assumptions) to jt1 4, where the parameter ¢ depends
on the chosen class. Uniform Baxter permutations converge to (12,12, namely the
Baxter permuton. Uniform semi-Baxter permutations [29], converge to ) 4, where
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p=— 1+4ﬁ ~ —0.8090 and ¢ = 1/2. Uniform strong-Baxter permutations [29],

converge to [, 4, where p ~ —0.2151 is the unique real solution of the polynomial
1 +6p + 8p% + 8p> and g ~ 0.3008 is the unique real solution of the polynomial
—1+6q —11¢*> +74°.

We will not give the detailed definitions of all random constrained permutations
mentioned above but emphasize an important division. On the one hand, models con-
verging to (1, 4 With p # 1 are similar to Baxter permutations in the following sense:
their constraints are not defined by avoiding certain patterns completely, but only
avoiding them when the index locations satisfy certain additional conditions; see e.g.
Definition 1.1. We say that such permutations avoid generalized patterns. On the other
hand, models converging towards the biased Brownian separable permuton ji1 4, they
avoid a certain set of patterns completely. For example, separable permutations avoid
the patterns 2413 and 3142. We say that such permutations avoid (standard) patterns.
(Here the word standard is added to distinguish from generalized patterns.)

Our next theorem, which generalizes Theorem 1.7, shows that in the scaling limit,
the division between p # 1 and p = 1 becomes the following. On the one hand, for
p # 1, the permuton 11, , almost surely admits a positive density of any (standard)
pattern. On the other hand, the biased Brownian separable permuton w1 4 presents a
zero density of some (standard) patterns. For instance, (1, almost surely avoids all
the (standard) patterns that are not separable; see [ 14, Definition 5.1].

Theorem 1.10 For all (p, q) € (—1, 1) x (0, 1) and all (standard) patterns & € S, it
holds that

oce(m, tpq) >0  as.

Note that the latter theorem answers [28, Conjecture 1.20]. By Theorem 1.10, if
a sequence of random permutations avoiding (standard) patterns converges to a skew
Brownian permuton then it has to be the biased Brownian separable permuton. Namely,
we have the following result.

Corollary 1.11 Let C be a family of permutations avoiding (standard) patterns. Let o,
be a random permutation of size n in C. Assume that for some (p, q) € (—1, 1] x (0, 1)

. d
it holds that i5, —— p 4. Then p = 1.
n— oo

1.3 Relation with SLE and LQG
We now review the connection between the skew Brownian permuton and SLE/LQG
established in [28, Theorem 1.17]. Then we explain our proof techniques. Precise

definitions and more background on various SLE/LQG related objects will be given
in Sect. 2.

1.3.1 The skew Brownian permuton and the SLE-decorated quantum sphere

Fix y € (0, 2) and some angle 6 € [—%, %]. In what follows we consider:
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e aunit-area y-Liouville quantum sphere (@, h, 0, co) with two marked points at 0
and oo and associated y-LQG area measure 1, (see Definition 2.1);

e an independent whole-plane GFF h (see Sect. 2.1.1);

e two space-filling SLE,s counterflow lines of 7 in C with angle 0and 6 — 7 con-
structed from angle 7 and 6 flow lines with k' = 16/y? (see Sect. 2.1.3). We
denote these two space-filling SLE, curves from oo to oo by 7, and né_%.

We emphasize the independence of the counterflow lines and the quantum sphere. In

addition, we assume that the curves 7 and 77(/;_1 are parametrized so that 1(,(0) =
2

(D) = my_z (0) = 15_z (1) = o0 and p, (mg (s, 11)) = mn(ng_z ([s.1D) =1 —s

for 0 < s <t < 1. We have the following result.

Theorem 1.12 (/28, Theorem 1.17]) Fixy € (0,2) and6 € [-7, T]. Let (@, h, 0, o0)
and (1, né_l) be the unit-area y-Liouville quantum sphere and the pair of space-

filling SLE, introduced above. For t € [0, 1], let v, o(t) € [0, 1] denote the first
time' at which Ué,z hits the point 1¢(t). Then the random permuton
2

(Id, ¥y 9)« Leb

is a skew Brownian permuton of parameter p = —cos(ry?/4) € (0,1) and ¢ =
gy (0) € [0, 1].

For every fixed y € (0, 2), the function

b4
0 [55]00
qy(©0) : 23] [0, 1]
is a decreasing homeomorphism and therefore has an inverse function 6, (¢). Finally,
forall @ € [0, /2] and all y € (0, 2), it holds that g, (0) + g, (—6) = 1. In particular,
qy(0) = 1/2 for all y € (0, 2). The Baxter permuton corresponds to y = 4/3 and
6 =0.

1.3.2 Proof techniques for the main results

To prove Theorem 1.3, we first extend Theorem 1.12 to give a more explicit description
of the skew Brownian permuton measure [, 4 in terms of a unit-area quantum sphere
and two space-filling SLEs, i.e. we prove the following.

Proposition 1.13 Fix y € (0,2) and 6 € [-%, %]. Let (C. h,0, 00) and (1, 1}, _x)
2

be the unit-area y -Liouville quantum sphere and the pair of space-filling SLE,.+ intro-

duced above. Let also p € (—1,1) and q € [0, 1] be such that p = — cos(ny2/4)

1 We recall that space-filling SLE curves have multiple points. Nevertheless, for each z € C, a.s. z is not
a multiple point of néi% ,ie., 77(;7% hits z exactly once. Since /2 is independent from (1, néi%) and n;,

and néi% are parametrized by pj-mass, a.s. the set of times ¢ € [0, 1] such that n6 is a multiple point of

”g,% has zero Lebesgue measure.
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and q = q,(0), and consider the skew Brownian permuton i, 4 constructed as in
Theorem 1.12. Then, almost surely, for every) < x1 <x3 < land0 <y <y, <1,

o (11, %21 % Dy, val) = e (moLer, x2) (g (v, v2D) ).

Using Proposition 1.13, we express the intensity measure K[, 4] in terms of a quan-
tum sphere decorated by certain flow lines of a Gaussian free field, which are simple
SLE, curves with k = y2 € (0,4). This is proved in Proposition 3.7 using the
rerooting invariance of marked points for quantum spheres ([40]; see also Proposi-
tion 3.6 below) and the fact that the outer boundaries of the SLE¢/,-type curves 776
and né_l are simple SLE, curves. Using conformal welding results and scaling prop-

erties of quantum disks and spheres ( [3]; see also Sect. 3.1), this leads to a simpler
expression for E[u, 4] via the density function pw (a, £1, £2) of the area a of quan-
tum disks with given quantum boundary lengths ¢; and ¢, (see Theorem 3.8). When
(p,q) = (—1/2,1/2), the density pw(a, £1, £2) is the same as the density of the
duration of a Brownian excursion in a cone of angle % (as argued in [3, Section 7];
see also Proposition 3.3). The latter can be computed using standard heat equation
argument as done in Sect. 3.3 via [58]. We finally briefly explain the relation between
the integrals in (1.2) and spherical tetrahedra (see Sect. 3.3.3).

To prove Theorem 1.10, we begin by observing that the occurrence of a fixed
(standard) pattern in u, , can be reformulated in terms of a specific condition on
the crossing and merging order of some collection of flow lines of a Gaussian free
field (see Lemma 4.1 and Fig. 7 for a precise statement). Then building on the key
result from [70, Lemma 3.8], which roughly speaking states that a simple SLE,. curve
can approximate any continuous simple curves with positive probability, we prove that
this crossing and merging condition holds with positive probability (the main difficulty
here is that we need to look at several flow lines of different angles together). Finally,
by the scaling invariance of the whole-plane GFF and a tail triviality argument, we
conclude the proof of Theorem 1.10.

We conclude the introduction with three observations. First, qualitatively, our
method works equally well for 1, , with any o # 1. But quantitatively, the Baxter
permuton corresponds to a special case where the function pyw(a, €1, £2) is signifi-
cantly simpler than the general case; see Remark 3.14. This is why Theorem 1.3 is
restricted to the Baxter case while Theorem 1.10 is for the general case.

Second, the angle 6 in Theorem 1.12 has a simple permutation interpretation.

Proposition 1.14 For all (p,q) € (—1,1) x [0,1], let 0 € [—%, %] be related to
q by the relation q = q,,(0) given in Theorem 1.12 with y € (0, 2) such that p =
—cos(wy?/4). Then

- —20
E[(6Cc(21, )] = ”zn . (1.5)

The third and fourth named authors of this paper are working on deriving an exact
formula for g, (6) with Ang. For the Baxter permuton E[(dcc(21, Hog)] = % by
symmetry, which is consistent with & = 0. In fact, we can express E[(6¢c(, Hp.g))]
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for any pattern 7 in terms of SLE and LQG, but for 7 # 21 we do not find any exact
information as enlightening as (1.5); see the end of Sect. 3. Note that Proposition 1.14
answers [28, Conjecture 1.22], which conjectures that the expected proportion of
inversions in ., 4 is an increasing function of ¢ (recall that 6 is a decreasing function
of q).

Finally, our work falls into the line of work proving integrability results (i.e., exact
formulas) via SLE and/or LQG techniques. Integrability results for SLE and LQG
can be proven via a variety of methods, see e.g. [5, 6, 21, 22, 44, 53, 56, 63, 65,
80, 85, 87, 88] for SLE results and [62, 74] for LQG results. As a particular class of
methods, couplings between SLE and LQG [40, 83] allows to exploit the interplay
between SLE and LQG to prove new results about both objects. For example, the KPZ
formula [61] has been used to predict exponents of statistical mechanics models and
dimensions of SLE curves via combinatorics on planar maps; see e.g. [47] for rigorous
computations in this spirit. Chen, Curien and Maillard [35] give a heuristic derivation
of the conformal radius formula in [85] by using the coupling with LQG; see also [54]
for a proof via LQG techniques. A number of integrability results based on the SLE
and LQG coupling have been established by subsets of the coauthors of this paper [3,
4, 8, 10], and our Theorem 1.3 can be viewed as a part of this ongoing endeavor.

2 Permuton-LQG/SLE correspondence

This section collects the background needed for later sections. We review in Sect. 2.1
some definitions related to the Gaussian free field, quantum surfaces and SLE curves.
Then, in Sect. 2.2 we prove Proposition 1.13.

Notation. In this paper we will often work with non-probability measures. We extend
the terminology of ordinary probability to this setting: For a (possibly infinite but
o-finite) measure space (2, F, M), we say X is a random variable if X is an F-
measurable function with its law defined via the push-forward measure My = X. M.
In this case, we say X is sampled from My and write Mx[ f] for f f(x)Mx(dx). By
conditioning on some event E € F with 0 < M[E] < oo, we are referring to the

probability measure MA,E‘[EE]'] over the space (E, Fg) with Fgp = {ANE : A € F}.
Finally, for a finite measure p we let |u| be its total mass and u* = ﬁ be its

normalized version.

2.1 Gaussian free fields, quantum surfaces and SLE curves

We assume throughout the rest of the paper that y € (0, 2), unless otherwise stated.
We introduce the following additional parameters defined in terms of y

Q=2/y+v/2, x=2y-v/2 «=y: K =16/y>

@ Springer



J.Borgaetal.

2.1.1 Gaussian free fields

Recall that the Gaussian free field (GFF) with free boundary conditions (resp. zero
boundary conditions) h on a planar domain D C Cis defined by taking an orthonormal
basis { f;,} of H(D) (resp. Hyo(D)), the Hilbert space completion of the set of smooth
functions on D with finite Dirichlet energy (resp. finite Dirichlet energy and compact
support) with respect to the Dirichlet inner product, an i.i.d. sequence {¢;,} of stan-
dard normal random variables, and considering the sum 2 = Y 7 | a, f,. This series
converges in an appropriate Sobolev space and hence in the space of distributions; see
for instance [31, Theorem 1.24]. In the case of the free boundary GFF, we view & as
a distribution modulo a global additive constant (see also [31, Definition 5.2]).

The whole-plane Gaussian free field h, viewed as a distribution on C modulo a
global additive constant, is defined in a similar manner as the free boundary GFF, but
with D = C (see for instance [31, Section 5.4]). Sometimes we will fix this additive
constant or view the whole-plane GFF as a distribution modulo a global additive integer
multiple of some other fixed constant; if this is done, it will be always specified in the
paper. We refer to [31, 82, 89] for more background on the GFF.

2.1.2 Quantum surfaces

Consider the space of pairs (D, h), where D C C is a planar domain and 4 is a
distribution on D (often some variant of the GFF). Define the equivalence relation
~y, where (D, h) ~,, (D, h) if there is a conformal map ¢ : D — D such that

h=hog+ Qlog|¢|. 2.1)

A quantum surface § is an equivalence class of pairs (D, i) under the relation ~,,,
and we say (D, h) is an embedding of S if S = (D, h)/~, . In this paper, the domain
D shall be either the upper half plane H := {z € C : Im z > 0}, the Riemann sphere
C := C U {oo}, or a planar domain cut out by SLE, curves. We will often abuse
notation and identify the pair (D, h) with its equivalence class, e.g. we may refer to
(D, h) as a quantum surface (rather than a representative of a quantum surface).

A quantum surface with k marked points is an equivalence class of elements of the
form (D, h, x1, ..., xx), where (D, h) is a quantum surface, the points x; € D, and
with the further requirement that marked points (and their ordering) are preserved by
the conformal map ¢ in (2.1).

A curve-decorated quantum surface is an equivalence class of tuples (D, k, n1, ..., nk),
where (D, h) is a quantum surface, 1y, .. ., g are curves in D, and with the further
requirement that 7 is preserved by the conformal map ¢ in (2.1). Similarly, we can
define a curve-decorated quantum surface with k marked points. Throughout this
paper, the curves 1y, ..., ni are SLE, type curves (which have conformal invariance
properties) sampled independently of the surface (D, h).

Given some variant & of the GFF, one can make sense of the bulk measure wj,
where uj(A) = fA eV g4z, by considering the circle average h.(z) of h on the

circle d B;(z) and taking the weak limit of v’/ 2evhe@) 7 as & — 0; see for instance
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[43, 59, 78]. The measure w; is then called the y-Liouville quantum gravity area
measure. Similarly, one can define a length measure vy, called the y -Liouville quantum
gravity length measure, on certain curves in the closure D of D. Notice that j1;, and vy,
depend on the parameter y, but we skip y from the notation since the value of y will
always be implicitly understood from the context. The two measures satisfy natural
scaling properties, namely wp4.(A) = e’“u(A) and vp4.(S) = e%cv(S) forc € R
an arbitrary constant. See [43] for more details on these bulk and boundary Liouville
quantum gravity measures. A self-contained introduction to GFF, Liouville quantum
gravity measures, and quantum surfaces, can be also found in [49, Section 3.2-3] or
in the lecture notes [31].

Now we formally introduce quantum spheres and quantum disks, which are the
main types of quantum surfaces considered in this paper and are defined in terms of
some natural variants of the GFF. The reader can find intuitive explanations of the next
definitions at the end of this section. We also highlight that it is not strictly necessary
to understand the technical details involved in the following definitions in order to
then follow our proofs in the consecutive sections.

As argged in [40,ASection i 1], when D = C (resp. D = H), we have the dggompo-
sition H(C) = H{(C) ® H>(C) (resp. H(H) = H(H) & H,(H)), where H; (C) (resp.
Hi(H)) is the subspace of radially symmetric functions, and H» (@) (resp. Hy(H)) is
the subspace of functions having mean O on all circles {|z| = r} (resp. semicircles
{lzl = r, Imz > 0}). For a whole-plane GFF h, we can decompose h = hy + hy,
where /| and &, are independent distributions given by the projection of 4z onto H; (C)
and H» (@), respectively. We remark that /2 is defined modulo an additive constant
while 75 is not. The same result applies for the upper half plane H.

Since a quantum surface is an equivalence class of pairs (D, V) (or, more generally,
an equivalence class of tuples (D, ¥, z1,...,2k) With z1, ...,z € 5), in order to
describe the law of a quantum sphere, we will start by describing the law of its random
field yr.

Definition 2.1 (Quantum sphere) Fix y € (0, 2) and let (By)s>0 and (Es)szo be inde-
pendent standard one-dimensional Brownian motions. Fix a weight parameter W > 0

and seta ;= Q — % Let ¢ be sampled from the infinite measure %ez(""Q)cdc on R

independently from (By)s>0 and (Es)sz()- Let

x. =1 B; +at +cfort >0,
"7 1B, +Q2Q0—w)t+cfort <0,

conditioned on B; — Q\Q —a)t < 0and Et —(Q —a)t <Oforallt > O/.\Let hbea
whole-plane GFF on C independent of (X;);cr with projection onto H,(C) given by
hy. We consider the random distribution

1/'() = X*log|~| + hZ() .

Let M;ph(W) be the infinite measure describing the law of (@, Y, 0, 00)/~,,. We call
a sample from ./\/l;ph(W) a quantum sphere of weight W with two marked points.
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A unit-area y-quantum sphere with two marked points is the quantum sphere of
weight4—y 2 with two marked points conditioned on having total y -LQG area measure
ty (C) equal to one.

It is explained in [40, Sections 4.2 and 4.5] that the considered condmomng on B
and B, along with the conditioning on the quantum area of a weight 4 — 2 quantum
sphere, can be made rigorous via a limiting procedure, although we are conditioning
on probability zero events.

We remark that the weight 4 — 2 here is “typical” because in this case the two
marked points (which currently correspond to 0 and 0o) can be realized as independent
samples from the y-LQG area measure j1y (see Proposition 3.6 below for a precise
statement). This important rerooting invariance property shall later be used in Sect. 3.3
in order to compute the density of the Baxter permuton via quantum surfaces.

We now turn to the definition of quantum disks, which is splitted in two different
cases: thick quantum disks and thin quantum disks.

Definition 2.2 (Thick quantum disk) Fix y € (0, 2) and let (Bs)s>0 and (ES)SZ() be

independent standard one-dimensional Brownian motions. Fix a weight parameter
2

W > VT and let 8 = y + ZfTW < Q. Letcbe sami)led from the infinite measure

%e(ﬂ_Q)Cdc on R independently from (B;s)s>0 and (By)s>0. Let

vo= 1 By, + Bt +cfort >0,
! B_o+ Q20 —pB)t+efort <0,

conditioned on By, — (Q — B)t < 0 and §2t —(Q —pB)t <Oforallt > 0. Let h be
a free boundary GFF on H independent of (Y;);cr with projection onto Hj (IH) given
by h>. Consider the random distribution

V() =X_1og)| +h2(").

Let MSK(W) be the infinite measure describing the law of (H, ¥, 0, 00)/~,,

call a sample from Md‘“k(W) a quantum disk of weight W with two marked pomts
We call vy ((—00, 0)) and vy ((0, 00)) the left and right boundary quantum length

of the quantum disk (H, ¥/, 0, 00).

2
WhenO < W < ”7, we define the thin quantum disk as the concatenation of weight
— W thick disks with two marked points as in [3, Section 2].

Definition 2.3 (Thin quantum disk) Fix y € (0,2). For W € (0, 7’72), the infinite
measure Mgigk(W) is defined as follows. First sample a random variable 7 from the
infinite measure (1 — %W)_zLebR > then sample a Poisson point process {(u, D,)}
from the intensity measure 1,¢[0, 7dt X MgiSk(yz — W); and finally consider the
ordered (according to the order induced by u) collection of doubly-marked thick
quantum disks {D,}, called a thin quantum disk of weight W.

Let MgiSk(W) be the infinite measure describing the law of this ordered collection
of doubly-marked quantum disks {D,, }. The left and right boundary length of a sample
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2
Fig.3 Schematic representation of a sample of a thin quantum disk of weight W e (0, VT) as the concate-

nation of weight y2 — W thick quantum disks. The green bubbles correspond to the thick quantum disks
{D,} involved in the construction. Note that there are in fact (countably) infinite many thick quantum disks
which are not drawn near the two endpoints (shown in red) and between each pair of macroscopic disks

from MgiSk(W) is set to be equal to the sum of the left and right boundary lengths of
the quantum disks {D, }.

We give a heuristic interpretation of the last definition. Note that one can interpret
the ordered collection of doubly-marked quantum disks {D,, } as if we are concatenating
the surfaces {D,} by “gluing” them at their marked points, as shown in Fig. 3. These
collections of doubly-marked quantum surfaces are sometime called beaded surfaces.

Remark 2.4 The quantum spheres and disks introduced in this section can also be
equivalently constructed via methods in Liouville conformal field theory (LCFT); see
e.g. [39, 55] for these constructions and see [2, 3, 36] for proofs of equivalence with
the surfaces defined above. Fundamental properties of the surfaces such as structure
constants and correlation functions have also been established via methods in LCFT
[50, 52, 62], confirming predictions from the physics literature [32, 41, 90]. The quan-
tum spheres and disks also arise as the scaling limit of certain random planar maps.
For example, when y = /873, M$*k(2) is the law of the LQG realization of the
Brownian disk with two marked boundary points with free area and free boundary
length [71, 72], where we recall that the Brownian disk is the scaling limit of triangu-
lations or quadrangulations with disk topology sampled from the critical Boltzmann
measure [24, 51].

We conclude this section by briefly explaining some intuitions behind the definitions
of quantum spheres and quantum disks. We remark that these explanations are not
needed to follow the rest of the paper.

Following [40, Section 1.2], we explain why the weight parameter W encodes in
some sense how “thick/thin” the surface is. In Definition 2.1 (r’e\zsp. Definition 2.2), the
process X; (resp. Y;) encodes the average of the field ¢ on C (resp. on H) over the
circle (resp. semicircle) of radius e~ centered at 0, and can be defined by taking the
logarithm of Bessel excursions of dimensions 2 + = W and 1 + % W, respectively;
see [40, Section 4]. Note that the dimension of the Bessel process increases as W
increases.

Since the processes X; and Y; (and so also the corresponding Bessel excursions)
are sampled from infinite measures, the measures for quantum spheres and quantum
disks are infinite. Moreover, the random constant ¢ appearing in the two definitions
encodes the largest value of the processes X; — Qf and Y, — Qt, which is attained
by definition at ¢+ = 0 (equivalently, the random constant e® encodes the largest value
attained during the corresponding Bessel excursions). The process X; — Qt (resp.
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Y; — Qr) encodes some other field average process when the quantum sphere (resp.
the quantum disk) is embedded onto the cylinder R x [0, i277]/~ instead of C, where
~ stands for the equivalence relation x ~ y if x = y + 2mi (resp. onto the strip
R x (0, i2m) instead of H). The term Qt in these processes comes from the change
of coordinates formula in (2.1). As a consequence, the random constant ¢ reflects the
largest value of these field average processes under these other embeddings. Note that
¢ “tends” to be larger when W increases.

The two marked points on each quantum surface are related to the starting and the
ending points of the corresponding Bessel excursion, and near these marked points
the field v looks like 4 — B log | - | (if the surface is embedded in H with the relevant
marked point at 0), where for quantum spheres § = Q — % and h is a whole-plane

GFF, while for quantum disks g = y + Z_TW and £ is a free boundary GFF on H. That
is, near these marked points, the field i looks like a GFF plus a S-log-singularity, and
such singularity is smaller when W increases, decreasing the amount of mass in the
neighborhood of the two marked points. In fact, for readers familiar with the Liouville
CFT approach, as proved in [4], a weight W quantum sphere with two marked points
can be understood as the uniform embedding of the Liouville field LF((C’S 00-(8:29) ith
insertion points (8, 0), (8, c0), while a weight W quantum disk with two marked
points can be realized as the uniform embedding of the Liouville field LFH(_}? 0).(8.00)
with insertion points (8, 0), (8, 00). Moreover, as shown in [3, 11, 40], the weight W
is additive under the operation of conformal welding, which shall be further discussed
in Sect. 3.1.

2.1.3 SLE curves and imaginary geometry

Now we briefly recall the construction of the Schramm—Loewner evolution (SLE, )
curves with parameter « > 0, which were introduced by Schramm [79] and arise
as scaling limits of many statistical physics models, see e.g. [64, 81, 84]. Roughly
speaking, on the upper half plane Hl, the SLE, curve 1 can be described via the
Loewner equation

dgi 2 . .
5 = @) — W, 80(2) =z

where g; is the conformal map from H\» ([0, ¢]) to H with lim|;| o [g:(z) — 2| =0
and W, is ﬁ times a standard Brownian motion. This curve starts at 0, ends at oo, and
travels on the upper half plane H [76]. Moreover, it has conformal invariance properties
and therefore the definition can be extended to other domains (with other starting and
ending points) via conformal maps. When « € (0, 4] the curve is simple, while for
Kk > 4 the curve is self hitting (later on, when ¥ > 4 we denote « by k' = ],(—6 > 4 for
k € (0, 4], being consistent with [69, 70]). We refer the reader to the lecture note [26]
for more background on SLEs.

It is also possible to define a variant of the SLE, on H from 0 to co known as the
SLE, (p1; p2) on H from O to co, where p1, po > —2. For k € (0, 4) the curve is still
simple but a.s. hits (countably) infinitely many times the left (resp. right) boundary

@ Springer



Baxter permuton and Liouville quantum gravity

K

of H when p; < 5 — 2 (resp. p2 < 5 — 2), and it does not hit at all the left (resp.
right) boundary of H when p; > 5 — 2 (resp. po > 5 — 2). Also in this case, the
definition can be extended to other domains (with other starting and ending points)
via conformal maps. See [69, Section 2] for more details.

We shall also consider the whole-plane SLE, (p) for p > —2, which is a random
curve in C from a starting point z € C to oo. For k € (0, 4) the curve hits itself
(countably) infinitely many times when p < 5 — 2, but does not hit itself at all when
p = 5 — 2. See [70, Section 2.1] for more details.

Given a whole-plane GFF T viewed modulo a global additive integer multiple of
2w x (see [70, Section 2.2] for further details) elnd 6 € IR, one can construct the 6-
angle flow lines 1, ofﬁ(or more precisely of ¢! /x+9) from z € C to 0o as shown in
[69, 70]. The marginal law of né is that of a whole-plane SLE, (2 — k) curve from z to
0o. We remark that we measure angles in counter-clockwise order, where zero angle
corresponds to the north direction.

For distinct z, w € C, the flow lines 77(3 and Uf)_ﬂ cannot cross ny’ Ung__, but they
may hit and bounce off when « € (2, 4). See Fig. 4 for an illustration. Additionally,
flow lines of 7 with the same angle started at different points of Q? merge into each
other when intersecting and form a tree [70, Theorem 1.9]. This gives an ordering of
Q?, where z < w whenever the #-angle flow line from z merges into the §-angle flow
line from w on the left side. Equivalently, z < w if and only if z lies in a connected
component of C \ (1, U ny__) which lies to the left of 1’ and to the right of n}’__.
One can construct a unique Peano curve which visits points of Q? with respect to this
ordering [70, Theorem 1.16]. We call this curve the space-filling SLE, counterflow
line of h in C with angle 6 — 7 and we denote this curve by 77(/9,% It follows from

the construction that a.s. for any fixed z € C, the flow lines #; and n;__ are the
left and right boundaries of 77(/9_1 stopped upon hitting z. We highlight that any pair
2

of counterflow lines of / with different angles or different starting points are not
independent and their coupling is encoded via the whole-plane GFF h.

2.2 LQG description of the skew Brownian permuton

In this section, we prove Proposition 1.13 by directly applying Theorem 1.12 (we
invite the reader to review the statement of these theorem now that all the objects have
T T

been properly introduced). Fix y € (0, 2) and an angle 6 € [—7, 5]. In what follows
we consider:

e aunit-area y-Liouville quantum sphere (@, h, 0, oo) with two marked points at 0
and oo;

e the associated y-LQG area measure pj (which is in particular a random, non-
atomic, Borel probability measure on C which assigns positive mass to every open
subset of C);

e an independent whole-plane GFF 7 (viewed modulo a global additive integer
multiple of 27 x);
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75 0—7/2

m A

2

K > 8 K€ (4,8)

Fig.4 Left: The squared box is a portion of the complex plane C. We fix 6 as shown in the picture. We plot

in red the flow lines 772; and in blue the flow lines 775_7[ for six points x € C. For every x € C, the flow

lines ng and 775,7, are the left and right outer boundaries of the space-filling SLE,/ n; 7 stopped when
-7

it hits x. The space-filling SLE, s 77/9 = fills in the regions 1 (in light blue),2,3,4,5,6, and 7 in this order.
-2

The left figure illustrates the case when «” > 8. Right: The same illustration as in the left-hand side when

k' € (4, 8). In this case we just considered a single point z € C. The flow lines né (in red) and né_n (in

blue) started from the same point z can hit each other and bounce off. The space-filling SLE, ./ né_ 7 fills
2

first the regions 1 (in light blue) and then the region 2 (in white)

e two space-filling SLE,, counterflow lines of 7 in C with angles 0 and 6 — 7,
denoted by 1" := 5, and Tlé,% and started from oo at time r = 0 and ending at 0o
atr =1;

o the skew Brownian permuton w, 4 with p = — cos(ny2/4) e(—1,)and g =
gy (0) € [0, 1] as constructed in Theorem 1.12 from (up, 7', né_%).

Also recall that yr,, ¢ (f) is the first time when Ué,g hits 1/(t), and that the curves n’
2
and 772;_1 are parametrized so that w, (n'([s, t])) = un (77(/9_1([5’ t])) =t — s for
2 2

O<s<t<l.

Proof of Proposition 1.13 By [28, Theorem 1.11], the random measure 1, 4 is almost
surely a permuton, i.e., almost surely its marginals are uniform. We first prove that for
fixedD <x; <x» <1and0 < y; < y2 < 1, pp¢([x1, x2] X [y1, y2]) is a.s. equal
to the quantum area of ' ([x1, x2]) N né_% ([y1, y21). By Theorem 1.12, we know that
a.s.

Mo,q([x1, x2] X [y1, y21) = Leb({r € [x1, x2] : ¥y 9 (1) € [y1, y21D).  (2.2)

Using the fact that the set of multiple points for n" and 77, _» a.s. has zero quantum
2

area (see e.g. [40, Section B.5]), and since we are parameterizing né_l by quantum
2
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area, it follows that a.s. for almost every t € [0, 1], ¥, o(¢) € [y1, y2] if and only if
() € '7/9,5([)’1, v21). This implies that a.s.
2

Leb({r € [x1, 2] : ¥ry.6(1) € [y1, y21}) = Leb({t € [x1, x2] : 0'(1) € my_z ([y1, y2DD)-
2.3)

Again since we are parameterizing 1’ using quantum area, by (2.2) and (2.3) it follows
that a.s.

Hp.q ([X1,X2] X [y1, yz]) = [ (né([mwz]) N né,%([)’l, yz])>, 2.4

for fixed ) < x; < xp <land0 < y; < y» < 1. Now we fix x1, y1, y2 and let
xo vary. By Fubini’s theorem, there exists a set Ay, y,y, C [x1, 1] with Lebesgue
measure zero, such that (2.4) holds for any x> € [x1, 1]\Ay, y,,y,. Since both sides
of (2.4) are monotone in x», and the right-hand side of (2.4) is a.s. continuous in x;
(this follows because y-LQG measure a.s. has no atoms), we see that a.s. for fixed
X1, ¥1, y2 and all xp € [xy, 1], (2.4) holds. We can continue this argument by fixing y;
and y; and letting both of x| and x; vary, and then only fixing y;, and finally letting
X1, X2, y1, ¥2 vary. Therefore we arrive at the conclusion that a.s. (2.4) holds for all
0<x1<xx=<land0<y; <y <L |

3 Density of the Baxter permuton

In this section, building on Proposition 1.13, we study the expectation of the skew
Brownian permuton i, , and express it in terms of the law of the areas of certain
quantum disks. In the special case g = % and p = —%, i.e. when ,  is the Baxter
permuton, we compute this area law by considering the random duration of certain
Brownian excursions and derive Theorem 1.3. The main tools are the rerooting invari-
ance for marked points of quantum spheres and the conformal welding of quantum
disks.

This section is organized as follows. In Sects. 3.1 and 3.2, we review the input
from conformal welding and the rerooting invariance, respectively. Then, in Sect. 3.3,
we give an expression for the intensity measure of the skew Brownian permuton
and in particular we prove Theorem 1.3. Finally, in Sect. 3.4 we will show that
the expected occurrence E[(dCc(21, Mp,q))] linearly depends on 6 = 6, (g), prov-
ing Proposition 1.14.

Throughout this section we fix y € (0,2) and k = y2 € (0,4), except that in
Sect. 3.3.2 we restrict to the Baxter case where y = /4/3.

3.1 Conformal welding of quantum disks
We start by reviewing in Sect. 3.1.1 the disintegration and the scaling properties of

quantum disks and spheres, and then in Sect. 3.1.2 we recall the notion of conformal
welding of quantum disks from [3].
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3.1.1 Properties of quantum disks and quantum spheres

We recap the disintegration of measures on quantum surfaces as in [3, Section 2.6]. For
the infinite measure M‘ZhSk( W), one has the following disintegration for the quantum
boundary length:

[ iles) .
MK (W) = / f MKW, ey, 2) dey des, (3.1)
0 0

where MgiSk(W;Kl,Kz) are o-finite measures supported on doubly boundary-
marked quantum surfaces with left and right boundary arcs having quantum
length ¢; and ¢, respectively. See for instance [3, Definition 2.22 and Propo-
sition 2.23]. We remark that the exact meaning of the identity in (3.1) is that
MIKW) ($) = [57 [57 MIKW; €4, ) (S) dﬁldﬁg for all measurable sets S.

The measure Md‘Sk(W £y, £5) is finite when W < 2 + L (see e.g. [3, Lemmas 2.16
and 2.18]); the measure is also finite for certain larger W (e.g. W = 4) but the range

W <2+ %2 is sufficient for us (see the proof of Lemma 3.4).

Using precisely the same argument, we can disintegrate the measure M;ph(W) over
the quantum area A. In particular, we have

MPW) = / MW a) da, (3.2)

where for all a > 0 the measures M;ph(W; a) are o-finite (and finite if and only
if W < 4 [77]) supported on doubly marked quantum surfaces with quantum area
A=a.

We also remark that if (D, &, x, y) is a sample from MdiSk(W‘ £1,£7) or from

Sph(W a), then h is arandom field on D (more precisely, a random distribution on
D) and in particular not a random field modulo additive constant.

The next input is a scaling property of quantum disks. Recall our definition of

sampling given at the beginning of Sect. 2.

Lemma 3.1 (Lemma 2.24 of [3]) Fix W, £1, € > 0. The following two random vari-
ables sampled as follows have the same law for all A > 0:
1. Sample a quantum disk from /\/lgisk(W; My, M),

2w

_2W .
2. Sample a quantum disk from »  v* /\/lg”k(W; L1, £>) and add % log A to its field.

Similarly we have the following scaling property for quantum spheres, which can be
proved in the same manner as [3, Lemma 2.24].

Lemma3.2 Fix W,a > 0. The following two random variables sampled as follows
have the same law for all A > 0:

1. Sample a quantum sphere from MsPh(W' ra);
W
2. Sample a quantum sphere from x> M h(W a) and add 1 log A to its field.
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We end this subsection with two results on the measures /\/lgiSk(W; L1, £>). Before
stating them, let us recall the definition of the Brownian excursion in a cone with
non-fixed duration as constructed in [66, Section 3]. (We highlight that here we are
considering non-fixed time interval excursions. This is a key difference with the Brow-
nian loops introduced in Sect. 1.2, where the time interval was fixed and equal to [0, 1].)
Fix an angle ¢ € (0, 27) and let Cy be the cone {z € C : argz € (0, ¢)}. Let KC be the
collection of continuous planar curves y in Cy defined for time ¢ € [0, #, |, where ¢,
is the duration of the curve. Then KC can be seen as a metric space with

d(yl,yz)=i%f sup |t =B+ [y1() — 2 (B¢ »

O<t<ty,

where B ranges from all the possible increasing homeomorphisms from [0, ,,,] to
[0,1,]. For z € Cy and r > 0, let Méﬁ (z, re’¢) be the law of the standard planar

Brownian motion starting from z and conditioned on exiting Cy at re'? (see [66,
Section 3.1.2] for further details on this conditioning). This is a Borel probability
measure on /C, and for all ¢, r > 0 the following limit exists for the Prohorov metric

. # . i¢
8111}) Ie, L +ie, re'?). (3.3)

We denote the limiting measure by ua (¢, re'?) and call it the law of the Brownian

excursion in the cone Cy from £ to re'® with non-fixed duration. '
The next result describes the area of a disk sampled from Mg‘Sk(W; £1, 7)) when

2 2
W = VT We remark that this result holds only in the special case W = VT Recall
also from the beginning of Sect. 2 that for a finite measure v we let |v| be its total mass
and we let v¥ := “’7| denote its normalized version.

2
Proposition 3.3 (Proposition 7.7 of [3]) Fix y € (0,2) and ¢ = T}~. There exists a
constant ¢> 0 such that for all £1, £, > 0,

4
2 -1
sk (12, )
‘Mz <2,£1,52)‘—c T o7 (3.4)
(z{ +£2V)

. 2
Moreover, the quantum area of a sample from Mg”k(%; 21, £2)* has the same law as
the duration of a sample from ,ua (£14/2sin @, £2/2sin pe'?).

The next result holds for arbitrary W € (0,2 + VTZ). The upper bound 2 + VTZ
guarantees that the measure MgiSk(W; L1, £7) is finite, as explained after (3.1).

2
Lemma3.4 Forany W € (0,2 + VT) and £1, €y > 0 the quantum area of a sample
from Mg”k (W; L1, £3) is absolutely continuous with respect to Lebesgue measure.
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Proof For W = y? /2 the result follows from Proposition 3.3. For W € (y?/2,2+ VTZ)
we get the result from [3, Theorem 2.21% with W; = y2/2 and W = W — )/2/2,
along with the fact that the sum of two independent random variables has a density
function if at least one of the summands has a density. Note that the statement of [3,
Theorem 2.2] involves the measures Mg“k( W; £1, €2) and we are using the fact that

these measures are finite when W < 2 + VTZ as explained after (3.1).

Finally, we get the result for W € (0, y2/2) by using that we know the lemma for
thick quantum disks with weights in (2, 2 + 2/2) and that a thin quantum disk of
weight W € (0, y2/2) can be described as an ordered collection of doubly-marked
thick quantum disks of weight y> — W € (y2/2, y?), as done in Definition 2.3. O

3.1.2 Conformal welding of quantum disks

In this section we review one of the main results of [3], which is stated as Theorem 3.5
below and will be a key input in the proof of Theorem 1.3. We first give the formal
statement of the theorem and then we explain the interpretation of the theorem as a
conformal welding of quantum surfaces.

Recall that SLE, (p1; p2) and whole-plane SLE, (p) were introduced in Sect. 2.1.3.
In particular, recall that SLE, (p1; p2) froma € dD to b € D in a domain D C C
hit (countably) infinitely many times the left (resp. right) boundary if and only if
p1 < 5 — 2 (resp. p» < 5 — 2), and whole-plane SLE, (p) curves from 0 to oo hit
themselves (countably) infinitely many times if and only if p < 5 — 2.

Fixn > 2, Wi,..,. W, > 0,k = y2 € (0,4) and let W = W; + ... + W,. Let
(D, x,y) be a proper simply connected domain contained in C with two points x
and y lying on the boundary of D. We inductively define some probability measures
Ppdiskcw, .. W,) on non-crossing curves (11, .., 1,—1) in D joining x and y for all
n > 2. Whenn = 2, define the measure P45 (W, W5) to be an SLE, (W) —2; W, —2)
in (D, x, y); when n > 3, the measure PdiSk(Wl, ..., W,) on non-crossing curves
(71, ..., np—1) is defined recursively by first sampling n,_; from SLE, (W + ... +
Wno—1 —2; W, —2) on (D, x, y) and then the tuple (1, ..., n,—2) as concatenation
of samples from PUK(Wy, ..., W,_1) in each connected component (D}, x!, y;) of
D\ny,—1 lying to the left of 1,1 (where x] and y; are the first and the last point on the
boundary 8le visited by 1,,—1; see also Fig. 5). We remark that when Wi+...4+W,_; <

2
VT there are (countably) infinitely many connected components (D], x,

y;), while
when Wy + ...+ W, > ”72 there is only one component (D', x’, y').

Note that using conformal invariance of SLE, the definition above can be extended
to all proper simply connected domains D of C with two boundary points x and y.

We also analogously define the probability measure PP"(W, ..., W,) on n-tuple
of curves (1o, ..., Nyp—1) in C from 0 to oo as fql\lows. First sample a whole-plane
SLE, (W|+...4+ W, —2) curve ng from 0 to co in C and then the tuple (11, ..., 7,—1)
as concatenation of samples from Pdisk(w, ..., W,) in each connected component

2 The inexperienced reader might consider to skip this part of the proof at a first read and come back
to this proof after reading Sect. 3.1.2 where a counterpart of [3, Theorem 2.2] for quantum spheres (i.e.
Theorem 3.5 below) will be presented in detail.
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Fig. 5 An illustration of the iterative construction of the measure PdiSk(W] s, Wy) forn = 3. We
consider the case when D is a disk with two marked boundary points x and y as plotted in the picture,

Wi+ Wy < %2 and W3 > % We first sample a (red) curve 1y from SLE, (W1 + Wy — 2; W3 — 2)
on (D, x, y) which hits the left boundary infinitely many times because W; + Wy < %2 and does not hit
the right boundary because W3 > % In each (green) domain D;. we sample an independent collection of
curves from PdiSk(Wl, ..., W,_1) starting at x; and ending at y;.. In our specific case when n = 3, we
sample a (blue) curve from SLE, (W[ —2; W — 2) in each (green) domain D;. starting at x} and ending at
y;- , and then we consider the (blue) curve 7 obtained as the concatenation of these (blue) curves. We note
that our figure is simplified since there are actually (countably) infinitely many domains D;. cut out by the

(red) SLE curve 7. The law of the two curves (1, 172) is PdiSK(Wl, Wa, W3)

of @\170. We remark that when when W; + ... + W, < VTZ there are (countably)

infinitely many connected components, while when Wy + ... + W,, > VTZ there is only
one component.

Given a measure M on quantum surfaces with k marked points and a conformally
invariant measure P on curves, let M ® P be the measure on the curve-decorated sur-
faces with k marked points constructed by first sampling a surface (D, ¥, z1, ..., k)
from M and then drawing independent curves on D sampled from the measure P.
Note that we require that the measure P on curves is conformally invariant (which is
satisfied in the above case of SLE,-type curves) so that this notation is compatible
with the coordinate change (2.1). Sometimes the curves are required to start and/or
end at given marked points of the surface; this will either be stated explicitly or be
clear from the context.

Now we are ready to state one of the main results of [3].

Theorem 3.5 (Theorem 2.4 of [3]) Fixn > 1l and Wy, ..., W, > 0. Let W = W; +
... + W,,. Then there exists a constant ¢ € (0, 00) depending only on k = yze 0,4
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and Wy, ..., W, such that

MPMW) @ PPR(Wy, ... W,y)
_ disk disk .
—C/ MEPE(Wys Lo, £1) x ME*E(Wos £y, ) X -+ X

Mtzlisk(Wn; Co_1,L0)dly...de,_1.

We refer to this type of results as conformal welding of quantum surfaces. We
now give a more informal interpretation of the above result in order to help the
reader to develop some intuition on the statement of Theorem 3.5. The right-hand
side of the indented equation in the theorem can be interpreted as the “conformal
welding” of the n quantum disks sampled from the measures ./\/l‘zjiSk(Wj; i 1,¢))

into a quantum sphere with law M;p h(W) decorated with n SLE, -type curves with
joint law PSPh(Wl, ..., W,). More precisely, one can first conformally weld the
first pair of quantum disks sampled from MgiSk(WU Lo, £1) X MgiSk(Wz; £y, 42)
along their length £ boundary arcs, yielding a new quantum disk with two marked
boundary points, a SLE, -type curve joining them, and two boundary arcs of quan-
tum lengths £ and ¢,. Then one can iterate this procedure by conformally welding
this new curve-decorated quantum disk with the next quantum disks sampled from
MSK(W;s€;_1,€;) forall j = 3,...,n (¢, = £o), obtaining in the end another
quantum disk with two marked boundary points, n — 1 SLE,-type curves joining
them, and two boundary arcs of equal quantum lengths £(o. Welding together the left
and the right boundary of this final quantum disk, yield to a quantum sphere deco-
rated by n SLE, -type curves. Theorem 3.5 states that the law of this curve-decorated
quantum-sphere is M;ph(W) QPPN (W1, ..., W,). We refer the curious reader to the
original paper [3] for further details.

3.2 Rerooting invariance of quantum spheres and its consequences on the skew
Brownian permuton

In this section we review the rerooting invariance of the marked points on a unit-area
quantum sphere and give an alternative expression for the intensity measure E[u, 4]
of the skew Brownian permuton. The following result is [40, Proposition A.13] and is
the base point of our arguments.

Proposition 3.6 (Rerooting invariance of quantum spheres) Let y € (0, 2). Suppose
(C, h,0, 00) is a unit-area quantum sphere of weight 4 — y 2. Then conditional on the
surface (@, h), the points which corresponds to 0 and oo are distributed independently
and uniformly from the quantum area measure py. That is, if x, y in C are chosen
uniformly from jup and ¢ : C— Cisa conformal map with ¢(x) = 0 and ¢(y) =

then ((C hop~'4+Q1log (¢~ 1], 0, 00) has the same law as ((C h, 0, 00) when wewed
as doubly marked quantum surfaces.
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Fig.6 The flow lines ng, ng, nw, N9+ of i with corresponding angles — %, 4, % 6 + 7 issued from O for
e (— %, %). They cut the quantum sphere (@, h, 0, 0o) into four quantum disks with areas A, Ao, A3, Ag
as labeled. These four quantum disks (which can be either thin or thick quantum disks depending on the
values of the parameters y and €) are independent conditioned on having the same boundary arc quantum
lengths (from the welding) and total area 1, i.e. A1 + Ay + A3 + A4 = 1; see Sect. 3.3 for further details.
We also highlight that the counterflow line 776 first visits the regions with area A and A3 and then the
regions with area A1 and A4, while the counterflow line ni‘F z first visits the regions with area A and A

and then the regions with area A3 and A4. Moreover, the flow lines nw and ng (resp. ng and ng4 ) are
a.s. left and right boundaries of 1’ (resp. né = ) stopped upon hitting 0, as explained in Sect. 2.1.3
-2

In particular, if we condition on y = oo in the statement of Proposition 3.6 and
resample x according to the quantum area measure [y, then the quantum surface
(@, h, x, o0) has the same law as (@, h, 0, 00).

Before proving the main result of this section, we introduce some more notation.
Let 1 be a whole-plane GFF (viewed modulo a global additive integer multiple of
27 x). For w € C, we denote by ng', ny’, ny, 14, the flow lines of  issued from w
with corresponding angles —%, 0, %, 6 + 7 (defined at the end of Sect. 2.1.3). Recall
that from [70, Theorem 1.7] flow lines from the same point with different angles might
bounce off each other but can never cross or merge. We denote by A}, AY, ’3” ,AY

the areas of the four regions cut out by the four flow lines ng, ny’, 03y, 0y s labeled
as in Fig. 6. When w = 0, we simply write g, 19, nw, g for n%, ng, ’73&/’ ’7(0)+n and
Ay, Ay, Az, Ay for AY A9 A0 Ag. In this case, it can be argued using the imaginary
geometry coupling in [69, Theorem 1.1] and [70, Theorem 1.1] that the joint law of
the four flow lines ng, ng, nw, Ng+x can be viewed as PPY (W, Wa, W3, Wy) with
(W1, Wy, W3, Wy) determined by

B B )/2 4_,)/2 ' B _4_]/2
Wi=Wy=2—-"—-—"-0+7n/2); Wo=Ws= (0 + 7/2X3.5)
2 27 2

See [40, Tables 1.1 and 1.2] for the complete correspondence between imaginary
geometry angles and quantum surface weights.
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PropOSItlon 3. 7 Let y € (0, 2) Let ((C h, 0, 00) be a unit-area quantum sphere of
weight 4 — y?, and let 6 € [— 71 Let T be a whole -plane GFF (viewed modulo
a global addztlve integer multiple of 21 x ) independent of h and consider the corre-
sponding four areas A1, Az, Az, Aa defined above (see also Fig. 6). Set p € (—1, 1)
and g € [0, 1] such that p = — cos(wy?/4) and q = qy(0) and consider the skew
Brownian permuton i, 4. Then for all rectangles [x1, x2] x [y1, y2]1 C [0, 113,

Elptp.q) (161, 521 1, v21)

= MP" @ =y D @ PPYIW, Wa, Ws, W4)(A2 + Az € [x1, x20], A1 + Az € [y1. yz]),

where Wi, Wo, Wz, Wy are given in (3.5).

Proof Given the unit-area quantum sphere (@ h, 0, co), we uniformly sample a point
w according to the y - LQG area measure j4j,. Consider the flow lines ng , ny', ny» 19y
of the whole-plane GFF n starting from w and going to infinity. Also assume that
the skew Brownian permuton 1, , is coupled with (C h, 0, 00) and 7 under the
same probability measure P as in Proposition 1.13. On the one hand, by Proposi-
tion 1.13, Eup 4 ([x1, x2] X [y1, ¥2]) is the probability of w falling into the random
set n'([x1, x2]) N né_% ([y1, y21)- On the other hand, w is a.s. not a double point for

neither n’ nor "/efl; and by the definition of space-filling SLE curves given at the
2

end of Sect. 2.1.3, the flow lines 1y, and ng (resp. 7y and ny', ) are a.s. left and
right boundaries of n’ (resp. né_l) stopped upon hitting w. From this and the fact that
2

we are parametrizing the curves 1" and Tlé » using uj, we see that a.s. w falls into
2
n'([x1, x21)Nny_x ([y1, y21) ifandonly if AT +AY € [y1, y2]and AY+AY € [x1, x2],

which implies that

Elstp.q)(Ix1 %21 x [v1, v2) = P(AY + AY € [x1, 321, AT + AY € [0, y21).

Now we treat w and oo as the two marked points of the quantum sphere, and consider
the shift z — z — w. Let ((C hv, 0, 00) be the corresponding doubly marked surface,
where W% = h(- + w). We also set Y = h( + w). It is clear that given w and the
quantum sphere (@ h, 0, 00), the field iz\w has the law as a whole-plane GFF (modulo
a global additive integer multiple of 27 x ), and the four flow lines nE g > s Mggr
are mapped by the shift z — z — w to corresponding flow lines of 7™ issued from 0.
Moreover, by the rerooting invariance stated in Proposition 3.6, ((C A", 0, co) has the
same law as the unit-area quantum sphere ((C h, 0, 00) and it is independent of the
whole-plane GFF . Since, as discussed above, the joint law of the four flow lines
is PSR (W, Wa, W3, Wy) where Wy, Wa, W3, Wy are given in (3.5), and the law of a
unit-area quantum sphere is M;ph(4 — y2; 1)* by Definition 2.1 and (3.2), it follows
that

IE”(AW + AY € [x1, x2], AT + AY € [y1, yz])

MP 4 — 2 D @ PPN WY, Wa, W3, W)
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(Ay + Az € [x1,x2], A1 + A2 € [y1, 32]) s

which justifies the proposition. O

3.3 Density of the Baxter permuton

In this section we conclude the proof of Theorem 1.3. First we derive in Sect. 3.3.1 a
formula for the density of the skew Brownian permuton which holds forall p € (—1, 1)
andg € (0, 1) (Theorem 3.8), and in Sect. 3.3.2 we simplify this formula in the special
case of the Baxter permuton. Finally, in Sect. 3.3.3 we sketch how the formula can be
made yet more explicit for the Baxter permuton via known formulas for the volume
of spherical tetrahedra.

3.3.1 Density of the skew Brownian permuton in terms of quantum disks

Recall from Lemma 3.4 that for any W € (0,2 + %2) and ¢1, £, > 0 the quantum
area A of a sample from M‘zliSk(W; £1, £3) is absolutely continuous with respect to
Lebesgue measure. Let pw (a, £1, £2) denote the density of A, that is, for any non-
negative measurable function g, we have

/ g1y (D) dMIKW; 44, £5) = /O g@pwla, 1, 6)da, (3.6)

where (D, ¥, x, y) is an embedding of a sample from /\/lgiSk(W; L1, £y) (recall the
definition of embedding from Sect. 2.1.2). The aim of this section is to prove the
following.

Theorem 3.8 Consider the skew Brownian permuton ji, 4 of parameters p € (—1, 1)
and g € (0,1). Let y € (0,2) and 6 € [-7, %] be defined by p = — cos(wy?/4)
and 0 = 0,(q). Set (W1, Wa, W3, Wy) as in (3.5) and denote by p;(a; 1, £2) =
pw; (a; €1, £2) the density of the quantum area of a sample from M”zli“k(Wi; L1, 407) in
the sense of (3.6). Then the intensity measure K[, 4] is absolutely continuous with
respect to the Lebesgue measure on [0, 11? and has the following density function

min{x,y}
(x,y) r—>€f / P1(y —z, 41, 2) pa(z, L2, £3)
max{0,x+y—1} JR?

p3(x — 2,83, L) pa(1 + 72 —x — y, £y, £1) d1dlrdl3dls dz,

where c is a normalizing constant.

We start the proof by recalling that the joint law of the four flow lines
NE, 16, MW, No+x can be viewed as PPN(W, Wa, W3, Wy) with (Wi, Wa, W3, Wy)
determined by (3.5). Then, in order to prove Theorem 3.8, we first use the scaling
property of quantum disks and quantum spheres to remove the conditioning on hav-
ing total quantum area one (see Proposition 3.9), and then we conclude the proof by
applying Theorem 3.5.
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Proposition3.9 Let y € (0,2). Let (@ h,0,00) be a quantum sphere of weight
4 — y?2 (here we do not condition on the area of the quantum sphere to be 1), and
let 6 € [—%, %]. Let i be a whole-plane GFF (viewed modulo a global additive
integer multiple of 2w x ) independent of h and consider the corresponding four areas
Ay, Ay, Az, A4 defined above (see also Fig. 6). Set p € (—1,1) and q € [0, 1] such
that p = —cos(wy?/4) and g = qy (0) and consider the skew Brownian permuton
Hp.q-

_4
Let f be a non-zero function on [0, 00) with fooo [ f(|t »* dt < oo. There exists
a universal constant ¢ depending only on y, 0 and f (and so only on p, q and f),
such that for all 0 < x1 <xp < land 0 < y; < yy < 1, it holds that

Epp,q([x1, x2] x [y1, ¥2])

=c / f(A>11 Aty M (4—y2) @ PPI(Wy, Wa, W3, W),

€ly1 yz] E[xl,xz]}

(3.7)
where A denotes the area of a quantum sphere sampled from ./\/l;p h (4 — y?), and the

weights Wy, Wy, Wz, Wy are given by (3.5).

Remark 3.10 We remark that the function f purely serves as a test function and scaling
factor, which shall be eliminated later once we apply the scaling property of quantum

_4
disks. The condition fooo | ()|t r* dt < oois made to assure that the integral on the
right hand side of (3.7) is finite.

Proof of Proposition 3.9 We disintegrate the right-hand side of (3.7) in terms of quan-
tum area. By Lemma 3.2, we have the following relation for any fixed a > 0

4

-5 h
a 7 | L+ arelyyl st dselornon MY (4 = y* 1) @ PPV (W, Wa, Wa, Wa)

h h
:/ L 182 g, A28 g ) M3 4= V25 @) ® PPOWL W, W, W)
(3.8)

Recall that A denotes the area of the quantum sphere sampled from M;ph 4 —y?.
By multiplying both sides of (3.8) by f(a) and integrate over a € (0, c0), we get
( /0 " f@a da) ( / LA+ Aselyr el Azt sl ) dMF (4 = y2 1)
QPPN (Wi, Wa, Ws, Wa))
/ / f(a)IL Aty g ) Ao e[xmz]} d,/\/l;Ph(4 —y%a)
QPP (W, Wa, W3, W) da

h
/f(A)IL A eyl 2288 ey l} dMP (4 — y?) @ PP Wy, Wa, W3, Wa).
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where on the last equality we used the disintegration formula (3.2) and the fact that a

sample from M;ph (4 — y2; a) has quantum area a.
The conclusion follows from Proposition 3.7 with

—1
c= (‘M;ph(ét— v 1)‘ I f(a)a_ﬁ da) . ]

We can now apply the conformal welding result stated in Theorem 3.5 to the right-
hand side of (3.7). To simplify the expressions, we first need the following scaling
property of quantum disks.

Lemma3.11 For any A > 0, the density pw(a, {1, £2) defined in (3.6) satisfies the
scaling property

- Zw-3
pwAa, My, M) =4 7 pwa, £y, £).

Proof The lemma is an easy consequence of Lemma 3.1, from which we know that
disk (1. _ AWl disk (y7.
g(py (D) dMGF (Wi ALy, M) = A 7 g(uw%logx(l))) dMG(W; Ly, ),

for any non-negative measurable function g, where both surfaces in the above equation
are embedded in the planar domain D. Then from the definition given in (3.6) we have
that

2

> —Hw-1 [* 5
/ g@)pw(a, Ay, Mr)da =1 v / g a)pw(a, ty,4£r)da
0 0
2

—2Zw-3 [ 2
=17 / gl@pwr="a,ty,£2)da
0

and the conclusion readily follows. O
We now complete the proof of Theorem 3.8.

Proof of Theorem 3.8 Recall that p;(a; £1, £2) = pw,(a; £1, £2). By Theorem 3.5 and
the definition given in (3.6), we can write the right-hand side of (3.7) as

CfRS f(a)]l{"'*“ze[yl sl 25 oy, m}pl(al,fl, £2) p2(az, L2, £3) p3(as, €3, €4) pa(aq, L4, £1)
T a ’ ’ a e
4 4
[ [dai []dt:. (3.9)
i=1 =l

where a = a1 + a> + a3 + a4. Applying the change of variables

ay +as ay +az as
X =", y=-———" i=— a=a|+ay+ a3+ ay;
a a a
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d(a1,az,a3,a4)
a(x,y,z,a)

X2 min{x,y} 3
C/ / / / a’ fa)pr((y —2)a, by, £2) -
Ri x1 Jyi max{0,x+y—1}
4

pa(za. €2, 03) p3((x — 2)a, €3, £4) pa((1 + 2 — x — y)a, s, &) dzda dy dx [ Be)
i=1

= a3. Then (3.9) is equal to

then one can compute that ’

If we further apply the change of variables ¢; — +/a{;, then from Lemma 3.11 and
the fact that Wy + W 4+ W3 + Wy = W = 4 — 2 from (3.5), we get that (3.10) is the
same as

min{x,y}
/f(a)a Vzda/ / // p1(y —z, 01, £2) -
max{0,x+y—1}

4

P2z, 82, €3)p3(x — 2, €3, €a) pa(l + 7z —x — y, €a, £1)dzdydx Hdﬁl-,
i=1

which concludes the proof. O

3.3.2 The explicit formula for the density of the Baxter permuton

In this section we restrict to the case when g = % and y = /4/3. Then, as remarked
below Theorem 1.12, we have that 6 = 6, (¢) = 0. In addition, from (3.5), we also
have that
2 2
yo_vo_ 2
Wi=W=Ws=Wy=1—"—="+=—.
1 2 3 4 4 ) 3
We refer the reader to Remark 3.14 for a discussion on the difficulties to agldress the
general case p € (—1, 1) and g € (0, 1). From Proposition 3.3, if W = 7’7 then the

. 2
quantum area of a sample from Mg“k(%; 21, £2)* has the same law as the duration of
a sample from ,ua (£1+/2sin @, £4/2sin pe'?) with ¢ = ”Tyz (where we recall that

Mg (£, re'?) denotes the law of the Brownian excursion in the cone Cy from £ to re'?

with non-fixed time duration). In our specific case 2 = % and ¢ = %

Building on this, we prove in the next proposition that the density of the area of a
quantum disk sampled from Mg“k( %; x, r) introduced in (3.6) is a constant times the
function p given by (1.1). This will conclude the proof of Theorem 1.3.

Proposition 3.12 For ¢ = %, x,r > 0 the duration t of a sample from ,uzn (x, re%i)
3

has density

~ 3xr 22y Cwn? (B +rH2 1
p(t,x,r):=<(2—t—l>e 2 +e )18x—2r2't—2~]lt>0.
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Proof Let (eq, e») be the standard basis for R2. For Jj=1,..,5,let F; be the reflection
onR?aboutline y = tan 5-x, Ty = idand T; = FjoTj_i. Alsoforz = x+iy = re'’,
letZ = relG=9 = XJ”[y + fx ~=>=2i be its reflection about y = tan £x. Then for
a standard Brownian motron (W,),zo = (X, Yi)i>0 started at z € Cy killed upon

leaving Cy (the corresponding probability measure is denoted by IP*), following [58,
Equation 16], its duration 7 and the hitting point W; has joint law

5
i 1 F—rTpe 2
(v edi, We €re dr) = S (=D I @ Ther) dedr
k=0
= pi(x, y, t,r)didr, (3.11)

where the dot represents the usual inner product in R2. Note that Tye; = Tse; = 1,

2 i
Tie1 = They = e 3 Tgel =Tie; = e 5 ,Toep = —Tsep =i, Tier = —Ther = e%,
Tzep = —Tyer = ¢ & . Then the right-hand side of (3.11) can be written as

1 VBx —y _a2020200n Bx 4y 20l oramvin x24y? +r +2rx
— e % — e o + ye~ dtdr.
2mt 2 2

On the other hand, using the conformal mapping z — z> and the conformal invariance
of planar Brownian motion, together with standard planar Brownian exit probability
calculations on H, one has

d 3r? 3x%y — y°
P (W, €ere3dr)=— - y.rydr.
(W erefar) == (7= (3 3002 1 Galy —yp Wy ndr

i z o _ pGy.tn
and it follows that P*(t € dt | W; € re 3 dr) = D2y ) dt.

Now for fixed x, ¢, 7, as y — 07, we have

3xr 2412 rx

1 _ _(X+r)2 2
p](x,y,t,r)=ﬁ(( 7 N B )y +o(y%); (3.12)

Ox2y2

Tt (U] (3.13)

p2(x,y,r) =

Therefore combining (3.12), (3.13) along with the convergence (3.3), it follows that
forx,r > 0,

xi (r3 4+ x3)? 3rx _x2r2rx _ atn)?
X —
P (Tedt‘Wf€r€3dr)—W 7—1 e 2t +e 2 dt,

and this concludes the proof. O

Remark 3.13 We remark that the sum (3.11) comes from solving the heat equation
du(r, z) = —Au(t 2), u(0,2) = f(z), z€Cy;  u(t,z) =0, z€9Cy,
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via the method of images. The solution takes a simple form if ¢ = 7 for an integer
m > 0, while for general ¢ € (0, ), the (3.11) can be written as an infinite sum in
terms of the Bessel functions [58, Equation 8].

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3 Combining Propositions 3.3 and 3.12 along with (3.4) for y =

. 2
J/4/3, we see that the quantum area of a sample from ./\/lg“k(y—; x, r) has density
given by a universal constant ¢ times the function p(t, x, r) introduced in (1.1). Then
the conclusion is straightforward from Theorem 3.8. O

Remark 3.14 We remark that for general ¢ € (0, 1) and y € (—1, 1), Theorem 3.8
gives a description of the skew Brownian permuton in terms of the density pw of

quantum disks. For W # yTZ an explicit description of the law of the quantum area
under /\/lgiSk (W; £, r) will be given in a forthcoming work [9] of Ang, Remy, Zhu
and the third author of this paper. This and other results from [9] will then be used to
give a formula for 8, (¢) by Ang and the third and the fourth authors of this paper. The

2
law of the quantum area is much more involved than its counterpart when W = VT,
but preliminary calculations suggest that the formula for 6, (¢) is rather simple.

3.3.3 Relations between the density of the Baxter permuton and spherical
tetrahedrons

In this subsection, we comment on the relation between the density pp(x, y) given
by (1.2) and the area function of spherical tetrahedrons in S? = {(xl ,X2,X3,X4) €

R* :x12+x§+x§—|—xf = 1}.
Recall the function p (¢, x, r) in (1.1), that is

([ ) 1 3rx 1 _ r2+)§27rx e ()cJEr)2
, X, ) i= — - — e 4 e t .
P 12 2t

Let

glai, az, a3, a4)

= /4 plai, £y, €2)p(az, L2, €3)p(az, £3, L4) p(aq, La, £1) dly dlr dls dly.
R+
From Propositions 3.3 and 3.12 we know that g is the joint law of the quantum areas

of the four weight V; quantum disks obtained by welding a weight 4 — 2 quantum
sphere (as in the statement of Theorem 3.5) for y = ./4/3. On the other hand, the
density pp of the intensity measure E[up] of the Baxter permuton up satisfies, as
stated in (1.2),

min{x,y}
pB(x,y)=C/ gy —z,z,x—z,1+z—x—y)dz.
max{0,x+y—1}
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For fixed a1, a2, a3, a4, the function g can be written as a linear combination of inte-
grals

/w Hx]xj_,_]e 22X gy (3.14)

+ jelJ

where J C {l1, 2, 3,4}, x5 = x1, and X is a non-negative definite matrix depending
only on ay, az, az, aa.

There are two cases: (i) ¥ is non-singular (implying that ¥ is positive definite)
and (ii) ¥ is singular. We will only consider case (i) below, but remark that (3.14) for
¥ singular can be approximated arbitrarily well by (3.14) for ¥ non-singular, so the
discussion below is also relevant for case (ii) as we can consider an approximating
sequence of non-singular matrices X.

For x € R*, we write x > 0 if all the entries of x are non-negative. Consider the
function

F(T) = / e 2 IN) o dx
R4

defined on the space {¥ € R** : =7 = %, 38 > 0,xT =x > §|x||?, Vx = 0},
which in particular contains the set of positive definite symmetric 4 x 4 matrices.
Then it is clear that F(X) is a smooth function in this domain. Since we assume X is
positive definite, we have

1 1.7
F(X) = ¥) 2 2V 1 .
(X) =det(X) /]1{{46 E’%yzody

Using polar coordinates and letting

S(2) :=HyeS3:EyzO} , (3.15)

we get
e [ 5 1 11
F(X)=det(2)"25(X72) re” 2" dr =2det(X)"2S8(X72).
0

Hence the integral in (3.14) can be expressed in terms of the function S defined in
(3.15) as follows

/R4 [T > dx = OV ] o —FE) =D

+jeJ ]eJ

2det()"21S(S72),
jeJ 9j.J+!

where ¥ = (0y;) is viewed as element of RI0,
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The function S(X) can be described in terms of volume of spherical tetrahedron.
The region {y € S3 : £y > 0} can be thought as points on the sphere staying on the
positive side of the hyperplanes passing through the origin induced by rows of X. Then
(0i,0) )
|UiHUj| I<i<j<4
the i-th row of X, while the Gram matrix has entries % S(X) is precisely given

iloj

by the volume of the spherical tetrahedron with dihedral angles cos 6; =

it follows that the six dihedral angles are given by (n — , where o is

_ {o1,0i41)
( ) ( ) ( >|01Hffi+1\
. _ _ (03,04 _ _ {oz,04 . __ 102,03 :

fori = 1,2,3, cosfy = loxToal” cosfs = oalloa]> COS b = jo3][oal’ Whlch
can be traced from [73, Theorem 1.1] and also the Sforza’s formula as listed in [7,
Theorem 2.7]. Therefore the value of S(X) can be described as a linear combination

of dilogarithm functions.

3.4 Expected proportion of inversions in the skew Brownian permuton

In this section we prove Proposition 1.14. We start with the following description for
sampling a point (x, y) in the unit square [0, 1]?> from the skew Brownian permuton
Wp.q- Recall the notation for the quantum areas Ay, Ay, AY, A} introduced before
Proposition 3.7 (see Fig. 6).

Lemma 3.15 With probability I, given an instance of the unit-area quantum sphere

(C, h,0, 0) and a whole-plane GFF h (viewed modulo a global additive integer

multiple of 2w x) with associated space-filling counterflow lines n' and néil, the
2

following two sampling procedures agree:

1. Let p, 4 be the skew Brownian permuton constructed from the tuple (h, n’, né_%)

as in Theorem 1.12. Sample (x, y) from iy 4.
2. First sample a point w € C from the quantum area measure ji,. Output (A% +
A%, AY + AY).

Proof Using the same reasoning as in Propositions 1.13 and 3.7, by our choice of
parameterization, a.s.

fc (a8 48 et nal. AP+ AT e ol @) = i (3 (L1, 62D g (Don, 32D))

Applying Proposition 1.13 once more, uh(n()([xl,xg]) N r/é_l([yl,yz])>
2
Hp.q ([xl,xz] x [y1, yz])- ]

We have the following expression for 6¢c(21, u p,q) (recallits definition from (1.3)).

Lemma3.16 Let (@, h, 0, 00) be a unit-area quantum sphere and 7 an independent

whole-plane GFF (viewed modulo a global additive integer multiple of 27 x ) with

associated space-filling counterflow lines n' and né_l. Let jup 4 be the skew Brownian
2
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permuton constructed from the tuple (h,n’, ’7(;_1) as in Theorem 1.12. For a point
2

weC sampled from the quantum area measure iy, it a.s. holds that
el 11y g) =2 E [A‘(’(h,ﬁ)] .

Proof By symmetry and the definition given in (1.3),

oce(21, Hp.q) =2 //[;) 2 Tixy <o y1>y2}ﬂp,q(dxldyl)ﬂp,q(dx2dy2)~ (3.16)

Therefore applying Lemma 3.15, if we first independently sample (w, W) from the
quantum area measure [, then the right-hand side of (3.16) is the same as

Using again the definition of space-filling SLE curves given at the end of Sect. 2.1.3
(recall also Fig. 6), we observe that

Y+AY <AV +AY  and AV +AY > AV 4+ AT

if and only if n’ hits the point W after hitting w, and 7, hits W before hitting w. This
2

implies that W falls into the region between 1 and Y}, (i.e. the region with quantum

area AY'). Therefore we conclude the proof by integrating (3.17) over . O

Proof of Proposition 1.14 By Lemma 3.16, it suffices to show that E[A}] = Z 2.
By the +rerooting invariance stated in Proposition 3.6, the quantum area A} has the

same distribution as A| := A(l). It remains to prove that

— 20
E[A,] = = , (3.18)
4
First assume that 6 = 6y, , := (% — %) 7, where 0 < m < 2n — 1 are integers. By
Theorem 3.5, the flow lines N6gn>++> Nu_tn of h, with angle 6p ,, ..., 02,—1.5, cut

2
the whole sphere into 2n quantum disks each of weight 4;—3:. We denote the quantum
area of the region between nix and nu+nz by A;,, fori =0,...,2n — 1 (with the

convention that 12, = no). Since the total area is 1, by symmetry E[A; ,] = ﬁ Then
from linearity of expectation, we see that

n—m_n—20

IE[Al] - ]E[Am,n] + ...+ ]E[An—l,n] -
2n 4

’

which verifies (3.18) for 6 € Q. Now for general 8, we observe that by flow line
monotonicity (see [69, Theorem 1.5] and [70, Theorem 1.9]) the flow lines starting
from the same point with different angles will not cross each other, and it follows
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that the expression [E[A] is decreasing in 6. Then it is clear that (3.18) holds for any
6 € [-%. 51, which concludes the proof. O

Remark 3.17 Although the quantity A} appearing in Lemma 3.16 is generally tractable
using the rerooting invariance for marked points of quantum spheres, its conditional
expectation given (A, iz\) would be more tricky. In particular, the rerooting invariance
is a key technical step in the proof.

Remark 3.18 The proof of Lemma 3.16 does not only give the expectation of
occ(21, fup,4) as done in Proposition 1.14; it also gives a description of the law of
this random variable in terms of formulas for LQG surfaces. The law can be expressed
in terms of the function 6, (¢), the function pw from Sect. 3.3.1, and counterparts of
Proposition 3.3 for disks of other weights.

Remark 3.19 Also occ(r, i, 4) for other choices of 7 can be expressed in terms of
the LQG area of certain domains cut out by flow lines started from a fixed number
of points sampled from the LQG area measure. However, for general patterns 7, the
expectation of the relevant LQG area is not as straightforward to compute, and the
intersection pattern of the flow lines is more involved. We therefore do not pursue
more general formulas. However, we do prove in Sect. 4 that we have a.s. positivity
of oce (o, Mp,q) for all (standard) patterns 7.

4 Positivity of pattern densities of the skew Brownian permuton

The goal of this section is to prove Theorem 1.10. Our proof will use the theory of
imaginary geometry from [69, 70] (see also [45]). Following these papers, let

2
k€ (0, 4), 2 Ve vk

=R 2 4

Recall from Sect. 2.1.3 thatif 7 isa whole-plane GFF (defined modulo a global additive
integer multiple of 2 x), 6 € R and z € C, then we can define the flow line né of

e (/x40 from z to oo of angle 6, which is an SLE, (2 —«) curve. We refer to flow lines
of angle 6 = 0 (resp. & = m/2) as north-going (resp. west-going). As explained in [69,
70], one can also define flow lines if one has a GFF in a subset D C C, including flow
lines which start from a point on the domain boundary 9 D for appropriate boundary
conditions.

Letz € C,0 € R,and h beas in the previous paragraph, and let T be a stopping time
for n;. Conditioned on 1;|[0,7], the conditional law of his given by a zero boundary
GFF in C \ n;([0, 7]), plus the function f which is harmonic in this domain and
has boundary conditions along 1; ([0, t]) given by x times the winding of the curve
plus —1" — @y (resp. A’ — 0x) on the left (resp. right) side, where the winding is
relative to a segment of the curve going straight upwards. We refer to [70, Section 1]
for the precise description of this conditional law and in particular to [70, Figures 1.9
and 1.10] for more details on boundary conditions and the concept of winding. The
analogous statement holds if we consider flow lines of a GFF Jinasubset D C C.
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PN ©(3) — 0.5 | m(4) —0.5 :

7(2) — 0.5 =w(1) —0.5

Fig. 7 Illustration of (i)—(iii) in Lemma 4.1 for w7 = 4213, i.e. 7~ = 3241, Recalling the explanations
from Sect. 2.1.3 (see also Fig. 4), we have that if the merging structure of the west (resp. north) flow line is
as the one in the picture, then the ordering in which the points z1, z2, z3, z4 are visited by the space-filling
SLE|6/ counterflow line n' (resp. n’_%) is 21, 22, 23, 24 (resp. 23, 22, 24, z1)- Indeed, by the constriction

of counterflow lines, 7 (resp. r]/_ 7 ) Visits the points z1, 27, 23, z4 in the same order as the contour of the
green (resp. purple) tree oriented from south to north (resp. from west to east). Note also that this implies that
Permy (((n/)_l @), (" l)“(zn)

2 icl4]

and display condition (iii) in Lemma 4.1. Note that the flow lines started from points (we displayed two of
them) inside the ball Bs(z1) merge into the flow lines started from z; before leaving the square

) = 7. On the right, we zoom inside the square (3,4) x (0, 1)

As mentioned above, the whole-plane GFF is typically only defined modulo a global
additive integer multiple of 277 x in the setting of imaginary geometry. Throughout the
remainder of this section we will fix this additive constant by requiring that the average
of the GFF on the unit circle is between 0 and 27 x. Fixing the additive constant is
convenient when considering the height difference between two interacting flow lines
and when we want to describe the absolute boundary values along each flow line.

To simplify notation we will focus on the case ¢ = 1/2 of Theorem 1.10 throughout
the section, and then afterwards explain the necessary (very minor) modification which
is needed for general ¢ € (0, 1). The key input to the proof of Theorem 1.10 is the
following lemma. See Fig. 7 for an illustration.

Lemmad4.1 Letk € {2,3,...} and let 1 € Sk be a (standard) pattern of size k. For
j=1 .. kletz; = @(j)—05+( —-05icC andletpl{fi (resp. p\J,.‘}i) be the
time at which ny (resp. ny)) merges into n5 (resp. nw;) fori € {1, ..., k}\ {j}. Then
thereisa§ € (0, 1/10) such that with strictly positive probability the following events
occurforalli,j=1,...,k i # j.

(i) nf\{ merges into 7713 on its left side if and only if w (j) < 7 (i); these two flow lines
merge before leaving the ball Bay (0); and nZNj (,oI{I’l) ¢ (r(H—1, m(j))x(G—1, j).
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(ii) nw merges into nw on its left side if and only if j <1, these two flow lines merge
before leaving the ball B4y (0); andn (p Ne () —1,7() x (G —1, ).

(iii) For all z € Bs(z;) the flow line n5; (resp. 03y, ) merges into nf\]j (resp. né{}) before
leaving the square ((j) — 1,7 (j)) x (j — 1, j).

Before proceeding to the proof of Lemma 4.1, we give the proof of Theorem 1.10
conditioned on this result.

Proof of Theorem 1.10 for q=1/2 given Lemma 4.1 For m € N U {0} and 7 a whole-
plane GFF as above, let E(m, iz\) be the event (i)—(ii)—(iii) of Lemma 4.1, but with
all points scaled by 27, i.e., we consider the setting of the lemma under the image
of the map z +— 27"z (equivalently, (i)—(ii)—(iii) occur for the field iz\(2m-)). By
Lemma 4.1 we have s := P[E(O, ’ﬁ)] > 0, and by scale i 1nvar1ance of the GFF we
have P[E(m, h)] = s for all m € N. Since the occurrence of E (m, h) is determined
by h|B2 2, (0)> We get by tail triviality of (h|B2 mi2 @+ m € N) (see e.g. [57,
Lemma 2.2]) that E(m, h) occurs for infinitely many m a.s. In particular, we can a.s.
find some (random) m( € N such that E (m,, 71\) occurs.

Recall that n” and z denotes the angle 0 and the angle —7 space-filling SLE ¢/,

counterflow lines constructed from /. By the definition of space-filling SLE 6/, coun-
terflow line as given at the end of Sect. 2.1.3 (see also Fig. 7), if (i) (resp. (ii)) occurs
then the ordering in which the points zi, ..., zx are visited by 1’ (resp. n’ ) is
21, ..., 2k (resp. Zyg=1(1ys - -+ » L1 (k))~ Furthermore, by the same argument, if (i) (iesp.
(ii)) occurs in the setting where points are rescaled by 27"*0 then the ordering in which
the points 270z, ..., 27 ™0z, are visited by n’ (resp. 77’_%) is 27M0zy, ..., 27 Moy,

(resp. 270z 1 (gys ooy 2707 1 )

Finally, also by the definition of space-filling SLE ¢/, if (iii) occurs in addition to
(i) and (ii), then every points z € By-ms(27"0z;) and w € By-mo5(27"07 ;) are visited
in the same relative ordering as 27"0z; and 270z for both n" and " 7 Indeed, for
2 € By-mpg(27™0z;) and w € B,- moa(z_mOZ/) if (i) and (iii) occur, we have that 7y
merges into ny on its left side if and only if n ' merges into an on its left side, and
the corresponding statements hold with (ii) and W instead of (i) and N, respectively.

We now consider a unit-area quantum sphere (@, h, 0, co) independent of 7 and
the skew Brownian permuton 1, 4 constructed form the tuple (2, n’', n’_ %) as in The-

orem 1.12. Note that by (1.3) and Theorem 1.12, a.s.

OFE:/C(TL Mp,q)zﬁo ]I{Permk((xl y,),E ) n H“p q(d-xlsdyl)
’ i=1

:/ 1 l_[uh(dwi),
Ck iPermk<<(n/)—](wi),(nll)‘l(wi)) )=”} i=1
2 i€[k]
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where wj, is the y-LQG area measure associated with (@, h, 0, 00). Hence, if (i), (ii),
and (iii) occur (in the setting where all points are rescaled by 2770) then it a.s. holds

k

0CC(TT, pp,q) = / l_[ wn(dw;). 4.1

By—mgs(27"0z21) /Bz—mols(zmolk) i=1

The latter bound concludes the proof since the balls By-m5(27"0z;) for j = 1,...,k
a.s. have positive uj; Liouville quantum area measure. O

Proof of Theorem 1.10 for general g € (0, 1). All steps of the proof carry through
precisely as in the case ¢ = 1/2, except that we consider 7;; instead of 15, throughout
the proof for 6 such that g = g, (9). O

The rest of this section is devoted to the proof of Lemma 4.1. We will in fact
instead prove Lemma 4.3 below, which immediately implies Lemma 4.1. In order to
state Lemma 4.3, we first need the following definition.

Definition 4.2 Let B C C be a set of the form (a,a + s) x (b, b+ s) fora,b € R
and s > 0, denote its top (resp. bottom, left, right) boundary arc by drB (resp.
OB, LB, 0r B), and let 7 ¢ B. We say that ”IZ\I crosses B nicely in north direction if
the following criteria are satisfied, where © = inf{r > 0 : ng(r) € B} is the first time
at which ng; hits B.

(i) T < oo and ny(7) € dBB.

(ii) Let 7 be a path which agrees with 75, until time 7 and which parametrizes a vertical
line segment in B during [z, T + 1]. Let f be the function which is harmonic in
C\ 7([0, T + 1]), is equal to —1 (resp. A) on the left (resp. right) side of the
vertical segment 7([t, T + 1]), and which otherwise along 7 changes by x times
the winding of 77. We require that the boundary conditions of N along nyl[0,7] are
as given by f.

(iii) ny, does not have any top-bottom crossings, i.e.,if ¢’ = inf{r > 0 : 3 (¢) € o7 B}
then v/ < oo and ng([t/, 00)) N dg B = ¥.

We say that 1)y, crosses B nicely in west direction if the following criteria are satisfied,
where t” = inf{r > 0 : 1y, () € B} is the first time at which 75 hits B.

(i) " < oo and ny, (") € IR B.

(ii’) Let 77 be a path which agrees with 75, until time " and which parametrizes a
horizontal line segment in B during [t”, t” + 1]. Let f be the function which
is harmonic in C \ 7([0, T + 1]), is equal to —A" — 7w x /2 (resp. A’ — w x/2) on
the bottom (resp. top) side of the horizontal segment 7([t”, T + 1]), and which
otherwise along 7] changes by x times the winding of 7. We require that the
boundary conditions of iz\along N l[0,z7] are as given by f.

Notice that the requirements in (ii) and (ii’) above are automatically satisfied if we
are only interested in the boundary conditions of the curve modulo a global additive
integer multiple of 27 x, but that these requirements are non-trivial in our setting
(since we fixed the additive constant of the field) and depend on the winding of the
flow lines about their starting point. For example, suppose 7y, would make an additional
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Fig. 8 Illustration of (i)—(iv) in
Lemma 4.3 (or (i)—(ii) in

Lemma 4.1) for m = 4213, i.e. < \ \ ) Lx
71 =3241. The green curves Lw
represent west-going flow lines L~ QTQ_J Q\I*
and the purple/pink curves ol %4
oo ; I

represent north-going flow lines. N D%
The flow lines are shown in a 3
different color before and after \/\, %o / ~
the times TN, 7\ ~ —

e times 77, 7 oA ]]2, \Q__\Z/l

counterclockwise loop around z before entering Bj; then its boundary conditions when
crossing B would increase by 2 x, and we need to keep track of these multiples of
27 x when checking whether (ii) occurs. It is important to keep track of these multiples
of 2 x when studying the interaction of two flow lines, e.g. in Lemmas 4.5 and 4.6
below.

Also notice that we do not require the counterpart of (iii) for west-going flow lines.
This is due to the specific argument we use below where we first sample north-going
flow lines and then sample the west-going flow lines conditioned on the realization
of the north-going flow lines, and property (iii) is introduced in order to guarantee
that it is possible to sample well-behaved west-going flow lines conditioned on the
realization of the north-going flow lines.

Lemmad4.3 Letk € {2,3,...} and let 1 € Sk be a (standard) pattern of size k. For
J=1,... kletzj = (7 (j)—0.5)+(j—0.5)i € Cand make the following definitions
(see Fig. 8):

In=1[0,k1x {k+1}, Rxy=I[0,klx[k,k+2], < =inf{t>0:yd() e L},
Lw = {-1)x[0,k],  Rw =[=2,0] x [0, k], ), =inf{r = 0 : nJ (1) € Lw).

Also let pI{I’i (resp. p\];\}i ) be the time at which nf\{ (resp. né{} ) merges into nf\f (resp. nf,f, )
fori e {l,...,k}\{j}. Then there is a § € (0, 1/10) such that with strictly positive
probability the following events occur foralli, j =1,...,k, i # j.

(i) The flow line nf\{ stays inside (r(j) — 1, w(j)) x (j — 1, k+ 1) until time ‘L'I{I < 00,

and nf\]j| crosses (m(j) — 1, w(j)) x (m — 1, m) nicely in north direction for

0,741
m=j+1,...,k .
(ii) The flow line né{} stays inside (—1,7(j)) x (j — 1, j) until time r\{v < 00,

and né\ﬂ crosses (m — 1,m) x (j — 1, j) nicely in west direction for

0,791
m=1,...,7(j) — L
(iii) nf\]j merges into nf\} onits left side if and only if 7 (j) < w (i), and nlz\{ ([r{,, pI{I’i]) -
RN.
(iv) ni\’} merges into nf,f, on its left side if and only if j < i, and né{}([t‘{,, p\];\}i]) C Rw.
(v) For all z € Bs(zj) the flow line ny, (resp. ny,) merges into nf\]j (resp. né{}) before
leaving the square (w(j) — 1,7 (j)) x (j — 1, j).

@ Springer



Baxter permuton and Liouville quantum gravity

ng(r) ni(r2)  ni(r) =~(0)

Fig.9 Illustration of the statement of Lemma 4.4. Here we choose the domain D equal to the complement
of the purple curve (which is some given curve) and z € D to be the tip of the purple curve. In green we
plotted the flow line r)é. The trace of the vertical red segment is the set K and y is the blue horizontal curve,
which is parametrized from right to left. The light blue region A(¢) is the e-neighborhood of y ([0, 1]). The
figure is illustrating the event {1 < 71}

Note that Lemma 4.3 immediately implies Lemma 4.1.

The next two lemmas say, roughly speaking, that a flow line stays close to any given
curve y with positive probability. In the first lemma we consider the flow line until it
hits a given curve in the bulk of the domain, while in the second lemma we consider
the flow line until it hits the domain boundary. Closely related results are proved in
[70]. These two results will be stated for flow lines of general angle 6 € R since they
will be applied both to north-going and west-going flow lines, and the result for a
general angle is no harder to prove that the result for any fixed angle. See Fig. 9 for
an illustration of the following result.

Lemma 4.4 (Bulk case)ALetﬁbe aGFF inadomain D C C. Letz € D, 0 € R, and
ng be the flow line ofei(h/x"'e) of angle 0 started from z. Let K C D \ {z} be the trace
of a simple curve in D \ {z}. Let also T be an almost surely strictly positive and finite
stopping time for ng such that n;(t) ¢ n;([0, 7)), n;([0, 7)) N K = @, and K and
nf) () are in the same connected component of D \ né([O, 7)) almost surely.3 Given
nglio,z), let y 2 [0, 11 = D be a simple path satisfying y (0) = n; (1), y(1) € K, and
y((0, 1))N (né ([0, v))UK) = 0. For fixed ¢ > 0, let A(e) denote the g-neighborhood
of y ([0, 1]), and define

ri=inf{r > v : nj(t) ¢ A(e)}, mw=inf{r>71: ;@) € K}.

Then P[ty < 71 | ngl0,71] > 0.

Proof Our proof is very similar to that of [70, Lemma 3.8] and we will therefore only
explain the difference as compared to that proof. The reader should consult that proof
for the definition of U and xp below. There are two differences between our lemma
and [70, Lemma 3.8]. First, the latter lemma requires D = C, while we consider
general domains D and allow z € dD. Second, we define 7, to be the hitting time of
the set K instead of letting it be the time that n; gets within distance & of y(1). The
proof carries through just as before with the first change. For the second change, the
proof also carries through just as before except that (in the notation of the proof of

3IfzedDwe require in particular that the boundary conditions of T in D close to 7 are such that the flow
line and an appropriate stopping time t exists.
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[70, Lemma 3.8]) we pick the point xo € dU in the proof such that any path in U
connecting n(t) and xo must intersect K. O

The following lemma is [70, Lemma 3.9], except that we have stated it for flow
lines of a general angle 6 € R. We first introduce some terminology appearing in the
next lemma. It is recalled below the statement of the lemma in [70] that the admissible
range of height differences for hitting is (—m x, 2, — wx) (resp. (mx — 2A, wy)) if
the flow line is hitting on the right (resp. left) side, where we refer to [70, Figure 1.13]
for the definition of the height difference between two flow lines when they intersect.
Flow line boundary conditions means that the boundary conditions for the GGF n
determining the flow line change by yx times the winding of the curve.

Lemma 4.5 (Boundary case) Suppose that T is a GFF on a proper subdomain D € C
whose boundary consists of a finite disjoint union of continuous paths, each with flow
line boundary conditions of a given angle (which can change from path to path). Fix
z € Dand0 € R and let n;; be the flow line of /" X*9) of angle 6 started from z. Fix
any almost surely positive and finite stopping time t for n;, such that n; ([0, T])NdD =
0 and n(t) ¢ ni([0, 1)) almost surely. Given 5|0z}, let y: [0,1] — D be any
simple path in D starting from 779 (t) such that vy ((0, 1]) is contained in the unbounded
connected component of C\nj ([0, 1), y ([0, 1))NdD = @, andy (1) € dD. Moreover,
assume that if we extended the boundary conditions of the conditional law of " given
ngli0,71 along y as if it were a flow line then the height difference of y and d D upon
intersecting at time 1 is in the admissible range of height differences for hitting. Fix
e > 0, let A(¢) be the e-neighborhood of y ([0, 1]) in D, and let

=inf{r > 7 : n;(r) ¢ A(e)} and v =inf{t > v : nj(r) € ID}.
Then P[ty < 11 |}’]§|[0,t]] > 0.

The following result is a restatement of (part of) [70, Theorem 1.7] and gives a
criterion to determine when two flow lines cross or merge when they hit each other.

Lemma 4.6 (Criterion for crossing/merging) Let h be GFF with arbitrary boundary
conditions on D C C. For 61,0, € R and 71,22 € D let t be a stopping time for
N, given ng, and work on the event that 1! hits ng, on its right side at time t. Let

A denote the height difference between ng. and g, upon intersecting at ! (t). Then
the following hold.

(i) If A € (—mx,0) then né} crosses 17;; at time t and does not subsequently cross
back.
(ii) If A = 0 then 772; merges with ngi at time t and does not subsequently separate

from 1.

The following lemma will be used to argue that the north-going flow lines in
Lemma 4.3 behave according to condition (i) with positive probability.
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Fig. 10 Illustration of the proof (0,1) x {k—1}—"
of Lemma 4.7. The path y and

the set K used in the first n& (")
application of Lemma 4.4 are in
blue, while the path y and the set
K used in the second application
of Lemma 4.4 are in orange

’

K =(0,1) x {15}

n%(m2) 1

525 B=(0,1) % (0,2)

(first application)

Lemma 4.7 (Condition (i) in Lemma 4.3) Let z € (0, 1) x (0, 1), let k € N, and let
' =inf{t > 0 : 93 (1) & (0, 1)x (0, k+1)} be the time at which ng, exits the rectangle
(0, 1) x (0, k+1). Then it holds with positive probability that ny (t) € (0, 1) x {k+1}
and that r]f;, crosses (0, 1) x (i — 1, 1) nicely in north direction fori =2, ..., k.

Proof See Fig. 10 for an illustration. The lemma follows by repeated applications of
Lemma 4.4. Throughout the proof we assume that ¢ € (0, 1/10) in the statement of
Lemma 4.4 is sufficiently small. First, we apply Lemma 4.4 to make sure conditions (i)
and (ii) in Definition 4.2 are satisfied for the square B = (0, 1) x (1, 2) with positive
probability. Letting U be some neighborhood of z which is compactly contained in
(0,1) x (0, 1), we apply Lemma 4.4 with t = inf{r > 0 : nf\I(t) ¢ U}, K =
(0, 1) x {1.5} and y a path in (0, 1) x (0, 1.5) which winds around z appropriately
many times such that condition (ii) of Definition 4.2 is satisfied for B. We then apply
Lemma 4.4 another time with T equal to 77 in the previous application of the lemma,
K = (0, 1) x {2.5}, and with y such that condition (iii) of Definition 4.2 is satisfied for
B if 1y < 11 and the flow line does not reenter B after time 1, in the second application
of the lemma.

We iteratively apply Lemma 4.4 for each square (0, 1) x i — 1, i) withi =2,...,k
in order to guarantee that all the requirements of the lemma are satisfied. Note in
particular that we need to stop the flow line at least once in each square in order to
guarantee that (iii) in Definition 4.2 is satisfied since Lemma 4.4 itself only guarantees
that the flow line stays close to some reference path and does not rule out that the flow
line oscillates many times back and forth along the reference path. O

The following lemma will be used to argue that the west-going flow lines in
Lemma 4.3 behave according to condition (ii) with positive probability.
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(k—1} % (0,1)

N (7)

[ Al

My (72)

Fig. 11 Illustration of the proof of Lemma 4.8 in the case Z = {1}

Lemma 4.8 (Condition (ii) in Lemma 4.3) Letk € {2,3,...},z e (k—1,k) x (0, 1),
ITC{l,....k—1},z; € (j—1,1) x (—00,0) for j € I. Suppose that for j € I the
flow line nlz\{ crosses (j — 1, 1) x (0, 1) nicely in north direction. Let t" = inf{t > 0 :
Ny (@) & (0,k) x (0, 1)} be the time at which 13, exits the rectangle (0, k) x (0, 1).
Then it holds with positive probability that n3, (t") € {0} x (0, 1) and that 1y, crosses
eachbox (i —1,i) x (0, 1) fori =1, ...,k — 1 nicely in west direction.

Proof For concreteness we consider the case Z = {1} but the general case can be
treated similarly. See Fig. 11 for an illustration. First apply Lemma 4.4 with K =
{k — 1} x (0, 1) similarly in the proof of Lemma 4.7 to make sure conditions (i’) and
(i1”) in Definition 4.2 are satisfied for the square B = (k—2, k—1) x (0, 1) with positive
probability. Let ¥ be the segment of 7y corresponding to the (unique, by condition
(ii) of Definition 4.2) up-crossing of (0, 1) x (0, 1), i.e., it is a path which starts (resp.
ends) on the lower (resp. upper) boundary of (0, 1) x (0, 1). Apply Lemma 4.5 with
T equal to the hitting time of K = {k — 1} x (0, 1), D equal to the infinite connected
component of the complement of 7712;1‘, and y equal to a path starting at 1y, (7) and
ending at an interior point of 7, such that y does not cross 7y ; it is possible to find
an appropriate y by condition (iii) of Definition 4.2. When applying this lemma we
note that by Definition 4.2, the boundary conditions of the two flow lines is such that
their height difference A = —m x /2 is in the admissible range for hitting. By the
first assertion of Lemma 4.6, 1y, will cross  without coming back immediately after
hitting 3. We now conclude the proof by applying Lemma 4.4 again. O

Combining the lemmas above, we can now conclude the proof of Lemma 4.3.

Proof of Lemma 4.3 We will first argue that (i)—(iv) occur with positive probability.
Condition (i) occurs with positive probability by Lemma 4.7, where we can apply the
latter lemma iteratively for all the flow lines nf;{ since the law of the field restricted to
(m(j)—1,7(j)) x (j—1, k+1) conditioned on the realization of a subset of the other
flow lines is absolutely continuous with respect to the unconditional law of the field,
conditioned on the event that none of the other flow lines intersect [ (j) — 1, 7 (j)] x
[j — 1, k+ 1]. Conditioned on (i), we get that (iii) occurs with positive probability by
Lemma 4.5 and the second assertion of Lemma 4.6, where we apply Lemma 4.5 with
T =inf{r >0 : nf;{ ¢ (m(j)— 1, 7(j)) x (j — 1,k + 1)} and the flow lines are in
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the admissible range for merging (i.e., A = 0) due to condition (ii) of Definition 4.2.
Note that in order to also guarantee that ny ([7, p;' 1) C R, one can use a similar
argument as in the proofs of Lemmas 4.7 and 4.8.

Similarly, condition (ii) occurs with positive conditional probability given occur-
rence of (i) and (iii) by Lemma 4.8, and finally condition (iv) occurs with positive
conditional probability given (i)—(iii) by Lemma 4.5 and the second assertion of
Lemma 4.6. We conclude that (i)—(iv) occur with positive probability, and we denote
this probability by s > 0.

To prove the full lemma, it is sufficient to argue that we a.s. can find a (random)
8 > 0 such that the event in (v) occurs. Indeed, this implies that with probability at
least 1 — s/2 the event in (v) occurs for some sufficiently small fixed § > 0, which
concludes the proof by the result of the previous paragraph and a union bound. We will
now argue the a.s. existence of such a § > 0. It is sufficient to consider only the north-
going flow line starting from z;. By continuity of the space-filling SLE r”_ z generated

by the north-going flow lines we can a.s. find an open interval I such that n’ . (I) is
contained in (7 (1) — 1, (1)) x (0, 1) and z; is contained in " , (1) FurtheQrmore,
since zj is a.s. not a double point of n’_, and so z; must be contaizned in the interior
of n’f%(l), there is a.s. a (random) § >2 0 such that Bs(zy) is contained in n’f%(l).

This § satisfies our requirement since for all z € Bs(z1) the flow line 1y, merges into
nIZ\I‘ before leaving n’ » (I) C (w(1) — 1, 7 (1)) x (0, 1). O
2
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A Permutation patterns

Recall that S, denotes the set of permutations of sizen and S = U, c7_, Sn denotes the
set of permutations of finite size. We write permutations using the one-line notation,
that is, if o is a permutation of size n then we write ¢ = o(1)...o(n). Given a
permutation o of size n, its diagram is a n x n table with n points at position (i, o (i))
foralli € [n] := {1, 2, ..., n} (see the left-hand side of Fig. 12). Given a subset /
of the indexes of o, i.e. I C [n], recall that the pattern induced by I in o, denoted
pat; (o), is the permutation corresponding to the diagram obtained by rescaling the
points (i, 0(i))ics in a |I| x |I] table (keeping the relative position of the points).
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N .;

[ [
[ ]
. ]
Fig. 12 Left: The diagram of the permutation o = 23641587. Middle: The pattern induced by the set of

indices I = {2, 3, 5, 6} in o, that is the permutation pat; (o) = 2413. Right: The permuton 1t correspond-
ing to the permutation o = 23641587

Later, whenever pat;(0) = 7, we will also say that (o (i));cs is an occurrence of &
in 0. An example will be given in Example 4.9 and Fig. 12 below.

A (standard) pattern of size k is just a permutation of size k. A permutation o
avoids a (standard) pattern m if it is not possible to find a subset I of the indexes of
o such that pat; (o) = m. The collection of all permutations (of any size) avoiding a
set of (standard) patterns is often called a permutation class.

A generalized pattern w of size k, sometime also called vincular pattern, is a
permutation 7 = 7 (1) ...m(k), where some of its consecutive values are underlined.
For instance, the permutation 7413 526 is a generalized pattern. A permutation o
avoids a generalized pattern , if it is not possible to find a subset / of the indexes
of o such that pat;(0) = 7 and / has consecutive elements corresponding to the
underlined values of 7. We clarify the latter definition in the following example.

Example 4.9 We consider the permutation o = 23641587. Its diagram is plotted on
the right-hand side of Fig. 12. Given the set of indices I = {2, 3, 5, 6}, the pattern
induced by I in o is the permutation pat; (o) = 2413, plotted in the middle of Fig. 12.
Therefore the permutation o does not avoid the standard pattern 2413, but for instance
it avoids the standard pattern 4321 because it is not possible to find 4 points in the
diagram of o that are in decreasing order.

We also note that the permutation o avoids the generalized pattern 241 3. Indeed it
is not possible to find four indices i, j, j 4+ 1,ksuchthat] <i < j < j+1 <k <8
ando(j+ 1) <o(i) <o(k) <o(j).

We remark that Baxter permutations, introduced in Definition 1.1, can be described
as permutations avoiding the generalized patterns 2413 and 3 14 2.
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