
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-023-01193-w

Baxter permuton and Liouville quantum gravity

Jacopo Borga1 · Nina Holden2 · Xin Sun3 · Pu Yu4

Received: 2 April 2022 / Revised: 15 January 2023 / Accepted: 16 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The Baxter permuton is a random probability measure on the unit square which
describes the scaling limit of uniform Baxter permutations. We determine an explicit
formula for the density of the expectation of the Baxter permuton. This answers a ques-
tion of Dokos and Pak (Online J Anal Comb 9:12, 2014). We also prove that all pattern
densities of the Baxter permuton are strictly positive, distinguishing it from other per-
mutons arising as scaling limits of pattern-avoiding permutations. Our proofs rely on a
recent connection between the Baxter permuton and Liouville quantum gravity (LQG)
coupled with the Schramm-Loewner evolution (SLE). The method works equally well
for a two-parameter generalization of the Baxter permuton recently introduced by the
first author, except that the density is not as explicit. This new family of permutons,
called skew Brownian permuton, describes the scaling limit of a number of random
constrained permutations. We finally observe that in the LQG/SLE framework, the
expected proportion of inversions in a skew Brownian permuton equals π−2θ

2π where
θ is the so-called imaginary geometry angle between a certain pair of SLE curves.
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1 Introduction

Baxter permutations were introduced by Glen Baxter in 1964 [12] while studying
fixed points of commuting functions. They are classical examples of pattern-avoiding
permutations, which have been intensively studied both in the probabilistic and com-
binatorial literature (see e.g. [19, 23, 30, 34, 37, 46, 68]). They are known to be
connected with various other interesting combinatorial structures, such as bipolar ori-
entations [17], walks in cones [60], certain pairs of binary trees and a family of triples
of non-intersecting lattice paths [46], and domino tilings of Aztec diamonds [34].

In recent years there has been an increasing interest in studying limits of random
pattern-avoiding permutations. One approach is to look at the convergence of relevant
statistics, such as the number of cycles, the number of inversions, or the length of the
longest increasing subsequence. For a brief overview of this approach see e.g. [27,
Section 1.4]. The more recent approach is to directly determine the scaling limits of
permutation diagrams. Here given a permutation σ of size n, its diagram is a n×n table
with n points at position (i, σ (i)) for all i ∈ [n] := {1, 2, . . . , n}. (See Fig. 12, p. 33,
for an example.) Their scaling limits are called permutons. See e.g. [27, Section 2.1]
for an overview of this approach; and Sect. 1.1.2 and Appendix A for an introduction
to permutation pattern terminology.

Dokos and Pak [42] studied the expected limiting permuton of the so-called doubly
alternating Baxter permutations. The authors raised the question of proving the exis-
tence of the Baxter permuton as the scaling limit of uniform Baxter permutations, and
determine its expected density. The existence of the Baxter permuton was established
in [25] based on the bijection between Baxter permutations and bipolar orientations.
In [28], a two-parameter family of permutons called the skew Brownian permuton
was introduced. This family includes the Baxter permuton and a well-studied one-
parameter family of permutons, called the biased Brownian separable permuton ( [13,
14]), as special cases.

By [48, 60], the scaling limit of random planar maps decorated with bipolar
orientations is described by Liouville quantum gravity (LQG) decorated with two
Schramm-Loewner evolution (SLE) curves. In [28], the author built a direct con-
nection between the skew Brownian permuton (including the Baxter permuton) and
SLE/LQG (see also [20] for further developments). The main goal of the present paper
is to use this connection to derive some properties of these permutons. In particular, we
find an explicit formula for the density of the intensity measure of the Baxter permuton
(see Sect. 1.1.1 for definitions), which answers the aforementioned question of Dokos
and Pak. We also prove that all (standard) pattern densities of the Baxter permuton are
strictly positive. The second result extends to the skew Brownian permuton except in
one case where it is not true, namely for the biased Brownian separable permuton.

In the rest of the introduction, we first state our main results on the Baxter permuton
in Sect. 1.1. Then, in Sect. 1.2, we recall the construction of the skew Brownian
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permuton and state the corresponding results. Finally, in Sect. 1.3 we review the
connection with LQG/SLE and explain our proof techniques.

1.1 Main results on the Baxter permuton

ABaxter permutation is a permutation which satisfies the following pattern avoidance
property.

Definition 1.1 A permutation σ is a Baxter permutation if it is not possible to find
i < j < k such that σ( j + 1) < σ(i) < σ(k) < σ( j) or σ( j) < σ(k) < σ(i) <

σ( j + 1).

Note that there are finitely many Baxter permutations of size n. Therefore it makes
sense to consider a uniform Baxter permutation of size n.

A Borel probability measure μ on the unit square [0, 1]2 is a permuton if both of
its marginals are uniform, i.e., μ([a, b] × [0, 1]) = μ([0, 1] × [a, b]) = b − a for
any 0 ≤ a < b ≤ 1. A permutation σ can be viewed as a permuton μσ by uniformly
distributing mass to the squares {[ i−1

n , i
n ] × [σ(i)−1

n ,
σ (i)
n ] : i ∈ [n]}. More precisely,

μσ (A) = n
n∑

i=1

Leb
([(i − 1)/n, i/n] × [(σ (i) − 1)/n, σ (i)/n] ∩ A

)
,

where A is a Borel measurable set of [0, 1]2.
For a deterministic sequence of permutations σn , we say that σn converge in the

permuton sense to a limiting permutonμ, if the permutonsμσn induced by σn converge
weakly to μ. The set of permutons equipped with the topology of weak convergence
of measures can be viewed as a compact metric space.

Theorem 1.2 ([25, Theorem 1.9]) Let σn be a uniform Baxter permutation of size n.

The following convergence w.r.t. the permuton topology holds: μσn

d−→ μB, where μB

is a random permuton called the Baxter permuton.

We present our main results on the Baxter permuton in the next section.

1.1.1 The intensity measure of the Baxter permuton

The Baxter permuton μB is a random probability measure on the unit square (with
uniform marginals). Our first result is an explicit expression of its intensity measure,
defined by E[μB](·) := E[μB(·)], which answers [42, Question 6.7].

Theorem 1.3 Consider the Baxter permuton μB. Define the function

ρ(t, x, r) := 1

t2

((
3r x

2t
− 1

)
e− r2+x2−r x

2t + e− (x+r)2
2t

)
. (1.1)

Then the intensitymeasureE[μB ] is absolutely continuouswith respect to theLebesgue
measure on [0, 1]2. Moreover, it has the following density function

pB(x, y) = c
∫ min{x,y}

max{0,x+y−1}

∫

R
4+

ρ(y − z, �1, �2)ρ(z, �2, �3)ρ(x − z, �3, �4)
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Fig. 1 From left to right: The diagrams of the densities p0.1S (x, y), p0.4S (x, y), p0.5S (x, y), and pB (x, y)

ρ(1 + z − x − y, �4, �1) d�1d�2d�3d�4 dz, (1.2)

where c is a normalizing constant.

Remark 1.4 As discussed in Sect. 3.3.3, further computation of the integral (1.2) is
tricky, as it involves integrating a four-dimensional Gaussian in the first quadrant.
Nevertheless, this integral in R

+
4 can be expressed as the volume function (and its

derivatives) of a three-dimensional spherical tetrahedron as given in [7, 73].

We highlight that the intensity measure of other universal random limiting per-
mutons has been investigated in the literature. For instance, the intensity measure of
the biased Brownian separable permuton, was determined by Maazoun in [67]. We
recall that the biased Brownian separable permuton μ

q
S , defined for all q ∈ [0, 1], is a

one-parameter universal family of limiting permutons arising form pattern-avoiding
permutations (see Sect. 1.2 formore explanations). In [67, Theorem 1.7], it was proved
that for all q ∈ (0, 1), the intensity measure E[μq

S] of the biased Brownian separable
permuton is absolutely continuous with respect to the Lebesgue measure on [0, 1]2.
Furthermore, E[μq

S] has the following density function

pqS(x, y) =
∫ min{x,y}

max{0,x+y−1}
3q2(1 − q)2 da

2π(a(x − a)(1 − x − y + a)(y − a))3/2
(
q2

a + (1−q)2

(x−a)
+ q2

(1−x−y+a)
+ (1−q)2

(y−a)

)5/2 .

Theproof of [67,Theorem1.7] relies on an explicit constructionof thebiasedBrownian
separable permuton μ

q
S from a one-dimensional Brownian excursion decorated with

i.i.d. plus and minus signs. To the best of our knowledge this proof cannot be easily
extended to theBaxter permuton case. Figures 1 and 2 below for someplots of pB(x, y)
and pqS(x, y) using numerical approximations of the integrals.

1.1.2 Positivity of pattern densities for the Baxter permuton

Our second result is Theorem 1.7 states that the Baxter permuton a.s. contains a
positive density of every possible (standard) pattern. To state our result, we first define
the permutation induced by k points in the square [0, 1]2. Recall that [n] = {1, . . . , n}.
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Fig. 2 Some sections of the densities p0.5S (x, y) and pB (x, y). From left to right: In red (resp. in blue) we

plot the diagrams of p0.5S (x, x) (resp. pB (x, x)), p0.5S (x, 1/2) (resp. pB (x, 1/2)), and p0.5S (x, 1/4) (resp.
pB (x, 1/4))

Definition 1.5 Let (�x, �y) = ((x1, y1), . . . , (xk, yk)) = (xi , yi )i∈[k] be a sequence
of k points in [0, 1]2 with distinct x and y coordinates. The x-reordering of (�x, �y),
denoted by (x(i), y(i))i∈[k], is the unique reordering of the sequence (�x, �y) such that
x(1) < · · · < x(k). The values (y(1), . . . , y(k)) are then in the same relative order as
the values of a unique permutation of size k, called the permutation induced by (�x, �y)
and denoted by Permk(�x, �y) = Permk((xi , yi )i∈[k]).

We now define the random permutation of size k induced by a deterministic per-
muton.

Definition 1.6 Let μ be a deterministic permuton and k ∈ Z>0. Let ( �X , �Y ) =
(Xi ,Yi )i∈[k] be an i.i.d. sequence with distribution μ. We denote by Permk(μ, �X , �Y )

the random permutation induced by ( �X , �Y ).

We will also consider random permutations induced by random permutons μ. In
order to do that, we need to construct a sequence (Xi ,Yi )i∈[k], where the points
(Xi ,Yi ) are independent with common distribution μ conditionally on μ. This is
possible up to considering a new probability space where the joint distribution of
(μ, (Xi ,Yi )i∈[k]) is determined as follows: for every positive measurable functional
H : M × [0, 1]2k → R,

E[H(μ, (Xi ,Yi )i∈[k])] = E

[
E

[∫

[0,1]2k
H(μ, (xi , yi )i∈[k])

k∏

i=1

μ(dxi , dyi )
∣∣∣μ

]]
.

We now recall some standard notation related to permutation patterns; see
Appendix A for more details. Let Sn be the set of permutations of size n and
S = ⋃

n∈Z>0
Sn be the set of permutations of finite size. Fix k ≤ n and σ ∈ Sn .

Given a subset I of cardinality k of the indices of σ , the pattern induced by I in σ ,
denoted pat I (σ ), is the permutation corresponding to the diagram obtained by rescal-
ing the points (i, σ (i))i∈I in a |I | × |I | table (keeping the relative position of the
points). If pat I (σ ) = π ∈ Sk we will say that (σ (i))i∈I is an occurrence of π in σ .
We denote by occ(π, σ ) the number of occurrences of a pattern π in a permutation σ .
Moreover, we denote by õcc(π, σ ) the proportion of occurrences of π in σ, that is,

õcc(π, σ ) = occ(π, σ )(n
k

) .
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We finally recall an important fact about permuton convergence. Suppose (σn)n is a
sequence of random permutations converging in distribution in the permuton sense to

a limiting random permuton μ, i.e. μσn

d−→ μ. Then, from [14, Theorem 2.5], it holds
that (õcc(π, σn))π∈S converges in distribution in the product topology as n → ∞ to
the random vector (õcc(π, μ))π∈S , where the random variables õcc(π, μ) are defined
for all π ∈ S as follows

õcc(π, μ) = P(Permk(μ, �X , �Y ) = π |μ)

=
∫

[0,1]2k
1{Permk ((xi ,yi )i∈[k])=π}

k∏

i=1

μ(dxi , dyi ). (1.3)

Theorem 1.7 For all patterns π ∈ S, it holds that

õcc(π, μB) > 0 a.s.

Our result is quenched in the sense that for almost every realization of the Bax-
ter permuton μB , it contains a strictly positive proportion of every pattern π ∈ S.
Since pattern densities of random permutations converge to pattern densities of the
corresponding limiting random permuton, we have the following corollary of Theo-
rems 1.2 and 1.7.

Corollary 1.8 Let σn be a uniform Baxter permutation of size n. Then, for all π ∈ S,
we have that

lim
n→∞ õcc(π, σn) > 0 a.s.

1.2 Positivity of pattern densities for the skew Brownian permuton

Permuton limits have been investigated for various models of random permutations.
For many models, the permuton limits are deterministic, for instance, Erdös-Szekeres
permutations [75], Mallows permutations [86], random sorting networks [38], almost
square permutations [18, 33], and permutations sorted with the runsort algorithm
[1]. For random constrained permutations which have a scaling limit, the limiting
permutons appear to be random in many cases. In [28] a two-parameter family of
permutons, called the skew Brownian permuton, was introduced to cover most of the
known examples.

The skew Brownian permuton μρ,q is indexed by ρ ∈ (−1, 1] and q ∈ [0, 1], and
μ−1/2,1/2 coincides with Baxter permuton.We now recall the construction of the skew
Brownian permuton for ρ ∈ (−1, 1) and q ∈ [0, 1]. This is only for completeness
since at the technical level wewill use an alternative definition coming fromSLE/LQG
which has proven to be equivalent to Definition 1.9 below; see Sect. 1.3. We do not
recall the ρ = 1 case as our theorem only concerns ρ ∈ (−1, 1).

For ρ ∈ (−1, 1), let (Wρ(t))t∈R≥0 = (Xρ(t),Yρ(t))t∈R≥0 be a two-dimensional
Brownian motion of correlation ρ. This is a continuous two-dimensional Gaus-
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sian process such that the components Xρ and Yρ are standard one-dimensional
Brownian motions, and Cov(Xρ(t),Yρ(s)) = ρ · min{t, s}. Let (Eρ(t))t∈[0,1] be a
two-dimensional Brownian loop of correlation ρ. Namely, it is a two-dimensional
Brownian motion of correlation ρ conditioned to stay in the non-negative quadrant
R
2≥0 and to end at the origin, i.e. Eρ(1) = (0, 0). For q ∈ [0, 1], consider the solu-

tions of the following family of stochastic differential equations (SDEs) indexed by
u ∈ [0, 1] and driven by Eρ = (Xρ,Yρ):

{
dZ (u)

ρ,q (t) = 1{Z (u)
ρ,q (t)≥0}dYρ(t) − 1{Z (u)

ρ,q (t)<0}dXρ(t) + (2q − 1) · dLZ (u)
ρ,q (t), t ∈ (u, 1),

Z (u)
ρ,q (t) = 0, t ∈ [0, u],

(1.4)

where LZ (u)
ρ,q (t) is the symmetric local-time process at zero of Z (u)

ρ,q , i.e.

LZ (u)
ρ,q (t) = lim

ε→0

1

2ε

∫ t

0
1{

Z (u)
ρ,q (s)∈[−ε,ε]

}ds.

The solutions to the SDEs (1.4) exist and are unique thanks to [28, Theorem 1.7]. The

collection of stochastic processes
{
Z (u)

ρ,q

}

u∈[0,1] is called the continuous coalescent-

walk process driven by (Eρ, q). Here
{
Z (u)

ρ,q

}

u∈[0,1] is defined in the following sense:

for a.e. ω, Z (u)
ρ,q(ω) is a solution for almost every u ∈ [0, 1]. For more explanations

see the discussion below [28, Theorem 1.7]. Let

ϕZρ,q (t) = Leb
({

x ∈ [0, t) | Z (x)
ρ,q(t) < 0

} ∪ {
x ∈ [t, 1] | Z (t)

ρ,q(x) ≥ 0
})

, t ∈ [0, 1].

Definition 1.9 Fix ρ ∈ (−1, 1) and q ∈ [0, 1]. The skew Brownian permuton of
parameters ρ, q, denoted μρ,q , is the push-forward of the Lebesgue measure on [0, 1]
via the mapping (I, ϕZρ,q ), that is

μρ,q(·) = (I, ϕZρ,q )∗ Leb(·) = Leb
({t ∈ [0, 1] | (t, ϕZρ,q (t)) ∈ · }) .

Wemention that it is also possible to generalize the previous constructionwhen ρ =
1. Then the permuton μ1,q coincides with the biased Brownian separable permuton

μ
1−q
S of parameter 1 − q mentioned before; see [28, Section 1.4 and Theorem 1.12]

for further explanations.
We now summarize the list of known random permutations which have the skew

Brownian permuton as scaling limit. Uniform separable permutations [13] converge to
μ1,1/2. Uniform permutations in proper substitution-closed classes [14, 16] or classes
having a finite combinatorial specification for the substitution decomposition [15]
converge (under some technical assumptions) to μ1,q , where the parameter q depends
on the chosen class. Uniform Baxter permutations converge to μ−1/2,1/2, namely the
Baxter permuton. Uniform semi-Baxter permutations [29], converge to μρ,q , where
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ρ = − 1+√
5

4 ≈ −0.8090 and q = 1/2. Uniform strong-Baxter permutations [29],
converge to μρ,q , where ρ ≈ −0.2151 is the unique real solution of the polynomial
1 + 6ρ + 8ρ2 + 8ρ3 and q ≈ 0.3008 is the unique real solution of the polynomial
−1 + 6q − 11q2 + 7q3.

We will not give the detailed definitions of all random constrained permutations
mentioned above but emphasize an important division. On the one hand, models con-
verging to μρ,q with ρ 
= 1 are similar to Baxter permutations in the following sense:
their constraints are not defined by avoiding certain patterns completely, but only
avoiding them when the index locations satisfy certain additional conditions; see e.g.
Definition 1.1. We say that such permutations avoid generalized patterns. On the other
hand, models converging towards the biased Brownian separable permuton μ1,q , they
avoid a certain set of patterns completely. For example, separable permutations avoid
the patterns 2413 and 3142. We say that such permutations avoid (standard) patterns.
(Here the word standard is added to distinguish from generalized patterns.)

Our next theorem, which generalizes Theorem 1.7, shows that in the scaling limit,
the division between ρ 
= 1 and ρ = 1 becomes the following. On the one hand, for
ρ 
= 1, the permuton μρ,q almost surely admits a positive density of any (standard)
pattern. On the other hand, the biased Brownian separable permuton μ1,q presents a
zero density of some (standard) patterns. For instance, μ1,q almost surely avoids all
the (standard) patterns that are not separable; see [14, Definition 5.1].

Theorem 1.10 For all (ρ, q) ∈ (−1, 1) × (0, 1) and all (standard) patterns π ∈ S, it
holds that

õcc(π, μρ,q) > 0 a.s.

Note that the latter theorem answers [28, Conjecture 1.20]. By Theorem 1.10, if
a sequence of random permutations avoiding (standard) patterns converges to a skew
Brownian permuton then it has to be the biasedBrownian separable permuton.Namely,
we have the following result.

Corollary 1.11 Let C be a family of permutations avoiding (standard) patterns. Let σn
be a random permutation of size n in C. Assume that for some (ρ, q) ∈ (−1, 1]×(0, 1)

it holds that μσn

d−−−→
n→∞ μρ,q . Then ρ = 1.

1.3 Relation with SLE and LQG

We now review the connection between the skew Brownian permuton and SLE/LQG
established in [28, Theorem 1.17]. Then we explain our proof techniques. Precise
definitions and more background on various SLE/LQG related objects will be given
in Sect. 2.

1.3.1 The skew Brownian permuton and the SLE-decorated quantum sphere

Fix γ ∈ (0, 2) and some angle θ ∈ [−π
2 , π

2 ]. In what follows we consider:
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• a unit-area γ -Liouville quantum sphere (Ĉ, h, 0,∞) with two marked points at 0
and ∞ and associated γ -LQG area measure μh (see Definition 2.1);

• an independent whole-plane GFF ĥ (see Sect. 2.1.1);
• two space-filling SLEκ ′ counterflow lines of ĥ in Ĉ with angle 0 and θ − π

2 con-
structed from angle π

2 and θ flow lines with κ ′ = 16/γ 2 (see Sect. 2.1.3). We
denote these two space-filling SLEκ ′ curves from ∞ to ∞ by η′

0 and η′
θ− π

2
.

We emphasize the independence of the counterflow lines and the quantum sphere. In
addition, we assume that the curves η′

0 and η′
θ− π

2
are parametrized so that η′

0(0) =
η′
0(1) = η′

θ− π
2
(0) = η′

θ− π
2
(1) = ∞ and μh(η

′
0([s, t])) = μh(η

′
θ− π

2
([s, t])) = t − s

for 0 ≤ s < t ≤ 1. We have the following result.

Theorem 1.12 ([28, Theorem1.17]) Fixγ ∈ (0, 2) and θ ∈ [−π
2 , π

2 ]. Let (Ĉ, h, 0,∞)

and (η′
0, η

′
θ− π

2
) be the unit-area γ -Liouville quantum sphere and the pair of space-

filling SLEκ ′ introduced above. For t ∈ [0, 1], let ψγ,θ (t) ∈ [0, 1] denote the first
time1 at which η′

θ− π
2
hits the point η′

0(t). Then the random permuton

(Id, ψγ,θ )∗ Leb

is a skew Brownian permuton of parameter ρ = − cos(πγ 2/4) ∈ (0, 1) and q =
qγ (θ) ∈ [0, 1].
For every fixed γ ∈ (0, 2), the function

qγ (θ) :
[
−π

2
,
π

2

]
→ [0, 1]

is a decreasing homeomorphism and therefore has an inverse function θγ (q). Finally,
for all θ ∈ [0, π/2] and all γ ∈ (0, 2), it holds that qγ (θ)+qγ (−θ) = 1. In particular,
qγ (0) = 1/2 for all γ ∈ (0, 2). The Baxter permuton corresponds to γ = 4/3 and
θ = 0.

1.3.2 Proof techniques for the main results

To prove Theorem 1.3, we first extend Theorem 1.12 to give amore explicit description
of the skew Brownian permuton measure μρ,q in terms of a unit-area quantum sphere
and two space-filling SLEs, i.e. we prove the following.

Proposition 1.13 Fix γ ∈ (0, 2) and θ ∈ [−π
2 , π

2 ]. Let (Ĉ, h, 0,∞) and (η′
0, η

′
θ− π

2
)

be the unit-area γ -Liouville quantum sphere and the pair of space-filling SLEκ ′ intro-
duced above. Let also ρ ∈ (−1, 1) and q ∈ [0, 1] be such that ρ = − cos(πγ 2/4)

1 We recall that space-filling SLE curves have multiple points. Nevertheless, for each z ∈ C, a.s. z is not
a multiple point of η′

θ− π
2
, i.e., η′

θ− π
2
hits z exactly once. Since h is independent from (η′

0, η
′
θ− π

2
) and η′

0

and η′
θ− π

2
are parametrized by μh -mass, a.s. the set of times t ∈ [0, 1] such that η′

0 is a multiple point of

η′
θ− π

2
has zero Lebesgue measure.
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and q = qγ (θ), and consider the skew Brownian permuton μρ,q constructed as in
Theorem 1.12. Then, almost surely, for every 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1,

μρ,q

(
[x1, x2] × [y1, y2]

)
= μh

(
η′
0([x1, x2]) ∩ η′

θ− π
2
([y1, y2])

)
.

Using Proposition 1.13, we express the intensity measure E[μρ,q ] in terms of a quan-
tum sphere decorated by certain flow lines of a Gaussian free field, which are simple
SLEκ curves with κ = γ 2 ∈ (0, 4). This is proved in Proposition 3.7 using the
rerooting invariance of marked points for quantum spheres ([40]; see also Proposi-
tion 3.6 below) and the fact that the outer boundaries of the SLE16/κ -type curves η′

0
and η′

θ− π
2
are simple SLEκ curves. Using conformal welding results and scaling prop-

erties of quantum disks and spheres ( [3]; see also Sect. 3.1), this leads to a simpler
expression for E[μρ,q ] via the density function pW (a, �1, �2) of the area a of quan-
tum disks with given quantum boundary lengths �1 and �2 (see Theorem 3.8). When
(ρ, q) = (−1/2, 1/2), the density pW (a, �1, �2) is the same as the density of the
duration of a Brownian excursion in a cone of angle π

3 (as argued in [3, Section 7];
see also Proposition 3.3). The latter can be computed using standard heat equation
argument as done in Sect. 3.3 via [58]. We finally briefly explain the relation between
the integrals in (1.2) and spherical tetrahedra (see Sect. 3.3.3).

To prove Theorem 1.10, we begin by observing that the occurrence of a fixed
(standard) pattern in μρ,q can be reformulated in terms of a specific condition on
the crossing and merging order of some collection of flow lines of a Gaussian free
field (see Lemma 4.1 and Fig. 7 for a precise statement). Then building on the key
result from [70, Lemma 3.8], which roughly speaking states that a simple SLEκ curve
can approximate any continuous simple curves with positive probability, we prove that
this crossing andmerging condition holds with positive probability (themain difficulty
here is that we need to look at several flow lines of different angles together). Finally,
by the scaling invariance of the whole-plane GFF and a tail triviality argument, we
conclude the proof of Theorem 1.10.

We conclude the introduction with three observations. First, qualitatively, our
method works equally well for μρ,q with any ρ 
= 1. But quantitatively, the Baxter
permuton corresponds to a special case where the function pW (a, �1, �2) is signifi-
cantly simpler than the general case; see Remark 3.14. This is why Theorem 1.3 is
restricted to the Baxter case while Theorem 1.10 is for the general case.

Second, the angle θ in Theorem 1.12 has a simple permutation interpretation.

Proposition 1.14 For all (ρ, q) ∈ (−1, 1) × [0, 1], let θ ∈ [−π
2 , π

2 ] be related to
q by the relation q = qγ (θ) given in Theorem 1.12 with γ ∈ (0, 2) such that ρ =
− cos(πγ 2/4). Then

E[(õcc(21, μρ,q))] = π − 2θ

2π
. (1.5)

The third and fourth named authors of this paper are working on deriving an exact
formula for qγ (θ) with Ang. For the Baxter permuton E[(õcc(21, μρ,q))] = 1

2 by
symmetry, which is consistent with θ = 0. In fact, we can express E[(õcc(π, μρ,q))]

123



Baxter permuton and Liouville quantum gravity

for any pattern π in terms of SLE and LQG, but for π 
= 21 we do not find any exact
information as enlightening as (1.5); see the end of Sect. 3. Note that Proposition 1.14
answers [28, Conjecture 1.22], which conjectures that the expected proportion of
inversions in μρ,q is an increasing function of q (recall that θ is a decreasing function
of q).

Finally, our work falls into the line of work proving integrability results (i.e., exact
formulas) via SLE and/or LQG techniques. Integrability results for SLE and LQG
can be proven via a variety of methods, see e.g. [5, 6, 21, 22, 44, 53, 56, 63, 65,
80, 85, 87, 88] for SLE results and [62, 74] for LQG results. As a particular class of
methods, couplings between SLE and LQG [40, 83] allows to exploit the interplay
between SLE and LQG to prove new results about both objects. For example, the KPZ
formula [61] has been used to predict exponents of statistical mechanics models and
dimensions of SLE curves via combinatorics on planar maps; see e.g. [47] for rigorous
computations in this spirit. Chen, Curien and Maillard [35] give a heuristic derivation
of the conformal radius formula in [85] by using the coupling with LQG; see also [54]
for a proof via LQG techniques. A number of integrability results based on the SLE
and LQG coupling have been established by subsets of the coauthors of this paper [3,
4, 8, 10], and our Theorem 1.3 can be viewed as a part of this ongoing endeavor.

2 Permuton-LQG/SLE correspondence

This section collects the background needed for later sections. We review in Sect. 2.1
some definitions related to the Gaussian free field, quantum surfaces and SLE curves.
Then, in Sect. 2.2 we prove Proposition 1.13.
Notation. In this paper we will often work with non-probability measures. We extend
the terminology of ordinary probability to this setting: For a (possibly infinite but
σ -finite) measure space (�,F , M), we say X is a random variable if X is an F-
measurable function with its law defined via the push-forward measure MX = X∗M .
In this case, we say X is sampled from MX and write MX [ f ] for ∫ f (x)MX (dx). By
conditioning on some event E ∈ F with 0 < M[E] < ∞, we are referring to the
probability measure M[E∩·]

M[E] over the space (E,FE ) with FE = {A ∩ E : A ∈ F}.
Finally, for a finite measure μ we let |μ| be its total mass and μ# := μ

|μ| be its
normalized version.

2.1 Gaussian free fields, quantum surfaces and SLE curves

We assume throughout the rest of the paper that γ ∈ (0, 2), unless otherwise stated.
We introduce the following additional parameters defined in terms of γ

Q = 2/γ + γ /2, χ = 2/γ − γ /2, κ = γ 2, κ ′ = 16/γ 2.
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2.1.1 Gaussian free fields

Recall that the Gaussian free field (GFF) with free boundary conditions (resp. zero
boundary conditions) h on a planar domain D � C is defined by taking an orthonormal
basis { fn} of H(D) (resp. H0(D)), the Hilbert space completion of the set of smooth
functions on D with finite Dirichlet energy (resp. finite Dirichlet energy and compact
support) with respect to the Dirichlet inner product, an i.i.d. sequence {αn} of stan-
dard normal random variables, and considering the sum h = ∑∞

n=1 αn fn . This series
converges in an appropriate Sobolev space and hence in the space of distributions; see
for instance [31, Theorem 1.24]. In the case of the free boundary GFF, we view h as
a distribution modulo a global additive constant (see also [31, Definition 5.2]).

The whole-plane Gaussian free field h, viewed as a distribution on C modulo a
global additive constant, is defined in a similar manner as the free boundary GFF, but
with D = C (see for instance [31, Section 5.4]). Sometimes we will fix this additive
constant or view thewhole-planeGFFas a distributionmodulo a global additive integer
multiple of some other fixed constant; if this is done, it will be always specified in the
paper. We refer to [31, 82, 89] for more background on the GFF.

2.1.2 Quantum surfaces

Consider the space of pairs (D, h), where D ⊆ C is a planar domain and h is a
distribution on D (often some variant of the GFF). Define the equivalence relation
∼γ , where (D, h) ∼γ (D̃, h̃) if there is a conformal map ϕ : D̃ → D such that

h̃ = h ◦ ϕ + Q log |ϕ′|. (2.1)

A quantum surface S is an equivalence class of pairs (D, h) under the relation ∼γ ,
and we say (D, h) is an embedding of S if S = (D, h)/∼γ . In this paper, the domain
D shall be either the upper half plane H := {z ∈ C : Im z > 0}, the Riemann sphere
Ĉ := C ∪ {∞}, or a planar domain cut out by SLEκ curves. We will often abuse
notation and identify the pair (D, h) with its equivalence class, e.g. we may refer to
(D, h) as a quantum surface (rather than a representative of a quantum surface).

A quantum surface with k marked points is an equivalence class of elements of the
form (D, h, x1, . . . , xk), where (D, h) is a quantum surface, the points xi ∈ D, and
with the further requirement that marked points (and their ordering) are preserved by
the conformal map ϕ in (2.1).

A curve-decoratedquantumsurface is an equivalence class of tuples (D, h, η1, . . . , ηk),
where (D, h) is a quantum surface, η1, . . . , ηk are curves in D, and with the further
requirement that η is preserved by the conformal map ϕ in (2.1). Similarly, we can
define a curve-decorated quantum surface with k marked points. Throughout this
paper, the curves η1, . . . , ηk are SLEκ type curves (which have conformal invariance
properties) sampled independently of the surface (D, h).

Given some variant h of the GFF, one can make sense of the bulk measure μh ,
where μh(A) = ∫

A e
γ h(z) dz, by considering the circle average hε(z) of h on the

circle ∂Bε(z) and taking the weak limit of εγ 2/2eγ hε(z)dz as ε → 0; see for instance
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[43, 59, 78]. The measure μh is then called the γ -Liouville quantum gravity area
measure. Similarly, one can define a lengthmeasure νh , called the γ -Liouville quantum
gravity length measure, on certain curves in the closure D of D. Notice thatμh and νh
depend on the parameter γ , but we skip γ from the notation since the value of γ will
always be implicitly understood from the context. The two measures satisfy natural
scaling properties, namely μh+c(A) = eγ cμ(A) and νh+c(S) = e

γ
2 cν(S) for c ∈ R

an arbitrary constant. See [43] for more details on these bulk and boundary Liouville
quantum gravity measures. A self-contained introduction to GFF, Liouville quantum
gravity measures, and quantum surfaces, can be also found in [49, Section 3.2-3] or
in the lecture notes [31].

Now we formally introduce quantum spheres and quantum disks, which are the
main types of quantum surfaces considered in this paper and are defined in terms of
some natural variants of the GFF. The reader can find intuitive explanations of the next
definitions at the end of this section. We also highlight that it is not strictly necessary
to understand the technical details involved in the following definitions in order to
then follow our proofs in the consecutive sections.

As argued in [40, Section 4.1], when D = Ĉ (resp. D = H), we have the decompo-
sition H(Ĉ) = H1(Ĉ)⊕H2(Ĉ) (resp. H(H) = H1(H)⊕H2(H)), where H1(Ĉ) (resp.
H1(H)) is the subspace of radially symmetric functions, and H2(Ĉ) (resp. H2(H)) is
the subspace of functions having mean 0 on all circles {|z| = r} (resp. semicircles
{|z| = r , Im z > 0}). For a whole-plane GFF h, we can decompose h = h1 + h2,
where h1 and h2 are independent distributions given by the projection of h onto H1(Ĉ)

and H2(Ĉ), respectively. We remark that h1 is defined modulo an additive constant
while h2 is not. The same result applies for the upper half plane H.

Since a quantum surface is an equivalence class of pairs (D, ψ) (or, more generally,
an equivalence class of tuples (D, ψ, z1, . . . , zk) with z1, . . . , zk ∈ D), in order to
describe the law of a quantum sphere, we will start by describing the law of its random
field ψ .

Definition 2.1 (Quantum sphere) Fix γ ∈ (0, 2) and let (Bs)s≥0 and (B̃s)s≥0 be inde-
pendent standard one-dimensional Brownian motions. Fix a weight parameterW > 0
and set α := Q − W

2γ . Let c be sampled from the infinite measure γ
2 e

2(α−Q)cdc onR

independently from (Bs)s≥0 and (B̃s)s≥0. Let

Xt =
{

Bt + αt + c for t ≥ 0,
B̃−t + (2Q − α)t + c for t < 0,

conditioned on Bt − (Q − α)t < 0 and B̃t − (Q − α)t < 0 for all t > 0. Let h be a
whole-plane GFF on Ĉ independent of (Xt )t∈R with projection onto H2(Ĉ) given by
h2. We consider the random distribution

ψ(·) = X− log |·| + h2(·) .

LetMsph
2 (W ) be the infinite measure describing the law of (Ĉ, ψ, 0,∞)/∼γ . We call

a sample fromMsph
2 (W ) a quantum sphere of weight W with two marked points.
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A unit-area γ -quantum sphere with two marked points is the quantum sphere of
weight 4−γ 2 with twomarked points conditioned onhaving totalγ -LQGareameasure
μψ(Ĉ) equal to one.

It is explained in [40, Sections 4.2 and 4.5] that the considered conditioning on B
and B̃, along with the conditioning on the quantum area of a weight 4 − γ 2 quantum
sphere, can be made rigorous via a limiting procedure, although we are conditioning
on probability zero events.

We remark that the weight 4 − γ 2 here is “typical” because in this case the two
marked points (which currently correspond to 0 and∞) can be realized as independent
samples from the γ -LQG area measure μψ (see Proposition 3.6 below for a precise
statement). This important rerooting invariance property shall later be used in Sect. 3.3
in order to compute the density of the Baxter permuton via quantum surfaces.

We now turn to the definition of quantum disks, which is splitted in two different
cases: thick quantum disks and thin quantum disks.

Definition 2.2 (Thick quantum disk) Fix γ ∈ (0, 2) and let (Bs)s≥0 and (B̃s)s≥0 be
independent standard one-dimensional Brownian motions. Fix a weight parameter

W ≥ γ 2

2 and let β = γ + 2−W
γ

≤ Q. Let c be sampled from the infinite measure
γ
2 e

(β−Q)cdc on R independently from (Bs)s≥0 and (B̃s)s≥0. Let

Yt =
{

B2t + βt + c for t ≥ 0,
B̃−2t + (2Q − β)t + c for t < 0,

conditioned on B2t − (Q − β)t < 0 and B̃2t − (Q − β)t < 0 for all t > 0. Let h be
a free boundary GFF on H independent of (Yt )t∈R with projection onto H2(H) given
by h2. Consider the random distribution

ψ(·) = X− log |·| + h2(·) .

Let Mdisk
2 (W ) be the infinite measure describing the law of (H, ψ, 0,∞)/∼γ . We

call a sample from Mdisk
2 (W ) a quantum disk of weight W with two marked points.

We call νψ((−∞, 0)) and νψ((0,∞)) the left and right boundary quantum length
of the quantum disk (H, ψ, 0,∞).

When 0 < W <
γ 2

2 , we define the thin quantum disk as the concatenation of weight
γ 2 − W thick disks with two marked points as in [3, Section 2].

Definition 2.3 (Thin quantum disk) Fix γ ∈ (0, 2). For W ∈ (0, γ 2

2 ), the infinite
measure Mdisk

2 (W ) is defined as follows. First sample a random variable T from the
infinite measure (1 − 2

γ 2W )−2LebR+ ; then sample a Poisson point process {(u,Du)}
from the intensity measure 1t∈[0,T ]dt × Mdisk

2 (γ 2 − W ); and finally consider the
ordered (according to the order induced by u) collection of doubly-marked thick
quantum disks {Du}, called a thin quantum disk of weight W .

LetMdisk
2 (W ) be the infinite measure describing the law of this ordered collection

of doubly-marked quantum disks {Du}. The left and right boundary length of a sample
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Fig. 3 Schematic representation of a sample of a thin quantum disk of weight W ∈ (0, γ 2

2 ) as the concate-

nation of weight γ 2 − W thick quantum disks. The green bubbles correspond to the thick quantum disks
{Du} involved in the construction. Note that there are in fact (countably) infinite many thick quantum disks
which are not drawn near the two endpoints (shown in red) and between each pair of macroscopic disks

fromMdisk
2 (W ) is set to be equal to the sum of the left and right boundary lengths of

the quantum disks {Du}.
We give a heuristic interpretation of the last definition. Note that one can interpret

the ordered collection of doubly-marked quantumdisks {Du} as ifwe are concatenating
the surfaces {Du} by “gluing” them at their marked points, as shown in Fig. 3. These
collections of doubly-marked quantum surfaces are sometime called beaded surfaces.

Remark 2.4 The quantum spheres and disks introduced in this section can also be
equivalently constructed via methods in Liouville conformal field theory (LCFT); see
e.g. [39, 55] for these constructions and see [2, 3, 36] for proofs of equivalence with
the surfaces defined above. Fundamental properties of the surfaces such as structure
constants and correlation functions have also been established via methods in LCFT
[50, 52, 62], confirming predictions from the physics literature [32, 41, 90]. The quan-
tum spheres and disks also arise as the scaling limit of certain random planar maps.
For example, when γ = √

8/3, Mdisk
2 (2) is the law of the LQG realization of the

Brownian disk with two marked boundary points with free area and free boundary
length [71, 72], where we recall that the Brownian disk is the scaling limit of triangu-
lations or quadrangulations with disk topology sampled from the critical Boltzmann
measure [24, 51].

We conclude this section by briefly explaining some intuitions behind the definitions
of quantum spheres and quantum disks. We remark that these explanations are not
needed to follow the rest of the paper.

Following [40, Section 1.2], we explain why the weight parameter W encodes in
some sense how “thick/thin” the surface is. In Definition 2.1 (resp. Definition 2.2), the
process Xt (resp. Yt ) encodes the average of the field ψ on Ĉ (resp. on H) over the
circle (resp. semicircle) of radius e−t centered at 0, and can be defined by taking the
logarithm of Bessel excursions of dimensions 2 + 2

γ 2W and 1 + 2
γ 2W , respectively;

see [40, Section 4]. Note that the dimension of the Bessel process increases as W
increases.

Since the processes Xt and Yt (and so also the corresponding Bessel excursions)
are sampled from infinite measures, the measures for quantum spheres and quantum
disks are infinite. Moreover, the random constant c appearing in the two definitions
encodes the largest value of the processes Xt − Qt and Yt − Qt , which is attained
by definition at t = 0 (equivalently, the random constant ec encodes the largest value
attained during the corresponding Bessel excursions). The process Xt − Qt (resp.
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Yt − Qt) encodes some other field average process when the quantum sphere (resp.
the quantum disk) is embedded onto the cylinder R × [0, i2π ]/∼ instead of Ĉ, where
∼ stands for the equivalence relation x ∼ y if x = y + 2π i (resp. onto the strip
R × (0, i2π) instead of H). The term Qt in these processes comes from the change
of coordinates formula in (2.1). As a consequence, the random constant c reflects the
largest value of these field average processes under these other embeddings. Note that
c “tends” to be larger when W increases.

The two marked points on each quantum surface are related to the starting and the
ending points of the corresponding Bessel excursion, and near these marked points
the field ψ looks like h − β log | · | (if the surface is embedded in H with the relevant
marked point at 0), where for quantum spheres β = Q − W

2γ and h is a whole-plane

GFF, while for quantum disks β = γ + 2−W
γ

and h is a free boundary GFF on H. That
is, near these marked points, the field ψ looks like a GFF plus a β-log-singularity, and
such singularity is smaller when W increases, decreasing the amount of mass in the
neighborhood of the two marked points. In fact, for readers familiar with the Liouville
CFT approach, as proved in [4], a weight W quantum sphere with two marked points
can be understood as the uniform embedding of the Liouville field LF(β,0),(β,∞)

C
with

insertion points (β, 0), (β,∞), while a weight W quantum disk with two marked
points can be realized as the uniform embedding of the Liouville field LF(β,0),(β,∞)

H

with insertion points (β, 0), (β,∞). Moreover, as shown in [3, 11, 40], the weight W
is additive under the operation of conformal welding, which shall be further discussed
in Sect. 3.1.

2.1.3 SLE curves and imaginary geometry

Now we briefly recall the construction of the Schramm–Loewner evolution (SLEκ )
curves with parameter κ > 0, which were introduced by Schramm [79] and arise
as scaling limits of many statistical physics models, see e.g. [64, 81, 84]. Roughly
speaking, on the upper half plane H, the SLEκ curve η can be described via the
Loewner equation

dgt
dt

(z) = 2

gt (z) − Wt
; g0(z) = z;

where gt is the conformal map from H\η([0, t]) to H with lim|z|→∞ |gt (z) − z| = 0
andWt is

√
κ times a standard Brownian motion. This curve starts at 0, ends at∞, and

travels on the upper half planeH [76].Moreover, it has conformal invariance properties
and therefore the definition can be extended to other domains (with other starting and
ending points) via conformal maps. When κ ∈ (0, 4] the curve is simple, while for
κ > 4 the curve is self hitting (later on, when κ > 4 we denote κ by κ ′ = 16

κ
> 4 for

κ ∈ (0, 4], being consistent with [69, 70]). We refer the reader to the lecture note [26]
for more background on SLEs.

It is also possible to define a variant of the SLEκ on H from 0 to ∞ known as the
SLEκ(ρ1; ρ2) on H from 0 to ∞, where ρ1, ρ2 > −2. For κ ∈ (0, 4) the curve is still
simple but a.s. hits (countably) infinitely many times the left (resp. right) boundary
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of H when ρ1 < κ
2 − 2 (resp. ρ2 < κ

2 − 2), and it does not hit at all the left (resp.
right) boundary of H when ρ1 ≥ κ

2 − 2 (resp. ρ2 ≥ κ
2 − 2). Also in this case, the

definition can be extended to other domains (with other starting and ending points)
via conformal maps. See [69, Section 2] for more details.

We shall also consider the whole-plane SLEκ(ρ) for ρ > −2, which is a random
curve in Ĉ from a starting point z ∈ C to ∞. For κ ∈ (0, 4) the curve hits itself
(countably) infinitely many times when ρ < κ

2 − 2, but does not hit itself at all when
ρ ≥ κ

2 − 2. See [70, Section 2.1] for more details.
Given a whole-plane GFF ĥ viewed modulo a global additive integer multiple of

2πχ (see [70, Section 2.2] for further details) and θ ∈ R, one can construct the θ -
angle flow lines ηzθ of ĥ (or more precisely of ei (̂h/χ+θ)) from z ∈ C to ∞ as shown in
[69, 70]. The marginal law of ηzθ is that of a whole-plane SLEκ(2− κ) curve from z to
∞. We remark that we measure angles in counter-clockwise order, where zero angle
corresponds to the north direction.

For distinct z, w ∈ C, the flow lines ηzθ and ηzθ−π cannot cross ηw
θ ∪ ηw

θ−π , but they
may hit and bounce off when κ ∈ (2, 4). See Fig. 4 for an illustration. Additionally,
flow lines of ĥ with the same angle started at different points of Q

2 merge into each
other when intersecting and form a tree [70, Theorem 1.9]. This gives an ordering of
Q

2, where z � w whenever the θ -angle flow line from z merges into the θ -angle flow
line from w on the left side. Equivalently, z � w if and only if z lies in a connected
component of C \ (ηw

θ ∪ ηw
θ−π ) which lies to the left of ηw

θ and to the right of ηw
θ−π .

One can construct a unique Peano curve which visits points of Q
2 with respect to this

ordering [70, Theorem 1.16]. We call this curve the space-filling SLEκ ′ counterflow
line of ĥ in Ĉ with angle θ − π

2 and we denote this curve by η′
θ− π

2
. It follows from

the construction that a.s. for any fixed z ∈ C, the flow lines ηzθ and ηzθ−π are the
left and right boundaries of η′

θ− π
2
stopped upon hitting z. We highlight that any pair

of counterflow lines of ĥ with different angles or different starting points are not
independent and their coupling is encoded via the whole-plane GFF ĥ.

2.2 LQG description of the skew Brownian permuton

In this section, we prove Proposition 1.13 by directly applying Theorem 1.12 (we
invite the reader to review the statement of these theorem now that all the objects have
been properly introduced). Fix γ ∈ (0, 2) and an angle θ ∈ [−π

2 , π
2 ]. In what follows

we consider:

• a unit-area γ -Liouville quantum sphere (Ĉ, h, 0,∞) with two marked points at 0
and ∞;

• the associated γ -LQG area measure μh (which is in particular a random, non-
atomic, Borel probability measure on Ĉwhich assigns positive mass to every open
subset of Ĉ);

• an independent whole-plane GFF ĥ (viewed modulo a global additive integer
multiple of 2πχ );
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Fig. 4 Left: The squared box is a portion of the complex plane C. We fix θ as shown in the picture. We plot
in red the flow lines ηxθ and in blue the flow lines ηxθ−π for six points x ∈ C. For every x ∈ C, the flow
lines ηxθ and ηxθ−π are the left and right outer boundaries of the space-filling SLEκ ′ η′

θ− π
2
stopped when

it hits x . The space-filling SLEκ ′ η′
θ− π

2
fills in the regions 1 (in light blue),2,3,4,5,6, and 7 in this order.

The left figure illustrates the case when κ ′ ≥ 8. Right: The same illustration as in the left-hand side when
κ ′ ∈ (4, 8). In this case we just considered a single point z ∈ C. The flow lines ηzθ (in red) and ηzθ−π (in
blue) started from the same point z can hit each other and bounce off. The space-filling SLEκ ′ η′

θ− π
2
fills

first the regions 1 (in light blue) and then the region 2 (in white)

• two space-filling SLEκ ′ counterflow lines of ĥ in Ĉ with angles 0 and θ − π
2 ,

denoted by η′ := η′
0 and η′

θ− π
2
and started from ∞ at time t = 0 and ending at ∞

at t = 1;
• the skew Brownian permuton μρ,q with ρ = − cos(πγ 2/4) ∈ (−1, 1) and q =
qγ (θ) ∈ [0, 1] as constructed in Theorem 1.12 from (μh, η

′, η′
θ− π

2
).

Also recall that ψγ,θ (t) is the first time when η′
θ− π

2
hits η′(t), and that the curves η′

and η′
θ− π

2
are parametrized so that μh(η

′([s, t])) = μh(η
′
θ− π

2
([s, t])) = t − s for

0 ≤ s < t ≤ 1.

Proof of Proposition 1.13 By [28, Theorem 1.11], the random measure μρ,q is almost
surely a permuton, i.e., almost surely its marginals are uniform. We first prove that for
fixed 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1, μρ,q([x1, x2] × [y1, y2]) is a.s. equal
to the quantum area of η′([x1, x2])∩ η′

θ− π
2
([y1, y2]). By Theorem 1.12, we know that

a.s.

μρ,q([x1, x2] × [y1, y2]) = Leb({t ∈ [x1, x2] : ψγ,θ (t) ∈ [y1, y2]}). (2.2)

Using the fact that the set of multiple points for η′ and η′
θ− π

2
a.s. has zero quantum

area (see e.g. [40, Section B.5]), and since we are parameterizing η′
θ− π

2
by quantum

123



Baxter permuton and Liouville quantum gravity

area, it follows that a.s. for almost every t ∈ [0, 1], ψγ,θ (t) ∈ [y1, y2] if and only if
η′(t) ∈ η′

θ− π
2
([y1, y2]). This implies that a.s.

Leb({t ∈ [x1, x2] : ψγ,θ (t) ∈ [y1, y2]}) = Leb({t ∈ [x1, x2] : η′(t) ∈ η′
θ− π

2
([y1, y2])}).

(2.3)

Again since we are parameterizing η′ using quantum area, by (2.2) and (2.3) it follows
that a.s.

μρ,q

(
[x1, x2] × [y1, y2]

)
= μh

(
η′
0([x1, x2]) ∩ η′

θ− π
2
([y1, y2])

)
, (2.4)

for fixed 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1. Now we fix x1, y1, y2 and let
x2 vary. By Fubini’s theorem, there exists a set Ax1,y1,y2 ⊂ [x1, 1] with Lebesgue
measure zero, such that (2.4) holds for any x2 ∈ [x1, 1]\Ax1,y1,y2 . Since both sides
of (2.4) are monotone in x2, and the right-hand side of (2.4) is a.s. continuous in x2
(this follows because γ -LQG measure a.s. has no atoms), we see that a.s. for fixed
x1, y1, y2 and all x2 ∈ [x1, 1], (2.4) holds. We can continue this argument by fixing y1
and y2 and letting both of x1 and x2 vary, and then only fixing y1, and finally letting
x1, x2, y1, y2 vary. Therefore we arrive at the conclusion that a.s. (2.4) holds for all
0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1. ��

3 Density of the Baxter permuton

In this section, building on Proposition 1.13, we study the expectation of the skew
Brownian permuton μρ,q and express it in terms of the law of the areas of certain
quantum disks. In the special case q = 1

2 and ρ = − 1
2 , i.e. when μρ,q is the Baxter

permuton, we compute this area law by considering the random duration of certain
Brownian excursions and derive Theorem 1.3. The main tools are the rerooting invari-
ance for marked points of quantum spheres and the conformal welding of quantum
disks.

This section is organized as follows. In Sects. 3.1 and 3.2, we review the input
from conformal welding and the rerooting invariance, respectively. Then, in Sect. 3.3,
we give an expression for the intensity measure of the skew Brownian permuton
and in particular we prove Theorem 1.3. Finally, in Sect. 3.4 we will show that
the expected occurrence E[(õcc(21, μρ,q))] linearly depends on θ = θγ (q), prov-
ing Proposition 1.14.

Throughout this section we fix γ ∈ (0, 2) and κ = γ 2 ∈ (0, 4), except that in
Sect. 3.3.2 we restrict to the Baxter case where γ = √

4/3.

3.1 Conformal welding of quantum disks

We start by reviewing in Sect. 3.1.1 the disintegration and the scaling properties of
quantum disks and spheres, and then in Sect. 3.1.2 we recall the notion of conformal
welding of quantum disks from [3].
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3.1.1 Properties of quantum disks and quantum spheres

We recap the disintegration ofmeasures on quantum surfaces as in [3, Section 2.6]. For
the infinite measureMdisk

2 (W ), one has the following disintegration for the quantum
boundary length:

Mdisk
2 (W ) =

∫ ∞

0

∫ ∞

0
Mdisk

2 (W ; �1, �2) d�1 d�2, (3.1)

where Mdisk
2 (W ; �1, �2) are σ -finite measures supported on doubly boundary-

marked quantum surfaces with left and right boundary arcs having quantum
length �1 and �2, respectively. See for instance [3, Definition 2.22 and Propo-
sition 2.23]. We remark that the exact meaning of the identity in (3.1) is that
Mdisk

2 (W ) (S) = ∫ ∞
0

∫ ∞
0 Mdisk

2 (W ; �1, �2) (S) d�1 d�2 for all measurable sets S.

The measureMdisk
2 (W ; �1, �2) is finite when W < 2+ γ 2

2 (see e.g. [3, Lemmas 2.16
and 2.18]); the measure is also finite for certain larger W (e.g. W = 4) but the range

W < 2 + γ 2

2 is sufficient for us (see the proof of Lemma 3.4).

Using precisely the same argument, we can disintegrate themeasureMsph
2 (W ) over

the quantum area A. In particular, we have

Msph
2 (W ) =

∫ ∞

0
Msph

2 (W ; a) da, (3.2)

where for all a > 0 the measures Msph
2 (W ; a) are σ -finite (and finite if and only

if W < 4 [77]) supported on doubly marked quantum surfaces with quantum area
A = a.

We also remark that if (D, h, x, y) is a sample from Mdisk
2 (W ; �1, �2) or from

Msph
2 (W ; a), then h is a random field on D (more precisely, a random distribution on

D) and in particular not a random field modulo additive constant.
The next input is a scaling property of quantum disks. Recall our definition of

sampling given at the beginning of Sect. 2.

Lemma 3.1 (Lemma 2.24 of [3]) Fix W , �1, �2 > 0. The following two random vari-
ables sampled as follows have the same law for all λ > 0:

1. Sample a quantum disk fromMdisk
2 (W ; λ�1, λ�2);

2. Sample a quantum disk from λ
− 2W

γ 2
−1Mdisk

2 (W ; �1, �2) and add
2
γ
log λ to its field.

Similarly we have the following scaling property for quantum spheres, which can be
proved in the same manner as [3, Lemma 2.24].

Lemma 3.2 Fix W , a > 0. The following two random variables sampled as follows
have the same law for all λ > 0:

1. Sample a quantum sphere from Msph
2 (W ; λa);

2. Sample a quantum sphere from λ
− W

γ 2
−1Msph

2 (W ; a) and add 1
γ
log λ to its field.
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We end this subsection with two results on the measuresMdisk
2 (W ; �1, �2). Before

stating them, let us recall the definition of the Brownian excursion in a cone with
non-fixed duration as constructed in [66, Section 3]. (We highlight that here we are
considering non-fixed time interval excursions. This is a key difference with the Brow-
nian loops introduced in Sect. 1.2,where the time intervalwas fixed and equal to [0, 1].)
Fix an angle φ ∈ (0, 2π) and let Cφ be the cone {z ∈ C : arg z ∈ (0, φ)}. Let K be the
collection of continuous planar curves γ in Cφ defined for time t ∈ [0, tγ ], where tγ
is the duration of the curve. Then K can be seen as a metric space with

d(γ1, γ2) = inf
β

{
sup

0<t<tγ1

|t − β(t)| + |γ1(t) − γ2(β(t))|
}

,

where β ranges from all the possible increasing homeomorphisms from [0, tγ1 ] to
[0, tγ2 ]. For z ∈ Cφ and r > 0, let μ#

Cφ
(z, reiφ) be the law of the standard planar

Brownian motion starting from z and conditioned on exiting Cφ at reiφ (see [66,
Section 3.1.2] for further details on this conditioning). This is a Borel probability
measure on K, and for all �, r > 0 the following limit exists for the Prohorov metric

lim
ε→0

μ#
Cφ

(� + iε, reiφ). (3.3)

We denote the limiting measure by μ#
Cφ

(�, reiφ) and call it the law of the Brownian

excursion in the cone Cφ from � to reiφ with non-fixed duration.
The next result describes the area of a disk sampled from Mdisk

2 (W ; �1, �2) when

W = γ 2

2 . We remark that this result holds only in the special case W = γ 2

2 . Recall
also from the beginning of Sect. 2 that for a finite measure ν we let |ν| be its total mass
and we let ν# := ν

|ν| denote its normalized version.

Proposition 3.3 (Proposition 7.7 of [3]) Fix γ ∈ (0, 2) and φ = πγ 2

4 . There exists a
constant c> 0 such that for all �1, �2 > 0,

∣∣∣∣Mdisk
2

(
γ 2

2
; �1, �2

)∣∣∣∣ = c
(�1�2)

4
γ 2

−1

(
�

4
γ 2

1 + �

4
γ 2

2

)2 . (3.4)

Moreover, the quantum area of a sample fromMdisk
2 (

γ 2

2 ; �1, �2)
# has the same law as

the duration of a sample from μ#
Cφ

(�1
√
2 sin φ, �2

√
2 sin φeiφ).

The next result holds for arbitrary W ∈ (0, 2 + γ 2

2 ). The upper bound 2 + γ 2

2
guarantees that the measure Mdisk

2 (W ; �1, �2) is finite, as explained after (3.1).

Lemma 3.4 For any W ∈ (0, 2 + γ 2

2 ) and �1, �2 > 0 the quantum area of a sample
from Mdisk

2 (W ; �1, �2) is absolutely continuous with respect to Lebesgue measure.
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Proof ForW = γ 2/2 the result follows from Proposition 3.3. ForW ∈ (γ 2/2, 2+ γ 2

2 )

we get the result from [3, Theorem 2.2]2 with W1 = γ 2/2 and W2 = W − γ 2/2,
along with the fact that the sum of two independent random variables has a density
function if at least one of the summands has a density. Note that the statement of [3,
Theorem 2.2] involves the measures Mdisk

2 (W ; �1, �2) and we are using the fact that

these measures are finite when W < 2 + γ 2

2 as explained after (3.1).
Finally, we get the result for W ∈ (0, γ 2/2) by using that we know the lemma for

thick quantum disks with weights in (γ 2, 2 + γ 2/2) and that a thin quantum disk of
weight W ∈ (0, γ 2/2) can be described as an ordered collection of doubly-marked
thick quantum disks of weight γ 2 − W ∈ (γ 2/2, γ 2), as done in Definition 2.3. ��

3.1.2 Conformal welding of quantum disks

In this section we review one of the main results of [3], which is stated as Theorem 3.5
below and will be a key input in the proof of Theorem 1.3. We first give the formal
statement of the theorem and then we explain the interpretation of the theorem as a
conformal welding of quantum surfaces.

Recall that SLEκ(ρ1; ρ2) and whole-plane SLEκ(ρ)were introduced in Sect. 2.1.3.
In particular, recall that SLEκ(ρ1; ρ2) from a ∈ ∂D to b ∈ ∂D in a domain D ⊂ C

hit (countably) infinitely many times the left (resp. right) boundary if and only if
ρ1 < κ

2 − 2 (resp. ρ2 < κ
2 − 2), and whole-plane SLEκ(ρ) curves from 0 to ∞ hit

themselves (countably) infinitely many times if and only if ρ < κ
2 − 2.

Fix n ≥ 2, W1, ..,Wn > 0, κ = γ 2 ∈ (0, 4) and let W = W1 + ... + Wn . Let
(D, x, y) be a proper simply connected domain contained in C with two points x
and y lying on the boundary of D. We inductively define some probability measures
Pdisk(W1, . . . ,Wn) on non-crossing curves (η1, .., ηn−1) in D joining x and y for all
n ≥ 2.When n = 2, define themeasurePdisk(W1,W2) to be an SLEκ(W1−2;W2−2)
in (D, x, y); when n ≥ 3, the measure Pdisk(W1, . . . ,Wn) on non-crossing curves
(η1, . . . , ηn−1) is defined recursively by first sampling ηn−1 from SLEκ(W1 + ... +
Wn−1 − 2;Wn − 2) on (D, x, y) and then the tuple (η1, . . . , ηn−2) as concatenation
of samples from Pdisk(W1, . . . ,Wn−1) in each connected component (D′

i , x
′
i , y

′
i ) of

D\ηn−1 lying to the left of ηn−1 (where x ′
i and y′

i are the first and the last point on the
boundary ∂D′

i visited byηn−1; see also Fig. 5).We remark thatwhenW1+...+Wn−1 <
γ 2

2 there are (countably) infinitely many connected components (D′
i , x

′
i , y

′
i ), while

when W1 + ... + Wn−1 ≥ γ 2

2 there is only one component (D′, x ′, y′).
Note that using conformal invariance of SLE, the definition above can be extended

to all proper simply connected domains D of C with two boundary points x and y.
We also analogously define the probability measure Psph(W1, . . . ,Wn) on n-tuple

of curves (η0, . . . , ηn−1) in Ĉ from 0 to ∞ as follows. First sample a whole-plane
SLEκ(W1+ ...+Wn −2) curve η0 from 0 to∞ in Ĉ and then the tuple (η1, . . . , ηn−1)

as concatenation of samples from Pdisk(W1, . . . ,Wn) in each connected component

2 The inexperienced reader might consider to skip this part of the proof at a first read and come back
to this proof after reading Sect. 3.1.2 where a counterpart of [3, Theorem 2.2] for quantum spheres (i.e.
Theorem 3.5 below) will be presented in detail.
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η2η1

D′
1

D′
2

D′
3

D′
4

x = x′
1

y′
1 = x′

2

y′
2 = x′

3

y′
3 = x′

4
y = y′

4

Fig. 5 An illustration of the iterative construction of the measure Pdisk(W1, . . . ,Wn) for n = 3. We
consider the case when D is a disk with two marked boundary points x and y as plotted in the picture,

W1 + W2 <
γ 2

2 , and W3 ≥ γ 2

2 . We first sample a (red) curve η2 from SLEκ (W1 + W2 − 2;W3 − 2)

on (D, x, y) which hits the left boundary infinitely many times because W1 + W2 <
γ 2

2 and does not hit

the right boundary because W3 ≥ γ 2

2 . In each (green) domain D′
j we sample an independent collection of

curves from Pdisk(W1, . . . ,Wn−1) starting at x ′
j and ending at y′

j . In our specific case when n = 3, we

sample a (blue) curve from SLEκ (W1 − 2;W2 − 2) in each (green) domain D′
j starting at x

′
j and ending at

y′
j , and then we consider the (blue) curve η1 obtained as the concatenation of these (blue) curves. We note

that our figure is simplified since there are actually (countably) infinitely many domains D′
j cut out by the

(red) SLE curve η2. The law of the two curves (η1, η2) is Pdisk(W1,W2,W3)

of Ĉ\η0. We remark that when when W1 + ... + Wn <
γ 2

2 there are (countably)

infinitely many connected components, while whenW1 + ...+Wn ≥ γ 2

2 there is only
one component.

Given a measureM on quantum surfaces with k marked points and a conformally
invariant measureP on curves, letM⊗P be the measure on the curve-decorated sur-
faces with k marked points constructed by first sampling a surface (D, ψ, z1, . . . , zk)
from M and then drawing independent curves on D sampled from the measure P .
Note that we require that the measure P on curves is conformally invariant (which is
satisfied in the above case of SLEκ -type curves) so that this notation is compatible
with the coordinate change (2.1). Sometimes the curves are required to start and/or
end at given marked points of the surface; this will either be stated explicitly or be
clear from the context.

Now we are ready to state one of the main results of [3].

Theorem 3.5 (Theorem 2.4 of [3]) Fix n ≥ 1 and W1, . . . ,Wn > 0. Let W = W1 +
... + Wn. Then there exists a constant c ∈ (0,∞) depending only on κ = γ 2∈ (0, 4)
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and W1, . . . ,Wn, such that

Msph
2 (W ) ⊗ Psph(W1, . . . ,Wn)

= c
∫

R
n+
Mdisk

2 (W1; �0, �1) × Mdisk
2 (W2; �1, �2) × · · · ×

Mdisk
2 (Wn; �n−1, �0) d�0 ... d�n−1.

We refer to this type of results as conformal welding of quantum surfaces. We
now give a more informal interpretation of the above result in order to help the
reader to develop some intuition on the statement of Theorem 3.5. The right-hand
side of the indented equation in the theorem can be interpreted as the “conformal
welding” of the n quantum disks sampled from the measures Mdisk

2 (Wj ; � j−1, � j )

into a quantum sphere with law Msph
2 (W ) decorated with n SLEκ -type curves with

joint law Psph(W1, . . . ,Wn). More precisely, one can first conformally weld the
first pair of quantum disks sampled from Mdisk

2 (W1; �0, �1) × Mdisk
2 (W2; �1, �2)

along their length �1 boundary arcs, yielding a new quantum disk with two marked
boundary points, a SLEκ -type curve joining them, and two boundary arcs of quan-
tum lengths �0 and �2. Then one can iterate this procedure by conformally welding
this new curve-decorated quantum disk with the next quantum disks sampled from
Mdisk

2 (Wj ; � j−1, � j ) for all j = 3, . . . , n (�n = �0), obtaining in the end another
quantum disk with two marked boundary points, n − 1 SLEκ -type curves joining
them, and two boundary arcs of equal quantum lengths �0. Welding together the left
and the right boundary of this final quantum disk, yield to a quantum sphere deco-
rated by n SLEκ -type curves. Theorem 3.5 states that the law of this curve-decorated
quantum-sphere isMsph

2 (W )⊗Psph(W1, . . . ,Wn). We refer the curious reader to the
original paper [3] for further details.

3.2 Rerooting invariance of quantum spheres and its consequences on the skew
Brownian permuton

In this section we review the rerooting invariance of the marked points on a unit-area
quantum sphere and give an alternative expression for the intensity measure E[μρ,q ]
of the skew Brownian permuton. The following result is [40, Proposition A.13] and is
the base point of our arguments.

Proposition 3.6 (Rerooting invariance of quantum spheres) Let γ ∈ (0, 2). Suppose
(Ĉ, h, 0,∞) is a unit-area quantum sphere of weight 4− γ 2. Then conditional on the
surface (Ĉ, h), the points which corresponds to 0 and∞ are distributed independently
and uniformly from the quantum area measure μh. That is, if x, y in Ĉ are chosen
uniformly fromμh and ϕ : Ĉ → Ĉ is a conformal map with ϕ(x) = 0 and ϕ(y) = ∞,
then (Ĉ, h◦ϕ−1+Q log |(ϕ−1)′|, 0,∞) has the same law as (Ĉ, h, 0,∞)when viewed
as doubly marked quantum surfaces.
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Fig. 6 The flow lines ηE, ηθ , ηW, ηθ+π of ĥ with corresponding angles−π
2 , θ ,

π
2 , θ +π issued from 0 for

θ ∈ (−π
2 , π

2 ). They cut the quantumsphere (Ĉ, h, 0,∞) into four quantumdiskswith areas A1, A2, A3, A4
as labeled. These four quantum disks (which can be either thin or thick quantum disks depending on the
values of the parameters γ and θ ) are independent conditioned on having the same boundary arc quantum
lengths (from the welding) and total area 1, i.e. A1 + A2 + A3 + A4 = 1; see Sect. 3.3 for further details.
We also highlight that the counterflow line η′

0 first visits the regions with area A2 and A3 and then the
regions with area A1 and A4, while the counterflow line η′

θ− π
2
first visits the regions with area A1 and A2

and then the regions with area A3 and A4. Moreover, the flow lines ηW and ηE (resp. ηθ and ηθ+π ) are
a.s. left and right boundaries of η′ (resp. η′

θ− π
2
) stopped upon hitting 0, as explained in Sect. 2.1.3

In particular, if we condition on y = ∞ in the statement of Proposition 3.6 and
resample x according to the quantum area measure μh , then the quantum surface
(Ĉ, h, x,∞) has the same law as (Ĉ, h, 0,∞).

Before proving the main result of this section, we introduce some more notation.
Let ĥ be a whole-plane GFF (viewed modulo a global additive integer multiple of
2πχ ). For w ∈ Ĉ, we denote by ηw

E , ηw
θ , ηw

W, ηw
θ+π the flow lines of ĥ issued from w

with corresponding angles −π
2 , θ, π

2 , θ + π (defined at the end of Sect. 2.1.3). Recall
that from [70, Theorem 1.7] flow lines from the same point with different angles might
bounce off each other but can never cross or merge. We denote by Aw

1 , Aw
2 , Aw

3 , Aw
4

the areas of the four regions cut out by the four flow lines ηw
E , ηw

θ , ηw
W, ηw

θ+π , labeled
as in Fig. 6.Whenw = 0, we simply write ηE, ηθ , ηW, ηθ+π for η0E, η0θ , η

0
W, η0θ+π and

A1, A2, A3, A4 for A0
1, A

0
2, A

0
3, A

0
4. In this case, it can be argued using the imaginary

geometry coupling in [69, Theorem 1.1] and [70, Theorem 1.1] that the joint law of
the four flow lines ηE , ηθ , ηW , ηθ+π can be viewed as Psph(W1,W2,W3,W4) with
(W1,W2,W3,W4) determined by

W1 = W3 = 2 − γ 2

2
− 4 − γ 2

2π
(θ + π/2); W2 = W4 = 4 − γ 2

2π
(θ + π/2).(3.5)

See [40, Tables 1.1 and 1.2] for the complete correspondence between imaginary
geometry angles and quantum surface weights.

123



J. Borga et al.

Proposition 3.7 Let γ ∈ (0, 2). Let (Ĉ, h, 0,∞) be a unit-area quantum sphere of
weight 4 − γ 2, and let θ ∈ [−π

2 , π
2 ]. Let ĥ be a whole-plane GFF (viewed modulo

a global additive integer multiple of 2πχ ) independent of h and consider the corre-
sponding four areas A1, A2, A3, A4 defined above (see also Fig. 6). Set ρ ∈ (−1, 1)
and q ∈ [0, 1] such that ρ = − cos(πγ 2/4) and q = qγ (θ) and consider the skew
Brownian permuton μρ,q . Then for all rectangles [x1, x2] × [y1, y2] ⊂ [0, 1]2,

E[μρ,q ]
(
[x1, x2] × [y1, y2]

)

= Msph
2 (4 − γ 2; 1)# ⊗ Psph(W1,W2,W3,W4)

(
A2 + A3 ∈ [x1, x2], A1 + A2 ∈ [y1, y2]

)
,

where W1,W2,W3,W4 are given in (3.5).

Proof Given the unit-area quantum sphere (Ĉ, h, 0,∞), we uniformly sample a point
w according to the γ -LQG areameasureμh . Consider the flow lines ηwE , ηwθ , ηwW, ηwθ+π

of the whole-plane GFF ĥ starting from w and going to infinity. Also assume that
the skew Brownian permuton μρ,q is coupled with (Ĉ, h, 0,∞) and ĥ under the
same probability measure P as in Proposition 1.13. On the one hand, by Proposi-
tion 1.13, Eμρ,q([x1, x2] × [y1, y2]) is the probability of w falling into the random
set η′([x1, x2]) ∩ η′

θ− π
2
([y1, y2]). On the other hand, w is a.s. not a double point for

neither η′ nor η′
θ− π

2
; and by the definition of space-filling SLE curves given at the

end of Sect. 2.1.3, the flow lines ηwW and ηwE (resp. ηwθ and ηwθ+π ) are a.s. left and
right boundaries of η′ (resp. η′

θ− π
2
) stopped upon hittingw. From this and the fact that

we are parametrizing the curves η′ and η′
θ− π

2
using μh , we see that a.s. w falls into

η′([x1, x2])∩η′
θ− π

2
([y1, y2]) if and only if Aw

1 +Aw
2 ∈ [y1, y2] and Aw

2 +Aw
3 ∈ [x1, x2],

which implies that

E[μρ,q ]
(
[x1, x2] × [y1, y2]

)
= P

(
Aw
2 + Aw

3 ∈ [x1, x2], Aw
1 + Aw

2 ∈ [y1, y2]
)
.

Now we treat w and ∞ as the two marked points of the quantum sphere, and consider
the shift z �→ z −w. Let (Ĉ, hw, 0,∞) be the corresponding doubly marked surface,
where hw = h(· + w). We also set ĥw := ĥ(· + w). It is clear that given w and the
quantum sphere (Ĉ, h, 0,∞), the field ĥw has the law as a whole-plane GFF (modulo
a global additive integer multiple of 2πχ ), and the four flow lines ηwE , ηwθ , ηwW, ηwθ+π

are mapped by the shift z �→ z − w to corresponding flow lines of ĥw issued from 0.
Moreover, by the rerooting invariance stated in Proposition 3.6, (Ĉ, hw, 0,∞) has the
same law as the unit-area quantum sphere (Ĉ, h, 0,∞) and it is independent of the
whole-plane GFF ĥw. Since, as discussed above, the joint law of the four flow lines
is Psph(W1,W2,W3,W4) where W1,W2,W3,W4 are given in (3.5), and the law of a
unit-area quantum sphere isMsph

2 (4 − γ 2; 1)# by Definition 2.1 and (3.2), it follows
that

P

(
Aw
2 + Aw

3 ∈ [x1, x2], Aw
1 + Aw

2 ∈ [y1, y2]
)

= Msph
2 (4 − γ 2; 1)# ⊗ Psph(W1,W2,W3,W4)
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(A2 + A3 ∈ [x1, x2], A1 + A2 ∈ [y1, y2]) ,

which justifies the proposition. ��

3.3 Density of the Baxter permuton

In this section we conclude the proof of Theorem 1.3. First we derive in Sect. 3.3.1 a
formula for the density of the skewBrownian permutonwhich holds for allρ ∈ (−1, 1)
and q ∈ (0, 1) (Theorem 3.8), and in Sect. 3.3.2 we simplify this formula in the special
case of the Baxter permuton. Finally, in Sect. 3.3.3 we sketch how the formula can be
made yet more explicit for the Baxter permuton via known formulas for the volume
of spherical tetrahedra.

3.3.1 Density of the skew Brownian permuton in terms of quantum disks

Recall from Lemma 3.4 that for any W ∈ (0, 2 + γ 2

2 ) and �1, �2 > 0 the quantum
area A of a sample from Mdisk

2 (W ; �1, �2) is absolutely continuous with respect to
Lebesgue measure. Let pW (a, �1, �2) denote the density of A, that is, for any non-
negative measurable function g, we have

∫
g(μψ(D)) dMdisk

2 (W ; �1, �2) =
∫ ∞

0
g(a)pW (a, �1, �2) da, (3.6)

where (D, ψ, x, y) is an embedding of a sample from Mdisk
2 (W ; �1, �2) (recall the

definition of embedding from Sect. 2.1.2). The aim of this section is to prove the
following.

Theorem 3.8 Consider the skew Brownian permuton μρ,q of parameters ρ ∈ (−1, 1)
and q ∈ (0, 1). Let γ ∈ (0, 2) and θ ∈ [−π

2 , π
2 ] be defined by ρ = − cos(πγ 2/4)

and θ = θγ (q). Set (W1,W2,W3,W4) as in (3.5) and denote by pi (a; �1, �2) :=
pWi (a; �1, �2) the density of the quantum area of a sample fromMdisk

2 (Wi ; �1, �2) in
the sense of (3.6). Then the intensity measure E[μρ,q ] is absolutely continuous with
respect to the Lebesgue measure on [0, 1]2 and has the following density function

(x, y) �→c
∫ min{x,y}

max{0,x+y−1}

∫

R
4+
p1(y − z, �1, �2)p2(z, �2, �3)

p3(x − z, �3, �4)p4(1 + z − x − y, �4, �1) d�1d�2d�3d�4 dz,

where c is a normalizing constant.

We start the proof by recalling that the joint law of the four flow lines
ηE, ηθ , ηW, ηθ+π can be viewed as Psph(W1,W2,W3,W4) with (W1,W2,W3,W4)

determined by (3.5). Then, in order to prove Theorem 3.8, we first use the scaling
property of quantum disks and quantum spheres to remove the conditioning on hav-
ing total quantum area one (see Proposition 3.9), and then we conclude the proof by
applying Theorem 3.5.
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Proposition 3.9 Let γ ∈ (0, 2). Let (Ĉ, h, 0,∞) be a quantum sphere of weight
4 − γ 2 (here we do not condition on the area of the quantum sphere to be 1), and
let θ ∈ [−π

2 , π
2 ]. Let ĥ be a whole-plane GFF (viewed modulo a global additive

integer multiple of 2πχ ) independent of h and consider the corresponding four areas
A1, A2, A3, A4 defined above (see also Fig. 6). Set ρ ∈ (−1, 1) and q ∈ [0, 1] such
that ρ = − cos(πγ 2/4) and q = qγ (θ) and consider the skew Brownian permuton
μρ,q .

Let f be a non-zero function on [0,∞) with
∫ ∞
0 | f (t)|t−

4
γ 2 dt < ∞. There exists

a universal constant c depending only on γ , θ and f (and so only on ρ, q and f ),
such that for all 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1, it holds that

Eμρ,q([x1, x2] × [y1, y2])
= c

∫
f (A)1{

A1+A2
A ∈[y1,y2], A2+A3

A ∈[x1,x2]
} dMsph

2 (4−γ 2) ⊗ Psph(W1,W2,W3,W4),

(3.7)

where A denotes the area of a quantum sphere sampled fromMsph
2 (4 − γ 2), and the

weights W1,W2,W3,W4 are given by (3.5).

Remark 3.10 We remark that the function f purely serves as a test function and scaling
factor, which shall be eliminated later once we apply the scaling property of quantum

disks. The condition
∫ ∞
0 | f (t)|t−

4
γ 2 dt < ∞ is made to assure that the integral on the

right hand side of (3.7) is finite.

Proof of Proposition 3.9 We disintegrate the right-hand side of (3.7) in terms of quan-
tum area. By Lemma 3.2, we have the following relation for any fixed a > 0

a
− 4

γ 2

∫
1{A1+A2∈[y1,y2],A2+A3∈[x1,x2]} dMsph

2 (4 − γ 2; 1) ⊗ Psph(W1,W2,W3,W4)

=
∫

1{
A1+A2

a ∈[y1,y2], A2+A3
a ∈[x1,x2]

} dMsph
2 (4 − γ 2; a) ⊗ Psph(W1,W2,W3,W4).

(3.8)

Recall that A denotes the area of the quantum sphere sampled from Msph
2 (4 − γ 2).

By multiplying both sides of (3.8) by f (a) and integrate over a ∈ (0,∞), we get

(∫ ∞

0
f (a)a

− 4
γ 2 da

)(∫
1{A1+A2∈[y1,y2],A2+A3∈[x1,x2]} dMsph

2 (4 − γ 2; 1)

⊗Psph(W1,W2,W3,W4)
)

=
∫ ∞

0

∫
f (a)1{

A1+A2
a ∈[y1,y2], A2+A3

a ∈[x1,x2]
} dMsph

2 (4 − γ 2; a)

⊗Psph(W1,W2,W3,W4) da

=
∫

f (A)1{
A1+A2

A ∈[y1,y2], A2+A3
A ∈[x1,x2]

} dMsph
2 (4 − γ 2) ⊗ Psph(W1,W2,W3,W4).
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where on the last equality we used the disintegration formula (3.2) and the fact that a
sample fromMsph

2 (4 − γ 2; a) has quantum area a.
The conclusion follows from Proposition 3.7 with

c =
(∣∣∣Msph

2 (4 − γ 2; 1)
∣∣∣
∫ ∞
0 f (a)a

− 4
γ 2 da

)−1

. ��

We can now apply the conformal welding result stated in Theorem 3.5 to the right-
hand side of (3.7). To simplify the expressions, we first need the following scaling
property of quantum disks.

Lemma 3.11 For any λ > 0, the density pW (a, �1, �2) defined in (3.6) satisfies the
scaling property

pW (λ2a, λ�1, λ�2) = λ
− 2

γ 2
W−3

pW (a, �1, �2).

Proof The lemma is an easy consequence of Lemma 3.1, from which we know that

∫
g(μψ(D)) dMdisk

2 (W ; λ�1, λ�2) = λ
− 2

γ 2
W−1

∫
g(μψ+ 2

γ
log λ(D)) dMdisk

2 (W ; �1, �2),

for any non-negativemeasurable function g, where both surfaces in the above equation
are embedded in the planar domain D. Then from the definition given in (3.6) we have
that

∫ ∞

0
g(a)pW (a, λ�1, λ�2) da = λ

− 2
γ 2

W−1
∫ ∞

0
g(λ2a)pW (a, �1, �2) da

= λ
− 2

γ 2
W−3

∫ ∞

0
g(a)pW (λ−2a, �1, �2) da

and the conclusion readily follows. ��
We now complete the proof of Theorem 3.8.

Proof of Theorem 3.8 Recall that pi (a; �1, �2) = pWi (a; �1, �2). By Theorem 3.5 and
the definition given in (3.6), we can write the right-hand side of (3.7) as

c
∫

R
8+
f (a)1{

a1+a2
a ∈[y1,y2], a2+a3

a ∈[x1,x2]
} p1(a1, �1, �2)p2(a2, �2, �3)p3(a3, �3, �4)p4(a4, �4, �1)

4∏

i=1

dai

4∏

i=1

d�i , (3.9)

where a = a1 + a2 + a3 + a4. Applying the change of variables

x = a2 + a3
a

; y = a1 + a2
a

; z = a2
a

; a = a1 + a2 + a3 + a4;
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then one can compute that
∣∣∣ ∂(a1,a2,a3,a4)

∂(x,y,z,a)

∣∣∣ = a3. Then (3.9) is equal to

c
∫

R
4+

∫ x2

x1

∫ y2

y1

∫ ∞

0

∫ min{x,y}

max{0,x+y−1}
a3 f (a)p1((y − z)a, �1, �2) ·

p2(za, �2, �3)p3((x − z)a, �3, �4)p4((1 + z − x − y)a, �4, �1) dz da dy dx
4∏

i=1

d�i .(3.10)

If we further apply the change of variables �i �→ √
a�i , then from Lemma 3.11 and

the fact that W1 +W2 +W3 +W4 = W = 4− γ 2 from (3.5), we get that (3.10) is the
same as

c
∫ ∞

0
f (a)a

− 4
γ 2 da

∫

R
4+

∫ x2

x1

∫ y2

y1

∫ min{x,y}

max{0,x+y−1}
p1(y − z, �1, �2) ·

p2(z, �2, �3)p3(x − z, �3, �4)p4(1 + z − x − y, �4, �1) dz dy dx
4∏

i=1

d�i ,

which concludes the proof. ��

3.3.2 The explicit formula for the density of the Baxter permuton

In this section we restrict to the case when q = 1
2 and γ = √

4/3. Then, as remarked
below Theorem 1.12, we have that θ = θγ (q) = 0. In addition, from (3.5), we also
have that

W1 = W2 = W3 = W4 = 1 − γ 2

4
= γ 2

2
= 2

3
.

We refer the reader to Remark 3.14 for a discussion on the difficulties to address the
general case ρ ∈ (−1, 1) and q ∈ (0, 1). From Proposition 3.3, if W = γ 2

2 then the

quantum area of a sample fromMdisk
2 (

γ 2

2 ; �1, �2)
# has the same law as the duration of

a sample from μ#
Cφ

(�1
√
2 sin φ, �2

√
2 sin φeiφ) with φ = πγ 2

4 (where we recall that

μ#
Cφ

(�, reiφ) denotes the law of the Brownian excursion in the cone Cφ from � to reiφ

with non-fixed time duration). In our specific case γ 2

2 = 2
3 and φ = π

3 .
Building on this, we prove in the next proposition that the density of the area of a

quantum disk sampled fromMdisk
2 ( 23 ; x, r) introduced in (3.6) is a constant times the

function ρ given by (1.1). This will conclude the proof of Theorem 1.3.

Proposition 3.12 For φ = π
3 , x, r > 0 the duration τ of a sample from μ#

C π
3

(x, re
π i
3 )

has density

p̃(t, x, r) :=
((

3xr

2t
− 1

)
e− x2+r2−xr

2t + e− (x+r)2
2t

)
(x3 + r3)2

18x2r2
· 1

t2
· 1t>0.
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Proof Let (e1, e2) be the standard basis forR
2. For j = 1, ..., 5, let Fj be the reflection

onR
2 about line y = tan jπ

3 x , T0 = id and Tj = Fj ◦Tj−1. Also for z = x+iy = reiθ ,

let z̃ = rei(
π
3 −θ) = x+√

3y
2 +

√
3x−y
2 i be its reflection about y = tan π

6 x . Then for
a standard Brownian motion (Wt )t≥0 = (Xt ,Yt )t≥0 started at z ∈ Cφ killed upon
leaving Cφ (the corresponding probability measure is denoted by P

z), following [58,
Equation 16], its duration τ and the hitting point Wτ has joint law

P
z(τ ∈ dt,Wτ ∈ re

π i
3 dr) = 1

4π t2

5∑

k=0

(−1)ke− |̃z−rTk e1|2
2t (̃z · Tke2) dtdr

:= p1(x, y, t, r) dtdr , (3.11)

where the dot represents the usual inner product in R
2. Note that T0e1 = T5e1 = 1,

T1e1 = T2e1 = e
2π i
3 , T3e1 = T4e1 = e

4π i
3 , T0e2 = −T5e2 = i , T1e2 = −T2e2 = e

π i
6 ,

T3e2 = −T4e2 = e
5π i
6 . Then the right-hand side of (3.11) can be written as

1

2π t2

(√
3x − y

2
e− x2+y2+r2−r(x+√

3y)
2t −

√
3x + y

2
e− x2+y2+r2−r(x−√

3y)
2t + ye− x2+y2+r2+2r x

2t

)
dtdr .

On the other hand, using the conformal mapping z �→ z3 and the conformal invariance
of planar Brownian motion, together with standard planar Brownian exit probability
calculations on H, one has

P
z
(
Wτ ∈ re

π i
3 dr

)
= 3r2

π

3x2y − y3

(−r3 − (x3 − 3xy2))2 + (3x2y − y3)2)
dr := p2(x, y, r) dr ,

and it follows that P
z(τ ∈ dt |Wτ ∈ re

π i
3 dr) = p1(x,y,t,r)

p2(x,y,r)
dt .

Now for fixed x, t, r , as y → 0+, we have

p1(x, y, t, r) = 1

2π t2
(
(
3xr

2t
− 1)e− x2+r2−r x

2t + e− (x+r)2
2t

)
y + o(y2); (3.12)

p2(x, y, r) = 9x2r2

π(x3 + r3)2
y + o(y2). (3.13)

Therefore combining (3.12), (3.13) along with the convergence (3.3), it follows that
for x, r > 0,

P
x
(
τ ∈ dt

∣∣∣Wτ ∈ re
π i
3 dr

)
= (r3 + x3)2

18r2x2t2

((
3r x

2t
− 1

)
e− x2+r2−r x

2t + e− (x+r)2
2t

)
dt,

and this concludes the proof. ��
Remark 3.13 We remark that the sum (3.11) comes from solving the heat equation

∂t u(t, z) = 1

2
�u(t, z), u(0, z) = f (z), z ∈ Cφ; u(t, z) = 0, z ∈ ∂Cφ,
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via the method of images. The solution takes a simple form if φ = π
m for an integer

m > 0, while for general φ ∈ (0, π), the (3.11) can be written as an infinite sum in
terms of the Bessel functions [58, Equation 8].

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3 Combining Propositions 3.3 and 3.12 along with (3.4) for γ =√
4/3, we see that the quantum area of a sample from Mdisk

2 (
γ 2

2 ; x, r) has density
given by a universal constant c times the function p(t, x, r) introduced in (1.1). Then
the conclusion is straightforward from Theorem 3.8. ��
Remark 3.14 We remark that for general q ∈ (0, 1) and γ ∈ (−1, 1), Theorem 3.8
gives a description of the skew Brownian permuton in terms of the density pW of

quantum disks. For W 
= γ 2

2 , an explicit description of the law of the quantum area
under Mdisk

2 (W ; �, r) will be given in a forthcoming work [9] of Ang, Remy, Zhu
and the third author of this paper. This and other results from [9] will then be used to
give a formula for θγ (q) by Ang and the third and the fourth authors of this paper. The

law of the quantum area is much more involved than its counterpart when W = γ 2

2 ,
but preliminary calculations suggest that the formula for θγ (q) is rather simple.

3.3.3 Relations between the density of the Baxter permuton and spherical
tetrahedrons

In this subsection, we comment on the relation between the density pB(x, y) given

by (1.2) and the area function of spherical tetrahedrons in S
3 :=

{
(x1, x2, x3, x4) ∈

R
4 : x21 + x22 + x23 + x24 = 1

}
.

Recall the function ρ(t, x, r) in (1.1), that is

ρ(t, x, r) := 1

t2

((
3r x

2t
− 1

)
e− r2+x2−r x

2t + e− (x+r)2
2t

)
.

Let

g(a1, a2, a3, a4)

:=
∫

R
4+

ρ(a1, �1, �2)ρ(a2, �2, �3)ρ(a3, �3, �4)ρ(a4, �4, �1) d�1 d�2 d�3 d�4.

From Propositions 3.3 and 3.12 we know that g is the joint law of the quantum areas

of the four weight γ 2

2 quantum disks obtained by welding a weight 4 − γ 2 quantum
sphere (as in the statement of Theorem 3.5) for γ = √

4/3. On the other hand, the
density pB of the intensity measure E[μB] of the Baxter permuton μB satisfies, as
stated in (1.2),

pB(x, y) = c
∫ min{x,y}

max{0,x+y−1}
g(y − z, z, x − z, 1 + z − x − y) dz.
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For fixed a1, a2, a3, a4, the function g can be written as a linear combination of inte-
grals

∫

R
4+

∏

j∈J

x j x j+1e
− 1

2 x
T �x dx, (3.14)

where J ⊂ {1, 2, 3, 4}, x5 = x1, and � is a non-negative definite matrix depending
only on a1, a2, a3, a4.

There are two cases: (i) � is non-singular (implying that � is positive definite)
and (ii) � is singular. We will only consider case (i) below, but remark that (3.14) for
� singular can be approximated arbitrarily well by (3.14) for � non-singular, so the
discussion below is also relevant for case (ii) as we can consider an approximating
sequence of non-singular matrices �.

For x ∈ R
4, we write x � 0 if all the entries of x are non-negative. Consider the

function

F(�) :=
∫

R4
e− 1

2 x
T �x1x�0 dx

defined on the space {� ∈ R
4×4 : �T = �, ∃δ > 0, xT�x ≥ δ‖x‖2,∀x � 0},

which in particular contains the set of positive definite symmetric 4 × 4 matrices.
Then it is clear that F(�) is a smooth function in this domain. Since we assume � is
positive definite, we have

F(�) = det(�)−
1
2

∫

R4
e− 1

2 y
T y1

�
− 1
2 y�0

dy.

Using polar coordinates and letting

S(�) :=
∣∣∣
{
y ∈ S

3 : �y � 0
}∣∣∣ , (3.15)

we get

F(�) = det(�)−
1
2 S(�− 1

2 )

∫ ∞

0
r3e− 1

2 r
2
dr = 2 det(�)−

1
2 S(�− 1

2 ).

Hence the integral in (3.14) can be expressed in terms of the function S defined in
(3.15) as follows

∫

R
4+

∏

j∈J

x j x j+1e
− 1

2 x
T �x dx = (−1)|J | ∏

j∈J

∂

∂σ j, j+1
F(�) =(−1)|J |

∏

j∈J

∂

∂σ j, j+1
2 det(�)−

1
2 S(�− 1

2 ),

where � = (σi j ) is viewed as element of R
10.
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The function S(�) can be described in terms of volume of spherical tetrahedron.
The region {y ∈ S

3 : �y � 0} can be thought as points on the sphere staying on the
positive side of the hyperplanes passing through the origin induced by rows of�. Then

it follows that the six dihedral angles are given by
(
π − 〈σi ,σ j 〉

|σi ||σ j |
)

1≤i< j≤4
, where σi is

the i-th row of �, while the Gram matrix has entries
〈σi ,σ j 〉
|σi ||σ j | . S(�) is precisely given

by the volume of the spherical tetrahedron with dihedral angles cos θi = − 〈σ1,σi+1〉
|σ1||σi+1|

for i = 1, 2, 3, cos θ4 = − 〈σ3,σ4〉|σ3||σ4| , cos θ5 = − 〈σ2,σ4〉|σ2||σ4| , cos θ6 = − 〈σ2,σ3〉|σ2||σ3| , which
can be traced from [73, Theorem 1.1] and also the Sforza’s formula as listed in [7,
Theorem 2.7]. Therefore the value of S(�) can be described as a linear combination
of dilogarithm functions.

3.4 Expected proportion of inversions in the skew Brownian permuton

In this section we prove Proposition 1.14. We start with the following description for
sampling a point (x, y) in the unit square [0, 1]2 from the skew Brownian permuton
μρ,q . Recall the notation for the quantum areas Aw

1 , Aw
2 , Aw

3 , Aw
4 introduced before

Proposition 3.7 (see Fig. 6).

Lemma 3.15 With probability 1, given an instance of the unit-area quantum sphere
(Ĉ, h, 0,∞) and a whole-plane GFF ĥ (viewed modulo a global additive integer
multiple of 2πχ ) with associated space-filling counterflow lines η′ and η′

θ− π
2
, the

following two sampling procedures agree:

1. Let μρ,q be the skew Brownian permuton constructed from the tuple (h, η′, η′
θ− π

2
)

as in Theorem 1.12. Sample (x, y) from μρ,q .
2. First sample a point w ∈ Ĉ from the quantum area measure μh. Output (Aw

2 +
Aw
3 , Aw

1 + Aw
2 ).

Proof Using the same reasoning as in Propositions 1.13 and 3.7, by our choice of
parameterization, a.s.

∫

C

1{Aw
2 +Aw

3 ∈[x1,x2],Aw
1 +Aw

2 ∈[y1,y2]}μh(dw) = μh

(
η′([x1, x2]) ∩ η′

θ− π
2
([y1, y2])

)
.

Applying Proposition 1.13 once more, μh

(
η′
0([x1, x2]) ∩ η′

θ− π
2
([y1, y2])

)
=

μρ,q

(
[x1, x2] × [y1, y2]

)
. ��

Wehave the following expression for õcc(21, μρ,q) (recall its definition from (1.3)).

Lemma 3.16 Let (Ĉ, h, 0,∞) be a unit-area quantum sphere and ĥ an independent
whole-plane GFF (viewed modulo a global additive integer multiple of 2πχ ) with
associated space-filling counterflow lines η′ and η′

θ− π
2
. Letμρ,q be the skew Brownian
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permuton constructed from the tuple (h, η′, η′
θ− π

2
) as in Theorem 1.12. For a point

w ∈ Ĉ sampled from the quantum area measure μh, it a.s. holds that

õcc(21, μρ,q) = 2 · E

[
Aw
1

∣∣∣(h, ĥ)
]
.

Proof By symmetry and the definition given in (1.3),

õcc(21, μρ,q) = 2
∫∫

[0,1]2
1{x1<x2; y1>y2}μρ,q(dx1dy1)μρ,q(dx2dy2). (3.16)

Therefore applying Lemma 3.15, if we first independently sample (w, w̃) from the
quantum area measure μh , then the right-hand side of (3.16) is the same as

2
∫∫

C2
1{

Aw
2 +Aw

3 <Aw̃
2 +Aw̃

3 ; Aw
1 +Aw

2 >Aw̃
1 +Aw̃

2

}μh(dw)μh(dw̃). (3.17)

Using again the definition of space-filling SLE curves given at the end of Sect. 2.1.3
(recall also Fig. 6), we observe that

Aw
2 + Aw

3 < Aw̃
2 + Aw̃

3 and Aw
1 + Aw

2 > Aw̃
1 + Aw̃

2

if and only if η′ hits the point w̃ after hittingw, and η′
θ− π

2
hits w̃ before hittingw. This

implies that w̃ falls into the region between ηwθ and ηwW (i.e. the region with quantum
area Aw

1 ). Therefore we conclude the proof by integrating (3.17) over w̃. ��
Proof of Proposition 1.14 By Lemma 3.16, it suffices to show that E

[
Aw
1

] = π−2θ
4π .

By the +rerooting invariance stated in Proposition 3.6, the quantum area Aw
1 has the

same distribution as A1 := A0
1. It remains to prove that

E[A1] = π − 2θ

4π
. (3.18)

First assume that θ = θm,n := (m
n − 1

2

)
π, where 0 ≤ m ≤ 2n − 1 are integers. By

Theorem 3.5, the flow lines ηθ0,n ,…, ηθ2n−1,n of ĥ, with angle θ0,n, . . . , θ2n−1,n , cut

the whole sphere into 2n quantum disks each of weight 4−γ 2

2n . We denote the quantum
area of the region between η iπ

n
and η (i+1)π

n
by Ai,n , for i = 0, . . . , 2n − 1 (with the

convention that η2π = η0). Since the total area is 1, by symmetry E[Ai,n] = 1
2n . Then

from linearity of expectation, we see that

E[A1] = E[Am,n] + ... + E[An−1,n] = n − m

2n
= π − 2θ

4π
,

which verifies (3.18) for θ ∈ Q. Now for general θ , we observe that by flow line
monotonicity (see [69, Theorem 1.5] and [70, Theorem 1.9]) the flow lines starting
from the same point with different angles will not cross each other, and it follows
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that the expression E[A1] is decreasing in θ . Then it is clear that (3.18) holds for any
θ ∈ [−π

2 , π
2 ], which concludes the proof. ��

Remark 3.17 Although the quantity Aw
1 appearing inLemma3.16 is generally tractable

using the rerooting invariance for marked points of quantum spheres, its conditional
expectation given (h, ĥ) would be more tricky. In particular, the rerooting invariance
is a key technical step in the proof.

Remark 3.18 The proof of Lemma 3.16 does not only give the expectation of
õcc(21, μρ,q) as done in Proposition 1.14; it also gives a description of the law of
this random variable in terms of formulas for LQG surfaces. The law can be expressed
in terms of the function θγ (q), the function pW from Sect. 3.3.1, and counterparts of
Proposition 3.3 for disks of other weights.

Remark 3.19 Also õcc(π, μρ,q) for other choices of π can be expressed in terms of
the LQG area of certain domains cut out by flow lines started from a fixed number
of points sampled from the LQG area measure. However, for general patterns π , the
expectation of the relevant LQG area is not as straightforward to compute, and the
intersection pattern of the flow lines is more involved. We therefore do not pursue
more general formulas. However, we do prove in Sect. 4 that we have a.s. positivity
of õcc(π, μρ,q) for all (standard) patterns π .

4 Positivity of pattern densities of the skew Brownian permuton

The goal of this section is to prove Theorem 1.10. Our proof will use the theory of
imaginary geometry from [69, 70] (see also [45]). Following these papers, let

κ ∈ (0, 4), χ = 2√
κ

−
√

κ

2
, λ′ = π

√
κ

4
.

Recall fromSect. 2.1.3 that if ĥ is awhole-planeGFF (definedmodulo a global additive
integer multiple of 2πχ ), θ ∈ R and z ∈ C, then we can define the flow line ηzθ of

ei (̂h/χ+θ) from z to∞ of angle θ , which is an SLEκ(2−κ) curve.We refer to flow lines
of angle θ = 0 (resp. θ = π/2) as north-going (resp. west-going). As explained in [69,
70], one can also define flow lines if one has a GFF in a subset D ⊆ C, including flow
lines which start from a point on the domain boundary ∂D for appropriate boundary
conditions.

Let z ∈ C, θ ∈ R, and ĥ be as in the previous paragraph, and let τ be a stopping time
for ηzθ . Conditioned on ηzθ |[0,τ ], the conditional law of ĥ is given by a zero boundary
GFF in C \ ηzθ ([0, τ ]), plus the function f which is harmonic in this domain and
has boundary conditions along ηzθ ([0, τ ]) given by χ times the winding of the curve
plus −λ′ − θχ (resp. λ′ − θχ ) on the left (resp. right) side, where the winding is
relative to a segment of the curve going straight upwards. We refer to [70, Section 1]
for the precise description of this conditional law and in particular to [70, Figures 1.9
and 1.10] for more details on boundary conditions and the concept of winding. The
analogous statement holds if we consider flow lines of a GFF ĥ in a subset D ⊂ C.
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z1

z3

z4

ηN
z1

ηW
z1 π(4) − 0.5

π(1) − 0.5

π(3) − 0.5

π(2) − 0.5

0

z2

ηN
z4

ηN
z1
(ρ1,4

N ) = ηN
z4
(ρ1,4

N )

Bδ(z1)

z1

Fig. 7 Illustration of (i)–(iii) in Lemma 4.1 for π = 4213, i.e. π−1 = 3241. Recalling the explanations
from Sect. 2.1.3 (see also Fig. 4), we have that if the merging structure of the west (resp. north) flow line is
as the one in the picture, then the ordering in which the points z1, z2, z3, z4 are visited by the space-filling
SLE16/κ counterflow line η′ (resp. η′

− π
2
) is z1, z2, z3, z4 (resp. z3, z2, z4, z1). Indeed, by the constriction

of counterflow lines, η′ (resp. η′
− π

2
) visits the points z1, z2, z3, z4 in the same order as the contour of the

green (resp. purple) tree oriented from south to north (resp. fromwest to east). Note also that this implies that

Permk

((
(η′)−1(zi ), (η

′
− π

2
)−1(zi )

)

i∈[4]

)
= π . On the right, we zoom inside the square (3, 4) × (0, 1)

and display condition (iii) in Lemma 4.1. Note that the flow lines started from points (we displayed two of
them) inside the ball Bδ(z1) merge into the flow lines started from z1 before leaving the square

Asmentioned above, thewhole-planeGFF is typically only definedmodulo a global
additive integer multiple of 2πχ in the setting of imaginary geometry. Throughout the
remainder of this section wewill fix this additive constant by requiring that the average
of the GFF on the unit circle is between 0 and 2πχ . Fixing the additive constant is
convenient when considering the height difference between two interacting flow lines
and when we want to describe the absolute boundary values along each flow line.

To simplify notation wewill focus on the case q = 1/2 of Theorem 1.10 throughout
the section, and then afterwards explain the necessary (veryminor)modificationwhich
is needed for general q ∈ (0, 1). The key input to the proof of Theorem 1.10 is the
following lemma. See Fig. 7 for an illustration.

Lemma 4.1 Let k ∈ {2, 3, . . . } and let π ∈ Sk be a (standard) pattern of size k. For
j = 1, . . . , k let z j = (π( j) − 0.5) + ( j − 0.5)i ∈ C and let ρ j,i

N (resp. ρ j,i
W ) be the

time at which η
z j
N (resp. η

z j
W) merges into η

zi
N (resp. ηziW) for i ∈ {1, . . . , k} \ { j}. Then

there is a δ ∈ (0, 1/10) such that with strictly positive probability the following events
occur for all i, j = 1, . . . , k, i 
= j .

(i) η
z j
N merges into η

zi
N on its left side if and only if π( j) < π(i); these two flow lines

merge before leaving the ball B4k(0); andη
z j
N (ρ

j,i
N ) /∈ (π( j)−1, π( j))×( j−1, j).

123



J. Borga et al.

(ii) η
z j
W merges into η

zi
W on its left side if and only if j < i ; these two flow lines merge

before leaving the ball B4k(0); and η
z j
W(ρ

j,i
W ) /∈ (π( j) − 1, π( j)) × ( j − 1, j).

(iii) For all z ∈ Bδ(z j ) the flow line ηzN (resp. ηzW) merges into η
z j
N (resp. η

z j
W) before

leaving the square (π( j) − 1, π( j)) × ( j − 1, j).

Before proceeding to the proof of Lemma 4.1, we give the proof of Theorem 1.10
conditioned on this result.

Proof of Theorem 1.10 for q=1/2 given Lemma 4.1 For m ∈ N ∪ {0} and ĥ a whole-
plane GFF as above, let E(m, ĥ) be the event (i)–(ii)–(iii) of Lemma 4.1, but with
all points scaled by 2−m , i.e., we consider the setting of the lemma under the image
of the map z �→ 2−mz (equivalently, (i)–(ii)–(iii) occur for the field ĥ(2m ·)). By
Lemma 4.1 we have s := P[E(0, ĥ)] > 0, and by scale invariance of the GFF we
have P[E(m, ĥ)] = s for all m ∈ N. Since the occurrence of E(m, ĥ) is determined
by ĥ|B2−m+2k (0)

, we get by tail triviality of (̂h|B2−m+2k (0)
: m ∈ N) (see e.g. [57,

Lemma 2.2]) that E(m, ĥ) occurs for infinitely many m a.s. In particular, we can a.s.
find some (random) m0 ∈ N such that E(m0, ĥ) occurs.

Recall that η′ and η′
− π

2
denotes the angle 0 and the angle −π

2 space-filling SLE16/κ

counterflow lines constructed from ĥ. By the definition of space-filling SLE16/κ coun-
terflow line as given at the end of Sect. 2.1.3 (see also Fig. 7), if (i) (resp. (ii)) occurs
then the ordering in which the points z1, . . . , zk are visited by η′ (resp. η′

− π
2
) is

z1, . . . , zk (resp. zπ−1(1), . . . , zπ−1(k)). Furthermore, by the same argument, if (i) (resp.
(ii)) occurs in the setting where points are rescaled by 2−m0 then the ordering in which
the points 2−m0 z1, . . . , 2−m0 zk are visited by η′ (resp. η′

− π
2
) is 2−m0 z1, . . . , 2−m0 zk

(resp. 2−m0 zπ−1(1), . . . , 2
−m0 zπ−1(k)).

Finally, also by the definition of space-filling SLE16/κ , if (iii) occurs in addition to
(i) and (ii), then every points z ∈ B2−m0 δ(2

−m0 zi ) andw ∈ B2−m0 δ(2
−m0 z j ) are visited

in the same relative ordering as 2−m0 zi and 2−m0 z j for both η′ and η′
− π

2
. Indeed, for

z ∈ B2−m0 δ(2
−m0 zi ) and w ∈ B2−m0 δ(2

−m0 z j ), if (i) and (iii) occur, we have that ηzN
merges into ηw

N on its left side if and only if η
zi
N merges into η

z j
N on its left side, and

the corresponding statements hold with (ii) and W instead of (i) and N, respectively.
We now consider a unit-area quantum sphere (Ĉ, h, 0,∞) independent of ĥ and

the skew Brownian permuton μρ,q constructed form the tuple (h, η′, η′
− π

2
) as in The-

orem 1.12. Note that by (1.3) and Theorem 1.12, a.s.

õcc(π, μρ,q) =
∫

[0,1]2k
1{Permk ((xi ,yi )i∈[k])=π}

k∏

i=1

μρ,q(dxi , dyi )

=
∫

Ck
1{

Permk

((
(η′)−1(wi ),(η

′
− π

2
)−1(wi )

)

i∈[k]

)
=π

}
k∏

i=1

μh(dwi ),
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where μh is the γ -LQG area measure associated with (Ĉ, h, 0,∞). Hence, if (i), (ii),
and (iii) occur (in the setting where all points are rescaled by 2−m0 ) then it a.s. holds

õcc(π, μρ,q) ≥
∫

B2−m0 δ
(2−m0 z1)

. . .

∫

B2−m0 δ
(2−m0 zk )

k∏

i=1

μh(dwi ). (4.1)

The latter bound concludes the proof since the balls B2−m0 δ(2
−m0 z j ) for j = 1, . . . , k

a.s. have positive μh Liouville quantum area measure. ��
Proof of Theorem 1.10 for general q ∈ (0, 1). All steps of the proof carry through
precisely as in the case q = 1/2, except that we consider ηzθ instead of ηzN throughout
the proof for θ such that q = qγ (θ). ��

The rest of this section is devoted to the proof of Lemma 4.1. We will in fact
instead prove Lemma 4.3 below, which immediately implies Lemma 4.1. In order to
state Lemma 4.3, we first need the following definition.

Definition 4.2 Let B ⊂ C be a set of the form (a, a + s) × (b, b + s) for a, b ∈ R
and s > 0, denote its top (resp. bottom, left, right) boundary arc by ∂TB (resp.
∂BB, ∂LB, ∂RB), and let z /∈ B. We say that ηzN crosses B nicely in north direction if
the following criteria are satisfied, where τ = inf{t ≥ 0 : ηzN(t) ∈ B} is the first time
at which ηzN hits B.

(i) τ < ∞ and ηzN(τ ) ∈ ∂BB.
(ii) Let η̃ be a path which agrees with ηzN until time τ andwhich parametrizes a vertical

line segment in B during [τ, τ + 1]. Let f be the function which is harmonic in
C \ η̃([0, τ + 1]), is equal to −λ′ (resp. λ′) on the left (resp. right) side of the
vertical segment η̃([τ, τ + 1]), and which otherwise along η̃ changes by χ times
the winding of η̃. We require that the boundary conditions of ĥ along ηzN|[0,τ ] are
as given by f .

(iii) ηzN does not have any top-bottom crossings, i.e., if τ ′ = inf{t ≥ 0 : ηzN(t) ∈ ∂TB}
then τ ′ < ∞ and ηzN([τ ′,∞)) ∩ ∂BB = ∅.

We say that ηzW crosses B nicely in west direction if the following criteria are satisfied,
where τ ′′ = inf{t ≥ 0 : ηzW(t) ∈ B} is the first time at which ηzW hits B.

(i’) τ ′′ < ∞ and ηzW(τ ′′) ∈ ∂RB.
(ii’) Let η̃ be a path which agrees with ηzW until time τ ′′ and which parametrizes a

horizontal line segment in B during [τ ′′, τ ′′ + 1]. Let f be the function which
is harmonic in C \ η̃([0, τ + 1]), is equal to −λ′ − πχ/2 (resp. λ′ − πχ/2) on
the bottom (resp. top) side of the horizontal segment η̃([τ ′′, τ ′′ + 1]), and which
otherwise along η̃ changes by χ times the winding of η̃. We require that the
boundary conditions of ĥ along ηzW|[0,τ ′′] are as given by f .

Notice that the requirements in (ii) and (ii’) above are automatically satisfied if we
are only interested in the boundary conditions of the curve modulo a global additive
integer multiple of 2πχ , but that these requirements are non-trivial in our setting
(since we fixed the additive constant of the field) and depend on the winding of the
flow lines about their starting point. For example, supposeηzN wouldmake an additional
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Fig. 8 Illustration of (i)–(iv) in
Lemma 4.3 (or (i)–(ii) in
Lemma 4.1) for π = 4213, i.e.
π−1 = 3241. The green curves
represent west-going flow lines
and the purple/pink curves
represent north-going flow lines.
The flow lines are shown in a
different color before and after
the times τNj , τWj

z1

z2

z3

LN

LW

RW

RN

z4
ηN

z1

ηW
z1

counterclockwise loop around z before entering B; then its boundary conditions when
crossing B would increase by 2πχ , and we need to keep track of these multiples of
2πχ when checkingwhether (ii) occurs. It is important to keep track of thesemultiples
of 2πχ when studying the interaction of two flow lines, e.g. in Lemmas 4.5 and 4.6
below.

Also notice that we do not require the counterpart of (iii) for west-going flow lines.
This is due to the specific argument we use below where we first sample north-going
flow lines and then sample the west-going flow lines conditioned on the realization
of the north-going flow lines, and property (iii) is introduced in order to guarantee
that it is possible to sample well-behaved west-going flow lines conditioned on the
realization of the north-going flow lines.

Lemma 4.3 Let k ∈ {2, 3, . . . } and let π ∈ Sk be a (standard) pattern of size k. For
j = 1, . . . , k let z j = (π( j)−0.5)+( j−0.5)i ∈ C andmake the following definitions
(see Fig. 8):

LN = [0, k] × {k + 1}, RN = [0, k] × [k, k + 2], τ
j
N = inf{t ≥ 0 : η

z j
N (t) ∈ LN},

LW = {−1} × [0, k], RW = [−2, 0] × [0, k], τ
j
W = inf{t ≥ 0 : η

z j
W(t) ∈ LW}.

Also let ρ j,i
N (resp. ρ j,i

W ) be the time at which η
z j
N (resp. η

z j
W) merges into η

zi
N (resp. ηziW)

for i ∈ {1, . . . , k} \ { j}. Then there is a δ ∈ (0, 1/10) such that with strictly positive
probability the following events occur for all i, j = 1, . . . , k, i 
= j .

(i) The flow line η
z j
N stays inside (π( j)−1, π( j))× ( j −1, k+1) until time τ

j
N < ∞,

and η
z j
N |[0,τ j

N] crosses (π( j) − 1, π( j)) × (m − 1,m) nicely in north direction for

m = j + 1, . . . , k.
(ii) The flow line η

z j
W stays inside (−1, π( j)) × ( j − 1, j) until time τ

j
W < ∞,

and η
z j
W|[0,τ j

W] crosses (m − 1,m) × ( j − 1, j) nicely in west direction for

m = 1, . . . , π( j) − 1.
(iii) η

z j
N merges into η

zi
N on its left side if and only if π( j) < π(i), and η

z j
N ([τ j

N, ρ
j,i
N ]) ⊂

RN.
(iv) η

z j
W merges into η

zi
W on its left side if and only if j < i , and η

z j
W([τ j

W, ρ
j,i
W ]) ⊂ RW.

(v) For all z ∈ Bδ(z j ) the flow line ηzN (resp. ηzW) merges into η
z j
N (resp. η

z j
W) before

leaving the square (π( j) − 1, π( j)) × ( j − 1, j).
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z

ηz
θ

ηz
θ(τ) = γ(0)

∂DK

ηz
θ(τ2)

γ

A(ε)γ(1)

ηz
θ(τ1)

Fig. 9 Illustration of the statement of Lemma 4.4. Here we choose the domain D equal to the complement
of the purple curve (which is some given curve) and z ∈ D to be the tip of the purple curve. In green we
plotted the flow line ηzθ . The trace of the vertical red segment is the set K and γ is the blue horizontal curve,
which is parametrized from right to left. The light blue region A(ε) is the ε-neighborhood of γ ([0, 1]). The
figure is illustrating the event {τ2 < τ1}

Note that Lemma 4.3 immediately implies Lemma 4.1.
The next two lemmas say, roughly speaking, that a flow line stays close to any given

curve γ with positive probability. In the first lemma we consider the flow line until it
hits a given curve in the bulk of the domain, while in the second lemma we consider
the flow line until it hits the domain boundary. Closely related results are proved in
[70]. These two results will be stated for flow lines of general angle θ ∈ R since they
will be applied both to north-going and west-going flow lines, and the result for a
general angle is no harder to prove that the result for any fixed angle. See Fig. 9 for
an illustration of the following result.

Lemma 4.4 (Bulk case) Let ĥ be a GFF in a domain D ⊆ C. Let z ∈ D, θ ∈ R, and
ηzθ be the flow line of ei (̂h/χ+θ) of angle θ started from z. Let K ⊂ D \ {z} be the trace
of a simple curve in D \ {z}. Let also τ be an almost surely strictly positive and finite
stopping time for ηzθ such that ηzθ (τ ) /∈ ηzθ ([0, τ )), ηzθ ([0, τ )) ∩ K = ∅, and K and
ηzθ (τ ) are in the same connected component of D \ ηzθ ([0, τ )) almost surely.3 Given
ηzθ |[0,τ ], let γ : [0, 1] → D be a simple path satisfying γ (0) = ηzθ (τ ), γ (1) ∈ K, and
γ ((0, 1))∩(ηzθ ([0, τ ))∪K ) = ∅. For fixed ε > 0, let A(ε) denote the ε-neighborhood
of γ ([0, 1]), and define

τ1 := inf{t ≥ τ : ηzθ (t) /∈ A(ε)}, τ2 = inf{t ≥ τ : ηzθ (t) ∈ K }.

Then P[τ2 < τ1 | ηzθ |[0,τ ]] > 0.

Proof Our proof is very similar to that of [70, Lemma 3.8] and we will therefore only
explain the difference as compared to that proof. The reader should consult that proof
for the definition of U and x0 below. There are two differences between our lemma
and [70, Lemma 3.8]. First, the latter lemma requires D = C, while we consider
general domains D and allow z ∈ ∂D. Second, we define τ2 to be the hitting time of
the set K instead of letting it be the time that ηzθ gets within distance ε of γ (1). The
proof carries through just as before with the first change. For the second change, the
proof also carries through just as before except that (in the notation of the proof of

3 If z ∈ ∂D we require in particular that the boundary conditions of ĥ in D close to z are such that the flow
line and an appropriate stopping time τ exists.
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[70, Lemma 3.8]) we pick the point x0 ∈ ∂U in the proof such that any path in U
connecting η(τ) and x0 must intersect K . ��

The following lemma is [70, Lemma 3.9], except that we have stated it for flow
lines of a general angle θ ∈ R. We first introduce some terminology appearing in the
next lemma. It is recalled below the statement of the lemma in [70] that the admissible
range of height differences for hitting is (−πχ, 2λ − πχ) (resp. (πχ − 2λ, πχ)) if
the flow line is hitting on the right (resp. left) side, where we refer to [70, Figure 1.13]
for the definition of the height difference between two flow lines when they intersect.
Flow line boundary conditions means that the boundary conditions for the GGF ĥ
determining the flow line change by χ times the winding of the curve.

Lemma 4.5 (Boundary case) Suppose that ĥ is a GFF on a proper subdomain D ⊆ C
whose boundary consists of a finite disjoint union of continuous paths, each with flow
line boundary conditions of a given angle (which can change from path to path). Fix
z ∈ D and θ ∈ R and let ηzθ be the flow line of ei (̂h/χ+θ) of angle θ started from z. Fix
any almost surely positive and finite stopping time τ for ηzθ such that η

z
θ ([0, τ ])∩∂D =

∅ and ηzθ (τ ) /∈ ηzθ ([0, τ )) almost surely. Given ηzθ |[0,τ ], let γ : [0, 1] → D be any
simple path in D starting from ηzθ (τ ) such that γ ((0, 1]) is contained in the unbounded
connected component ofC\ηzθ ([0, τ ]),γ ([0, 1))∩∂D = ∅, andγ (1) ∈ ∂D.Moreover,
assume that if we extended the boundary conditions of the conditional law of ĥ given
ηzθ |[0,τ ] along γ as if it were a flow line then the height difference of γ and ∂D upon
intersecting at time 1 is in the admissible range of height differences for hitting. Fix
ε > 0, let A(ε) be the ε-neighborhood of γ ([0, 1]) in D, and let

τ1 = inf{t ≥ τ : ηzθ (t) /∈ A(ε)} and τ2 = inf{t ≥ τ : ηzθ (t) ∈ ∂D}.

Then P[τ2 < τ1 | ηzθ |[0,τ ]] > 0.

The following result is a restatement of (part of) [70, Theorem 1.7] and gives a
criterion to determine when two flow lines cross or merge when they hit each other.

Lemma 4.6 (Criterion for crossing/merging) Let ĥ be GFF with arbitrary boundary
conditions on D ⊆ C. For θ1, θ2 ∈ R and z1, z2 ∈ D let τ be a stopping time for
η
z1
θ1

given η
z2
θ2

and work on the event that η
z1
θ1

hits η
z2
θ2

on its right side at time τ . Let
� denote the height difference between η

z1
θ1
and η

z2
θ2
upon intersecting at ηz1θ1 (τ ). Then

the following hold.

(i) If � ∈ (−πχ, 0) then η
z1
θ1

crosses η
z2
θ2

at time τ and does not subsequently cross
back.

(ii) If � = 0 then η
z1
θ1

merges with η
z2
θ2

at time τ and does not subsequently separate
from η

z2
θ2
.

The following lemma will be used to argue that the north-going flow lines in
Lemma 4.3 behave according to condition (i) with positive probability.
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Fig. 10 Illustration of the proof
of Lemma 4.7. The path γ and
the set K used in the first
application of Lemma 4.4 are in
blue, while the path γ and the set
K used in the second application
of Lemma 4.4 are in orange

z

ηz
N(τ

′)

(0, 1) × {k − 1}

0 1

1

2

B = (0, 1) × (0, 2)

U
ηz
N(τ)

K = (0, 1) × {1.5}

γ

A(ε)

ηz
N(τ2)

K = (0, 1) × {2.5}

(first application)

(second application)

γ

A(ε)

Lemma 4.7 (Condition (i) in Lemma 4.3) Let z ∈ (0, 1) × (0, 1), let k ∈ N, and let
τ ′ = inf{t ≥ 0 : ηzN(t) /∈ (0, 1)×(0, k+1)} be the time atwhichηzN exits the rectangle
(0, 1)×(0, k+1). Then it holds with positive probability that ηzN(τ ′) ∈ (0, 1)×{k+1}
and that ηzN crosses (0, 1) × (i − 1, i) nicely in north direction for i = 2, . . . , k.

Proof See Fig. 10 for an illustration. The lemma follows by repeated applications of
Lemma 4.4. Throughout the proof we assume that ε ∈ (0, 1/10) in the statement of
Lemma 4.4 is sufficiently small. First, we apply Lemma 4.4 tomake sure conditions (i)
and (ii) in Definition 4.2 are satisfied for the square B = (0, 1) × (1, 2) with positive
probability. Letting U be some neighborhood of z which is compactly contained in
(0, 1) × (0, 1), we apply Lemma 4.4 with τ = inf{t ≥ 0 : ηzN(t) /∈ U }, K =
(0, 1) × {1.5} and γ a path in (0, 1) × (0, 1.5) which winds around z appropriately
many times such that condition (ii) of Definition 4.2 is satisfied for B. We then apply
Lemma 4.4 another time with τ equal to τ2 in the previous application of the lemma,
K = (0, 1)×{2.5}, and with γ such that condition (iii) of Definition 4.2 is satisfied for
B if τ2 < τ1 and the flow line does not reenter B after time τ2 in the second application
of the lemma.

We iteratively apply Lemma 4.4 for each square (0, 1)×(i−1, i)with i = 2, . . . , k
in order to guarantee that all the requirements of the lemma are satisfied. Note in
particular that we need to stop the flow line at least once in each square in order to
guarantee that (iii) in Definition 4.2 is satisfied since Lemma 4.4 itself only guarantees
that the flow line stays close to some reference path and does not rule out that the flow
line oscillates many times back and forth along the reference path. ��

The following lemma will be used to argue that the west-going flow lines in
Lemma 4.3 behave according to condition (ii) with positive probability.
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Fig. 11 Illustration of the proof of Lemma 4.8 in the case I = {1}

Lemma 4.8 (Condition (ii) in Lemma 4.3) Let k ∈ {2, 3, . . . }, z ∈ (k − 1, k) × (0, 1),
I ⊆ {1, . . . , k − 1}, z j ∈ ( j − 1, 1) × (−∞, 0) for j ∈ I. Suppose that for j ∈ I the
flow line η

z j
N crosses ( j − 1, 1)× (0, 1) nicely in north direction. Let τ ′ = inf{t ≥ 0 :

ηzW(t) /∈ (0, k) × (0, 1)} be the time at which ηzW exits the rectangle (0, k) × (0, 1).
Then it holds with positive probability that ηzW(τ ′) ∈ {0}× (0, 1) and that ηzW crosses
each box (i − 1, i) × (0, 1) for i = 1, . . . , k − 1 nicely in west direction.

Proof For concreteness we consider the case I = {1} but the general case can be
treated similarly. See Fig. 11 for an illustration. First apply Lemma 4.4 with K =
{k − 1} × (0, 1) similarly in the proof of Lemma 4.7 to make sure conditions (i’) and
(ii’) inDefinition 4.2 are satisfied for the square B = (k−2, k−1)×(0, 1)with positive
probability. Let γ̃ be the segment of η

z1
N corresponding to the (unique, by condition

(ii) of Definition 4.2) up-crossing of (0, 1) × (0, 1), i.e., it is a path which starts (resp.
ends) on the lower (resp. upper) boundary of (0, 1) × (0, 1). Apply Lemma 4.5 with
τ equal to the hitting time of K = {k − 1} × (0, 1), D equal to the infinite connected
component of the complement of η

z1
N , and γ equal to a path starting at ηzW(τ ) and

ending at an interior point of γ̃ , such that γ does not cross η
z1
N ; it is possible to find

an appropriate γ by condition (iii) of Definition 4.2. When applying this lemma we
note that by Definition 4.2, the boundary conditions of the two flow lines is such that
their height difference � = −πχ/2 is in the admissible range for hitting. By the
first assertion of Lemma 4.6, ηzW will cross γ̃ without coming back immediately after
hitting γ̃ . We now conclude the proof by applying Lemma 4.4 again. ��

Combining the lemmas above, we can now conclude the proof of Lemma 4.3.

Proof of Lemma 4.3 We will first argue that (i)–(iv) occur with positive probability.
Condition (i) occurs with positive probability by Lemma 4.7, where we can apply the
latter lemma iteratively for all the flow lines η

z j
N since the law of the field restricted to

(π( j)−1, π( j))×( j−1, k+1) conditioned on the realization of a subset of the other
flow lines is absolutely continuous with respect to the unconditional law of the field,
conditioned on the event that none of the other flow lines intersect [π( j)− 1, π( j)]×
[ j − 1, k + 1]. Conditioned on (i), we get that (iii) occurs with positive probability by
Lemma 4.5 and the second assertion of Lemma 4.6, where we apply Lemma 4.5 with
τ = inf{t ≥ 0 : η

z j
N /∈ (π( j) − 1, π( j)) × ( j − 1, k + 1)} and the flow lines are in
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the admissible range for merging (i.e., � = 0) due to condition (ii) of Definition 4.2.
Note that in order to also guarantee that η

z j
N ([τ j

N, ρ
j,i
N ]) ⊂ RN, one can use a similar

argument as in the proofs of Lemmas 4.7 and 4.8.
Similarly, condition (ii) occurs with positive conditional probability given occur-

rence of (i) and (iii) by Lemma 4.8, and finally condition (iv) occurs with positive
conditional probability given (i)–(iii) by Lemma 4.5 and the second assertion of
Lemma 4.6. We conclude that (i)–(iv) occur with positive probability, and we denote
this probability by s > 0.

To prove the full lemma, it is sufficient to argue that we a.s. can find a (random)
δ > 0 such that the event in (v) occurs. Indeed, this implies that with probability at
least 1 − s/2 the event in (v) occurs for some sufficiently small fixed δ > 0, which
concludes the proof by the result of the previous paragraph and a union bound.Wewill
now argue the a.s. existence of such a δ > 0. It is sufficient to consider only the north-
going flow line starting from z1. By continuity of the space-filling SLE η′

− π
2
generated

by the north-going flow lines we can a.s. find an open interval I such that η′
− π

2
(I ) is

contained in (π(1) − 1, π(1)) × (0, 1) and z1 is contained in η′
− π

2
(I ) Furthermore,

since z1 is a.s. not a double point of η′
− π

2
and so z1 must be contained in the interior

of η′
− π

2
(I ), there is a.s. a (random) δ > 0 such that Bδ(z1) is contained in η′

− π
2
(I ).

This δ satisfies our requirement since for all z ∈ Bδ(z1) the flow line ηzN merges into
η
z1
N before leaving η′

− π
2
(I ) ⊂ (π(1) − 1, π(1)) × (0, 1). ��
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A Permutation patterns

Recall thatSn denotes the set of permutations of sizen andS = ⋃
n∈Z>0

Sn denotes the
set of permutations of finite size. We write permutations using the one-line notation,
that is, if σ is a permutation of size n then we write σ = σ(1) . . . σ (n). Given a
permutation σ of size n, its diagram is a n× n table with n points at position (i, σ (i))
for all i ∈ [n] := {1, 2, . . . , n} (see the left-hand side of Fig. 12). Given a subset I
of the indexes of σ , i.e. I ⊆ [n], recall that the pattern induced by I in σ , denoted
pat I (σ ), is the permutation corresponding to the diagram obtained by rescaling the
points (i, σ (i))i∈I in a |I | × |I | table (keeping the relative position of the points).
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Fig. 12 Left: The diagram of the permutation σ = 23641587. Middle: The pattern induced by the set of
indices I = {2, 3, 5, 6} in σ , that is the permutation pat I (σ ) = 2413. Right: The permuton μσ correspond-
ing to the permutation σ = 23641587

Later, whenever pat I (σ ) = π , we will also say that (σ (i))i∈I is an occurrence of π

in σ . An example will be given in Example 4.9 and Fig. 12 below.
A (standard) pattern of size k is just a permutation of size k. A permutation σ

avoids a (standard) pattern π if it is not possible to find a subset I of the indexes of
σ such that pat I (σ ) = π . The collection of all permutations (of any size) avoiding a
set of (standard) patterns is often called a permutation class.

A generalized pattern π of size k, sometime also called vincular pattern, is a
permutation π = π(1) . . . π(k), where some of its consecutive values are underlined.
For instance, the permutation 7 41 3 526 is a generalized pattern. A permutation σ

avoids a generalized pattern π , if it is not possible to find a subset I of the indexes
of σ such that pat I (σ ) = π and I has consecutive elements corresponding to the
underlined values of π . We clarify the latter definition in the following example.

Example 4.9 We consider the permutation σ = 23641587. Its diagram is plotted on
the right-hand side of Fig. 12. Given the set of indices I = {2, 3, 5, 6}, the pattern
induced by I in σ is the permutation pat I (σ ) = 2413, plotted in the middle of Fig. 12.
Therefore the permutation σ does not avoid the standard pattern 2413, but for instance
it avoids the standard pattern 4321 because it is not possible to find 4 points in the
diagram of σ that are in decreasing order.

We also note that the permutation σ avoids the generalized pattern 2 41 3. Indeed it
is not possible to find four indices i, j, j + 1, k such that 1 ≤ i < j < j + 1 < k ≤ 8
and σ( j + 1) < σ(i) < σ(k) < σ( j).

We remark that Baxter permutations, introduced in Definition 1.1, can be described
as permutations avoiding the generalized patterns 2 41 3 and 3 14 2.
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