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Abstract

This study implements a computational cognitive apprenticeship framework
for knowledge integration of Data Science (DS) concepts delivered via
computational notebooks. This study also explores students' conceptual
understanding of the unsupervised Machine Learning algorithm of K-means
after being exposed to this method. The learning of DS methods and
techniques has become paramount for the new generations of undergraduate
engineering students. However, little is known about effective strategies to
support student learning of DS and machine learning (ML) algorithms. The
research questions are: How do students conceptualize their understanding of
an unsupervised ML method after engaging with interactive visualizations
designed using the computational cognitive apprenticeship approach? How do
the affordances of the interactive visualizations support or hinder student
knowledge integration of an unsupervised machine learning method? Design-
based research allowed for the iterative design, implementation, and
validation of the pedagogy in the context of a working classroom. For this,
data collection methods often take the form of student artifacts. We performed
a qualitative content analysis of students’ written responses and reflections
elicited during the learning process. Results suggest that the computational
cognitive apprenticeship promoted knowledge integration. After interacting
with the computational notebooks, most students had accurate conceptions of
the goal and the nature of the method and identified factors affecting the
output of the algorithm. Students found it useful to have a concrete
representation of the method, which supported its conceptual understanding
and showcased the acquisition of strategic knowledge for its appropriate
execution. However, we also identified important misconceptions students
held about the algorithm.
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1 | INTRODUCTION

The ever-increasing capacity to obtain and store data [73]
has derived from the pressing need to train the next
generation of citizens that can create and use valuable
data-generated knowledge [30]. Data Science (DS)
knowledge is now endorsed as the main tool to transform
the wealth of available data into informed decisions [23].
A report from the National Science Foundation titled
Realizing the Potential of DS [3] defined DS as a new
field “that focuses on the process and systems that enable
the extraction of knowledge or insights from data in
various forms, either structured or unstructured” (p.2).
Therefore, the goal of infusing the new field of DS within
higher education has been argued as an endeavor to be
prioritized as the demand for DS professionals keeps
increasing [32].

Consequently, DS has become a crucial tool for the
research and educational community [3]. Educational
research has explored diverse topics using DS tools,
including student admission [72] and retention [71], as
well as student approaches to problem-solving [65].
However, less is known about the processes involved in
DS education itself, with the persistent question still
being “How do we train [a] workforce of professionals
who can use data to its best advantage?” (p.2) [3]. Most of
the existing discussions around DS education have been
devoted to framing a definition [22], pertinent content of
DS and ethics of conducting DS [19], or evaluation of
programs [33, 41]. Furthermore, only recently the
computing competencies for undergraduate curricula in
DS have been formally discussed and agreed upon [18].
However, less attention has been paid to supporting the
cognitive process involved in learning DS concepts and
how such process could be supported. To strengthen the
training of the next generation of data scientists, we need
to develop a better understanding of such processes.
Accumulated knowledge from the learning sciences [70]
would benefit DS education, making it more likely to
democratize DS knowledge [34].

Students in engineering and other Science, Technol-
ogy, Engineering and Mathematics (STEM) areas are
uniquely poised to achieve the fastest gains in learning
DS due to the overlap of their regular training in
analytical, problem-solving, and computational skills
[38]. Therefore, focusing on the difficulties faced by
engineering students when learning DS techniques could
advance the understanding of the key challenges of
learning the topic for the general population.

Machine learning (ML) lies at the intersection of
computing and statistics and constitutes an essential
component of DS [51]. However, little is known about
how students learn ML techniques [18, 17]. While using

ML methods may enable engineering and other STEM
professionals to make important decisions and solve
complex problems, it may also be misused if they do not
understand the underlying mechanisms of these methods
[56]. These methods use datasets to create models that
represent phenomena, but many of them will always
offer an output whether it correctly represents a
phenomenon or not. The user is responsible for evaluat-
ing and interpreting the outputs. The user needs to be
aware of the underlying assumptions of the method to be
able to interpret the outputs. Also, the data set may
include some outliers or may have missing data, which
usually have an impact on the model output [28].

Furthermore, the training data itself may include some
bias that we as a society might not want to reproduce. For
instance, a study exploring biases in word embeddings
showed that an algorithm might complete the analogy: “man
is to Computer Programmer as Woman is to... Homemaker”
[4]. Having a biased input data set will lead to a biased
model. Therefore, any teaching practices to integrate ML
methods into engineering and STEM education should not
just use them as a black box but also discuss the
assumptions, possible biases, and implications.

Computing skills are essential to DS. Together with
math and statistics knowledge and domain knowledge,
they are recognized as the building blocks of DS [51].
Therefore, knowledge of computing learning might
contribute significantly to the understanding of how DS
is learned. To take advantage of such overlap, this study
contributes to the body of knowledge by exploring how
the computational cognitive apprenticeship framework
[21] supports knowledge integration in DS when
implemented into interactive visualizations through
computational notebooks. Computational notebooks
have been used extensively with different learning goals
[5, 44, 53]. Preliminary results suggest that students find
them useful in integrating theoretical concepts and
practice activities. However, there has been limited
exploration of their pedagogical design using learning
theories. This study addresses such a gap and identifies
persisting misconceptions that hinder students' learning
of DS concepts, as misconceptions have been documen-
ted to limit student learning [24]. For our goals, we
explored students' conceptual understanding of an ML
algorithm after engaging with the interactive visualiza-
tions and evaluated their perceived affordances of
learning DS under the lens of knowledge integration.
The research questions for this study are:

« How do students conceptualize their understanding of
an unsupervised ML method after engaging with
interactive visualizations designed using the computa-
tional cognitive apprenticeship approach?
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« How do the affordances of the interactive visualiza-
tions support or hinder student knowledge integration
of an unsupervised ML method?

2 | BACKGROUND

2.1 | Status of DS education

DS is a young field that combines knowledge of
computing, statistics, and particular expertise domains
into the analysis of data to create value [51]. Educational
institutions have benefited significantly from the use of
DS techniques as a tool to facilitate administrative tasks,
improve instruction, and identify barriers to student
learning [11]. Nevertheless, little attention has been paid
to how students learn DS concepts. In fact, it has been
recognized that the variety of nature and quality of
available resources to learn DS can become a barrier for
learners [21]. Furthermore, a lot has been argued about
the relevance of learning DS in the current data-rich
society, not only by those trained in computing and
statistics but also by the general population [34]. This
need requires understanding the processes involved in
DS education.

Most of the accumulated evidence on ML education is
focused on teaching ML to young students through a
variety of interventions. A recent review identified 30
instructional units that focused on teaching ML basics at
the K-12 level [42]. Most of them were developed as
extracurricular activities, workshops, or summer camps
and considered topics including the definition of learn-
ing, specific supervised algorithms such as linear
regression, specific unsupervised algorithms such as
clustering, as well as the limitations and social implica-
tions of ML.

The wide spectrum of interventions with respect to
the topics, learning objectives, and pedagogies im-
plemented reflects the growing interest in taking ML
techniques to the younger generations. These initia-
tives often used block-based programming languages,
as was the case for the work presented by Estevez
et al., [25], who used Scratch for their pedagogical
intervention teaching clustering and artificial neural
networks following a design-based research (DBR)
approach grounded in experiential learning theory.
Their intervention proved effective in changing
students’ perceptions of artificial intelligence systems
[25], which are derived from the use of ML tech-
niques. While extensive documentation exists of such
K-12 interventions, scalability to reach all students is
still a distant goal, making it also relevant to address
ML education at the undergraduate level.

At the undergraduate level, some attention has been
paid to how to teach ML to majors outside of computing
and statistics. In their recent work, Sulmont et al. [55]
identified elements that instructors found easy or
difficult to teach ML. Their results, presented under the
Structure of Observed Learning Outcomes (SOLO)
taxonomy, showed that elements in the lower scale of
the taxonomy, such as those related to algorithm learning
and execution, were reported as easy to teach. On the
other hand, those elements mapped to higher levels of
the taxonomy, such as making design decisions and
comparing/contrasting models, were harder to teach. To
identify students’ preconceptions and barriers to their
learning as well as the tactics used by instructors to
address such difficulties, the authors also reported on the
analysis of the same data using the Pedagogical Content
Knowledge (PCK) framework. Faculty-cited students
acknowledged that ML was important, but their pre-
conceptions of the nature of ML were limited to what
they heard on social media. In addition, students usually
considered ML implementation outside of their reach as
the main barriers they identified were their own limited
math and programming knowledge [54]. Finally, the
instructors identified a variety of strategies to support
students’ advancement through their learning, such as
working on simple problems by hand, simulating
algorithms, strategically choosing data sets, and the use
of visualizations [54]. Other work has used embodied
systems, such as Lego platforms, as viable alternatives to
effectively teach ML [58]. While these works provide
valuable evidence on ML education for noncomputing
and statistics majors, their cumulative evidence was built
from the faculty perspective and lacked students’ actual
learning perceptions and experiences.

Current efforts are on their way to generating a
deeper understanding of the misconceptions related to
DS learning and acknowledging the experiences of
students, faculty, and industry professionals. The project
Investigations of Student Difficulties in DS Instruction is
identifying student misconceptions and prior knowledge
in DS courses; it will also confirm such foundational
knowledge from experts and develop a concept inventory
that would support the training of the next generations of
DS professionals [69]. Attending to the limited under-
standing of the challenges involved in learning DS in
general and ML techniques in specific, we introduce an
approach that merges the theory of knowledge integra-
tion within the pedagogical framework of computational
cognitive apprenticeship [26]. We argue that this
approach has the potential to support the learning of
students outside of computing and statistics majors. Our
research design is proposed to capture the student
perspective while learning unsupervised ML techniques
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with the goal of informing effective pedagogies to support
student learning of ML.

2.2 | Computational notebooks
Computational notebooks have gained traction in recent
years as a popular format for instruction in higher
education. Despite the original goals for their use, which
were focused on the expansion of computational literacy
and research reproducibility [49, 52], the potential for
their use in educational spaces has been extensively
documented [5, 44, 53], [47, 74]. Examples of their use
now include topics such as artificial intelligence [44],
chemical engineering [5,20], optimization [53], digital
signal processing [74], computational modeling [47], and
remote lab experimentation [7].

However, most of the existing literature on the use of
computational notebooks for teaching challenging con-
cepts is limited to reporting the technical implementa-
tion of the notebooks [e.g., [53, 74]]. Few of them include
the learning goals of the summarized courses [e.g.,
[7]] and even less report on any output related to the
student experience, such as student engagement [53], or
student satisfaction [47, 74]. In addition, some criticism
exists that computational notebooks can also propagate
the dissemination of negative learning outcomes, such as
poor coding practices [67]. As a result, a set of
recommendations has been developed for the use of
computational notebooks in science reproducibility [48];
it is important to make a clear distinction between the
use of computational notebooks for the development of
programming skills and work organization, which is
their usual goal in computer science spaces [49, 52], and
their use for achieving specific learning goals in other
areas of knowledge [5, 44, 53], [47, 74].

This study focuses on the latter, with a specific goal of
supporting students in learning DS and ML algorithms.
While critics of computational notebooks exist based on
(a) their goal of enhancing productivity and reproduc-
ibility of coding [10, 29], and (b) suggestions for
improving their design in such context [50], only
recently, research studies have focused on introducing
guidelines to create computational notebooks for educa-
tional purposes. One notable example is the work in
physics education, where computational notebooks have
been used as a pedagogical approach to introduce writing
and argumentation practices [45] and computational
literacy, both in the form of computational essays [46].

At the time of this writing, no publications were
identified showcasing the design of computational note-
books from a pedagogical perspective for the develop-
ment of DS skills. Nor do any other identified

publications consider students’ conceptual understand-
ing as a performance measure of their use. This study fills
this gap by building computational notebooks using
research-based pedagogies and aims to gauge student
learning derived from their use. This small-scale study
supports building evidence of the potential for the
theory-driven design of computational notebooks that
can support the scalability for the creation of tools that
effectively support student learning of DS and ML
concepts.

3 | THEORETICAL FRAMEWORK

The theoretical framework for this study is knowledge
integration [36]. Knowledge integration refers to the process
of incorporating and synthesizing multiple representations
into a common body of existing knowledge, thus resulting in
the development of an integrated understanding of a
complex domain [35]. Knowledge integration can be
achieved via the design of curricula that integrates complex
topics enabled by technological tools [35]. To create learning
experiences that promote knowledge integration, students
must be exposed to opportunities to compare and contrast
multiple ideas and representations of those ideas as part of
the instruction [12]. These ideas may refer to concepts,
principles, or practices across disciplines. For example,
learning interventions that combine physics concepts with
mathematics practices may better promote knowledge
integration [12].

To guide the design of learning interventions that
promote knowledge integration, learning scientists have
identified a collection of instructional patterns that can
help learners make connections among ideas and in the
process develop a coherent understanding [37]. These
patterns include: (a) eliciting ideas by helping students
bring their prior experiences to the learning context; (b)
adding new ideas by providing meaning-making mecha-
nisms that enable learners to make connections between
what they already know and what will be delivered in the
instruction; (c) distinguishing ideas, by helping learners
see how their existing ideas relate to or conflict with
normative ideas during instruction; and (d) sorting out
ideas, by providing opportunities to learners to refine
their knowledge through analysis and reflection [12].

The implications for this study relate to the intended
learning outcomes of the course, where students need to
apply DS practices to make meaning in a specific field or
application area. To do this successfully, knowledge
integration processes are needed because students need
to bring together their disciplinary knowledge, apply
their computing skills, and make meaning of information
resulting from those two bodies of knowledge.
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4 | PEDAGOGICAL FRAMEWORK

We used the computational cognitive apprenticeship
framework [26] as the pedagogical framework to embody
the patterns for eliciting ideas, adding new ideas,
distinguishing ideas, and sorting out ideas as prescribed
by knowledge integration. The computational cognitive
apprenticeship framework builds upon decades of
research on cognitive apprenticeships [1]. Cognitive
apprenticeship emerges from comparisons between
traditional classroom instruction and the cultural tradi-
tion of apprenticeship, which more prominently features
observation, coaching, and successive approximation
[15]. Collins et al. [15] posited that “apprenticeship
embeds the learning of skills and knowledge in the social
and functional context of their use” (p. 1). This focuses
not just on “how to do,” that is, the mechanical steps
involved in completing a task, but “how to think”
through and develop an understanding of tasks within a
complex social environment [6, 14, 15].

Cognitive apprenticeships provide guidelines to design
learning environments that merge disciplinary content and
practices being taught, successful deployment of pedagogical
methods, sequencing of learning activities, and social
characteristics of the learning environment [16]. These
teaching methods entail: (1) modeling, where the instructor
demonstrates how to perform a task; (2) coaching, including
observation and facilitation at the moment students perform
a task; (3) scaffolding, regarding supporting methods to help
students perform a task; (4) articulation, consisting of
instructors encouraging students to state their knowledge
and thinking; (5) reflection, where instructors enable students
to compare their performance with experts’ approaches; and
(6) exploration, consisting of instructors prompting students
to solve problems on their own [16].

Informed by more than 15 years of DBR in teaching
computation and DS at the undergraduate level, we have
adapted the cognitive apprenticeship model to train the

TABLE 1 Computational cognitive apprenticeship dimensions
Dimension Definition

Content

next generation of the computational and data-enabled
workforce [26]. Such research has resulted in a set of
guidelines, as described in Table 1.

Our prior work identified an effective way to
implement “content,” “method,” “sequencing,” and
“sociology” through anchored instruction that integrated
computation within disciplinary engineering practices
[40] coupled with scaffolding approaches [62]. Anchored
instruction [57] involved the integration of computa-
tional and DS practices within disciplinary problems in
science and engineering [39]. Such opportunities enable
students to integrate knowledge in science and engineer-
ing domains along with practices in computing and
mathematics. However, this integration of knowledge
was challenging for students, so scaffolding approaches
need to be considered.

Scaffolding approaches included worked-out exam-
ples, which helped students of various backgrounds to
succeed in accomplishing the challenging task of
integrating newly acquired disciplinary expertise with
newly acquired programming skills [63]. In the most
successful deployment, students were provided with
access to step-by-step examples of sample solutions to
programming problems [64, 66]. These solutions
included the conceptualization of the problem, the
algorithm development, and the programming, resulting
in a final working but uncommented code. We identified
that a very effective strategy to engage students in
understanding worked-out examples was having them
write in-code comments to self-explain the examples,
resulting in students' meaning-making [61].

5 | LEARNING DESIGN

To deliver our curricular approach, we took advantage of
interactive computational documents [27]. Computa-
tional documents (see Figure 1) permit exploring,

Teaching disciplinary domain knowledge in combination with data science techniques and tools. The content also

includes instruction on expert modes of thinking relevant to how scientists and engineers use data.

Method

The ways in which a material is delivered to learners, including scaffolding approaches such as code-snippets, test cases,

and worked examples. Instructional methods can be made more adaptive and student-directed in computational
settings through software-realized scaffolding, online resources, and networks (GitHub, NanoHub, EdX, zoomi. ai).

Sequencing

The order in which activities are presented to learners to make the learning process as natural as possible (i.e., increasing

complexity, increasing diversity). Online tools and resources are used to make the activities more student-directed.

Sociology

Utilizing anchored instruction by contextualizing the learning experiences within authentic tasks that occur in real-life

contexts and establishing meaningful associations between learning experiences and a discipline's knowledge, skills,

and practices.
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K-Means
Usage-Rigts

These materials were created for educational purposes. They are licensed under creative commons.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Learning outcomes

By the end of this activity, you will be able to

« Use R to identify clusters in a data set using the kmeans method

« Create simple plots to depict the clusters in a data set

K-means

K-means is an unsupervised machine learning algorithm that takes a N-dimensional data set and mimizes a distance measure for partitioning the
data set into k groups or clusters. The distance measure is the sum of squared Euclidean distances between the data points and the.

Procedure

1. Initially, you randomly pick k centroids (or points that will be the center of your clusters) in d-space. Try to make them near the data but

different from one another.

2. Then assign each data point to the closest centroid through a distance measurement.

3. Move the centroids to the average location of the data points (which comrespond to users in this example) assigned fo it.

4. Repeat the preceding two steps until the assignments don't change, or change very littie.

Example

For this example, we are going to use a pre-loaded dataset called iris. This dataset includes the length and width of the sepal and the petal for
150 iris flowers belonging to three species of plants (setosa, virginica, versicolor)

Here is you can see the difference between a sepal and a petal:

knitr::include_graphics("https://upload.wikimedia.org/wikipedia/commons/7/7f/Mature_flower_diagram.svg")

NIEKGLORIGUM
™ fhament

stamen

Let's start by exploring the columns in the dataset. Execute the following instruction by pressing Run

Code | & Start Over

dris

[

FIGURE 1 Sample of a computational notebook with embedded guidance

authoring, and executing code within a single document.
Computational documents also give their users opportu-
nities to share work, keep track of details, and collaborate
in the process [68]. Although such technological
advances make possible the delivery of quality program-
ming content more accessible for teaching and learning
by supporting (a) visualization of code execution,

(b) feedback generation to identify mistakes, and (c)
code grading automation, there is still a lack of learning
materials that integrate all these affordances into a single
solution [31].

We took advantage of computational documents to
deliver content as well as pedagogy in the form of a
computational cognitive apprenticeship. We have
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already identified and pilot-tested its affordances for
learning in the context of programming education
[60]. K-means was the ML technique we chose to
explore the ability of the proposed implementation of
the computational cognitive apprenticeship in facili-
tating students learning of DS concepts. Our rationale
was based on (1) its simplicity, which deems the
algorithm accessible to novices and experts alike as it
offers a clear, intuitive interpretation of its results
[25]; (2) its popularity, K-means is deemed one of the
most popular unsupervised ML algorithms mainly
because of its efficiency [8]; finally (3) its dependency
on the parameters used in its performance [8],
which offers unique opportunities from a pedagogical
perspective since simple misunderstanding or mis-
conceptions can lead to poor execution and interpre-
tation of the algorithm. Therefore, we deemed it a
suitable first ML algorithm to implement the pro-
posed computational cognitive apprenticeship
approach under the framework of knowledge integra-
tion. We used R markdowns with the package LearnR
to create the computational notebook. R is a free
statistical programming language that already has a
built-in implementation of K-means and provides
useful visualizations. LearnR is an R package for
creating interactive tutorials.

We adopted the computational cognitive appren-
ticeship approach to inform our learning design as
described below. In general, the learning design
included (1) a modeling component led by the course
instructor to introduce the theoretical foundations of
the method; (2) a set of interactive activities with the
computational document where the students explored
ideas and representations, answered prompts, and
completed practice challenges to articulate their
learning; and (3) a reflection sheet to connect all the
activities and promote knowledge integration.

51 | Modeling

The course instructor introduces the concept of DS/ML/
Al and the theory behind a specific method (e.g.,
K-Means) through a short video lecture. The video
lecture was 10 min long, with the intended learning
outcomes for students to (1) describe the ML algorithm of
K-means and its uses and (2) implement the ML
algorithm of K-means. It included information on why
the algorithm is convenient for managing multiple
dimensions of data (i.e., variables) and showcased an
example using two dimensions, highlighting the results’
differences when using different k. In such recorded

lectures, the R commands to execute the algorithm were
listed, but its execution was not modeled. The interactive
computational document also provided a brief explana-
tion of the algorithm and both a black box and a detailed
implementation of the algorithm.

52 | Coaching

Students explore the interactive computational document
to visualize a sample data set and invoke the method to
analyze the results (see Figure 2).

5.3 | Scaffolding

The interactive computational document also demon-
strates a step-by-step implementation of the algorithm as
well as its iterative visual execution (see Figure 3).

54 | Articulation

The students write in-code comments to describe the
purpose of specific sections of the code implementing the
algorithm. Figure 4 includes a sample code preceded by
the practice activity statement: “What is the algorithm
doing?” Write comments within the sample code to
describe what each line does.

5.5 | Reflection

Students complete a reflection sheet after working on the
interactive computational document. This sheet included
the following reflection questions: 1. Please describe the
goal of K-means and how it works; 2. What are the
factors that might affect the results from K-means?;
and 3. Are the identified clusters by K-means always
meaningful? Why?

This learning environment also addressed the instruc-
tional patterns to promote knowledge integration (KI),
namely:

(a) Eliciting ideas — for that purpose, students were
first asked the following open-ended questions:

(1) Do you think ML or Al is something you will have to
use in your career? Do you feel confident in your
ability to use these approaches?

(2) Do you think that ML/AI is a positive/negative/or
mixed influence on the world? Describe why you feel
that way.
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Question: Do you see any patterns in the plot?

Code | & Start Over B> Run Code
1 ggplot(iris, aes(x=Petal.lLength,y=Sepal.Length))+
2 geom_point()
3
.
. ..
.
.
.
. o
7 .
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.
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£ . .
L= . ..
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FIGURE 2 Sample of interactive visualization to provide coaching
Code | & Start Over B> Run Code
1 nunlter-4 2
2 dataToPlot<-iri al V', "Petal.length’)]
3 randonCentr up<--1
4 randonCer teration<-8
5 dataToPlo oup<-1
6 dataToPlo eration<-8
7 dataToPlot<-rbind(dataToPlot,randomCentroids)
8 for o:
s L ce
10 randonCer ,] *,'Petal.length’)]),-1,1)
11 randonCentroi , J<-¢(c ‘,'Petal.length’)]),-1,1)
12 randonCentroids(3, |<-c(colMeans(iris[iris$group==3,c( 'Sepal.Length’, 'Petal.Length’)]),-1,1)
13
14 ¥ Compute jistances to the new centroids, and identify what cluster each datapoint belongs to
15 cluster<- (iris, 1, FUN=computeDistance, randomCentroids=randomCentroids(,1:2)) R

e
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FIGURE 3 Sample of a step-by-step demonstration as scaffolding

After such a reflective opportunity, the ML algorithm

is formally introduced through a flipped lecture

format,

in which students first watch a video of the method,
followed by an opportunity to practice it in an active

learning setting in class.

°
group
¢ Centroid
~ * Group1
* Group 2
¢ Grouwp 3
w
-

(b) Adding new ideas—the interactive computa-

tional documents are implemented after introducing
the topic, and these interactive documents help

to

connect the theoretical ideas to concrete

representations;

ASUDOI'T SUOWIWOD) dANEAIY) d[qearjdde ) Aq pouIoaod axe so[oIIE V() ‘oSN JO sani 10§ AIBIqI] duljuQ AJ[IA\ UO (SUONIPUOD-PUB-SULIA} WO K3[1M " ATeIqrjouruo//:sdiy) suonipuoy) pue swid [, ayp S “[£707/S0/1€] uo Areiqry suruQ AIA 08STZ 289/2001 0 1/10p/wodKaim  AIeIqrour[uoy//:sdiy woly papeojumo( 7 “€20T ‘ThS06601



SANCHEZ-PENA Et AL.

247

WILEY

Practice Activity:

What is this algorithm doing? Write comments within the sample code to describe what each line does

th,y=Sepal.Length, color=factor(group

FIGURE 4 Sample of the code with in-code comments to elicit articulation.

/ Eliciting ideas:

Theoretical concepts introduced as
modeling during class time and recalled
through open-ended questions. Connecting
students’ prior experiences with machine
learning applications

Distinguishing ideas:

Algorithmic implementation is provided
both as a black box and as a transparent
implementation as a form of articulation.
These implementations use prompts to help
students relate to, or conflict with
normative ideas

How Computational
Cognitive
Apprenticeship supports
Knowledge Integration

~

Implementation of the computational
notebook with guidance as coaching and
scaffolding

Adding new ideas:

Sorting out ideas:

Prompts are provided as reflection so
students become aware of what they

learned by connecting ideas and

understandings

FIGURE 5 Alignment between knowledge integration and the computational cognitive apprenticeship dimensions

(c¢) Distinguishing ideas—we provide both the black
box version of the method as well as the transparent step-
by-step model, so the learners see how their existing
ideas relate to or conflict with the actual functioning of
the algorithm-; and

(d) Sorting out ideas—students complete a reflection
sheet that helps students refine their knowledge about
the algorithm and how the visualizations supported or
hindered their understanding.

A summary of how the computational cognitive
apprenticeship framework is envisioned to support
knowledge integration is illustrated in Figure 5. The
elements in bold and italics represent the dimensions
of the computational cognitive apprenticeship frame-
work aligning with each of the stages of knowledge
integration.

6 | METHODS

6.1 | Research design
This study implemented the first iteration of a DBR study
[2]. DBR is a methodological approach that simulta-
neously permits addressing a learning need and perform-
ing education research in working classrooms. DBR is
similar to the engineering design process as it starts with
a learning need. Based on the learning need, an
educational innovation is designed and grounded in
evidence-based practices. The educational innovation is
continuously revised and iterated through classroom
research.

For this study, we identified the learning need for
teaching DS concepts to engineering undergraduate
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students sooner and often within the engineering
curriculum. We then grounded our learning design as
explained in Sections III to V. The last step in the process
is to evaluate such innovation in a classroom setting. As
the learning innovation is continuously and iteratively
evaluated, important contributions of DBR are the
validated learning materials, the pedagogical approaches
that guided their design, and new knowledge about
students’ understanding of DS.

6.2 | Context and participants

The presented computational documents in K-means
were used for two editions of a senior undergraduate
Statistics class. The class was a requirement for a specific
engineering program at a Large Public Midwestern
institution in the United States. The implementation
took place in the Spring 2020 (n=10) and Fall 2019
(n=19) semesters. The class was conducted in a flipped
classroom format, in which students watched recordings
of the content previous to the class session, in which they
engaged in activities to practice the content. The R
programming language was used for the course. Based on
classroom surveys, all students were novices in DS
concepts and methods. We were granted approval from
our institutional review board (IRB-2020-1074) to con-
duct this study, and an exemption was granted for
informed consent.

6.3 | Procedures

Students first submitted their responses to the activity of
the eliciting idea aimed at unpacking their current
knowledge of the topic. Then, students were provided

with the flipped lesson on the topic, followed by the
active learning session corresponding to the K-Means
topic, in which students worked with the computational
document in R Markdown (see Figures 1-4 and 6), which
covered the different stages of the computational
cognitive apprenticeship framework. This activity was
part of what was deemed as in-class activities (ICAs)
throughout the course. To capture students’ experiences
working through the computational document, an
additional postactivity reflection sheet was provided to
answer the following questions:

1. Please describe what the goal of K-means is and how
it works.

2. What are the factors that might affect the results from
K-means?

3. Are the clusters identified by K-means always
meaningful? Why?

4. What do the explored visualizations tell you about the
K-means algorithm and its results?

5. How did the visualization help/hinder your under-
standing of the ML algorithm? How did it change with
respect to your understanding based purely on the DS
—Intro materials?

The employed R Markdown interactive computa-
tional document can be found in Vieira [59].

6.4 | Data collection method

The learning materials were used as a formative
assessment for the class; therefore, they were graded in
completion. Our data were composed of students'
responses to their postactivity reflection sheet; we did
not collect data through the computational document,

How did the algorithm did finding groups of flowers from the same species?

We can compute an indicator of performance by computing the number of flowers appropriately classified over the total number of flowers

Practice Activity:

Maybe we can improve that indicator of performace if we also include the sepal width and the petal width in the clustering procedure. Use the

following box to find three clusters using all four columns (lengths anad widths). Compute and compare the indicator of performance to the one

we just did. Note: Make sure you include comments within your code to explain how you solved it. and how your program performed

# Start Ov

Code

1

FIGURE 6 Sample of embedded prompts to elicit reflection
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such as student code comments. Not all students
submitted their responses to both reflection sheets. We
collected a total of n =25 responses across both semes-
ters for analysis. This is a common number of
participants for qualitative studies, which may range
from a single individual to 20-30 participants [17].
Similarly, not all students answered all questions,
altering the sample size per question. As data collection
took place as part of the educational activities taking
place, the study was approved as exempt by the
Institutional Review Board.

6.5 | Data analysis method

Since this study inquiry focuses on students’ conceptual-
ization of their learning, we have selected a qualitative
research approach that would allow capturing the
nuances of student understanding rather than quantify-
ing it. We used qualitative content analysis to character-
ize student responses to these five open-ended questions.
The content analysis identifies a set of categories or codes
in qualitative data (e.g., open-ended responses) and
counts the number of instances in which each category

TABLE 2 Coding scheme for students' conceptualization of K-means

Category

Description and Sample Quote

Please describe what is the goal of K-means and how it works

Creating groups as a goal
goal for the method.

The creation of subgroups (clusters) was explicitly defined as a

To find subgroups of observations within a data set.

Plotting as a goal
a support tool.

Identifies the creation of plot as a goal of the method rather than

Its goal is to graph certain characteristics of the data

Minimizing distance to
centroids

Described the method in relation to the use of centroids.
To identify a certain number of centroids (k) and then allocate

each and every data point to its nearest cluster.

Iterative nature of the
process

Deterministic nature of
the process
of data

Recognizes that the algorithm iterate until a condition is met.
Repeats the process until there is little to no change between
passes of the algorithm

Expects the algorithm to produce a “right answer”

To determine the definition of the right answer by finding clusters

What are the factors that might affect the results from K-means?

Input Selection

Distance calculation

Number of Iterations

Initial Selection of Centroids
Number of clusters (K)

Presence of outliers
Missing Data

Data Spread

Group overlapping

Data Quality

Are the clusters identified by K-means always meaningful? Why?

Relationship between
clusters and identified
factors

output

affecting k-means

Tied the mentioned factors affecting the results to the clusters

1t all comes down to how closely the clusters follow the factors

Outliers and other variances could skew cluster limits

Interpretation

Identified the critical need for interpretation of the results

it is up to the human being to assign meaning to the clusters

Note: Shaded rows denote identified students’ misconceptions.

ASUDOI'T SUOWIWOD) dANEAIY) d[qearjdde ) Aq pouIoaod axe so[oIIE V() ‘oSN JO sani 10§ AIBIqI] duljuQ AJ[IA\ UO (SUONIPUOD-PUB-SULIA} WO K3[1M " ATeIqrjouruo//:sdiy) suonipuoy) pue swid [, ayp S “[£707/S0/1€] uo Areiqry suruQ AIA 08STZ 289/2001 0 1/10p/wodKaim  AIeIqrour[uoy//:sdiy woly papeojumo( 7 “€20T ‘ThS06601



® | WiLEY

SANCHEZ-PENA Et AL.

occurs [21]. This approach allows us to identify how
students conceptualize DS concepts and what miscon-
ceptions persist after working on the learning activity.
Since there are few studies exploring these constructs,
using qualitative approaches enabled the research team
to identify emerging categories from the data. These
categories may be used in the future for designing a
quantitative instrument (e.g., a concept inventory).

The coding scheme emerged from the data through
an iterative, open coding process for each question.

Tables 2 and 3 present the coding scheme for the
questions associated with student conceptualization of
the method (RQ1) and the visualizations' affordances
they identified (RQ2), respectively, each including a
sample response for each category. Table 2 shows
students’ misconceptions highlighted in gray. The
sample size of 25 respondents was appropriate for
our qualitative approach. The analyzed responses
allowed us to reach saturation, suggesting that we
thoroughly described this specific case. The idea of

TABLE 3

Category

Coding scheme for the affordances of the visualizations

Description and sample quote

What do the explored visualizations tell you about the K-means algorithm and its results?

Concrete representation

Understanding the
accuracy

Underlying assumptions

Strategic knowledge
(Under what
conditions it works)

Provides Examples of how
they interacted with
the visualizations

The visualizations provide a concrete representation of how the method works.

The plots helped show how the observations related to their assigned cluster/The explored visualizations give a
helpful example as to how K-means work.

The visualizations help to identify how accurate the method is given a specific data set
How well the cluster and the algorithm work and how closely the points are toward the centroid.
The visualizations help to identify the underlying assumptions for the algorithm

From the visualizations, I can see that the k-means algorithm heavily relies on the centroids chosen for each
cluster.

The visualizations allow the students to understand under what conditions the algorithm works

The explored visualization tells me that a K-means result is more meaningful when the subsets are separate
from each other

The student provides examples of how changing specific values or inputs in the tutorial would result in
different outcomes

Changing the values of the seed will change the randomly generated centroid. It is necessary to keep the seed
consistent if you do not want the centroids to change.

How did the visualization help/hinder your understanding of the ML algorithm? How did it change with respect to your
understanding based purely on the Data Science—Intro materials?

Conceptual understanding
of the method and the
field

Iterative nature of Data
Science

Consolidation through the
tutorial activities

Interpreting the accuracy

No significant change

The visualizations contribute to a better understanding of the algorithm and data science

The visualization helped me a lot in understanding data science and helped broaden my understanding of the
topic.

The visualizations show how the methods iteratively refine their models up to certain accuracy measures.

These algorithms operate on a generation-by-generation basis. That is, these algorithms begin by completely
guessing/randomly picking a start point. Their next step is to evaluate their performance, make
improvements, and pick new points

The students find useful, engaging activities such as annotating the code (self-explaining) or interacting
with visualizations

I also feel like annotating the code enforced the concepts well. Whatever format and website was used for this
ICA were awesome. The format was really helpful in understanding what was happening in the code

The visualizations help to interpret the accuracy

However, in terms of interpreting the accuracy of the results, it does seem to help with that as it is easy to see,
when color-coded, which points are right and wrong.

The student did not experience a change in their understanding after interacting with the visualizations

It didn't really change much.
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saturation comes from the tradition of grounded
theory but is now often used in several qualitative
studies [17]. Saturation involves collecting data until
the categories or themes start to repeat, and no
additional categories emerge from additional data
collection [9].

6.6 | Validity and reliability

The analysis was conducted by two of the research team
members in two separate stages. During the first stage,
only 20% of the data was used to develop our coding
structure separately. While there is no agreement on the
proportion of the data that needs to be coded by multiple
researchers in qualitative research, a range between 10%
and 25% is pretty common [43]. With such a first coding
structure, the two researchers met to compare and
discuss their categories; when we found discrepancies,
we negotiated the modified codes as necessary until
achieving complete consensus. For example, for the
questions related to the affordances of the visualizations,
we identified that the category Strategic Knowledge
(Under what conditions it works) should only be used
when students mention under what conditions the
method may work better (e.g., The explored visualization
tells me that a K-means result is more meaningful when
the subsets are separate from each other). Likewise, for the
category Iterative Nature of DS, one of the researchers
had missed some responses that discussed the iterations
in the method. This stage contributed to enhancing the
reliability of our results as we refined the coding scheme

Distribution of Responses

by clarifying codes and identifying keywords that would
help us in the rest of the process. In the second stage, we
used our agreed coding structure to complete the analysis
of all the available data, which is what we report in the
following section.

7 | RESULTS

This section presents the results of students' conceptuali-
zations of K-means, followed by their perceived affor-
dances of the visualizations for their learning of the ML
method. A quantitative summary of our results is
presented in Figures 7 and 8.

7.1 | Students’' conceptualizations

Twenty students answered the three questions related to
the conceptualization of K-means. These questions
captured students’ understanding based only on the
recorded lecture that they watched previous to the class
session. From the analysis of student responses to the
question, please describe the goal of K-means and how it
works; 15 students referenced the creation of groups as the
goal of K-means. However, eight framed it within the
actual number of groups to create (k). In contrast, seven
stated it in more general terms (e.g., “is a way to
categorize datasets into clusters and observations”) or
made a reference to unspecified characteristics to
discover from the data (e.g., “the goal of K-means is to
be able to take data and determine without the use of

Please describe what the goal of K-means and how it works

Creating groups as a goal-

w

Plotting as a goal-
Minimizing distance to centroids-
Iterative nature of the process-

N

Deterministic nature of the process-

15

)

What are the factors that might affect the results from K-means?

Initial Selection of centroids -

> Number of Clusters (K)-
g Distance Calculation-
© Number of Iterations - - 1
Presence of outliers- _ 4
Missing Data- - i
pata Spreac- N
Group overlapping - - 2

)

1

‘|
=)

Are the clusters identified by K-means always meaningful? Why?

Relationship between clusters _
and identified factors
Interpretation-

U’II
o

o

©

10 15
Count

FIGURE 7 Distribution of codes for questions related to students' conceptualizations of the K-means method
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Distribution of Responses

What do the explored visualizations tell you about the K-means algorithm and its results?

Concrete Representation-
Understanding the Accuracy-
Underlying Assumptions-
Strategic Knowledge -

Interacted with the visualizations -

Category

Conceptual Understanding -

Iterative Nature of Data Science-
Consolidation through the tutorial activities -
Interpretting the accuracy-

No significant change-

o.

15

5 10 15
Count

FIGURE 8 Distribution of codes for questions related to students' perceived affordances of the computational notebooks

labels if there are groups of data and what those
groups mean”).

Minimizing the distance to centroids was mentioned
as an essential part of the algorithm. Thirteen students
mentioned the use of centroids or means as a central
element of the process (e.g., “it works by pairing data
points to the closest centroid”). The iterative nature of
the algorithm was cited by 11 students in our sample
(e.g., “repeat the process until they [the datapoints] are
not re-assigned anymore”).

Three students cited K-means in the context of its
larger category of an unsupervised ML algorithm and/or
artificial intelligence algorithm, which was information
provided in their online lecture. Some misconceptions
about the goal and process of K-means were also evident
in students' answers. Three students held the mis-
conception that plotting was the goal of the algorithm.
Two students also held a misconception of the determi-
nistic nature of the algorithm, from which they expected
to obtain a “right answer.”

There were two larger categories in the responses to
the question: What are the factors that might affect the
results from K-means? The first category is related to the
selection of the input for the algorithm; 11 students
mentioned the initial number of centroids, highlighting
their random selection “first shuffling the data set and
randomly selecting K data points for the centroids....”
Some students showcased an advanced understanding by
clarifying that “not all initial random’ placements will
result in the same k-means outcome.” Ten students also
cited the number of clusters (k) as a factor affecting the
result. Only four students mentioned the selection of the

distance calculation method as a relevant factor. Finally,
one student mentioned the number of iterations as a
factor affecting the results of the algorithm, which did
not tie the stopping of the algorithm to certain similitude
criteria, therefore considered a misconception. The
second category of factors was those related to data
quality: students mentioned having ill-defined, too
spread, or missing data (six students) and the presence
of outliers (four students) as factors affecting the results
of the algorithm. Two students cited group overlapping
as an influencing factor, which might denote a mis-
conception of the algorithm since its resulting groups
cannot overlap.

Finally, when analyzing the responses to the ques-
tion: Are the clusters identified by K-means always
meaningful? Why? The large majority of students (19)
were explicitly answering that the results of the K-means
algorithm were not always meaningful. The reasons
provided for this varied, but they mostly connected their
responses to the factors listed in the previous question.
Therefore, these are summarized as a class in its
corresponding section of Table 2. Only five students also
identified interpretation to be a critical element of the
meaningfulness of the resulting clusters. Students who
showcased misconceptions related to plotting as a goal
and a deterministic nature of the process in the first
question showcased answers still aligning with such
misconceptions. For example, a student who declared
that graphing was the main goal of the method stated:
“No, because they are grouped based on distance from a
certain point. A graph might not always indicate a
relationship, hence the issue with interpretability.”
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7.2 | Students’ perceived affordances

We received responses from 19 students for the question:
what do the explored visualizations tell you about the K-
means algorithm and its results? More than one category
from the ones described in the coding scheme (Table 3)
emerged in each response. The most common affordance
described by the participating students is that the
visualizations provided a Concrete Representation of
the method (15 responses), which included answers such
as “The explored visualizations give a helpful example as
to how K-means work” or “The explored visualizations
tell you whether the K-means algorithm worked or not.
The visualizations will have groups labeled or colored
differently, so it is easy to identify which clusters were
found.” Nine students mentioned that the visualizations
allowed them to identify how accurate the method is
given a specific data set, including statements such as: “I
think it is very useful when trying to group data, but you
have to be careful not to rely entirely on it because it is
not always 100% accurate. With the iris problem, adding
more variables made it less accurate than with fewer.”

Four students found the visualizations helpful in
understanding the underlying assumptions of the meth-
ods (e.g., “From the visualizations, I can see that the k-
means algorithm heavily relies on the centroids chosen
for each cluster.”), three students talked about giving
them the strategic knowledge to understand the condi-
tions under which the method works (e.g., “There are
flaws within the K-means algorithm, especially when the
groups you are trying to define are closely related, but it
is a useful tool at the base level.”), and two students
provided concrete examples of how they interacted with
the visualizations.

Five categories emerged from student responses to
the question: How did the visualization help/hinder your
understanding of the ML algorithm? How did it change
with respect to your understanding based purely on the
Data Science—Intro materials? Most students (17)
discussed how the visualizations helped them to have a
better understanding of the algorithm and data science,
with responses such as:

The visualization helps me understand the
ML algorithm better because I can physically
see the clusters and where the centroids lie.
It is more difficult to just look at different
numbers to compare the amount or size of
the clusters. It changed with respect to my
understanding of the Data Science-Intro
materials by actually seeing a process of
how machine learning is used and can be
interpreted.

Five students found that one of the main affordances
of these visualizations was to understand the Iterative
Nature of Data Science, something that is not as easy to
understand with static examples on a whiteboard. As one
of the students stated: “I think it helped me understand it
better. I'm more visual so seeing the clusters change with
the centroids helped me understand it a bit better and
gain respect for Data Science because the repetition
really does help.”

Four students also mentioned in this question that
the visualizations help to interpret the accuracy of the
method: “I was able to see that it was slightly flawed, but
it would get better with more tests.” Three students
explicitly praised the computational documents, with
responses such as:

“My understanding of machine learning and
data science intro materials has definitely
been helped thanks to these visualizations.
Whatever format and website that was used
for this ICA was awesome. The format was
really helpful in understanding what was
happening in the code.”

Finally, one of the students felt that it did not provide
any particular help, and their understanding of DS did
not change.

8 | DISCUSSION AND
IMPLICATIONS

This article used a DBR approach to explore how
computational notebooks as a way to deliver a
computational cognitive apprenticeship promote
knowledge integration of DS concepts. We explored
the following research questions: (1) How do students
conceptualize their understanding of an unsupervised
ML method after engaging with interactive visualiza-
tions designed using the computational cognitive
apprenticeship approach? And (2) How do the affor-
dances of interactive visualizations support or hinder
student knowledge integration of an unsupervised ML
method? DBR studies may start from a learning need
(e.g., teaching DS concepts to engineering under-
graduate students) and use both existing literature
and empirical evidence to design, implement, assess,
and refine instructional implementations, providing
both theoretical and local contributions. Specifically,
this study offers theoretical contributions by describing
how the computational cognitive apprenticeship model
supports knowledge integration and what students’
misconceptions about DS persist after completing the
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learning activities. This study also provides local
contributions related to the learning materials (e.g.,
the computational notebooks and the reflection sheets)
informed by existing learning theories and local
empirical data.

The first research question allowed us to understand
student conceptualizations of K-means and the miscon-
ceptions they showed after watching a video lecture
about this topic and interacting with the computational
notebooks. Our results showed that most students
developed a basic understanding of the goal and nature
of the K-means algorithm, correctly identifying the goal
of K-means to be the creation of groups, the minimiza-
tion of distance to centroids, and the iterative nature of
the process. Similarly, multiple factors affecting the
execution of K-means were correctly identified by
students, including (1) inputs, like the selection of
centroids, the number of clusters, and the distance
calculation, and (2) data quality, like the presence of
outliers, missing data, and data spread. However, we also
identified some important misconceptions students held
after the video lecture. In particular, some students
identified plotting as the goal of the method, while others
had an expectation for the method to be deterministic in
nature; therefore, it would provide a “right answer.” The
inability of students to identify that the plot is only a
representation of the results rather than the result itself
and that the algorithm can provide multiple answers can
be argued to be a limiting factor in understanding the
relationship between algorithm inputs and algorithm
outputs.

In general, misconceptions about ML algorithms have
been poorly explored [54, 69]. In their research about
faculty perceptions of barriers to student learning of ML,
Sulmont and colleagues [54] found that faculty teaching
ML to students with backgrounds outside of CS and
statistics deemed that students “were generally
unaffected by misconceptions, but rather a lack of
conception to begin with” (p. 948). For the engineering
students in our sample, the misconceptions were
identified after they were exposed to the video lecture
on the topic and interacting with the computational
notebooks, which resemble traditional teaching methods
that most students experience. Furthermore, when
verifying the affordances of the computational docu-
ments identified by students that started with misconcep-
tions, we found that they recognized the value of having
a concrete representation of how the method works and
later showcased elements of conceptual understanding.
Therefore, beyond identifying previously unknown mis-
conceptions while learning ML algorithms, we are also
advancing the consideration of potential solutions to
address them.

The second research question showed the affor-
dances of interactive visualizations to promote knowl-
edge integration. We argue that the pedagogical
framework, computational cognitive apprenticeship,
helped students with knowledge integration by incor-
porating and synthesizing multiple representations into
a common body of existing knowledge [26, 53].
Specifically, our learning design helped students
(according to the listing presented in Section III) to
[5, 44]: (a) eliciting ideas by connecting the concepts of
video lectures into an interactive computational note-
book; (b) adding new ideas and distinguishing ideas, by
providing meaning-making mechanisms such as the
step-by-step visualizations of the algorithm, that en-
abled learners to make connections between what they
already know and how the method actually worked;
and (d) sorting out ideas, by providing opportunities to
learners to refine their knowledge through analysis and
reflection. The participating students explicitly stated
how the computational notebooks helped them identify
how the algorithm works iteratively, how the centroids
change when to stop, and how accurate the method is.
This is a promising result, so we prepare students to
recognize that the data sets we use in ML algorithms
may include bias that affects the output and that the
user is responsible for evaluating and interpreting the
outputs [51, 67]. This approach also helped them
understand ML algorithms in general and how they
work iteratively.

We will further emphasize the reflection and
exploration aspects of the computational cognitive
apprenticeship for future educational implementations.
Specifically, we will have students execute the algorithm
through a larger number of cases to provide opportuni-
ties to identify the nuanced differences in the output.
Along with that, we will implement reflection and
discussion processes that will further challenge the
identified students’ misconceptions. For instance, we
may use different data sets, including a specific bias (e.g.,
only representing some part of the population), so
students reflect on the “right answer.”

The implications of this study for education research
include the identified potential of theoretically based
pedagogies for the creation of computational notebooks.
To the best of our knowledge, this is one of the initial
efforts to use learning theories for the pedagogical design
of computational notebooks to (a) scaffold learning
processes and (b) evaluate their impact on students'
learning. Similar theory-based approaches could be
compared using other learning theories and pedagogical
strategies in the near future. Furthermore, the pedagogi-
cal design and learning principles presented in this study
can be used to support the learning of other DS and ML
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topics. In addition, our identification of student mis-
conceptions in DS may lead to the development of valid
and reliable assessment instruments (e.g., concept
inventories), important tools for education research.
Moreover, the use of computational notebooks in
research can be leveraged for the identification of
students' learning shortcomings for timely attention to
their mastery of other DS topics and other knowledge
areas. Student interactions with the computational
documents may be collected as learning analytics to
understand how students are learning the computing
skills in DS.

Our research also has positive implications for
teaching and learning, as these and future results can
provide targeted strategies for the design and implemen-
tation of computational notebooks by more faculty in and
out of DS. Understanding persisting student misconcep-
tions in DS may support the making of informed
instructional decisions. A focus on the components of
modeling, coaching, scaffolding, and articulation of the
computational cognitive apprenticeship framework pro-
vides useful guidelines for instructional designers.

9 | CONCLUSION, LIMITATIONS,
AND FUTURE WORK

We have presented the results on the potential of using
computational notebooks to learn an unsupervised ML
algorithm. The computational documents were devel-
oped using the computational cognitive apprenticeship
framework to facilitate knowledge integration to learn
K-means. Our results on students’ conceptualization of
their understanding of the unsupervised ML method of
K-means showed that after watching a video lecture on
the topic, students had mostly accurate (a) conceptions
of the goals of the methods, (b) the factors affecting its
results, and (c) the challenges of getting meaningful
results. However, we also identified important mis-
conceptions that students held after the introductory
lesson. These misconceptions were mostly related to the
goal and nature of the algorithm. Our work is the first
to identify such misconceptions, therefore contributing
to the literature on ML education. One limitation of
such a contribution is that it can be questioned if such
misconceptions are directly linked to the understanding
of the ML algorithm or can be linked instead to the
interaction with the computational notebooks. For
example, consider plotting as the goal of the algorithm
because plots are prevalent in computational note-
books. The identification of such misconceptions is
the first step toward their scrutiny enabling formal

questioning of their source and, therefore, their poten-
tial eradication.

In addition, when exploring the affordances of
interactive visualizations on student knowledge integra-
tion of the K-means method, we found that it positively
supported students’ elicitation of ideas and the addition
of new ideas into their conceptions of the method.
Furthermore, we found that it supported students with
the identified misconceptions to overcome them. Our
results encourage future work on more specific inquiries
about misconceptions when learning ML algorithms in
particular and DS methods in general. A limitation of
this study is the use of only one ML topic. Future work
will include the implementation of this approach in the
teaching of a larger diversity of ML topics beyond
K-means.

Although the sample size was adequate for this
qualitative study, future work will include the evaluation
of the effectiveness of this design strategy for computa-
tional notebooks on student learning in larger scale
quantitative studies. Such evidence would derive from
practical suggestions to educators in the creation of
effective computational notebooks. Experimental ap-
proaches using control conditions and nontheoretical
approaches for the design of computational notebooks
are also an important space for future work.

This study exclusively focused on engineering stu-
dents as the target population, who have a higher
quantitative and programming knowledge than students
outside of STEM, and less programming expertise than
students in computer science. Future studies need to
include non-STEM students and CS students to evaluate
the potential of the integration of the computational
cognitive apprenticeship framework for knowledge inte-
gration of DS.

The timing and arrangement of the intervention
activities might also be improved. For example, the
ability to capture real-time responses to the reflection
prompts within the computational notebooks would
provide a more nuanced picture of students’ learning
than the one achieved by separate reflection sheets like
those used in this study. Still, the presented evidence is
encouraging the potential for the proposed design
approach using the computational cognitive apprentice-
ship pedagogical framework to reach knowledge inte-
gration through the use of computational notebooks.
Future endeavors will aim to explore the scalability of
the strategy as well as the teaching of other
unsupervised ML algorithms and other supervised ML
algorithms, which would help develop a larger body of
evidence propelling best practices for teaching DS topics
in the future.
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