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Abstract
Elastic filaments driven out of equilibrium display complex phenomena that involve periodic
changes in their shape. Here, the periodic deformation dynamics of semiflexible colloidal
chains in an eccentric magnetic field are presented. This field changes both its magnitude and
direction with time, leading to novel nonequilibrium chain structures. Deformation into S-, Z-,
and 4-mode shapes arises via the propagation and growth of bending waves. Transitions
between these morphologies are governed by an interplay among magnetic, viscous, and
elastic forces. Furthermore, the periodic behavior leading to these structures is described by
four distinct stages of motion that include rotation, arrest, bending, and stretching of the chain.
These stages correspond to specific intervals of the eccentric field’s period. A scaling analysis
that considers the relative ratio of viscous to magnetic torques via a critical frequency
illustrates how to maximize the bending energy. These results provide new insights into
controlling colloidal assemblies by applying complex magnetic fields.

Keywords: paramagnetic colloids, periodic deformation, semiflexible chains, nonequilibrium,
magnetic fields

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

Semiflexible filaments undergo periodic configurational
dynamics when driven out of equilibrium [1]. This is usually
achieved by subjecting the filaments to external flow fields
or by the activity of molecular motors. Examples include
the buckling-tumbling events and snaking motion of semi-
flexible polymers in shear flows [2–4], continuous cycles
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of compression and stretching under oscillatory extensional
flows [5], helical coiling and relaxation when passing through
successive micro-channels of varying width [6, 7], the undu-
lating bodies of small filamentous organisms [8, 9], and the
beating of flagella and cilia that power cell propulsion and
other biological processes [10, 11]. The complex dynamics
and the variety of shapes attainable by semiflexible filaments
have sparked the design of artificial filaments that exhibit
novel deformation behaviors when externally driven to
nonequilibrium conditions [12–14].

The directed assembly of colloidal particles into chain
structures is an effective method to build artificial filaments
that act as model systems of polymers and fibers in equilib-
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rium [15, 16] and nonequilibrium conditions [17–19]. Such
colloidal chains can be tailoredwith elastic properties by incor-
porating macromolecular linkers that bond adjacent particles
together during the assembly process [12, 20, 21]. Param-
agnetic colloids have received significant attention as build-
ing blocks of model semiflexible filaments for several rea-
sons. First, under a static magnetic field, the particles acquire
dipoles that favor a head-to-tail alignment due to anisotropic
interactions, directing the assembly of the particles into lin-
ear chains [22, 23]. Second, the induced dipoles respond
quickly to changes in the direction of an external magnetic
field, facilitating the manipulation of the chains. Finally, the
strength of the interparticle dipolar interactions is easily tun-
able by changing the magnitude of the applied magnetic field
[23–25]. This responsive nature, combined with the flexibil-
ity of the linkers, allows for unique dynamics of these chain
assemblies [26, 27].

Studies of elastic paramagnetic chains driven away from
equilibrium by time-varying fields have mainly focused on the
effects of circularly rotating magnetic fields [28]. Interaction
of the elastic chain with the surrounding fluid while undergo-
ing field-induced rotation in planar circular fields leads to a
plethora of rotational and configurational dynamics, depend-
ing on the flexibility of the chain and on field parameters
like magnitude and frequency. These dynamics include syn-
chronous rotation [29], asynchronous rigid rotation [30], asyn-
chronous rotation with wagging ends [31, 32], coiling from
the ends to the center leading to a collapsed rotating structure
[31, 33, 34], and folding of the chain into an effectively shorter
configuration that can also sustain synchronous rotation
[30, 31]. In short, these planar circular fields induce chain rota-
tion and can lead to interesting deformation behaviors, but they
are not periodic inmost cases. Although thewagging dynamics
showcase periodicity, they are also susceptible to perturbations
that lead to the collapse of the chain via coiling of one of its
ends. Thus, the conventional circular field tends to fold semi-
flexible chains into small structures that do not display periodic
patterns in their deformation.

Applying other types of magnetic fields represents a strat-
egy to achieve periodic shape changes in the chains akin to
those observed in flowing or active semiflexible polymers.
Recent studies have characterized the chain response under
conical fields that alter the shape into novel helical configu-
rations [35, 36]. However, the morphology does not seem to
change periodically unless the chains are tethered on one end
to a surface [37, 38]. An eccentric field, which is a type of
planar field in which both the direction as well as the mag-
nitude vary with time, has been applied to systems of a few
unlinked particles leading to periodic changes in interparticle
spacing [39]. This observation points at the potential applica-
tion of eccentric fields to periodically deform paramagnetic
chains that are free on both ends. Here, we find that this is
indeed the case.

In this paper, we describe the periodic configurational
dynamics of DNA-linked paramagnetic chains that arise in
eccentric magnetic fields. Depending on the frequency of the
eccentric field, the chains bend into three different charac-
teristic morphologies. These configurations are consistent in

both experiments and numerical simulations. The morpholo-
gies include a conventional S-shape and two novel patterns for
chains in time-varying fields: a highly coarsened Z-shape and
a four-mode structure. After acquiring these shapes, the chains
rapidly stretch back to the linear configuration.We decompose
the deformation dynamics of the chains within a single period
into four distinct stages of motion: (I) rotation of the chain, (II)
arrest of the angular motion, (III) bending and coarsening, and
(IV) stretching and realignment of the deformed chain. From
this analysis, we are able to explain the dynamics in terms of
an interplay among magnetic, viscous, and elastic forces. Key
geometric parameters are used to characterize the extent of
chain deformation.We find that the peak values in the deforma-
tion parameters follow a nonmonotonic trend that scales with
the critical magnetoviscous frequency of the chain, allowing
us to identify the field parameters that maximize the bending
energy during the deformation events. Overall, our results pro-
vide new understanding of how semiflexible filaments behave
under nonequilibrium conditions.

2. Experimental methods

2.1. Chain assembly

Semiflexible colloidal chains were prepared from streptavidin-
coated superparamagnetic particles of diameter 2a = 1 μm
(MyOne Streptavidin C1 Dynabeads, Invitrogen). The parti-
cles were diluted to 0.00125% w/v in PBS-azide and mixed
with 2000 bp double-stranded DNA labeled with biotin at the
5′ ends [40, 41]. The concentrations of these components in
the final solution were 10 mM PBS, 0.01%w/v sodium azide,
and 5 nM DNA.

The chains were synthesized within a sample cell consist-
ing of two microscope coverslips spaced by double-sided tape
(thickness: 90 μm). The coverslips were cleaned with oxy-
gen plasma at 600 mTorr for 1 min, immersed in a KOH
bath for 30 min, rinsed thoroughly with DI water, and then
dried with nitrogen. An aliquot of 40 μL of the colloidal
suspension was flowed into the cell, which was then sealed
with epoxy adhesive (Hardman Double/Bubble). The parti-
cles sedimented to the bottom of the cell due to their large
density (1.8 g cm−3), ensuring their confinement to a quasi-
2D plane. Contact with the bottom coverslip was prevented
due to electrostatic repulsion. The cell was placed for 90 min
between two permanent magnets that produced a static
magnetic field of 11.6 kA m−1. Due to the dipolar and
DNA interactions, the superparamagnetic particles align their
induced magnetic dipoles by assembling into linear chains
of linked particles, as depicted in figure 1(a). This link-
ing procedure was performed on a heat plate at 60 ◦C to
enhance the diffusion of the DNA toward the particle sur-
faces. The biotinylated DNA links the adjacent streptavidin-
coated particles, preventing disassembly when the external
field is removed and conferring elasticity to the chain. The
average persistence length of the chains was determined to
be lp = 0.56± 0.17 mm, using Fourier mode decomposition
of the shape fluctuations, along the contour of several chains,
caused by thermal motion [16, 24, 31, 40]. Figure 1(b) illus-
trates these fluctuations in the shape of a chain consisting of
31 particles.
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Figure 1. (a) Directed assembly of paramagnetic particles into
semiflexible chains under a static magnetic field employing surface
chemistry and DNA linkers. Left: schematic of the main
components necessary to assemble the chains. In the absence of a
magnetic field, the paramagnetic particles are unpolarized. The
particles are functionalized with streptavidin and mixed with
biotinylated DNA in a buffer solution. Right: schematic of the
assembled particles when the field is turned on. The paramagnetic
particles acquire magnetic dipoles (white arrows) with the same
direction as the external field. Particles assemble into a chain to
align the dipoles head-to-tail. The biotin ends of the DNA bind to
streptavidin sites on the particles. The DNA acts as a linker that
confers elastic properties to the chain. (b) Snapshots of an
assembled chain of 31 particles (2a = 1 μm) linked by 2000 bp
DNA after the field is turned off. The paramagnetic particles do not
disassemble despite the loss of their dipoles due to the linkers.
Shape fluctuations caused by thermal motion can be observed over
time, demonstrating the semiflexible nature of the chains.

2.2. Eccentric time-varying field

The eccentric time-varying field consists of two perpendicular
sinusoidal waves that have an additional DC offset signal [39]

Hx(t) = Ho [sin(2π f t)+ λx] êx (1a)

Hy(t) = Ho

[
cos(2π f t)+ λy

]
êy (1b)

whereHx(t) andHy(t) are the time-varying components of the
magnetic field, λx and λy are the DC offset constants, Ho is
the amplitude of the field, f is the frequency, and t is time.
If λx = λy = 0, equation (1) reduces to that of a conventional
circular field with varying direction but constant magnitude.
Hence, λx = λy �= 0 is the necessary ingredient to vary both
the direction and strength of the magnetic field. Throughout
the present work, the DC offsets were set to λx = λy = 1.

Figure 2. Schematics of the eccentric field and the chain asphericity.
(a) Eccentric field with DC offsets λx = λy = 1. This choice of
offsets constrains the rotation of the field to the first quadrant of the
(Hx , Hy) plane. Both the magnitude and direction of the eccentric
field change with time. The magnitude at each instant can be
implied by the length of the arrows. The red arrow represents H at
the beginning and end of a field period (t0 and t0 + T, respectively),
where T = 1/ f . As time proceeds, the magnetic field rotates
clock-wise from t0–t7. Some instantaneous vectors of interest of the
eccentric field include: ||H(t1)|| = Hmax where the field magnitude
is maximum, H(t4) = Hx(t4) at which the y-component of the field
vanishes, ||H(t5)|| = Hmin where the field reaches its minimum
magnitude, and H(t6) = Hy(t6) at which the x-component of the
field vanishes. The time instants t1 through t7 are arbitrary and used
only to indicate progression. (b) Asphericity δ used as one of the
parameters to monitor deformation. The eigenvalues, b and c, of the
gyration tensor Snm are used to determine δ. The eigenvalues
represent the major and minor axes of the ellipse that best fits the
shape of the chain. The value of δ is a measure of the compactness
of the ellipse, varying between 0 < δ < 1. The limits of δ are a
circle (δ = 0) and a line (δ = 1), corresponding to the least and
most compact shapes, respectively. A straight chain has δ = 1, so
any decrease in this value monitors deformation by indicating
that the chain becomes less compact relative to a straight
line.
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Therefore, the rotation of the eccentric field was confined to
the first quadrant of (Hx , Hy), as shown in figure 2(a).

The rotation of the eccentric field can be visualized by start-
ing at the tip of the red arrow in figure 2(a). This vector repre-
sents themagnetic fieldH at the beginningof the cycle (t = t0).
The length of the arrow indicates that it has a strong mag-
nitude (||H|| > Ho). As time progresses, the magnetic field
rotates clockwise. Early in the cycle, the field strength rises
until it reaches its maximum magnitude (||H(t1)|| = Hmax in
the schematic). Then, it decreases in magnitude as it con-
tinues to rotates, eventually reaching an instant at which
the y-component of the field vanishes, so H(t4) = Hx(t4) (at
this time, its magnitude is ||H|| = Ho). After this time, the
y-component becomes nonzero once again but the overall
strength of the field continues to decrease (now ||H|| < Ho)
until it reaches its minimum magnitude (||H(t5)|| = Hmin in
the schematic). Afterward, the magnitude increases and even-
tually the x-component of the field now vanishes while the
y-component remains (H(t6) = Hy(t6) and the magnitude is
||H|| = Ho once more). Immediately after this point, the van-
ished component becomes nonzero again as the field continues
to increase until it returns to its initial direction and magnitude
at the end of the period (T = 1/ f ). Over the entire period,
the magnetic field draws a circle whose center is not at the
origin of (Hx ,Hy). Our selection of λx = λy = 1 ensures that
there are two instants at which one of the components vanishes
while the other remains with magnitude equal to the ampli-
tude Ho. If the offsets were set to values higher than unity,
the circle formed over time by the field in the first quadrant
would not have vectors parallel to the axes. If the offsets were
chosen to be less than unity, the field would be able invert its
direction and enter other quadrants. Video S1 (https://stacks
.iop.org/CM/34/184005/mmedia) illustrates the eccentric field
in action.

To apply the eccentric fields on the colloidal chains, a power
supply (Agilent N6705A) generates currents that pass through
two pairs of orthogonal iron-core coils. A function genera-
tor following equation (1) with user-selected frequency and
voltage controls the power supply. The instantaneous magni-
tude and direction of the eccentric magnetic field are deter-
mined from the coils’ voltage-field calibration curves. The
magnetic field produced at the center of the coils is uniform,
ensuring that the magnetic force acting on each particle is
caused only by dipolar interactions with other particles and
not by a gradient of the external magnetic field. The amplitude
Ho was set to 4.3 or 5.9 kA m−1, while f was varied from
0.01 to 2 Hz. All experiments were performed at room
temperature.

2.3. Image acquisition

The sample cell was placed on a fixed stage located at the
center of the coils. Chains made of 15–45 particles were
tracked with a 40× objective and a CCD camera (Hamamatsu)
recording at 9 frames per second. Before applying an eccentric
field, the chains were initialized for experiments by subjecting
them to a static field equal to equation (1) at t = 0. The dynam-
ics of individual chains were recorded for several values of

f and Ho. Video footage of each experiment consisted of
1000–3000 frames. The images were processed using a cus-
tomMATLAB code that performed Gaussian blurring, thresh-
olding, morphological operations, and skeletonization. The
particle positions are approximated from the skeleton of the
chain using a moving average.

2.4. Chain analysis and deformation parameters

We examine every instant of the chain dynamics within a field
period in terms of the ratio of viscous to magnetic torques and
the global phase lag angle between the chain and field direc-
tions. The dimensionless viscomagnetic ratio γ is estimated
as a Mason number that varies in time due to the nonconstant
magnitude of the eccentric field

γ(t) =
144πη f

μoχ2||H(t)||2
= Ma

H2
o

||H(t)||2
(2)

where ||H(t)|| = (||Hx(t)||2 + ||Hy(t)||2)1/2 is the instanta-
neous magnitude of the external field, η is the fluid viscos-
ity, μo is the magnetic permeability of the vacuum, χ is the
magnetic susceptibility of the particles, and Ma is the Mason
number: Ma = 144πη f /μoχ2H2

o [28, 42].
To determine the global phase lag angle, α(t), we calcu-

late the components of the gyration tensor of the chain through
time as [43, 44]

Snm =
1

2N2

N∑
i=1

N∑
j=1

(rin − r jn)(r
i
m − r jm) (3)

where N is the number of particles in the chain and rin is the
nth-component of the position vector of particle i. Note that
the gyration tensor in equation (3) may be simplified to a
2× 2 tensor because the dynamics of the chain aremostly con-
fined to a 2D plane. Therefore, the orientation of the chain, θ(t),
is defined by the direction of the principal eigenvector of Snm.
In this sense, α(t) is calculated from

α(t) = |φ(t)− θ(t)| , (4)

where the instantaneous direction of the magnetic field is
φ(t) = tan−1[Hy(t)/Hx(t)].

Two geometric parameters are used to quantify the extent
of deformation. The first one is the asphericity, which is com-
monly used to track structural changes in sheared polymers
and is computed as [4, 44]

δ = 1− 4bc
(b+ c)2

(5)

where b and c are the eigenvalues of equation (3). The
asphericity δ can acquire values between 0 and 1. As δ → 1,
the chain approaches a linear configuration, whereas lower
δ indicates deviations from the straight line. Additionally,
as δ decreases, the primary axis (b) shortens while the sec-
ondary axis (c) lengthens, making the chain less compact, as
schematically shown in figure 2(b). As a second indicator of
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deformation, the total bending energy for a discrete chain is
computed as

Ub =
1
2
kBTlp

N−1∑
i=2

(
(ϑbi)2

Δsi

)
(6)

where lp is the chain persistence length, kB is the Boltzmann
constant, T is the absolute temperature, i is the particle index
which does not include the beads at the ends, ϑbi is the angle
between two adjacent segments connecting three neighboring
particles, and Δsi is the average arclength of the segments
that form ϑbi. Equation (6) quantifies howmuch elastic energy
is stored within the chain as it develops regions of curvature
along its contour during deformation events.

3. Numerical simulations

To model the dynamics of the paramagnetic chains in the
eccentric magnetic fields, a bead-spring model is used [45],
in which N spherical beads with the same radius a have
their centers connected by massless springs of length l0 = 3a,
giving the computational chain a total contour length of
L = 3a(N − 1). Here, N was set to be 31 or 41 particles.
The colloidal particles and dsDNA linkers represent the beads
and springs, respectively. The suspending phase is assumed
to be Newtonian with viscosity η. In the view of the char-
acteristic small scale of the chains, the surrounding flow is
governed by the Stokes equations, whereby the dynamics are
inertia free. Non-local hydrodynamic interactions were only
taken into account between the beads, ignoring the presence
of the DNA and nearby walls. Thus, we formulate the problem
using a mobility description, such that the velocity of the par-
ticles are a linear function of the non-hydrodynamic forces
applied to the particles and their relative disposition in space,

vi =
N∑
j=1

G
i j · F j for i, j = 1, . . . ,N; (7)

where vi is the velocity vector of the particle i; F j is the force
vector representing the sum of all non-hydrodynamic forces
acting on the particle j; and Gi j is the mobility tensor of
dimension 3× 3 relating the dynamics of the particles i and
j. For the present study, the Rotne–Prager mobility tensor is
used to account for the particles’ hydrodynamic interactions
[46, 47],

G
ii =

I
6πηa

(8)

and

G
i j =

1
8πη

{
1
r
[I+ r̂r̂]+

2a2

3r3
[I− 3r̂r̂]

}
for i �= j, (9)

where r is the distance vector between the center of the
particles i and j, r = |r|, and r̂ = r/|r|.

The mechanical properties of the dsDNA linkers define the
elastic properties of the chains, and therefore, their rigidity.We
consider the stretching and bending elastic energies distributed

through the chain, respectively defined as

us =
σs

2l0
(r − l0)2 and ub =

σb

2l0
(ϑb)2, (10)

where σs and σb are the stretching and bending moduli, and
ϑb is defined as the angle between two adjacent segments con-
necting three neighboring beads. Hence, from a Hamiltonian
perspective, the elastic forces acting on each particle j can be
calculated as

fsj = −∇ ju
s and fbj = −∇ ju

b. (11)

Throughout this work, we set σs = 4σb/a2, following the
Euler–Bernoulli beam-theory for a circular cross section
assuming its radius as the one of the particles.

To account for the particles’ magnetic interactions, we
make use of the mutual dipole model as described in refer-
ences [22, 26]. The magnetizationm of the particles mutually
interact with each other leading to

mi =
4
3
πa3χ

⎡
⎣H(t)+

N∑
j�=i

M
i j ·m j

⎤
⎦ , (12)

whereMi j = (3rr/r5 − I/r3)/4π is known as the grand poten-
tial tensor [48]. Equation (12) leads to a linear system
of equations whose solution gives the particles’ magnetic
moments. Once the magnetic moments are computed for a
determined spatial configuration, the magnetic force for each
particle is calculated using

fmag
i = −

N∑
j�=i

3μ0

4πr5
[
(mi · r)m j + (m j · r)mi

+ (mi ·m j)r− 5
(mi · r)(m j · r)r

r2

]
. (13)

To avoid nonphysical configurations and singularities
related to the hydrodynamic formulation, we account for the
contact interaction between two beads following the hard-
sphere description for two spherical bodies. The elastic modu-
lus and Poisson’s ratio of the particleswere empirically chosen
to minimize particle interpenetration and also avoid numerical
instabilities.

The non-dimensionalization of the problem is done using
L for length, f −1 for time, Ho for the magnetic field strength,
and 4πa3χHo for the particles’ magnetic dipoles. In this
sense, we get that the dynamics of the paramagnetic chains
are defined by two dimensionless groups. The first is the
Mason number, Ma, representing the ratio of viscous to mag-
netic forces using the constant amplitude Ho, as defined in
equation (2). The second dimensionless group is the magne-
toelastic number Mn defined as [49]

Mn =
πa2μoH2

oL
2

6σb

χ2

(1− χ/6)(1+ χ/12)
. (14)

The simulations allow us to probe more conditions of Mn and
Ma than would be possible with experiments. Notice that for
the numerical simulations we neglect the role of Brownian
motion in the chain dynamics.
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4. Results and discussions

4.1. Time series of the deformation parameters and
characteristic chain morphologies

In both experiments and simulations, a colloidal chain under
an eccentric field displays novel periodic dynamics consist-
ing of a steady cycle of deformation and stretching events
during the partial rotation of the chain, as illustrated by the
pulses in the time series of the chain’s asphericity δ and
total bending energy Ub in figure 3. The deformation of the
chain is quantified by both the decrease of δ and the accompa-
nying increase in Ub. The decrease in δ signifies the adoption
of a less compact shape compared to a stretched chain, as visu-
alized in figure 2(b), whereas the increase in Ub indicates the
development of curvature along the backbone. Recovery of the
straight chain configuration occurs immediately after δ andUb

reach their minimum and maximum values, respectively, as
seen by the subsequent rise δ → 1 and drop-off Ub → 0. The
time interval between consecutive pulses of both quantities in
experiments is consistent with the period of rotation of the
eccentric field, while in simulations the pulses are separated
by a dimensionless interval equal to 2π, thereby confirming
the periodic nature of these dynamics.

Subtle, albeit important, features of these deformation
dynamics are detected in the time series of the deformation
parameters as the frequency of the eccentric field is changed.
These details are associated to the bending of the chains into
distinct characteristic morphologies that vary in curvature and
in their number of bending modes (arches). Therefore, the
chain can attain different shapes during its deformation that
depend on the frequency. When operating at low field fre-
quencies (or low Ma) like in figures 3(a) and (b), the main
feature of the dynamics is the simultaneous occurrence of the
peaks of the pulses of δ and Ub, indicating that the less com-
pact configuration acquired by the chain is also the config-
uration with the highest curvature. In these cases, the chain
progressively bends into an S-like configuration (figure 4(a)
and videos S2–S3) that satisfies both of these properties. This
S-shape is akin to how other elastic paramagnetic and ferro-
magnetic colloidal chains bend under conventional circular
magnetic fields [30, 32]. However, the S-shape of the chains
in the low-frequency circular field is a steady state configu-
ration during the rotational dynamics. In contrast, under the
eccentric field, the S-shaped chain stretches back to its linear
configuration and proceeds to repeat the sequence of bending
and stretching.

At intermediate frequencies, the depth and height of δ
and Ub, respectively, become more pronounced as seen in
figures 3(c) and (d). Therefore, the chain deforms much more
compared to the lower frequency cases. Furthermore, there is
now a delay between the peaks of the parameters. The chain
first reaches its minimum in δ, and then Ub becomes a max-
imum once δ → 1. Interestingly, the pulses start and finish at
the same time despite the delay in their peaks because they
are asymmetric (see the insets of figures 3(c) and (d)). The
delay between deformation peaks indicates that at intermedi-
ate frequencies (or intermediate Ma) the configuration that is

less compact is not the same as the configuration with highest
curvature. In fact, the chain shapes corresponding to each peak
differ significantly. The peak in δ corresponds to a very open
S-shape. More importantly, a new morphology occurs at the
peak of Ub. It consists of another two-arched structure whose
curvature becomes highly localized at the center of the chain,
while the chain ends resemble two long straight lines well
aligned with the instantaneous magnetic field (see figure 4(b)
and videos S4–S5). Such attributes make for a very compact
shape (δ not small) with significant elastic energy stored at the
center. We refer to this morphology as the Z-shape, which is
the characteristic shape observed at intermediate frequencies.
Note that the open S-shape is a necessary precursor for the
formation of the Z-shape.

Increasing the frequency further leads to another character-
istic morphology of the chain with its own distinct features in
the periodic dynamics. The first feature is that the peaks of
both deformation parameters become less pronounced com-
pared to the intermediate frequency scenario, as shown in
figures 3(e) and (f). Hence, the chain configurations obtained
at higher frequencies are once again less compact and less
bent compared to the Z-shape scenario. In these frequen-
cies, the chain bends into a four-arched structure, as depicted
in figure 4(c) and videos S6–S7, instead of a two-arched
configuration like in lower frequencies. We refer to this
shape as ‘4-mode’. The observations from all cases in figure 3
suggest that the deformation is maximized at intermediate fre-
quencies. A detailed analysis of the frequency-dependence of
the peaks of the deformation parameters will be presented in
section 4.3.

The second feature observed in the dynamics at higher
frequencies is that the delay between the deformation peaks
decreases as the frequency increases, leading to situations in
which the peaks of both parameters occur simultaneously. In
fact, the chain displays the 4-mode configuration at this instant,
as seen in the upper inset of figure 4(c). As the frequency con-
tinues to increase, the peak values become less pronouncedand
the delay between deformation peaks appears once again but
the order of each peak is inverted: now Ub reaches its max-
imum first, while δ reaches its minimum once Ub is already
descending. In figures 3(e) and (f) and 4(c), we show cases
from experiments and simulations that display the inverted
order in the delay. Note from the insets of figures 3(e) and
(f) that both pulses still start and end simultaneously. In these
insets, the shape of the experimental pulse differs qualitatively
from the simulation because its width is too small to acquire
sufficient sampling with the frame rate of the camera. Finally,
the third feature of these dynamics is the presence of small sec-
ondary peaks in δ between themain peaks. The secondarymin-
ima of δ suggest that the chain deflects subtly prior to undergo-
ing themain deformation event.With increasing frequency, the
depth of this peak becomes slightly more pronounced, enhanc-
ing this initial deflection. The simulations also showcase a
small peak in Ub simultaneous to the small peak in δ, but we
cannot distinguish this peak from noise in our experiments.
Regardless, the results from both experiments and simulations
show very good agreement in most of the attributes of the
periodic dynamics.
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Figure 3. Time series of the deformation parameters δ (asphericity) and Ub (bending energy) showcasing the periodic deformation
dynamics of the chains in an eccentric field. Pulses indicate deformation and relaxation. The time between each pulse corresponds to the
field period (T = 1/ f for experiments, 2π for simulations). Top panels: experiments (N = 34 particles, Ho = 4.3 kA m−1). Bottom panels:
simulations (N = 31, Mn = 300). Dynamics at (a) f = 0.05 Hz and (b) Ma = 0.0008 corresponding to an S-shape morphology. Insets show
peaks of δ and Ub occurring simultaneously. Dynamics at (c) f = 0.2 Hz and (d) Ma = 0.0050 corresponding to a Z-shape. Peak values
become more pronounced compared to S-shape. Insets: peaks show a delay, δ reaches its minimum before Ub reaches its maximum.
Dynamics at (e) f = 0.5 Hz and (f) Ma = 0.01300 corresponding to a 4-mode structure. Peak values become less pronounced compared to
Z-shape. A secondary but small peak also appears (enclosed by the blue dashed boxes). Insets: peak values are still delayed but the order has
inverted. Note that the bending energy in simulations is dimensionless: U∗ = 12Ub/aπL2μoχ2H2

o .

The Z-shape and the 4-mode structure are new nonequi-
librium configurations that have not been observed in pre-
vious studies of magnetic filaments exposed to time-varying
fields while immersed in a viscous fluid. These morpholo-
gies are similar to the buckled states acquired by long chains
under an orthogonal static field, but the structures in those
cases are in a local equilibrium and hence do not change
after a coarsening time because the magnetic field stays con-
stant [41]. We emphasize then that the novel characteristic
morphologies are transitory within the field period. It should
be clarified that a transient 4-mode shape was also reported
by Huang et al under a circular field [50], but the process
was considerably different because the particles constituting
their chains were unlinked and embedded within an elastomer
matrix that hindered rotation in the circular field to propitiate
buckling instabilities. The mechanism by which the eccen-
tric field causes the deformation of colloidal chains will be
described in section 4.2.

Therefore, the eccentric fields not only reveal novel dynam-
ics involving periodic bending and stretching of these semi-
flexible colloidal systems, but also propitiate the formation of
new morphologies when operating at particular field param-
eters. These novel periodic dynamics of the structure of
colloidal chains in eccentric fields are reminiscent of the
stretch–coil transitions observed during the alignment and
tumbling of actin filaments under shear flow [3, 4, 51, 52].
The changes in configuration are coupled to the orientation of

the chain, which depends on the instantaneous strength and
direction of the magnetic field. The intricate relationship
between the instantaneous magnetic field and the chain orien-
tation on the deformation dynamics will be discussed in detail
next.

4.2. Stages of the chain dynamics

Before delving into our analysis, we will summarize rele-
vant background on the rotational dynamics of rigid colloidal
chains that will be useful to build our explanation of the semi-
flexible chains’ behavior in eccentric fields. During the rota-
tion of an external time-varying field, rigid chains experi-
ence a driving magnetic torque that attempts to bring them
to equilibrium by aligning their long-axes with the direction
of the field. Considering a simple dipolar model, this phe-
nomenon arises because the pair dipolar interactions among
the constituent particles scale with the phase lag angle α as
Ud
i j ∼ ||H||2(1− 3 cos2 α), so the total energy is minimized

when the chain has the same orientation as the field [53, 54].
However, the opposing viscous torque prevents minimization
of the phase lag, leading to rotational dynamics that depend on
the parameters of the external field. Under a conventional cir-
cular field, a simple torque balance yields a model for the time-
evolution of α as a function of the relative strength between
magnetic and viscous torques [55, 56]. In contrast, the time-
varying magnitude of the eccentric field used in this study
complicates the prediction of the phase lag. Furthermore, the
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Figure 4. Characteristic chain morphologies under an eccentric
field. Left: microscopy images of a chain with N = 34 particles at
Ho = 4.3 kA m−1 under different frequencies. Right: configurations
obtained from numerical simulations for a chain with N = 31
particles having Mn = 300 under different Ma. (a) S-shapes form at
low frequencies (Left: f = 0.05 Hz. Right: Ma = 0.0008). This
morphology corresponds to the simultaneous peaks of the
deformation parameters in the time series. Inset: linear configuration
after the chain stretches. (b) Z-shapes are very compact structures
with very pronounced curvature at their center (Left: f = 0.02 Hz.
Right: Ma = 0.0050). This shape appears at intermediate
frequencies and corresponds to the delayed peaks in Ub. Inset:
intermediary S-shape that has the smallest δ for these dynamics and
that quickly coarsens into the Z-shape. (c) The chains fold into
four-arched wave configurations at higher frequencies (Left:
f = 0.5 Hz. Right: Ma = 0.01300). This configuration is the most
bent in the cycle, but not the most compact. Lower inset: deflected
chain that manifests as the small peak of δ in the time series. Upper
inset: 4-mode morphology for f = 0.3 Hz that is the most bent and
also the least compact configuration in its cycle. Note: simulation
images have been rotated to match the field axes of the experimental
images. Scale bars: 10 μm.

semiflexible nature of our chains implies that the local phase
lags (αi j) between each pair of particles along a chain can
differ significantly from the global lag (α) because the free
ends of the chain can follow the field with less resistance than
the center [26, 57]. Therefore, the pair potential felt by each
particle is different according to its position along the chain

contour, altering themagnetic force and torque that act on each
of them.

Despite the multiple local phase lags and the nonconstant
magnitude of the eccentric field, the global phase lag α and
the instantaneous viscomagnetic ratio γ (equation (2), which
is equivalent to a Mason number with nonconstant ||H||) can
still be useful indicators of the overall state of the dipo-
lar interactions along the semiflexible chain and the torque
on the filament, respectively. For instance, a small global α
can be associated to overall attractive interactions (Ud

i j < 0)
whereas a large α can be indicative of repulsive interactions
(Ud

i j > 0). Moreover, small γ are indicative of a strong mag-
netic torque acting on the chain, while for large γ the vis-
cous drag dominates. In turn, α provides information about
the dipolar interactions, which can be related to changes in
the chain morphology over the field period. Therefore, in this
section we describe how the behavior of γ correlates with
the global α of the chain (computed from equation (4)) at
each point in time within a single period of the eccentric field
dynamics. Overall, this description explains how the instan-
taneous direction and magnitude of the eccentric field are
related to the deformation parameters that quantify the devel-
opment and relaxation of the characteristic morphologies in
the periodic dynamics. The entire pattern in a period can
be decomposed into four stages of motion that are consis-
tent for the three characteristic morphologies, albeit with
some deviations for the 4-mode shape. Figure 5 showcases
an example from experiments (after image processing) of the
four stages for the case presented in figure 4(b): a chain of
N = 34 particles deforming into a Z-shape at f = 0.2 Hz and
Ho = 4.3 kA m−1.

Stage I of the dynamics is characterized by having large
field magnitudes (||H|| > Ho) and displaying chain rotation.
These two traits can be readily seen in the first-row panels of
figure 5(a). Due to the large field magnitude, the values of γ
are the smallest during this portion of the cycle, as shown in
figure 5(b). This means that the magnetic torque dominates
over the viscous drag during stage I. Consequently, the driving
torque is sufficient to induce rotation of the chain at overall
small α. Such small α indicate that the dipolar interactions
between the particles can be considered attractive. Therefore,
the chainmaintains an overall straight shape, having δ ∼ 1 and
Ub ∼ 0 as previously discussed and highlighted once again in
figure 5(c). The attraction between the particles is emphasized
by the dark blue coloring of the points in the chain skeleton
(figure 5(a)), representing small local phase lags αi j that do
not deviate considerably from each other. We should remark
that although the field magnitudes are large, they are also of
decreasing strength throughout most of this part of the cycle,
leading to the small increases in α. The stage lasts for about
half of the field period and endswhen the field reachesH = Hx

(hence, ||H|| = Ho).
In stage II, the rotation of the chain halts due to the signifi-

cant decrease in the magnitude of the field. Within this portion
of the cycle, ||H|| decreases from Ho to Hmin (corresponding
to about 1/8 of the period), so the value of γ rises rapidly until
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Figure 5. Four stages of the dynamics for a chain of N = 34 particles deforming into a Z-shape at f = 0.2 Hz and Ho = 4.3 kA m−1

(a) Panels showcasing the configuration and orientation of the chain at representative instances of each stage. The images come from
experiments and have been processed to highlight the local αi j at each point along the chain. Each panel indicates the axes of the magnetic
field components in the frame of the images. The red arrows starting from each axes represent the instantaneous direction and magnitude of
the eccentric field. (b) Time-varying viscomagnetic ratio γ (black squares, solid line), global α (red circles, dashed line) of the chain, and
(c) deformation parameters δ (black squares, solid line) and Ub (red circles, dashed line) over time within a single period of the field.
Boundaries between the four stages are highlighted.

it reaches its maximum. Therefore, the viscous drag becomes
dominant over the magnetic torque and the chain stops rotat-
ing, as seen by negligible changes in orientation in the second-
row panels of figure 5(a). Although the chain rotation stops,
the value of α keeps changing: it first drops to zero and then
increases again (figure 5(b)). This behavior in the phase lag
is caused by the weak magnetic field changing its direction
while not being strong enough to induce changes in the ori-
entation of the chain. For S-shape and Z-shape morphologies,
there are no significant changes in the deformation parameters
of figure 5(c) up to this point. At the latter instants of this stage,
the field reaches its weakest magnitudes in the cycle and also

the global α increases considerably, allowing for small deflec-
tions on the ends of the chain to emerge. This deflection can
be observed by the changes in coloring of the local αi j along
the chain skeleton. These phase lags indicate that the dipo-
lar interactions, while still attractive, are not strong enough to
maintain a straight configuration [58]. The rise of the global α
and the development of significantly different local angles αi j
throughout the chain are crucial for the onset of the deforma-
tion into the characteristic morphologies in the next stage. The
reason is that it positions the chain far from alignment in a field
that will subsequently increase rapidly in magnitude during the
next stage.
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Figure 6. The duration of the pulse width (W ) in each period
reaches a plateau value. (a) Experiments: the ratioW/T , where the
field period is T = 1/ f , approaches 3/8 as f is increased. (b)
Simulations: the dimensionless pulse width (W∗) approaches 3π/4
as Ma increases, since the dimensionless period is 2π. Therefore, at
high frequencies, the pulse of a cycle lasts for 3/8ths of the field’s
period. In these cases, as soon as the chain stretches back to the
linear configuration, the cycle ends and stage I begins once more.
For low frequencies, stage IV continues after the chain straightens
because the chain needs to rotate to recover its initial orientation
from which stage I restarts.

Stage III showcases the richest behavior because it is within
this part of the cycle that the chain deforms into one of the
characteristic morphologies. This stage begins when γ starts
descending from its highest value (figure 5(b)). Although the
decreasing γmeans that themagnetic torque is becoming dom-
inant once again, it is still not high enough to sustain rotation
of the entire chain, particularly the regions closest to the cen-
ter. Instead, the global α continues to increase mostly due to
the rotation of the field. After reaching its maximum, α starts
to decrease, but it still has overall large values, indicative of
strong repulsive interactions along the chain as the field mag-
nitude rises. Simultaneously, the small deflection at the tips
begins to propagate inward. The propagation of this bend-
ing wave is a consequence of progressively longer portions of
the chain at the free ends aligning with the direction of the
increasing field. In contrast, the center of the chain remains
orthogonal to the field. Therefore, the free ends experience

attractive interactions while the central segment is highly
repulsive. The strong magnetic repulsion overcomes the bend-
ing rigidity of the chain, so the curvature of the propagating
deflection increases. Overall, this process leads to the forma-
tion of an S-shape. The attraction at the ends and the repulsion
at the center are emphasized by the blue and red regions of
the local αi j along the chain illustrated in the third-row pan-
els of figure 5(a). If the frequency is small, γ will become low
enough during its descent while the mild S-shape is develop-
ing, so the increasing magnetic torque and the attractive inter-
actions at the end segments will drive the restraightening of the
chain before the curvature grows too much, marking the end
of stage III.

The transition from an S-shape to a Z-shape as the fre-
quency is increased from low to moderate values can be elu-
cidated from this analysis. Stage III in figure 5(a) shows that
at an intermediate frequency, a precursory S-shape is formed,
similar to that observed at the low frequencies, with over-
all γ values that are larger. Since the viscous drag dominates
over the magnetic torque, the innermost particles of the chain
become even more misaligned with the field, compared to the
progressively longer and more aligned end segments. Then,
the continuous increase in field strength causes the repul-
sive dipolar interactions between the misaligned particles in
the center to become even stronger. The mismatch between
strongly repulsive particles in the center and strongly attrac-
tive particles in the ends leads to growth in the curvature of
the traveling wave, resulting in the sharp bend that defines the
Z-shape.

The propagationof bendingwaves (the deflection) proceeds
until Ub reaches its peak (figure 5(c)). Since the deformation
parameters have a delay between their peaks in the case of Z-
shapes and 4-mode structures, we consider that stage III ends
wheneverUb reaches its peak, regardless if it does so before δ.
The reason we define the ending of stage III in this fashion is
that if the peak in δ occurs afterward (for 4-mode morpholo-
gies), the chain has already started to stretch. Therefore, stage
III corresponds to the portion of the eccentric field between the
minimum field magnitude and the peak in Ub.

In the final stage (stage IV), the chain rapidly
releases the stored elastic energy to relax back into the straight
configuration.At this point, the field magnitude becomes large
once again. The increased magnetic torque and the accompa-
nying stronger dipolar attractions between the long segments
make the deformed structure unfavorable. Consequently, the
linear segments rapidly thrust outward as they attract each
other and realign into a single linear shape, decreasing the
global α. Depending on the frequency, the chain can either
recover its linear configuration and then continue to rotate until
it returns to its initial orientation when the field period ends
(for S-shapes), or the instant at which it completes the
stretching process matches the end of the period (for Z-shapes
and 4-modes). This means that the pulse of the deformation
parameters can end prior to or simultaneously with the
conclusion of the field period. Therefore, the width of the
deformation pulse in each cycle lastsW � 3T/8, approaching
3T/8 as f increases. This behavior in the pulse width is
confirmed in figure 6. Note that the period in the simulations
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Figure 7. Stages of the dynamics for a chain deforming into a 4-mode structure ( f = 0.5 Hz and Ho = 4.3 kA m−1). The main difference
with respect to figure 5 is the deflection that occurs in stage I and that persists throughout stages II and III. (a) Representative panels showing
the configuration and orientation of the chain in the four stages. Black arrows above the chains point to the curvature that arises from the first
deflection and that eventually grows into the inner arches of the 4-mode morphology. Color map represents local αi j. Segments between
adjacent inner and outer arches are almost orthogonal to the field direction. (b) Time-varying viscomagnetic ratio γ (black squares, solid
line) and global α (red circles, dashed line) of the chain, and (c) deformation parameters δ (black squares, solid line) and Ub (red circles,
dashed line) over time within a single period of the field. Boundaries between the four stages are highlighted.

is 2π, so the dimensionless pulse width is W∗ � 3π/4. This
finding demonstrates that we have identified the maximum
duration of the deformation and relaxation process of the
chain in an eccentric field. Once the straight chain returns to
its initial orientation, the entire cycle encompassing the stages
of rotation, arrested motion, deformation, and stretching
restarts.

The above analysis describes quite well the behavior of the
chain at conditions that lead it to deform into an S-shape or
Z-shape. In the case of the 4-mode structure, however, there are
some important differences that must be addressed. As previ-
ously discussed, one of the features of the 4-mode shape is the
appearance of a small secondary peak in the time series of the
deformation parameters (figures 3(e) and (f)) that corresponds
to a deflected shape (bottom inset of figure 4(c)). This slight
deflection is not trivial. In fact, it is crucial for the development
of the additional arches in the 4-mode structure that differenti-
ate it from the S and Z-shapes. Nonetheless, the characteristics
of each stage are still the same as for the other morphologies.
Figure 7(a) shows that the deflected state develops in stage I as
the chain rotates. The origin of this deflection is the increased
viscous torque experienced by the chain when operating at
higher frequencies. Hence, even though γ is smallest during
this part of the cycle, its values are higher compared to the
case shown in figure 5. This implies that the magnetic torque
is not strong enough to maintain an overall straight shape [37,
57], so the deviation in local αi j between the free ends and the
center becomes more pronounced in stage I. This is noticeable
when looking at the color gradient of the local αi j along the

chain in the first-row panels of figure 7(a) and the higher values
of global α presented in figure 7(b) compared to figure 5(b).
However, the chain is still able to rotate at these values of γ, so
stage I remains clearly defined. The curvature of the deflection
also propagates inward without growing substantially.

During stage II of the 4-mode structure, the rotation of the
chain is halted just like for the other morphologies. However,
the shape remains deflected as the bending wave continues to
propagate inward without significant coarsening in its curva-
ture. Subsequently, in stage III, the free ends of the chain begin
to deflect in the direction opposite to the one of the deflection
seen in stage I. This initially leads to a more compact shape,
as seen in the first panel of the third row in figure 7(a). There-
fore, the small peak of δ decays (figure 7(c)). However, this
resulting shape is not completely straight. The first deflection
remains as small curved regions located close to the center of
the chain. Then, as the field increases in magnitude and the
global α rises (mostly due to the field’s rotation), the second
deflection propagates inward and coarsens into the outer arches
of the 4-mode structure. Simultaneously, the small curvature
from the first deflection also becomes more pronounced due
to the increasing repulsive interactions, growing into the inner
modes of the 4-mode morphology. This process culminates in
the 4-mode structure that stores the highest bending energy
during the cycle. This configuration marks the end of stage
III. Finally, the 4-mode structure returns to the initial straight
configuration in stage IV. To stretch, the inner modes relax
faster than the outer arches as the dipolar interactions become
more attractive and the magnetic torque dominates over the
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Figure 8. Spatiotemporal maps of the local bending energy obtained
from simulations of chains with 31 particles. Each map shows three
periods of the dynamics. N corresponds to the particle number along
the chain. (a) 4-mode structure (Ma = 0.01300, Mn = 300): low
energy regions that correspond to an initial deflection propagate over
time and grow into the inner arches of the characteristic morphology.
(b) Z-shape (Ma = 0.0050, Mn = 300): no deflections are observed
prior to the onset and coarsening of the two arches. Local bending
energies have been normalized by the maximum value of each case.
A nonlinear colormap is used to emphasize regions of low local
bending energy. Black regions represent straight segments.

drag to realign the chain. The relaxation events are evident in
the fourth-row panels of figure 7(a).

The observations from these dynamics reveal that the initial
deflection arising in stage I is the source of the inner modes
that develop in stage III (figures 3(e) and (f) and 7(c)). This
origin is further confirmed by visualizing the local bending
energy along the chain in a spatiotemporal map. Results from
numerical simulations are used to generate this map because
the sampling rate of the experiments does not provide enough
resolution to accurately track the evolution of the localized
bending energy. In figure 8(a), three cycles of the dynamics
are shown. At the beginning of each period, low-intensity local
bending energy bands are seen propagating inward with time.
These bands correspond to the deflection of stage I that then
persists throughout stage II. As these bands propagate, they
first decrease in intensity as the chain initially acquires a less
compact configuration (similar to the first panel of the third
row in figure 7(a)) and then their intensity increases signifi-
cantly close to the center of the chain. These brighter spots
correspond to the innermodes, indicating that indeed the initial

Figure 9. Schematic of the eccentric field’s period divided into the
four stages of the chain dynamics. Stage I is highlighted in blue. It is
the longest stage and accounts for about 1/2 of the period. Within
this stage, the chain rotates and it can deflect at its free ends if the
Mason number is high enough. Highlighted in yellow is stage II,
which corresponds to about 1/8 of the cycle. Here, the chain rotation
stops but the external field continues to rotate. Stages III and IV are
highlighted in red as the remaining 3/8 of the period. They
encompass the deformation and straightening events, respectively,
and account for the pulse of the deformation parameters in each
cycle. The duration of stage III varies according to the Mason
number, so the ending of this stage is not clearly defined within the
circle. The width of the pulse of the deformation parameters can last
the entire time highlighted by the red region, as demonstrated by the
plateaus in figure 6. The chain reorients to its initial direction at the
end of stage IV, thereby restarting stage I.

deflection evolves into the inner arches of the 4-mode configu-
ration. This formation process of a four-arched structure is dif-
ferent from the transient buckling of unlinked chains immersed
in an elastic medium under a circular field [50]. Moreover,
figure 8(a) also shows that the inner modes relax prior to the
outer arches, agreeing with the experimental images in the
fourth row of figure 7(a). As a comparison, figure 8(b) shows
the same spatiotemporal map for a Z-shape. Here, there are no
low-intensity bands prior to the appearance, propagation, and
coarsening of the bending waves that represent the two arches
of the Z-shape.

While we have not performed a stability analysis of the
chains in the eccentric field due to the complexity of the
problem, the three characteristicmorphologies visually resem-
ble the sinusoidal shapes of magnetoelastic colloidal chains
[41, 49, 50, 59, 60] and much larger magnetoelastic rods
[61–63] undergoing higher-order buckling bifurcations under
an orthogonal static field. For a chain to undergo higher bifur-
cations in such scenarios, the magnitude of the static field
must be increased above progressively higher critical values
that will favor the development of additional arches on the
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chain backbone. In contrast, the bifurcations under an eccen-
tric field occur as the frequency is changed. The S-shape arises
at low frequencies because the straight configuration of the
chain becomes unstable during stage III of the dynamics.Mod-
erate frequencies then render the non-compact S-shape into the
very compact sharp bend of the Z-shape. It would seem then
that at higher frequencies the 4-mode structure is the result of
another bifurcation. However, the classification of this shape
as a bifurcation of the Z-shape is not straightforward because
the inner and outer arches of the 4-mode configuration emerge
from two distinct dynamical stages (stages I and III), as seen
in figures 7 and 8(a).

Figure 9 summarizes the four stages of the chain dynamics
by highlighting when each of these intervals occur within the
period of the eccentric field. This analysis has revealed that
the characteristic morphologies observed under an eccentric
field arise due to the propagation and coarsening of bend-
ing waves during stage III. The bending waves originate as
deflections caused by the intricate interplay between magnetic
and viscous torques. The deflections then grow as the mis-
orientation between the chain and the field increases because
strong dipolar repulsion dominates over the flexural rigid-
ity. The previous stages of rotation and arrest are crucial for
the onset of the periodic deformation because they bring the
chain to an orientation that favors large viscous drag and large
repulsion.

4.3. Scaling analysis of the deformation parameters

Having elucidated the dynamics of the semiflexible chains
in eccentric fields, we proceed to understand the impact
that the field parameters and chain properties have on the
extent of the deformation. In section 4.1, the peaks of bend-
ing energy and asphericity (Ub

max and δmin) seemed to become
more pronounced at intermediate field frequencies. To elab-
orate on this observation, the average peak of the bending
energy (Ub

max) for different chains is calculated at various f and
Ho (experiments) or Ma and Mn (simulations). Figures 10(a)
and (b) present Ub

max as a function of scaled frequencies.
The scaling is performed in terms of the critical magne-
toviscous frequency ( fc) for experiments and its equivalent
critical Mason number (Mac) for simulations, which are deter-
mined by [26, 31]

fc =
μoχ

2H2
o ln

(
N
2

)
32πηN2

, (15)

Mac =
9 ln

(
N
2

)
2N2

, (16)

where N is the number of particles making up the chain.
These scaling parameters arise from a balance between mag-
netic and viscous torques acting on a rigid chain with length
approximated as L = 2aN. These scaling parameters ensure
that the data is represented independently of the chain length
and Ho. As illustrated in figures 10(a) and (b), Ub

max show-
cases a nonmonotonic trend with the frequency ratio. Hence,
the greatest deformation of the chains does manifest at inter-
mediate frequencies. Interestingly, we find that the maximum

Ub
max for all experimental and numerical cases occurs at
f / fc ∼ 0.3.

A nonmonotonic frequency dependence is common inmag-
netic [36, 64–66] and elastic systems [67] at low Reynolds
number driven to nonequilibrium conditions by external
torques. For example, the propulsion velocity, tip trajectory,
and amount of transported fluid exhibit such a trend in stud-
ies of magnetic chains serving as artificial flagella [68, 69]
or cilia [70, 71], actuated by circular, oscillating, and coni-
cal magnetic fields. The nonmonotonic behavior in transport
performance parameters was demonstrated to be associated
to the extent of deformation of the chain undergoing periodic
dynamics. In these studies, the periodic deformation appeared
because one of the chain ends was attached to a large non-
magnetic particle or to a rigid surface. Consider a magnetic
cilium as an example. At low frequencies, the cilium does not
bend significantly during the cycle because the radial com-
ponents of the magnetic forces are strong compared to drag
so they maintain the cilium-like chain as a straight rod [58].
The straight chain cannot induce any net fluid flow. Con-
versely, at high frequencies the drag prevents the deformation
that emerges from the free end to propagate deeply toward
the pinned end [38, 68], decreasing the pumping performance
[70, 71]. Hence, the optimum deformation to pump the sur-
rounding fluid occurs in the intermediate frequency range.
Even though the nonmonotonic trend is a common feature in
these systems, the mechanism responsible for the deformation
differs for each one due to the type of magnetic field employed
and the constraint on the chain ends [58]. These differences are
apparent when considering our analysis of the chain dynam-
ics within a single field period and the fact that the Z-shape
and 4-mode morphologies described here are novel shapes for
chains in time-varying fields. Consequently, we do not expect
the other systems in the literature to maximize their deforma-
tion around the frequency ratio of 0.3 that we have found for
our free-end chains in the eccentric fields.

The chain morphology that tends to form at the frequency
ratio of 0.3 is the Z-shape. In fact, this is the main configura-
tion acquired by the chain within the shadowed area enclosed
by 0.16 � f / fc � 0.6. The other two characteristicmorpholo-
gies appear outside this region of frequencies, as annotated
in figure 10(a). However, there are some exceptions to this
trend that must be addressed. Rigid chains in the simulations
(Mn = 100) do not deform into Z-shapes or 4-mode struc-
tures. Additionally, short chains from experiments (N = 15)
do showcase the Z-shape but not the 4-mode conformation.
In these cases, the nonmonotonic trend in Ub

max with fre-
quency is still observed but the morphologies are S-shapes.
Such exceptions point to an unaccounted effect of the elastic
forces relative to the magnetic and viscous terms in our anal-
ysis of the dynamics. We have established that in stage III the
repulsive dipolar interactions overcome the flexural rigidity,
so the propagating deflection grows in curvature. As shown in
figure 10(a), at any given f / fc, Ub

max increases as Mn becomes
larger. For a constant chain length, lower values of Mn imply
either a weak Ho or a large bending rigidity (equation (14)).
Therefore, for Mn = 100, the rigidity prevents the drastic
coarsening of the chain curvature, explaining why the S-shape
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Figure 10. Nonmonotonic trends of the peak values of the deformation parameters with f (or Ma) and their scaling with the critical
magnetoviscous frequency fc or the equivalent Mason number Mac. The peak in the bending energy (Ub

max) first increases and then decreases
with frequency as seen for (a) simulations and (b) experiments. Ub

max is greatest at the ratio f / fc = Ma/Mac ∼ 0.3 (dashed line),
independently of the chain length, Ho, or Mn. At this ratio, the chains tend to acquire Z-shape configurations. The Z-shape is also the most
prevalent morphology observed in the intermediate frequency ratios of ∼0.16− 0.6, indicated by the shaded region. At lower and higher
frequencies, the chains tend to acquire S-shape and 4-mode configurations, respectively. Note: U∗

max = 12Ub
max/aπL

2μoχ
2H2

o . (c) Peaks in
the asphericity (δmin) also follow a nonmonotonic behavior. The smallest values of δmin occur at Ma/Mac smaller than 0.3 as Mn is increased.
Inset: the decrease in Mason number ratio corresponding to the smallest δmin, (Ma/Mac)s, is linear with Mn. (d) Collapse of αmax with f / f c.
The largest phase lags at the intermediate frequencies (shaded region) indicate that the repulsive interactions are strongest for Z-shapes.

cannot transition into the Z-shape even for the largest αmax.
Similarly, the 4-mode shape cannot form at high f / fc because
the rigidity impedes the viscous friction from deflecting the
chain in stage I, despite the drag overcoming the magnetic
torque.

Regardless of Mn, Ub
max is maximized at the same ratio

of 0.3. Interestingly, the frequency ratio that minimizes δmin

does not remain constant. Instead, figure 10(c) reveals that
the smallest δmin shifts to lower values of Ma/Mac as Mn
is increased. Additionally, this shift decreases linearly with
Mn as shown in the inset of figure 10(c). Contrary to what is
expected, this trend in δmin highlights that the Z-shape with
highest curvature (at f / fc ∼ 0.3) does not necessarily arise
from the least compact intermediary S-shape.

The chains that do not form the two novel morphologies
and the shift in smallest δmin to lower frequencies indicate
that further analysis is required to determine the impact of the
elastic properties on the chain dynamics and the conditions
that lead to each of the characteristic morphologies. A state
diagram probing multiple Mn and Ma would be an approach
to completely identify the conditions that produce the three
characteristic morphologies in the eccentric field, similar to

the diagrams built for chains in conventional circular fields
[30, 31] and precessing fields [58], as well as for semiflexible
polymers under shear flow [4].

Considering that fc represents the frequency at which the
chain dynamics transition from synchronous rotation to asyn-
chronous motion [29, 54, 55, 72], we would expect to observe
the largest Ub

max at a frequency ratio closer to unity. Note,
however, that the definition of fc (equation (15)) is usually
derived from a torque balance with a conventional circular
field. After performing a torque balance under an eccentric
field, we also find fc as a characteristic scaling in the result-
ing differential equation (see appendix). Therefore, fc proves
to be a scaling parameter that is independent of the type of
applied field, but its meaning changes according to the nature
of the magnetic field. For our study, f ∼ 0.3 fc could signify
the frequency necessary to maximize the repulsive interactions
during stage III to bend the chains as most as possible. This
idea is supported by figure 10(d), which shows the maximum
global phase lag (αmax) for each f / fc. Once again, the largest
αmax happens around f / fc ∼ 0.3. Furthermore, the decrease
in αmax as the frequency ratio increases beyond 0.3 also helps
explain why we do not observe 4-mode structures with larger
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bending energy than the Z-shapes even though more arches
are formed. Simply, the repulsive interactions achieved at
the corresponding frequencies are not strong enough com-
pared to the repulsion attained for Z-shapes. Besides a slight
downward shift in the experimental results of αmax compared
to the simulations, which could be attributed to chain–wall
interactions, the consistent trends and the collapse of the data
suggest that our interpretation of fc in an eccentric field is
appropriate.

5. Conclusions

Semiflexible colloidal chains deform periodically into dif-
ferent morphologies according to the frequency of an exter-
nally applied eccentric magnetic field. These morphologies
are the S-shape, Z-shape, and 4-mode structure. The Z and
4-mode shapes are novel configurations in the context of
chains immersed in a viscous fluid and exposed to a time-
varying field. Each of these morphologies is short-lived within
a cycle and displays distinct features in the geometric param-
eters that describe the extent of the chain’s deformation.
The time-varying magnitude and direction of the eccentric
field ensure the periodic nature of the chain dynamics, which
can be decomposed into four stages of motion. These stages
are described in terms of the intricate relationship between the
instantaneous field magnitude, field direction, chain orienta-
tion, bending rigidity, and the accompanying response in the
geometric deformation parameters.

The mechanism for deformation observed here differs from
conventional buckling under static fields. Under an eccentric
field, the deformation arises from a deflection at the chain ends
that propagates inward and then coarsens in curvature due to
repulsive dipolar interactions that overcome the bending rigid-
ity. For this deflection to arise and repeat periodically, stages
of rotation and arrested motion are necessary to ensure that
the dipolar interactions become repulsive. Additional deflec-
tion events at high frequencies, appearing at separate stages of
the dynamics, lead to the onset of more arches that constitute
the 4-mode structure. This behavior highlights a new path-
way for the controllable folding of semiflexible paramagnetic
chains. The fact that the foldedmorphologies restraighten con-
sistently in the eccentric field rather than collapsing into com-
pact states opens up new possibilities for the implementation
of these nonequilibriumchains as reconfigurable devices capa-
ble of micromechanical tasks. Since the stages of the dynamics
correspond to specific portions of the field period, modifica-
tions to the eccentric field could extend the duration of the
deformation stage and even drive the folding of more complex
morphologies that expand these potential capabilities.

The scaling analysis developed here demonstrates that by
knowing a chain’s critical frequency, the type of morphology
and the extent of stored elastic energy can be controlled con-
sistently in an eccentric field. Furthermore, experiments can
be designed to operate at an intermediate frequency domain to
maximize the bending energy via the formation of a Z-shape
during stage III of the dynamics for potential applications in
micro-scale transport processes. We envision these periodic
dynamics to be useful for the design of freely suspending

chains that act as pumps in microfluidic channels. Whether
the surrounding flow field induced by the deformation and
stretching events is significant to drive the transport of small
materials remains an open question for future research. In spite
of the remaining unknowns related to the elastic forces, our
findings have providedgreat detail on the response of semiflex-
ible colloidal chains under a complex time-varying magnetic
field.
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Appendix.

The balance of magnetic and viscous torques on a rigid
chain of length L ∼ 2aN is performed in this appendix to
demonstrate that the critical frequency fc remains as a charac-
teristic scaling even when applying an eccentric time-varying
field.

The expression for the magnetic torque used here is the
approximation introduced in references [26, 31], which is
based on the assumptions proposed by Petousis et al [55].
However, the difference here is that the magnitude of the field
changes with time. Then, the magnetic torque is

Γm =
1
6
πa3 Nμoχ

2||H(t)||2 sin(2α) (A.1)

where ||H(t)||2 is the magnitude of equation (1). For λx =
λy = 1, the time-varying magnitude of the field becomes

||H(t)|| = Ho[2 sin(ωt)+ 2 cos(ωt)+ 3] = HoΩ(t) (A.2)

in which ω = 2π f .
Using the shish-kebab approximation [45], the viscous

torque can be expressed as [30]

Γv =
8πηa3N3

3 ln
(
N
2

) dθ
dt

(A.3)

where θ is the orientation of the chain and dθ/dt is its angular
velocity. The orientation of the chain can be expressed in terms
of the field orientation φ and the phase lag angle α:

θ(t) = φ(t)− α(t) = tan−1

(
Hy(t)
Hx(t)

)
− α(t). (A.4)

Since the driving field frequencies (and Mason numbers)
used in this paper are relatively low, the torque associated to the
chain’s inertia can be neglected due to low Reynolds number.
Hence, balancing equation (A.1) with (A.3) yields:
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dα
dt

= Φ− μoχ
2H2

o ln
(
N
2

)
16ηN2

[Ω(t)]2 sin(2α) (A.5)

where Φ = −dφ/dt. The group of constants in the sinusoidal
term compose the critical frequency ωc:

ωc =
μoχ

2H2
o ln

(
N
2

)
16ηN2

. (A.6)

This is the same critical frequency obtained when applying a
conventional circular field [26]. Therefore, fc (equation (15))
is obtained after dividing equation (A.6) by 2π. The equivalent
critical Mason number (equation (16)) is obtained after rear-
ranging factors in equation (A.6) and considering the definition
Ma = 72ηω/μoχ2H2

o [31].
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