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Dense suspensions can exhibit shear thickening in response to large deformation. A consensus has
emerged over the past few years on the formation of force networks, that span the entire system size, that
lead to increased resistance to motion. Nonetheless, the characteristics of these networks are to a large
extent poorly understood. Here, force networks formed in continuous and discontinuous shear thickening
dense suspensions (CST and DST, respectively) are studied. We first show the evolution of the network
formation and its topological heterogeneities as the applied stress increases. Subsequently, we identify
force communities and coarse grain the suspension into a cluster network, and show that cluster-level
dynamics are responsible for stark differences between the CST and DST behavior. Our results suggest that
the force clusters formed in the DST regime are considerably more constrained in their motion, while CST
clusters are loosely connected to their surrounding clusters.

DOI: 10.1103/PhysRevLett.129.068001

Dense suspensions of particles are ubiquitous in many
industrial, natural, and biological problems [1,2]. These
dense suspensions can exhibit a rich set of rheological
signatures that include yielding, shear thinning or thicken-
ing, and shear jamming [1,3–5]. These non-Newtonian
rheological features often find their underpinnings in the
interfacial and surface properties of the individual particles
and the way they interact with one another [5–14]. The
increase in the suspension viscosity at a given volume
fraction ϕ can be smooth or abrupt, termed as continuous
shear thickening (CST) and discontinuous shear thickening
(DST), respectively. In particular, DST has recently been
related to the stress-activated transition from an uncon-
strained lubricated state to a constrained state where relative
motion of particles in the tangential pairwise direction is
significantly hindered beyond an “onset stress” [5–7,15].
This constrain on the motion of particles can be caused by
frictional contacts [16,17] or lubrication forces at the
particle roughness level [9]. Nonetheless, this constraint-
based picture of the suspension rheology through mean-
field approaches has been successful in describing both
simulation and experimental data [15,18–20]. What is clear
is that these particle-level interactions in turn result in large
scale force and contact networks that resist large deforma-
tions and hence increase the viscosity of the suspension
[21]. However, how this force or contact network emerges
and its characteristics are unexplored. An important funda-
mental question is the difference in the force network when
the suspension undergoes continuous or discontinuous
shear thickening. Some recent works have shown that there
exists a connection between the underlying network struc-
ture and the rheology of shear thickening suspensions
rheology [22–24]. In particular, the work of Sedes et al.
[24] showed that a K-core analysis can be used for

clustering particles in contact within a percolated network.
On the other hand, several well-established methodologies
exist for clustering different components of a complex
network. Network science studies the network of interacting
constituents through their patterns of connection [25,26].
This provides us with the opportunity of applying network
science techniques on the force networks in dense suspen-
sions, where characteristics of the particle-level dynamics
cannot provide enough explanation to the emergence of
shear thickening [17]. Network science techniques have
been employed in a wide variety of scientific studies from
the world wide web, to biological systems, neuroscience,
and structured materials [27–31]. In many cases, complex
behavior of the interaction networks originates not only
from the interactions between individual parts of the net-
work, but also formation of communities of individuals that
interact with one another, and unveil hidden characteristics
of the network [32,33]. Community detection algorithms
are applicable in the context of dense suspensions because
the rate-dependent viscosity of such materials are shown to
originate from the resistance of clusters of particles against
fluid flow [34]. Application of network science tools in the
study of granular matter is demonstrated by Papadopoulos
et al. [31] where community structure detection algorithms
have been shown to successfully identify mesoscale struc-
tures from the network of frictional contacts. In this Letter,
we employ a series of network science techniques to explore
formation and evolution of frictional contact networks using
simulations of dense suspensions. First, we investigate the
force network as a whole as the applied stress is increased
and with respect to the shear-thickening behavior. Then we
adapt a Gaussian mixture model (GMM) algorithm to detect
force clusters and use these communities to distinguish
between CST and DST suspensions.
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Although real-world shear thickening (ST) systems are
3D, the main rheological features of 2D suspensions are
found to be very similar to these real systems [23]. As the
system evolves in all three dimensions, additional contacts
are made between particles. Nonetheless, dynamics of force
contacts and clusters can be more easily conceptualized and
studied with respect to their constraints in a lower dimen-
sional flow. As such, and for the sake of clarity and
simplicity here we use 2D simulation of dense suspensions,
performed in a series of stress-controlled simple shear
flows for two area fractions of particles, ϕA ¼ 0.72, 0.78
with N ¼ 2000 bidisperse (radii a and 1.4a) spherical rigid
non-Brownian particles. Here, the equation of motion is the
force balance between hydrodynamics (FH) and contact
(FC) forces on each particle. Rate dependence is introduced
by employing a critical load model where the normal force
must exceed force threshold F0 to activate friction between
particles [16,17]. Further details about the simulation
scheme are available in Supplemental Material [35]. For
the lower area fraction, ϕA ¼ 0.72, the shear viscosity
increases gradually with increase of the applied shear stress
indicating a CST behavior. On the other hand, at higher
area fraction of ϕA ¼ 0.78 there is a discontinuous jump in
viscosity, and a S-shaped flow curve indicative of the DST
behavior [18,19]. A series of computational and exper-
imental studies [8–10,16,17,34,43–46] have shown the
emergence of a percolated network of contacts between
the particles in the shear thickened state (STS). Here, the
focus is on characterization of these networks formed by
the interparticle frictional contacts. We convert the physical
system of particles and interparticle force contacts to a
network, where particles and interparticle forces and
contacts are represented by nodes and edges, respectively.
Networks of stress-induced frictional contacts before ST, at
the onset of ST, and deep into the shear-thickened state, for
both CST (ϕA ¼ 0.72), and DST (ϕA ¼ 0.78) are shown in
the snapshots of Fig. 1, where the frictional bonds between
contacting particles are colored in red. Clearly, as the shear
stress increases, we go from a frictionless, low viscosity
regime, to emergence of frictional contacts leading to shear
thickening, and eventually to a high viscosity rate-inde-
pendent contact-dominated regime. Hence, the evolution of
those networks seems be providing the constraints leading
to ST. From a visual inspection, the force networks at the
higher area fraction appear to be denser both at the onset of
ST, and in the shear-thickened state.
We employ various network measures to quantify the

density of contacts and also their patterns of connections.
Figure 2(a) shows the average number of contacts per
particle versus shear stress. In both CST and DST, increas-
ing the applied stress increases the number of frictional
contacts at the onset of ST, although the rate by which
contacts are added is significantly less at higher stresses,
and the average coordination number becomes nearly
constant in the shear-thickened state. This is consistent

with the measurements of 3D systems in [24]. On average,
and deep into the STS, each particle in the DST regime has
∼0.8 compared to the CST system, hZSTS

DSTi ¼ hZSTS
CSTi þ 0.8.

Although particle-level contacts provide some insight into
the state of suspension, the force chains will need to
become significant compared to the system size for the
suspension viscosity to rise. As clearly visible in Figs. 1(c)
and 1(f) these contacts can be disconnected and inter-
spersed within the suspension, but eventually percolate to
span the entire system. As such, the essential load-bearing
component to the viscosity is the largest connected com-
ponent (LCC) of particles. The largest connected compo-
nent of the network, normalized by the total number of
particles within the system is shown in Fig. 2(b). LCC of
both CST and DST networks grow with stress, with 80%–
90% of the particles belonging to one percolated network at
the largest stresses applied. Nonetheless, there are no
significant differences in the evolution or the size of the
LCC in CST compared to the DST networks. Sedes et al.
[24] showed that the network susceptibility shows a
divergence at the percolation point, and a network homol-
ogy study [23] on shear thickening suspension suggested
that long-lived contact loops emerge at the onset of shear
thickening as well. The longest path connecting any two
components within a system can be used as an alternative
measure of the network heterogeneity. This is commonly
referred to as the diameter of the network [27]. For a
percolated network, generally a shorter network diameter
would result in enhanced connectivity of the system. As
such, in addition to a significant LCC, diameter can be used
as a measure of network’s ability to transmit stresses more
effectively. This argument is valid from a physical per-
spective as well: consider a cluster of particles that are
closely connected to one another in a dense packing, with
relatively short paths to travel from one node to another.

(a)

(b) (c)

(e)

(f)

(d)

FIG. 1. (a) Relative viscosity versus shear rate for two different
area fractions, showing CSTandDST. Snapshots of the network of
frictional contacts forϕA ¼ 0.72 (a), (b), (c) andϕA ¼ 0.78 (d), (e),
(f) at applied stresses of 0.1 (a), (d), 1 (b), (e), and 100 (c), (f).
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In this scenario, restriction of a particle highly affects the
motion of the other particles. Alternatively, particles con-
nected in a chainlike packing require longer walks to go
from one node to another. The latter structure geometrically
poses fewer restrictions on the motion of other particles,
when any of the cluster’s components are constrained.
Figure 2(c) shows the diameter of force networks for the
two systems studied normalized by the size of the calcu-
lation box, indicating that for both CST and DST, the
network diameter grows before the onset of shear thicken-
ing and shortly after percolation. Note that the largest
diameter of the DST network measured grows larger than
the calculation box, suggesting an elongated chainlike
network of contacts at the early stages of shear thickening.
However, as more contacts form and loops emerge, addi-
tional edges will provide shorter node to node paths for the
same particles that were already connected through longer
path(s). While both of the networks show similar trends,
this is more clear and significant for the DST suspension.
Wang et al. [10] showed that stresses in shear-thickening
suspensions are heterogeneous at the onset and early stages
of shear thickening, and become increasingly homo-
geneous in the STS. This is consistent with the diameter
of the network measured in Fig. 2(c).

While characteristics of the force networks in CST and
DST show differences in the density of contacts and the rate
by which they grow during ST, these differences cannot
describe stark differences in the stress response of these two
systems. It is plausible to assume formation of particle
clusters that are the primary units for resistance to motion
[2,47,48]. For attractive colloidal gels, these particle
clusters have been shown to be responsible for the
emergence of rigidity [49]. Therefore, it is appropriate to
identify force clusters within the percolated network of ST
suspensions. This in network analysis is commonly referred
to as “community” detection, which involves identification
of nodes within a larger network that share similar
modularity. There are many different methods of commu-
nity detection in general [50], and different methods that
can be applied to particulate and granular systems are

reviewed in [51]. In this Letter, we employ a Gaussian
mixture model (GMM) algorithm in order to robustly
identify the force and contact clusters. For details of the
GMM algorithm and how it identifies the number and
constituents of particle clusters refer to Supplemental
Material [35]. Snapshots of the particle clusters are shown
for both CST and DST systems in Figs. 3(a) and 3(b),
respectively, where particles that belong to one cluster are
colored similarly for visual purposes. The CST clusters are
seemingly relatively more elongated compared to the DST
clusters. The GMM recovers a growing number of clusters
as the stress is increased for both systems, with a quasis-
teady value in the STS [Fig. 3(c)]. Having the clusters
clearly identified, we further characterize the clusters in
each system and under different stresses applied. The
number of particles per cluster is measured as the cluster
mass,Mcluster, and plotted for different stresses in Fig. 3(d).
For the CST system, the cluster sizes gradually grow as the
stress is increased (although viscosity remains constant);
however, for the DST system the cluster size immediately
finds a well-defined and steady distribution in the STS
whose mean value is significantly larger than the CST
clusters. The diameter of the cluster Dcluster defined as the
diameter of a single circle to encompass all nodes within a
cluster, however, shows a rather similar and steady dis-
tribution for both CST and DST [Fig. 3(e)]. These two
measures together enable calculation of an internal area
fraction of clusters. We find that DST clusters are more
densely packed and locally have higher area fractions
[Fig. 3(f)]. Note that these are elongated clusters whose
individual area fractions are significantly less than the
overall area fraction of the system, and thus the total area
fraction of the clusters sum up to more than ϕtotal

clusters > 3, as
shown in Fig. 3(g). These locally more packed DST
clusters also can be quantified through higher fractal
dimensions [Fig. 3(h)], where fractal dimension is defined
as logðMclusterÞ= logðDclusterÞ.

Regardless of how dense clusters are, or how many
clusters exist within a network, it is their connectivity that
ultimately controls the rheological response of the entire

(a) (b) (c)

FIG. 2. (a) Average number of contacts per particle, (b) normalized largest connected component, and (c) normalized network
diameter against imposed shear stress.
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suspension. Here, we consider clusters i and j to be in
contact, if there exists at least one particle-level contact
connecting their constituents. For instance, in Figs. 4(a) and
4(b), individual black circles represent the clusters’ center
of mass, and an edge is added between two clusters if there
exists at least one particle-particle contact between two

clusters. This provides a coarse-grained view of the
particulate network. Although CST suspensions yield more
number of clusters, the total number of contacting neigh-
bors, hZclustersi, for the DST is clearly larger as plotted in
Fig. 4(c). This suggests that clusters in DST are signifi-
cantly more interconnected compared to the CST clusters.

(a) (b) (c) (d)

(e) (f) (g) (h)
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FIG. 3. Snapshots of the system after clustering for suspensions showing (a) CST, and (b) DST behavior (particles of the same cluster
are colored similarly). (c) Number of clusters versus shear stress, (d) distribution of cluster mass, (e) distribution of cluster diameters,
(f) internal local area fraction of clusters, (g) total area fraction of all clusters, and (h) the internal fractal dimension of clusters for two
different area fractions in the CST and DST regime.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Snapshots of clusters and their contacts for (a) CST and (b) DST suspensions. (c) The average number of neighbors per cluster
versus shear stress. The schematic depiction of constrained cluster motion based on (d) single or (e) multiple particle-level contacts
connecting two neighboring clusters. Straight arrows show the relative sliding motion, and the curved arrows show the relative rolling
motion of clusters, where red and green colors indicate constrained, and unconstrained motion, respectively. (f) Average total number of
contacts per cluster (solid lines), and contacts per neighbor (dashed lines) for each cluster versus applied shear stress for two different
area fractions exhibiting CST and DST behavior.
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We also hypothesize that if two clusters are connected
through a single particle-particle contact, their relative
motion is constrained only with respect to the sliding
friction. However, when two adjacent clusters are con-
nected via multiple particle-level contacts, their rolling
motion also becomes significantly hindered, since relative
motion of clusters will require multiple two contacts to be
made mobile. This is sketched in Figs. 4(d) and 4(e) for the
two cases, to better illustrate the hindered motion of particle
clusters. Thus, the total number of contacts [at the particle
level] that each cluster makes with its surrounding clusters
can bring an insight into their dynamics. The average
number of total contacts between clusters, and their
normalized values per cluster neighbor versus stress are
plotted in Fig. 4(f). Deep into the STS, each cluster for the
CST suspension is connected to its neighbors through a
single force contact, i.e., constrained sliding motion. On the
other hand, on average each DST cluster is connected with
more than two contacts to a neighbor, i.e., sliding and
rolling constraints. This suggests that although the nature of
the contacts at the particle level is exactly the same for the
two systems, one where particle clusters are overcon-
strained in their relative motion will exhibit DST whereas
the single-mode hindrance to motion of clusters only results
in CST behavior.
In summary, results presented here strongly suggest that

a rigorous interrogation of the force networks in flowing
suspensions can bring insight into their micro- and mes-
omechanics. Emergence of a percolated contact network of
a highly heterogeneous nature is responsible for the onset
of ST. These heterogeneities, however, diminish by increas-
ing the applied stress and into the STS, through formation
of alternative paths within the network, until virtually all
particles within the suspension belong to a single network.
We find that the characteristics of particle-level contacts,
however, cannot help authoritatively distinguish the CST
and DST. Thus, using a GMM algorithm we identified
larger scale force clusters. These clusters in DST were
found to be denser and more interconnected, suggesting
that not only the individual load-bearing units are of more
rigid nature in DST compared to CST, but also that denser
connections between the clusters provide higher resistance
to large deformations. Finally, a coarse-grained description
of the contact network showed that multiple particle-level
connections between neighboring force clusters in the DST
regime effectively constrain the sliding and rolling motion
of these mesoscale structures, while single connection
between the CST clusters suggest only a sliding motion
hindrance. This clearly indicated that although the micro-
dynamics of the two systems are identical, the larger
mesoscale structures formed as a result of these contacts
can significantly differ, leading to drastic changes in
macroscopic rheological measures of a complex system.
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