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ABSTRACT: Disordered networks of semiflexible filaments are common
support structures in biology. Familiar examples include fibrous matrices in
blood clots, bacterial biofilms, and essential components of cells and tissues of
plants, animals, and fungi. Despite the ubiquity of these networks in
biomaterials, we have only a limited understanding of the relationship
between their structural features and their highly strain-sensitive mechanical
properties. In this work, we perform simulations of three-dimensional
networks produced by the irreversible formation of cross-links between
linker-decorated semiflexible filaments. We characterize the structure of
networks formed by a simple diffusion-dependent assembly process and
measure their associated steady-state rheological features at finite temperature

increasing shear strain y

over a range of applied prestrains that encompass the strain-stiffening transition. We quantify the dependence of network
connectivity on cross-linker availability and detail the associated connectivity dependence of both linear elasticity and nonlinear
strain-stiffening behavior, drawing comparisons with prior experimental measurements of the cross-linker concentration-dependent

elasticity of actin gels.

1. INTRODUCTION

The formation of living things involves the energy-intensive
assembly of complex structures from scarce resources. Survival
requires that these structures remain robust and functional
under significant and often repetitive applied stresses and
strains. Quasi-one-dimensional or filamentous structures
address these challenges efficiently by supporting significant
tensile stresses with minimal material cost." Biological
polymers and fibers are generally also semiflexible,” meaning
that they resist modes of deformation that induce bending,
such as applied compression. In examples spanning a wide
range of length scales, including information-storing DNA and
RNA, actin and intermediate filaments in the cell cytoskeleton,
and extracellular collagen and elastin fibers in tissues, these
mechanical features are essential for biological function.

The cytoskeleton and extracellular matrix are examples of
disordered networks, a common class of higher order
structures in living materials. Building on the qualities of
their underlying semiflexible filaments, these networks act as
responsive elastic scaffolds that resist extreme deformation
while leaving ample space for the transport and storage of
functional components, such as interstitial fluids and cells.
Unlike conventional elastic solids, their mechanical properties
are scale dependent™ and sensitive to changes in applied stress
or strain,”~ to which they respond with dramatic stiffening,
alignment, and changes in local filament density, enabling
essential biological phenomena such as long-range force
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transmission by cells and muscle fiber contraction.

Recent work has suggested that the nonlinear viscoelastic
properties of these and related fibrous networks are governed

5,16 .
"% associated

by an underlying mechanical phase transition'
with the onset of stretching-dominated rigidity under applied
shear or extensile strains. Within this framework, elastic
properties are predicted to exhibit a power-law dependence on
applied strain in the vicinity of a critical strain, and nonaffine
(inhomogeneous) rearrangements that become increasingly
large near the critical strain are expected to drive a significant
slowing of stress—relaxation as the transition is approached.'”
This slowing occurs due to the physical coupling of the
rearranging elastic network to a viscous background (the
solvent) and is closely related to the well-known divergence of
the viscosity of dense particulate suspensions near the onset of
jamming.lg’19 The magnitude of the critical strain, at which
these effects are the most pronounced, depends sensitively on

key features of the underlying network architecture.”””'
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Extensive simulation-based studies have explored the
nonlinear rheological properties of disordered networks of
cross-linked stiff or semiflexible polymers,”*~>* in some cases
with realistic three-dimensional geometries produced by either
physical assembly processes'”*>~*' or artificial generation
procedures.”” " However, efforts to specifically connect
network structure with strain-controlled critical behavior
have t)g)ically focused on simplified random spring net-
works. 102038746 1p spring networks, the critical strain
coincident with the onset of stretching-dominated mechanics
can be tuned by changing the average connectivity z, defined as
the average number of bonds joined at each network
junction.”” For a network of cross-linked filaments, z is
controlled by the typical number of cross-links formed per
filament, approaching an upper limit of z — 4 at high cross-
linking density.”' In biopolymer gels, small changes in the
concentration of available cross-linkers can drive dramatic
changes in rheological properties,”’ including changes in the
linear elastic modulus*® and shifts in the critical strain
corresponding to the onset of stretching-dominated mechan-
ics.”” These changes are naively consistent with a tendency of
the connectivity to increase with cross-linker concentration.
However, the quantitative relationships between cross-linker
concentration, connectivity, and the structural characteristics
of assembled networks more generally, have remained poorly
understood. Improving our knowledge of how the concen-
tration-dependent microscopic structural details of self-
assembled networks translate into strain-dependent macro-
scopic rheological properties is essential to understand the
forces at play in important biological processes, such as wound
healing and cancer metastasis, and to effectively design
biomimetic synthetic materials.>’

In this study, we consider a system composed of coarse-
grained semiflexible filaments that diftusively self-assemble into
a system-spanning network through the formation of
permanent interfilament cross-links. We begin with randomly
positioned free filaments with a specified coverage fraction p of
“sticky” or linker-decorated sites. The linker coverage fraction
serves as a proxy for the ratio of cross-linker and filament
concentrations in a real system. Allowing diffusive motion to
proceed, we add permanent cross-links (short elastic bonds,
depicted in blue in Figure 1a) between sticky sites whose
pairwise distance decreases beneath a designated cross-link
formation distance. After the rate of diffusion-driven formation
of new cross-links becomes sufficiently slow (see Section S4 in
the Supporting Information), we stop the assembly process
and permanently fix the topology of the network. In other
words, any cross-links that have already formed remain
permanent, while any sticky sites that have not formed cross-
links are permanently inactivated. We then analyze the
structure of the fixed network, measuring the dependence of
various structural features on the linker coverage fraction. An
example network is shown in Figure 1a, and a movie depicting
the assembly process is provided in the Supporting
Information.

After fixing the network topology, we transition to the
rheology stage, in which we observe the behavior of the
network at steady state under constant simple shear strain y.
We obtain time series measurements of the thermally
fluctuating shear stress 6(y, t) in the mechanically equilibrated
state, as shown schematically in Figure 1b. Repeating these
measurements over a range of strains for each set of input
parameters, we calculate relevant elastic quantities such as the

increasing shear strain y

=
©

0 t

Figure 1. Model system and rheological approach. (a) Coarse-grained
semiflexible filaments are decorated with randomly assigned sticky
sites (light blue spheres in the image on the right) with coverage
fraction p. When two sticky sites meet, they are connected by a
permanent cross-link (royal blue dumbbell). Solutions of these
filaments diffusively self-assemble into percolating disordered net-
works with macroscopic elasticity. (b) After the assembly process is
stopped, the network topology remains fixed and the strain-dependent
rheological properties are determined from the fluctuating shear stress
o(y, t) measured under a simple macroscopic shear strain 7.

differential shear modulus K., and the critical strain y, at
which the macroscopic system transitions between mechanical
regimes dominated by bending and stretching. Appropriate
physical parameters are chosen to enable comparison with
previous experimental measurements of the elasticity of
irreversibly cross-linked networks of F-actin,”’ an essential
component of the cytoskeleton of eukaryotic cells. Using the
same time series measurements, we then characterize the
dynamics of stress—relaxation via time correlations in the stress
fluctuations. Building upon recent work,'” we demonstrate that
the excess differential viscosity, a measure of energy dissipation
reflected in a system’s finite-temperature stress fluctuations, is
directly proportional to the corresponding quasistatic, athermal
differential nonaffinity, a measure of the rearrangement
induced by a small strain perturbation in the quasistatic,
athermal limit. Since in disordered networks the quasistatic
nonaffinity is highly strain dependent and reaches a maximum
at the critical strain, analogous behavior is expected in the
excess differential viscosity and the slowest viscoelastic
relaxation time. Our simulations confirm this expectation,
providing crucial insight into potentially measurable effects of
nonaffine fluctuations, which have generally proven challenging
to experimentally quantify.

2. MODEL DEFINITION AND NETWORK ASSEMBLY

We imagine a system that begins as a solution of free
semiflexible filaments covered to some extent with bound
linker proteins that are capable of dimerizing to form
permanent elastic cross-links. In experiments, the linker
coverage could be controlled by varying the relative
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concentrations of the cross-linking protein and filament
monomer, as in ref 49. If the filament concentration and
linker coverage in such a solution are sufficiently high, the
formation of cross-links between diftusively migrating filaments
eventually produces a macroscopic network.

To capture this behavior, we turn to a simplified
computational model. We specify the number of filaments
N filament length /;, and filament length density p, which
together determine the size of the periodic simulation box,

L= (Nflf/p)l/S. To ensure that the (initially straight)
filaments do not span the entire system, we require L > /; or
equivalently /; < \/N;/p. We also specify the number of
evenly spaced nodes per filament, n, which determines the
filament bond rest length /, = J;/(n — 1). The total number of
nodes in the system is then N = Ng. We then designate a
fraction p of the nodes, randomly chosen, as sticky or capable

of forming a cross-link bond with another node of the same
type. Cross-links are permanent bonds with a rest length /, ,

shorter than filament bonds. All bonds, including cross-links,
are treated as harmonic springs with stretching stiffness 4, and
harmonic bending interactions with stiffness x = kyT/, act

between adjacent filament bonds. Here, IP denotes the

persistence length of the filament. In terms of the 3N-
dimensional vector of node positions x, we write the elastic
potential energy of this system as

2 2
U(x) _ ﬁz ([i,' - lij,O) " Ez (aijk - gijk,o)
2% 0 24 e

ij i, ijk ijk, (1)
in which /; = Ix; — x|, 6 is the angle between the bonds ij
and jk, I = (Iij + ljk)/ 2, and the subscript 0 denotes the rest
values. The first sum is taken over all bonds ij, including cross-
link bonds, and the second over all pairs of connected bonds ij
and jk along the backbone of each filament. Because we
consider cross-linked networks with very low filament volume
fractions, we deem it acceptable to ignore steric interactions
between filaments. Neglecting inertia, as is appropriate for the
time scales studied here, the system obeys the overdamped
Langevin equation,”” such that the forces acting on all nodes
satisfy

Fy+Fy, +F;=0 (2)

in which the terms on the left represent the network forces,
drag forces, and Brownian forces, respectively. The force due
to the network is

B oU(x)
ox ©)
The nodes are subjected to a Stokes drag force

Fy =

o i

b ot ©
with drag coefficient { = 6ana in which 7, is the solvent
viscosity and a is an effective node radius of one-half the
filament bond length, a = /;/2. Finally, the Brownian force is

Fy = J20kgTw (5)

in which each component of w(t) is a Gaussian random
. . o s1 .

variable with zero mean and unit variance.” Equation 2 can be

rewritten as

x _ 10U N ,ZkBTw(t)
ot { ox ¢ (6)

During each time step in the assembly stage, we check
whether the distance separating any pair of sticky nodes has
decreased below a specified cross-link formation distance r, in
which case we connect the two with a cross-link bond. Each
sticky node can form a maximum of one cross-link, and
connections between cross-links and filaments are treated as
freely hinging. In other words, we do not include a bending
potential between adjacent cross-link and filament bonds. We
stop the assembly stage after a total time 7, has elapsed. We
find that 7, = 6 X 107At, corresponding to approximately 1 min
in real units, is long enough for the rate of cross-link formation
to become negligible (see Section S4 in the Supporting
Information for further discussion). Note that cross-link
formation does not take place after the assembly stage; during
the rheology stage, described in the next section, the network
topology remains fixed.

We note that the assembled networks are inevitably in a
prestressed state, as the finite-temperature assembly process
involves the formation of new constraints (cross-links)
between filaments that are in fluctuating states of local
bending, stretching, or compression. However, as we will see
in the next section, the assembled networks clearly remain well
within the bending-dominated linear elastic regime, indicating
that the effects of this thermally induced prestress on network
elasticity are insignificant.

After assembly, we analyze the structural features of each
network. To determine the connectivity z or the average
number of connections at each network junction, we consider
a reduced version of the simulated network. Each pair of cross-
linked nodes in the original network corresponds to a single
node in the reduced network, and each filament section
between two cross-linked nodes in the original network
corresponds to an edge (see sketch in Figure S1 and further
details in the Supporting Information, Section S1). Dangling
ends, or filament sections in the original network connected to
only one cross-link, are therefore neglected. This is a
reasonable choice as dangling ends do not contribute to the
elastic response of the network at zero frequency. We then
calculate the connectivity from the number of edges 745, and
nodes #,,4.; present in the reduced network structure as z =
2’nedges/ﬂnodes'

We construct systems with filament length /; = 9 pm and
filament persistence length /, = 17 ym, chosen to approximate

F-actin, with filament length per volume p = 2.6 ym™> (for F-
actin, this corresponds to a concentration of ¢, = 1.6 uM).
Additional parameters are specified in Table S1 (see
Supporting Information). Unless otherwise stated, the
measurements reported throughout this work are averaged
over three randomly generated network samples, and error bars
represent +1 standard deviation. All simulations are performed
using the open source molecular dynamics simulation tool
LAMMPS.>

We first consider the effects of adjusting the cross-linker
coverage fraction p on the assembled network structure.
Varying p from 0.4 to 0.9, we find that the connectivity of the
fully assembled network structures ranges from z € [2.8, 3.6],
increasing monotonically with p (see Figure 2a). These values
are similar to those measured for colla%en and fibrin networks
in previous experimental work.'®****>* Next, we determine
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Figure 2. Linker coverage dependence of key structural characteristics
of assembled networks. As the linker coverage fraction p increases, we
observe (a) an increase in the average connectivity z and (b) a
decrease in the average contour length between cross-links /..

the average intercross-link contour length /, referring to the
average distance between consecutive cross-links on each
filament. We calculate /. as the average length of the filament
sections in the original network corresponding to the edges of
the reduced network. As shown in Figure 2b, we find that /,
decreases monotonically with p.

3. NONLINEAR RHEOLOGY

After the assembly stage is halted, we proceed to the rheology
stage, in which the strain-dependent steady-state viscoelastic
properties of the system are measured via the time-dependent
shear stress as the system fluctuates about the mechanically
equilibrated state under a fixed shear strain. We impose a
constant macroscopic simple shear strain y using Lees—
Edwards periodic boundary conditions®® and, using the
conjugate gradient method, initially obtain the energy-
minimizing configuration of the network, corresponding to
the mechanically equilibrated state at T = 0. Then, we evolve
the system according to eq 6 at temperature T > 0, specified in
Table S1 of the Supporting Information, for a total run time
Tye = 3 X 107At, discarding the first half of the trajectory to
avoid initialization effects. For a given configuration of the
system, we compute the instantaneous virial stress tensor

1
Oap = ﬁz-ﬁ'j(t Tip

i>j (7)
in which r; = x; — x; and f;; is the force acting on node i due to
its interaction with node j. Because we will focus on
macroscopic simple shear oriented along the x axis with
gradient direction z, we now define ¢ = o,, to simplify
notation. Once we have obtained a time series of the shear
stress 6(y, t) at strain ¥, we calculate the time-averaged shear
stress (o(y,t)),. After repeating this procedure over many
strains in the interval y € [0, 1], we compute the strain-
dependent differential shear modulus

a(”(y; t) >t
dy (8)

which measures the apparent stiffness of the sample under
macroscopic strain y in response to an infinitesimal additional
shear strain step. For sufficiently small strains, this yields the
corresponding linear shear modulus, G, = lim,_,(K,,(7).

In Figure 3a and 3b, we plot the mean stress <6%7,t)>t and
the differential shear modulus K, as a function of strain for a
single network sample with the parameters specified in Table
S1 (see Supporting Information) and linker coverage fraction p
= 0.9. We determine the critical strain y,, which indicates the
transition between the bending-dominated and the stretching-

K(v) =

Figure 3. (a) Time-averaged shear stress (o(,t)); as a function of
applied shear strain y for a single network sample with linker coverage
fraction p = 0.9. (b) Differential shear modulus K., = &{c(y,t)),/dy.
Linear shear modulus G, and critical strain ¥, are indicated by dashed
lines, and solid line is a fit to the equation of state from ref 15, as
described in the Supporting Information, Section S3.

dominated mechanical regimes, as the inflection point of the
log K., vs logy curve. To avoid issues associated with
differentiating noisy data, we can alternatively find G, and y,
by fitting the entire K, vs y curve to an Ising-like equation of
state discussed in prior work,'> as we describe in further detail
in the Supporting Information, Section S3. Such a fit is shown
in Figure 3b. For the data presented here, both methods
effectively produce equivalent values of G, and ..

In Figure 4, we report the strain dependence of the
differential shear modulus for networks with varying linker

a 3
@ 3152 (b) 10
s 10%;
g 10'1:r= g 10
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Figure 4. Effects of linker coverage on features of the linear and
nonlinear stiffness in shear. Differential shear modulus K., for
networks with varying linker coverage fraction p (a) as a function of
strain and (b) as a function of shear stress. Increasing the linker
coverage fraction p drives (c) an increase in the linear modulus G, =
lim,_, (K, with G, o p* and (d) a decrease in the critical strain y, as 7.

x p’l.

coverage fraction p. As p increases, the critical strain evidently
decreases (stiffening occurs at lower applied strains) and the
linear shear modulus increases. These observations qualita-
tively agree with the observed cross-linker concentration
dependence of both the linear modulus G, and the rupture
strain ¥, (which we expect to be proportional to y.) of F-
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actin gels reported in ref 49 and with the connectivity
dependence of the linear modulus and critical strain observed
in spring network simulations.”” The same differential shear
modulus data are plotted in Figure 4b as a function of stress.
The linear modulus G, and critical strain y. values extracted
from these curves are plotted as functions of the linker
coverage fraction p in Figure 4c and 4d, respectively. We find
that each exhibits a power-law dependence on p, with G,  p*
and y, & p~". In ref 49, in which the analogous quantity R (the
ratio between the concentrations of actin and the cross-linking
protein scruin) is varied, the authors report G, o R* and y,
RS, These observations may be consistent with ours,
provided that the linker coverage fraction in our system
maps to the experimental cross-linker concentration ratio in ref
49 as p « R* with x & 0.6. Separately, the authors of ref 57
reported that for networks of actin filaments cross-linked by
heavy meromyosin, G, & R'* and 7, o« R™*% consistent with
our observed dependence of both quantities on p if x &~ 0.4.
However, meaningfully relating p and R will require further
investigation. Here, for example, no two sticky sites on the
same filament can reside closer than a distance /, (1 gm with
our parameters) from each other. This is obviously not the
case in real F-actin networks.

In Figure Sa and Sb, we plot the same extracted linear shear
modulus measurements as functions of the p-dependent
structural quantities discussed in the previous section, the
average network connectivity z and average intercross-link
contour length /. We observe an apparent power-law
dependence of the linear shear modulus G, on the inter-
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Figure 5. Linear shear modulus G, (a) increases dramatically with
connectivity, shown here for systems with varying linker coverage
fraction p, and (b) decreases with increasing average intercross-link
contour length /.. For small /_ (high p), we find G,  /_” with y ~ 4.
Deviation from this scaling appears at higher values of /.. (c) Critical
strain ¥, on the contrary, decreases approximately linearly with z.
Linear fit suggests y. = 0 as z = z* = 4, roughly consistent with the
upper bound for z in the high cross-link density limit.*' (d) Critical
strain increases approximately linearly with increasing average
intercross-link contour length, y. o /..

cross-link contour length /, G, o 7”7, with decay exponent y ~
4. This appears to agree with the expected scaling of G, with /.
for an athermal network of stiff filaments.>>**>® However, it is
important to note that our measurements cover less than a
decade in /, so any agreement may be coincidental. We thus

cannot rule out the G, o /-* scaling expected for a thermal
semiflexible gel,’ although for our range of parameters the
typical intercross-link contour lengths are presumably too
small for bending modes to be properly resolved. Reliably
measuring the scaling of G, with /_ in these systems will require
further investigation in simulations with reduced coarse
graining, i.e., smaller /,// j» OVer a greater range of /.. In Figure

Sc, we plot the measured critical strain ¥, as a function of the
connectivity. We find that for the range of parameters
considered here, y. appears to exhibit a linear dependence
on z with a best-fit intercept near z* ~ 4, in apparent
agreement with the upper limit of z for cross-linked networks
with high cross-linking density.” It is crucial to note that the
dependence of the critical strain on connectivity is known to
be sensitive to certain details of the underlying network
structure; for example, for short-filament networks with
structures derived from 3D jammed sphere packings, the
critical strain goes to zero precisely at the isostatic point, z = 6,
and shows a distinctly nonlinear dependence on z far from the
isostatic point.17 In our networks, we expect the z intercept to

depend on the filament length /; and the bending rigidity «,

which both necessarily influence the structure of the assembled
network. While we similarly observe that the critical strain
shows an apparent linear dependence on the average
intercross-link contour length /. (see Figure 5d), this too
warrants further investigation.

Further information is contained in the fluctuations of the
instantaneous stress about its average value®!

56(}/7 t) = G(% t) - <5(71 t))t )

from which we compute the stress fluctuation autocorrelation
function

C(y, ) = le@a(y, D50(y, t + 1)), o)
B

which reveals useful details about the time dependence of
energy dissipation.”>®*

In Figure 6a, we show representative C(y, 7) data for a single
sample (the same sample as in Figure 3) under applied strains
below, near, and above the critical strain y.. We find that stress
fluctuations decay slowly when the applied macroscopic strain
is near ¥, in contrast to a much faster decay for strains below
or above the critical regime. We can quantify this strain-
dependent change in relaxation dynamics by integrating the
shear stress autocorrelation function C(y, ) over a sufficiently
long range of lag times 7. In practice, the range of lag times for
which we can reliably estimate C(y, 7) is limited by the
simulation run time. Assuming C(y, 7) is known for lag times
below a maximum 7,,,,, we can estimate the system’s slowest
relaxation time as

fofm“ C(y, 7)dr

(7 ) = S D (1)

In the limit 7, — oo, this converges to the true slowest
relaxation time 7g,(y). In Figure 6b, we plot the apparent
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Figure 6. Relaxation of stress fluctuations slows dramatically near the
critical strain as rearrangements become increasingly nonaffine. (a)
Shear stress fluctuation autocorrelation function C(y, 7) measured at
representative strains below (purple), near (red), and above (orange)
the critical strain y, (see the corresponding K,y data in the inset of b)
reveals this slowing, which is captured quantitatively by (b) a peak in
the apparent slowest relaxation time 7y (eq 11). These data
correspond to the same sample as in Figure 3 (see inset), and
labeled strains are indicated by the same colors in all panels. (c) At
long lag times, the time-dependent apparent excess viscosity 517(y, 7)
calculated with eq 12 grows much larger near y, than elsewhere. This
behavior is especially clear when (d) the apparent excess zero-shear
viscosity 817(7 = 7,,,) is plotted as a function of 7, revealing a peak at
the p- (and thus z-) dependent critical strain. These observations are
supported by independent measurements of the strain-dependent
quasistatic, athermal differential nonaffinity oI',,, which is quantita-
tively related to 67 by eq 14 (solid blue line).

slowest relaxation time 7 for the same system, with marker
colors indicating the strains plotted in Figure 6a. Note that the
corresponding stiffening curve from Figure 3 is also shown in
the inset. We observe that 7z grows substantially as the critical
strain y, is approached from either side, reaching a maximum at
Y. In fact, we see consistent behavior, that is, growth of the
slowest relaxation time by an order of magnitude or more with
a peak at p-dependent critical strain y,, in networks throughout
the range of p considered. This is shown in Figure 7d, in which
the applied strain is normalized by the p-dependent critical
strain y,, revealing maxima in 7y at y/y. = 1 for all p.

The stress fluctuation autocorrelation function is also related
to the system’s lag-dependent excess differential viscosity®”
on(y, 7) = n(y, ) — n, measured at strain y

on(r, 0 = [ Clr, ) )

which we plot in Figure 6¢ for the same labeled strain values. It
is clear that 6n(y, 7) grows far more dramatically near the
critical strain than elsewhere. In recent work,'” it was suggested
that the low-frequency or “zero-shear” excess differential
viscosity 81y(y) = lim,_,0n(y, T) of prestrained disordered
networks is controlled by nonaffinity. Specifically, dn, was
shown to be related to the quasistatic, athermal differential
nonaffinity 6[ o (7), defined as

10-7 10°
Y/ Ye

Figure 7. Shared features of stiffening and slowing down at the
structure-dependent critical strain. (a) For networks with varying
cross-linker coverage fraction p, the stiffening regime of the
normalized differential shear modulus K/G, collapses onto a single
curve when plotted vs y7/y.. Lines correspond to fits to the equation of
state described in ref 15 (see Supporting Information, Section S3),
and associated fit parameters are plotted as a function of p in Figure

S2. (b) Mean squared stress fluctuations (5o(y, t) ); are largest at the
p- (and thus z-) dependent critical strain. Solid lines correspond to
the difference between the measured strain-dependent affine and the
equilibrium differential shear moduli, K¢ and K., according to eq 16.
Both the (a) apparent excess zero-shear viscosity 7 and (b) apparent
slowest relaxation time 7y also exhibit large peaks at the p-dependent
critical strain y..

. 1 NA;2
ol = lim —— [6x: "
=(7) 870 NIS&;/ZZ l

(13)

in which the sum is taken over all network nodes and the
vector 5xlNA represents the nonaffine component of the
displacement vector of node i under a macroscopic, quasistati-
cally applied strain step dy. The viscosity—nonaffinity relation-
ship in ref 17 can be stated concisely as

N 2

on,(y) = VClofSFoo(r) (14)
The left-hand side of eq 14 reflects the dynamics of the stress
fluctuations at finite temperature, while the right side reflects
the heterogeneous nature of the strictly quasistatic deformation
field, which can be obtained by comparing energy-minimized T
= 0 system configurations under varying applied y.

Simulations have suggested that for disordered filament
networks, the differential nonaffinity generically reaches a
maximum at the structure-dependent critical strain,"*° at
which the system macroscopically transitions between
bending-dominated (or floppy, for x = 0) and stretching-
dominated regimes. Thus, according to eq 14, we should
generically see a proportional peak in the excess differential
viscosity at y.. Testing this prediction requires measuring the
quasistatic, athermal differential nonaflinity. To do so, for a
given network at strain y, we first obtain the energy-minimizing
configuration at T = 0 using the conjugate gradient method.
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To this configuration, we then apply a small additional strain
step dy = 0.01, after which we repeat the energy minimization
procedure. Comparing the positions in the energy-minimizing
configurations at y and y + dy, we compute the quasistatic
differential nonaffinity oI, using eq 13. In Figure 6d, we plot
o'y, along with the apparent excess differential zero-shear
viscosity for the same system, demonstrating excellent
agreement with eq 14. To demonstrate that this behavior is
preserved as the structure is varied, we show in Figure 7c that a
clear peak in o5 occurs at y/y. = 1 over the entire range of p
considered.

We can also use the stress fluctuations to determine the
differential relaxation modulus®®

K(y, 7) = Ko(r) + C(y, 7) (15)

which quantifies the time-dependent apparent stiffness of the
system at prestrain y in response to an instantaneous additional
strain step.67’68 For sufficiently short times, the differential
relaxation modulus approaches an upper limit of lim,_,K(y, 7)
= K,(y), corresponding to the apparent stiffness of the energy-
minimized, athermal equivalent of the system at strain y under
an instantaneous, homogeneous infinitesimal shear strain step.
Consequently, the equilibrium stiffness of the system under
applied strain y is simply K,(y) reduced by C(y, 0)°"**"° or
equivalently

\4 2
K (r) = Kg(r) - kB—T<(50(7, )" 16

We find that this relationship provides a useful estimate of the
mean squared stress fluctuations, as shown in Figure 7b, and
we observe that the mean squared stress fluctuations robustly
reach a maximum at y/y, = 1.

4. DISCUSSION AND CONCLUSIONS

We have investigated the assembly and mechanical testing of
disordered networks of cross-linked semiflexible polymers via
Brownian dynamics simulations. Such networks serve as
essential mechanical constituents of a wide variety of biological
materials spanning many length scales. We explored the
structural and rheological consequences of varying the cross-
linker coverage fraction p, an analog of the experimental ratio
between the concentrations of cross-linker and filament
proteins. Using physical parameters intended to mimic the
cytoskeletal polymer F-actin, we measured the effects of
increasing the linker coverage fraction p on the average
connectivity z of self-assembled networks, observing a
corresponding increase in connectivity between z € [2.8, 3.6].

We then investigated the relationship between these
connectivity changes and the associated changes in the
strain-dependent rheological properties of the assembled
networks, obtaining extended time series measurements of
fluctuating shear stress o(y, t) for systems held under fixed
shear strain y. Analyzing many such trajectories gathered over a
range of applied strains y, we computed the strain-dependent
differential shear modulus K, from which we extracted both
the linear shear modulus G, and the critical strain y. We
described the dependence of these quantities on the cross-
linker coverage fraction p, demonstrating qualitative agreement
with the experimentally observed dependence of the same
quantities on the cross-linker concentration ratio R reported in
ref 49. Specifically, we found that increasing p produces
inherently stiffer networks (having an increased linear shear
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modulus G,) that simultaneously exhibit an earlier tendency to
strain stiffen (having a lower critical strain y.). Drawing
comparisons between the scaling of both G, and y, with p and
the analogous experimentally observed scaling of the same
quantities with R, we suggested a simple power-law relation-
ship between p and R. We then described the apparent
dependence of these elastic features on the p-dependent
structural quantities z and /_, notably showing that the critical
strain decreases linearly with z. A linear fit suggests that y,
approaches 0 as the connectivity z approaches a limiting value
z* — z_near 4, the theoretical upper bound for z at high cross-
linking density.

We then extended our observations beyond strictly elastic
properties by analyzing the stress fluctuation autocorrelation
function C(y, 7), which revealed the development of extremely
slow dynamics in systems subjected to applied shear strains
near the critical strain y.. From C(y, 7), we obtained estimates
of the slowest relaxation time 7y, and the excess differential
zero-shear viscosity 01y, both of which we showed are
consistently maximized at the p-dependent critical strain,
irrespective of the details of the underlying network. Building
upon results from ref 17, we demonstrated that the excess
differential viscosity in these finite-temperature systems is
quantitatively controlled by the athermal quasistatic differential
nonaffinity 6I",, a measure of the inherent tendency of the
strained network to deform heterogeneously. Importantly, our
results suggest that one should expect measurable dynamical
signatures of transition-associated nonaffine fluctuations to
appear in semiflexible polymer networks with biologically
relevant elastic properties, e.g., those of the F-actin
cytoskeleton, under physiologically relevant applied strains.
In other words, one should generically expect to observe
slowing stress—relaxation in biopolymer networks at prestrain
levels near the critical strain ¥, marking the macroscopic
transition between bending-dominated and stretching-domi-
nated elasticity. Since y. is controlled by the average
connectivity z, which is controlled in turn by the availability
of cross-linking sites (here, p), our results suggest a route to
experimentally control the strain dependence of major features
of both network elasticity and stress—relaxation dynamics.

In future work, it would be prudent to explore how the
behavior we observe near the critical strain might differ in
networks with linkers capable of either breaking under
sufficient tension***®”" or transiently binding and unbind-
ing.”>”* In such systems, we anticipate a rich interplay between
the slow relaxations associated with nonaffine rearrangements
and the additional dynamics of network remodeling and
fracture.
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