
Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis

Graphical abstract

Authors

Veronika te Boekhorst, Liying Jiang, Marius Mählen, ..., Herbert Levine, Boudewijn M.T. Burgering, Peter Friedl

Correspondence

pfriedl@mdanderson.org

In brief

te Boekhorst et al. identify the transition to blebbing-amoeboid migration as an energy-conserving migration mode induced by hypoxia signaling through calpain-2-mediated cleavage of talin-1, β1 integrin deactivation, and decreased oxidative metabolism. This indicates that blebbing-amoeboid movement represents an "eco-mode" of cell migration.

Highlights

- Hypoxia/HIF signaling converts collective invasion to blebbing-amoeboid migration
- Calpain-2 cleaves talin-1, inactivates β1 integrins, and induces amoeboid conversion
- Amoeboid movement occurs with reduced oxidative metabolism and glycolysis
- Calpain-2 inhibition prevents amoeboid transition and HIFinduced metastasis

Article

Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis

Veronika te Boekhorst, 1,2 Liying Jiang, 1 Marius Mählen, 2 Maaike Meerlo, 3,4 Gina Dunkel, 2 Franziska C. Durst, 1,8 Yanjun Yang, ^{5,6} Herbert Levine, ^{5,6} Boudewijn M.T. Burgering, ^{3,4,7} and Peter Friedl^{1,2,7,9,*}

- ¹David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX,
- ²Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
- ³Department of Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, the Netherlands
- ⁴Oncode Institute, 3521 AL Utrecht, the Netherlands
- ⁵Center for Theoretical Biological Physics, Department of Applied Physics, Rice University, Houston, TX 77005, USA
- ⁶Department of Physics, Northeastern University, Boston, MA 02115, USA
- ⁷Cancer Genomics Center, 3584 CG Utrecht, the Netherlands
- ⁸Present address: Regensburg Center of Interventional Immunology (RCI), 93053 Regensburg, Germany
- ⁹Lead contact
- *Correspondence: pfriedl@mdanderson.org https://doi.org/10.1016/j.cub.2021.11.040

SUMMARY

Hypoxia, through hypoxia inducible factor (HIF), drives cancer cell invasion and metastatic progression in various cancer types. In epithelial cancer, hypoxia induces the transition to amoeboid cancer cell dissemination, yet the molecular mechanisms, relevance for metastasis, and effective intervention to combat hypoxia-induced amoeboid reprogramming remain unclear. Here, we identify calpain-2 as a key regulator and anti-metastasis target of hypoxia-induced transition from collective to amoeboid dissemination of breast and head and neck (HN) carcinoma cells. Hypoxia-induced amoeboid dissemination occurred through low extracellular matrix (ECM)-adhesive, predominantly bleb-based amoeboid movement, which was maintained by a low-oxidative and -glycolytic energy metabolism ("eco-mode"). Hypoxia induced calpain-2-mediated amoeboid conversion by deactivating β1 integrins through enzymatic cleavage of the focal adhesion adaptor protein talin-1. Consequently, targeted downregulation or pharmacological inhibition of calpain-2 restored talin-1 integrity and β1 integrin engagement and reverted amoeboid to elongated phenotypes under hypoxia. Calpain-2 activity was required for hypoxia-induced amoeboid conversion in the orthotopic mouse dermis and upregulated in invasive HN tumor xenografts in vivo, and attenuation of calpain activity prevented hypoxia-induced metastasis to the lungs. This identifies the calpain-2/talin-1/β1 integrin axis as a druggable mechanosignaling program that conserves energy yet enables metastatic dissemination that can be reverted by interfering with calpain activity.

INTRODUCTION

Cancer cell invasion initiates a multistep cascade to metastasis, which converts local neoplasia into a life-threatening systemic disease. 1-3 For tissue invasion, cancer cells deploy a range of collective and individual cell migration strategies. Collective invasion of multicellular groups occurs when cells are held together by cell-cell adhesion, whereas single-cell migration lacks cell-cell cohesion and connectivity.4 Mesenchymal single-cell migration depends on effective integrin-mediated adhesion to the extracellular matrix (ECM), which supports spindle-like cell elongation and force generation.⁵ Amoeboid movement of roundish or ellipsoid cells engages only weak adhesion to the ECM and relies upon kinetic deformation of the cell body for passage through 3D tissue.⁶ In addition, protrusion types differ between amoeboid migration modes. Amoeboidmoving leukocytes and cancer cells develop actin-rich pseudopodia and filopodia at the leading edge, which generate protrusive cell elongation and directional motion.^{7,8} Primordial germ cells and a subset of roundish-moving cancer cells extend bleb-like membrane protrusions that provide transient anchorage by their irregular surface topology.7-11 Although each migration mode operates according to distinct physicochemical principles, the relevance of each mode in the tumor microenvironment and during metastasis of cancer cells remains largely unclear.

Collective and single-cell migration programs are adaptive, allowing cells to switch between migration modes. Known conversions occur between collective and single-cell migration, including epithelial-to-mesenchymal or epithelial-to-amoeboid transition, as well as transitions between mesenchymal and amoeboid single-cell migration programs.3 Experimentally,

Article

migration mode switching can be induced by modulating mechanotransduction, e.g., inhibition of integrins or matrix metalloproteinases (MMPs), increasing or decreasing actomyosin contractility, ^{10–14} or in response to physical and molecular triggers. ¹⁵ The mechanisms mediating the epithelial-to-mesenchymal transition (EMT) have been investigated in detail. However, the stimuli and intracellular regulators supporting the conversion to amoeboid migration remain unclear.

Hypoxia, a microenvironmental stressor in solid tumors, induces invasion and metastasis in cancer cells ^{16–19} and induces amoeboid migration in epithelial cancer cells by largely EMT-independent mechanisms. ²⁰ Hypoxic and metabolically perturbed tumor regions surround necrotic zones in the tumor core but are also present in the tumor margins near the invasive front. ²¹ After hypoxia inducible factor (HIF) stabilization, invasive tumor cells retain sustained hypoxia-related transcriptional programs and metastatic ability ^{21–25}; however, the molecular mechanisms mediating transition to amoeboid migration and their relevance for hypoxia-induced metastasis remain unexplored.

We used invasive and metastatic epithelial breast cancer and head and neck squamous carcinoma cells (HN-SCCs), which invade collectively into 3D fibrillar collagen in tumoroid culture upon normoxia and undergo amoeboid conversion in response to hypoxia or pharmacological stabilization of HIF-1. We examined the induced amoeboid variants, pathways regulating mode switching, and their implications for metastatic organ colonization. Hypoxia/HIF stabilization induces conversion to blebbing-amoeboid movement by upregulating the activity of the cysteine protease calpain-2, which cleaves the focal adhesion adaptor talin-1, limits β 1 integrin activity, reduces overall energy consumption, and strongly enhances metastasis.

RESULTS

Hypoxia induces blebbing-amoeboid migration

To identify the amoeboid programs induced by hypoxia, 4T1 and UT-SCC38 cells that invade fibrillar collagen in 3D tumoroid culture by a predominantly collective pattern under normoxia (21% O₂) were exposed to severe hypoxia (0.2% O₂) or pharmacological HIF-1 stabilization using dimethyl oxalylglycine (DMOG) (1 mM)^{20,26} (Figure 1A). The upregulation of HIF was verified for both cell models by western blot analysis (Figure S1A). Hypoxia and HIF stabilization induced the detachment of both initially elongated and rounded cells (Video S1). Rounded cells migrated with (1) actin-rich pseudopodal or (2) blebbing protrusions (Figure 1B, arrowheads), whereas less frequent elongated cells were spindle shaped or retained blebs and/or pseudopodal and/or filopod-like protrusions in coexistence (Figure 1B). In response to hypoxia or HIF stabilization, the absolute increase of detaching and blebbing-amoeboid moving cells per tumoroid was 3- to 6-fold, compared to control conditions (Figure 1C; Video S1). To determine the adaptive response to hypoxic stress in a standardized manner, we quantified the relative abundance of migration modes for each challenge condition. In control culture, the abundance of detached single cells was 40%-60% for elongated spindle-shaped cells and 20%-30% for amoeboidlike, roundish cells with pseudopodal and bleb-based protrusions (Figure 1D). Upon hypoxia or HIF stabilization, elongated (10%-30%) and amoeboid pseudopodal (10%-20%) subsets diminished, but the amoeboid-blebbing mode increased to 50%-80% (Figures 1D, S1B, and S1C; elongation factor [EF] \leq 2). Cell rounding and emergence of blebs coincided (Figure S1D), indicating that hypoxia signaling activates a bleb-based migration program.

Detached blebbing cells were actively moving (Video S1), proliferative (Figure S1E), and lacked signs of apoptosis, including cleaved caspase-3, nuclear fragmentation (Figure S1F), or cell collapse and fragmentation (Video S1). In low- or mid-density collagen (1.7 or 2.5 mg/mL), the different migration modes induced by HIF stabilization developed comparable median speeds (0.1–0.3 $\mu m/min)$ (Figures S1G and S1H) and migration persistence (Figures S1I and S1J). This speed range was comparable to rare detached and individually moving cells in control culture (Figures S1G, S1H, and S1I). In higher-density collagen (4 mg/mL), all subtypes slowed down, with blebbing-amoeboid cells migrating with the lowest velocity (Figure S1H). Thus, hypoxia-induced transition to blebbing-amoeboid migration occurs at undiminished speed in low- to mid-density ECM. This blebbased amoeboid phenotype is reminiscent of previously identified constitutive amoeboid cells in other experimental models of metastatic cancer dissemination. 10,27

Transitions and morpho-kinetic stability of blebbingamoeboid migration

Invasion plasticity induced by EMT^{28,29} or an adhesion-targeting antibody¹⁴ elicits a collective to single-cell transition in a durable manner (days). We thus tested the stability of HIF-induced single-cell migration modes. Blebbing-amoeboid migration in 4T1 cells was stable for up to 72 h after HIF stabilization, whereas 20%-50% of initially elongated or pseudopodal-amoeboid cells abandoned their mode over time (Figure 1E). In time-gated elongation analysis, blebbing-amoeboid cells retained a rounded shape (EF < 2) over several days and did not reconvert to an elongated phenotype, whereas pseudopodal (EF 1 to 4) or elongated, spindle-like (EF 3 to >10) subsets converted to a rounded morphology (Figure 1F). As an outcome after 3 days of HIF stabilization, collective, elongated, and pseudopodal migration modes transitioned to blebbing-amoeboid migration in 4T1 (Figure 1G; Video S2) and UT-SCC38 cells (Figures 1D and S1K). These data indicate that under metabolic stress, collectively invading epithelial cancer cells can transit to blebbing-amoeboid migration, either directly or via a phase of metastable elongated and/or pseudopodal states.

Hypoxia and HIF stabilization reduce β 1 integrin activity

Hypoxia-induced amoeboid conversion may result from decreased adhesion to the ECM substrate and/or increased actomyosin contractility through Rho/ROCK signaling. 10,12,14,30 To determine whether modulating adhesion, with or without modulating contractility, is sufficient to mediate rounded cell migration, we carried out mechanochemical simulations using a 2D phase-field model of cells moving across a 2D substrate (Figure S2A). This model allows modulation of adhesion-dependent friction and contractility and determination of the consequences for cell shape and speed (Figure S2B) and possible phenotypic instabilities. At intermediate contractility, cell elongation positively correlated with adhesion-dependent friction (Figure 2A). This predicts that decreasing cell-substrate

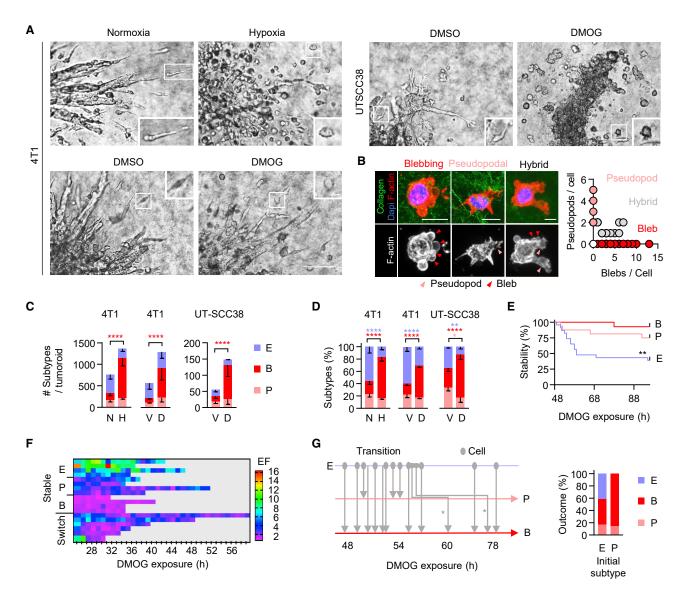


Figure 1. Hypoxia/HIF-induced amoeboid-blebbing migration and transitions

(A) Bright-field micrographs of tumoroids invading into collagen at 72 h (4T1) and 96 h (UT-SCC38) under the conditions indicated. Insets: individually migrating cells. Scale bars, 100 µm (overviews) and 10 µm (insets).

- (B) Representative confocal micrographs of UT-SCC38 cells 96 h after HIF stabilization (left; scale bar, 10 μm). Protrusion type and number upon HIF stabilization (right; 44 cells, n = 3).
- (C) Morphology-based subtypes after 72 h (4T1) or 96 h (UT-SCC38). For classification criteria, see STAR Methods. Means ± SD of absolute cell number per subtype and tumoroid (5 tumoroids/experiment, n = 3). ****p < 0.0001 (two-way ANOVA).
- (D) Frequency of single-cell migration subtypes per tumoroid. Means ± SD (5 tumoroids/experiment, n = 3). ****p < 0.0001, **p < 0.002, *p = 0.015 (two-way ANOVA).
- (E) Time-dependent phenotype of migrating 4T1 cells (time-lapse microscopy, 48-h observation period). Migration modes were classified for 3-h time windows. Data show 23 (E), 16 (P), and 13 (B) cells from 10 tumoroid quadrants. **p = 0.002 (log-rank test).
- (F) Time-dependent elongation of individual 4T1 cells. Elongation factor (EF) was detected at 1-h intervals for the duration that cells were detectable after detachment (8-24 h). One cell per row.
- (G) Time-dependent direct or stepwise (asterisks) transitions between migration modes (left) and aggregated phenotypes scored 48–72 h after HIF stabilization (right; 38 cells).
- E, elongated; P, pseudopodal-rounded; B, blebbing-rounded; N, normoxia; H, hypoxia; V, vehicle control (DMSO); D, DMOG.

adhesion may be sufficient to induce rounding. We further tested whether reducing friction and cell elongation could occur without compromising the speed of migration. At low friction, steeply decreasing cell length was associated with only moderately

reduced speed (Figure 2A, gray area). Thus, *in silico* analysis predicts that diminished adhesion alone can result in cell rounding with near-undiminished speed, consistent with the concept of low-adhesive amoeboid migration.^{7,30}

Article

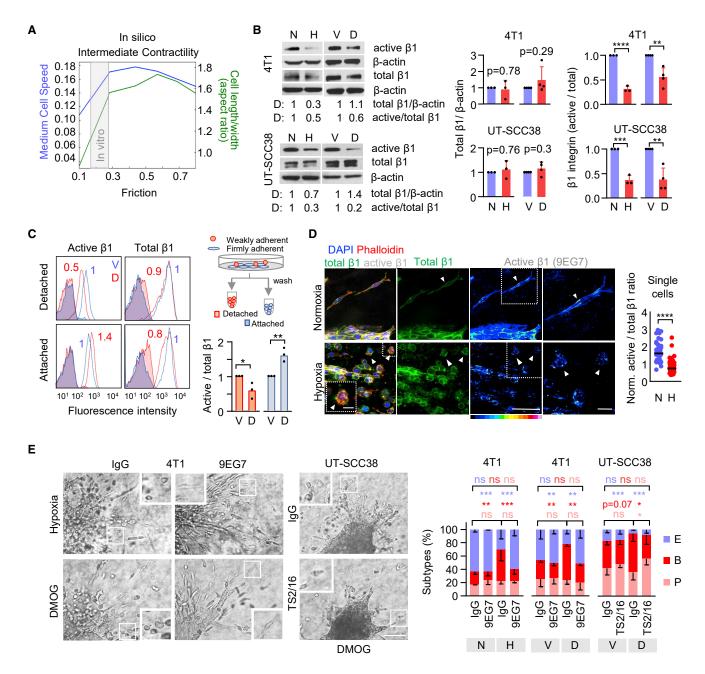


Figure 2. Reduced β1 integrin activity in blebbing-amoeboid cells

(A) In silico modeling of cell shape (aspect ratio) and speed in dependence of friction of individual cells migrating at intermediate contractility using a twodimensional phase-field simulation. Gray area, predicted dynamic range observed in vitro.

(B) Total and active \$1 integrin protein content in 24- to 48-h (4T1) and 72- to 96-h (UT-SCC38) 2D monolayer culture (left panel, representative western blot) and densitometric ratio of total β1 integrin/β-actin and active/total β1 integrin (right). Data represent the mean ± SD and dots represent individual results (n = 3-4). D, densitometric analysis. ****p < 0.001, ***p = 0.004, **p = 0.002-0.004 (unpaired t test, two-sided).

(C) Active and total β 1 integrin surface expression (median fluorescence intensity; MFI) in adherent and detached 4T1 cells (48 h). Cartoon: workflow of harvesting adherent and weakly adhesive cells from 2D culture. Representative flow cytometry histogram (left) and ratio of active/total \(\beta 1 \) integrin surface expression normalized to the ratio of vehicle control (right). Columns show the median and data points from independent experiments (n = 3). **p = 0.007, *p = 0.03 (unpaired t

(D) Confocal micrographs of active (mAb 9EG7) and total \(\beta\) integrin (mAb EP1041Y) expression of 4T1 tumoroids invading into 3D collagen (left) and the ratio of active/total β1 integrin per invading 4T1 single cell (right). Data show ratios per cell (106 cells); horizontal lines indicate the median. Insets: single-cell phenotypes (arrowheads). Scale bars, 50 μm (overview) and 10 μm (zoom). ****p < 0.0001 (Mann-Whitney test, two-sided).

(E) Bright-field micrographs of invading tumoroids after 72 h (4T1) and 96 h (UT-SCC38) (left) and morphology-based single-cell subtypes (right) for the indicated conditions in the presence or absence of β1 integrin-activating mAb 9EG7. Insets: single cells. Data show the means ± SD (5 tumoroids/experiment, n = 3). ****p < 0.0001, ***p = 0.0008, **p < 0.006, *p < 0.03 (two-way ANOVA). Abbreviations as in Figure 1.

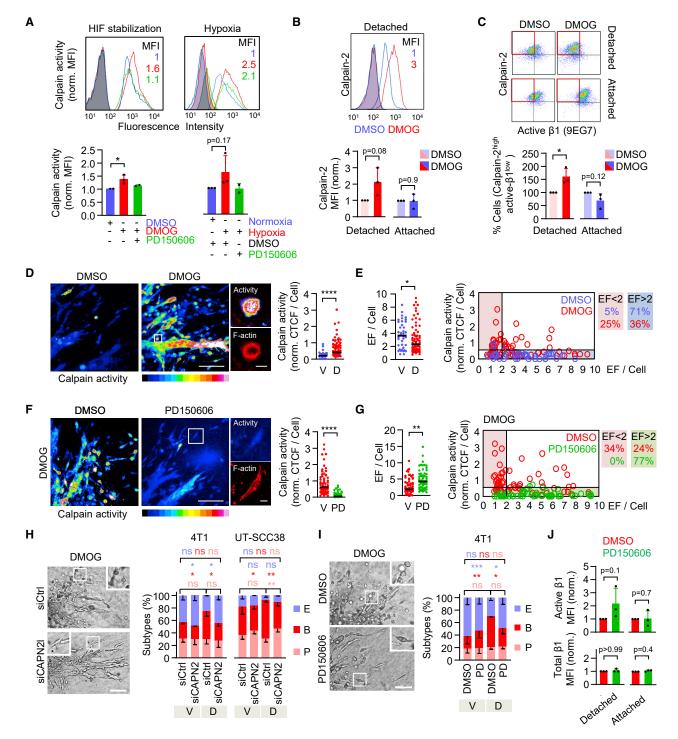


Figure 3. Calpain-2-dependent β1 integrin inactivation and blebbing-amoeboid conversion after HIF stabilization

(A) Calpain activity (cleaved CMAC intensity) detected by flow cytometry in 4T1 cells 48 h after HIF stabilization with DMOG (left) or hypoxia (right), in the absence or presence of calpain inhibitor PD150606 (100 μM). Representative histograms with MFIs (top) and mean MFI and SD (bottom), both normalized to controls (n = 3). Shadowed lines indicate unstained controls. *p = 0.02 (unpaired t test, two-sided).

(B) Calpain-2 expression detected by flow cytometry in 4T1 subpopulations 48–72 h after HIF stabilization. Data represent the mean MFI ± SD from n = 3 (unpaired t test. two-sided).

(C) Correlation of calpain-2 and active β1 integrin surface protein content in 4T1 subpopulations 48-72 h after treatment (top, representative quadrant histograms). Cell fraction expressing calpain-2high and active β1 integrinlow levels normalized to vehicle control (bottom). Data show the means and SD (n = 3). *p = 0.029 (unpaired t test, two-sided).

Article

We thus examined in tumoroid culture whether hypoxia/HIF signaling causes amoeboid transition by downregulating adhesion. Cell adhesion to type I collagen is predominantly mediated by integrins $\alpha 1\beta 1$, $\alpha 2\beta 1$, $\alpha 10\beta 1$, and $\alpha 11\beta 1$.³³ Hypoxia or HIF stabilization both reduced the $\beta1$ integrin activation epitope in cell lysates of 4T1 cells (detected by monoclonal antibody [mAb] 9EG7) and UT-SCC38 cells (mAb TS2/16) in comparison to control cells, whereas total β1 protein levels remained unchanged (Figure 2B). To test whether decreased $\beta1$ integrin activation scales with weakened cell adhesion, weakly and firmly adherent cells were separated by mild washing of hypoxic or normoxic 2D monolayer cultures (Figures 2C and S2C). HIF stabilization downregulated active β1 integrin (by 50%) in viable detached cells, whereas adhesive cells expressed high active β1 integrin levels (Figures 2C and S2D). In hypoxic 3D tumoroid culture, a β1 integrin activation epitope (9EG7) was decreased in individualized migrating cells, compared with normoxic culture (Figure 2D, arrowheads). Hypoxia and HIF stabilization thus dampen $\beta 1$ integrin activation in cell subsets that weakly adhere in 2D culture and undergo single-cell migration in 3D culture.

Diminished β 1 integrin activity is required for blebbingamoeboid conversion

Amoeboid migration occurs with weak or even absent integrinmediated adhesion. 7,30,34 We thus tested whether amoeboid migration in response to HIF stabilization was still supported by β1 integrins. The migration speed of detached UT-SCC38 single cells in the presence of adhesion-perturbing anti-β1 integrin mAb 4B4 was dose-dependently reduced, with an 80% decline (from 0.1 μ m/min to 0.02 μ m/min) for a high dose of mAb 4B4 but only mild reduction at a low dose (Figure S2E). As an independent reference for the principal efficacy at this concentration in an integrin-dependent cell model, 11 mAb 4B4 at a low dose profoundly decelerated the migration speed of mesenchymal HT1080 fibrosarcoma cells (Figure S2E).

To test whether diminished $\beta 1$ integrin function was required for the transition to amoeboid migration, β1 integrin was ectopically activated by mAb 9EG7 (4T1) or TS2/16 (UT-SCC38) added after HIF stabilization, when cells had detached from the tumoroid. Activation of β1 integrin decreased the frequency of round, bleb-rich phenotypes and enforced elongated morphologies with pseudopodal protrusions (Figures 2E and S2F; Video S3). In contrast, integrin inhibition by mAb 4B4 induced blebbing-amoeboid migration in control culture (Figure S2G). These data indicate that hypoxia/HIF signaling induces bleb-based amoeboid migration in 4T1 and UT-SCC38 cells by partially deactivating β 1 integrin function.

Elevated calpain-2 function mediates blebbingamoeboid migration

Cell-intrinsic mechanisms that can limit integrin function include (1) inhibition of intracellular phosphatases, which interrupts focal adhesion cycles, 35 and (2) activation of the calcium-activated serine protease calpain-2, which cleaves the focal adhesion components talin, paxillin, and FAK. 36,37 Calpain-2 expression and activity are elevated throughout the metastatic cascade in epithelial cancers. 38-45 We therefore explored the role of calpain as a putative regulator of integrin deactivation. Calpain-2 protein expression, determined by western blot analysis, remained unchanged in hypoxic and DMOG-treated 2D bulk culture (Figure S3A). However, using the fluorogenic calpain substrate t-BOC-L-leucyl-L-methionine amide (CMAC) and detection by flow cytometry at the single-cell level, the intracellular calpain activity was increased (up to 1.5-fold) by hypoxia and DMOG, and this effect was reverted by calpain inhibitor PD150606 (Figure 3A). This indicates that calpain activity is regulated by hypoxia signaling.

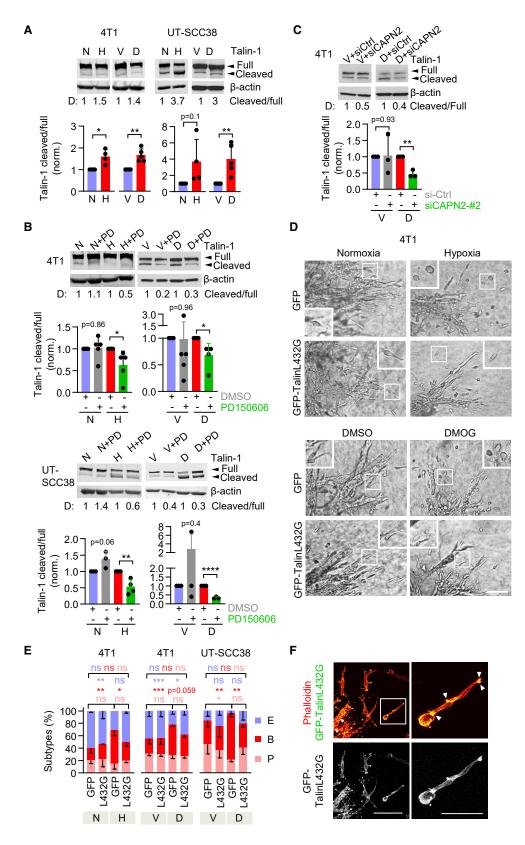
To examine whether calpain-2 protein levels differed between differentially adhesive subpopulations, we measured calpain-2 protein expression levels in weakly and firmly adhesive cells after treatment with DMOG. Calpain-2 protein was upregulated in the weakly adhesive subset but not the strongly adhesive cells, compared to DMSO-treated control cells (Figure 3B). In weakly adherent cells, high calpain-2 protein levels coincided with reduced active $\beta 1$ integrin surface content, and the frequency of calpain-2hi/β1activelo cells was increased after DMOG treatment (Figure 3C). Thus, hypoxia/HIF signaling induces calpain-2 expression and function in low-adhesive cells.

To detect whether calpain activity is increased in amoeboidmoving cells, we applied the calpain reporter CMAC to 3D tumoroid culture. Hypoxia and DMOG treatment caused calpain activation in collective invasion strands preceding cell detachment as well as individually migrating cells, whereas calpain activity was low in control culture (Figures 3D, S3B, and S3C). Using the median of cell elongation (EF = 2) as a cutoff to discriminate between elongated and rounded cells (Figure 3E, left graph), DMOG induced the highest calpain activity elevation in rounded individual cells, whereas elongated cells typically

⁽D) Topography (left) and in situ cytometry (right) of cleaved CMAC intensity in 4T1 cells detached from tumoroids (72 h after HIF stabilization). Zooms: amoeboidblebbing cell; F-actin, phalloidin. CTCF, corrected total cell fluorescence from 118 cells pooled from n = 2. ****p \leq 0.0001 (Mann-Whitney test, two-sided). (E) EF distribution (left) and correlation with calpain activity (right) of detached 4T1 cells. Percentage values represent the cell frequencies present in the shaded areas in the graph. *p = 0.028 (Mann-Whitney test, two-sided).

⁽F) Topography (left) and cytometry (right) of calpain activity of 4T1 tumoroids in collagen in the absence or presence of PD150606 (100 μm) 72 h after HIF stabilization. Data (134 cells pooled from n = 2) are represented as in (D). **** $p \le 0.0001$ (Mann-Whitney test, two-sided).

⁽G) EF distribution of 4T1 cells (left) and correlation with calpain function (right) in the presence of PD150606 (100 μM) (right). Data show 134 cells from n = 2. Percentage values as in (E). **p = 0.0051, *p = 0.028 (Mann-Whitney test, two-sided).


⁽H) Migration morphologies of siCtrl- or siCAPN2-transfected single cells 72 h (4T1, mouse si-ID#2) and 96 h (UT-SCC38, human si-ID#3) after treatment. Data represent the means ± SD (5 tumoroids/experiment, n = 3). **p < 0.002, *p < 0.05; ns, not significant, p > 0.95 (two-way ANOVA).

⁽I) Representative micrographs (left) and distribution of single-cell migration subtypes (right) of 4T1 tumoroids in collagen with or without PD150606 (50 µM) 72 h after HIF stabilization. Insets: single-cell phenotypes. Data represent the means ± SD (5 tumoroids/experiment, n = 3). ***p = 0.0007, *p = 0.05; ns, p > 0.31 (twoway ANOVA).

⁽J) Active and total β 1 integrin surface expression in 4T1 cells after treatment with DMOG and PD150606 (100 μ M). Data represent the mean MFI \pm SD from n = 3 (Mann-Whitney test, two-sided).

PD, PD150606. Horizontal lines (D-G) indicate the median. Scale bars, 100 µm (overviews) and 10 µm (insets).

(legend on next page)

Article

contained low calpain activity (Figure 3E). In a subset of elongated-moving cells, high calpain activity preceded cell rounding (Figure S3D; Video S4). Consistently, calpain inhibitor PD150606 diminished calpain activity to control levels (Figure 3F) and reverted cell rounding to elongated cell shapes despite ongoing HIF stabilization with DMOG (Figure 3G). These data suggest that calpain activation in collective and mesenchymal-elongated invasion precedes and is required for the transition to amoeboid migration.

To test whether the transition to blebbing-amoeboid migration indeed depends on calpain-2 activity, we transiently downregulated calpain-2 by RNA interference (Figures S3E–S3G) and measured the effect on amoeboid conversion. Calpain-2 downregulation prevented blebbing-amoeboid but induced elongated phenotypes in DMOG-treated culture (Figure 3H). Consistently, PD150606 prevented HIF-induced amoeboid conversion in 3D tumoroid culture (Figure 3I) and restored active $\beta 1$ integrin surface levels in low-adhesive cells in 2D culture (Figure 3J). Calpain-2 activation therefore dampens integrin activity and mediates HIF-induced amoeboid conversion.

Calpain-2 activation mediates transition to blebbingamoeboid migration by talin-1 cleavage

We next addressed whether, after HIF activation, calpain-2 deactivates β1 integrins by its canonical function, i.e., cleaving focal adhesion complex proteins. Talin-1 is the central mechanosensitive adaptor protein in integrin-mediated focal contacts and an important calpain-2 target to induce focal adhesion turnover. 46,47 Hypoxia and HIF stabilization with DMOG both induced the cleavage of talin-1, detected as a proteolytic talin-1 fragment of 190 kDa corresponding to the main calpain-2-mediated talin-1 cleavage product. 36,37 This resulted in an increased ratio between cleaved and full-length talin-1 (Figure 4A). The cleaved/uncleaved talin-1 ratio induced by hypoxia or DMOG in 4T1 and UT-SCC38 cells was reverted by calpain inhibition with PD150606 (by 40%-80%; Figure 4B). DMOG-induced talin cleavage was further reverted (by 50%) by transient small interfering RNA (siRNA)mediated calpain-2-specific downregulation (Figure 4C). Thus, hypoxia/HIF signaling induces proteolytic cleavage of talin-1 in dependence of calpain-2.

To test whether the calpain-2/talin axis is required for transition to blebbing-amoeboid migration, we transiently expressed GFP-TalinL432G, which resists calpain-mediated cleavage but

retains wild-type talin function and stabilizes focal adhesions, in 4T1 cells. The cleavage resistance of GFP-TalinL432G was confirmed by western blot analysis for control and HIF stabilization conditions (Figures S4A and S4B) and uniform expression in all cells was verified in 3D tumoroid invasion culture (Figure S4C). After ectopic expression, GFP-TalinL432G prevented cell rounding, abolished bleb formation, and induced spindle-shaped elongation despite HIF stabilization in both 4T1 and UT-SCC38 cells, whereas individually migrating GFP-transfected control cells remained rounded (Figures 4D and 4E). GFP-TalinL432G focalized at the F-ctin-rich tips of cell extensions and along the cell body of elongated cells (Figure 4F), consistent with its canonical localization in focalized cell-matrix interactions. ⁴⁶ In summary, calpain-2 cleaves talin-1 to enable cell rounding and blebbing-amoeboid migration.

Amoeboid conversion induced by HIF signaling is associated with an energy-conserving metabolic state

Cell migration is an energy-consuming process. 48-50 However, hypoxia/HIF signaling typically occurs alongside nutrient deprivation and metabolic challenge, which may limit energy production required for cell migration. 51 Because hypoxia/HIF challenge induced conversion to amoeboid movement with efficient singlecell speeds in low- to mid-density 3D fibrillar collagen (Figures S1G and S1H), we examined whether HIF-induced amoeboid conversion is energy conservative and maintains migration despite metabolic stress.

Glycolysis and mitochondrial respiration by oxidative phosphorylation secure cellular ATP production. 52 To quantify metabolic adaptations in 3D culture, we generated collagen droplets containing one invading 4T1 tumoroid each and measured oxidative and glycolytic activity (Figures 5A and S5A). HIF stabilization decreased the oxygen consumption rate (OCR) in tumoroids (Figure 5B), reducing basal and maximum mitochondrial respiration and mitochondrial ATP production by 50%-70% (Figure 5C). HIF stabilization further decreased glycolytic activity measured by extracellular acidification (ECAR) in 3D tumoroid culture (Figure 5D). Lactate release, the product of glycolysis, however, remained unchanged under steady-state conditions (Figure S5B). This suggests that HIF signaling induces metabolic pathways, besides glycolysis, to maintain lactate secretion (e.g., glutaminolysis)53 and can therefore decrease oxidative phosphorylation without compensatory increase of glycolysis

Figure 4. Calpain-2-induced talin-1 cleavage-dependent phenotypic conversion to blebbing-amoeboid migration

(A) Talin-1 protein expression, including the full-length (270 kDa) and cleavage fragment (190 kDa), after 48–72 h (4T1) and 96 h (UT-SCC38) of hypoxic culture or HIF stabilization with DMOG. Representative western blots with densitometry values ("D") (top) and change of the ratio of talin-1 cleaved/full length as the means \pm SD from n = 4–5 independent experiments. *p = 0.01, **p = 0.001 (4T1), **p = 0.007 (UT-SCC38) (unpaired t test, two-sided).

(B) Full-length and cleaved talin-1 content in 4T1 cells in hypoxia culture (48 h) or after HIF stabilization (24 h) and UT-SCC38 cells after HIF stabilization (72 h) alone or combined with calpain inhibition (PD150606, 100 μM).

(C) Talin-1 full-length protein and cleavage product in 4T1 cells after transient siRNA (100 nM)-mediated downregulation of calpain-2. Data in (B) and (C) show representative western blots from 3 to 5 independent experiments. Quantification was performed as in (A). *p = 0.01-0.03, **p = 0.005 (B), **p = 0.001 (C), ****p < 0.0001 (unpaired t test, two-sided).

(D) Representative bright-field micrographs of 4T1 tumoroids expressing GFP or calpain-uncleavable GFP-talin (T432L) invading into 3D collagen. Insets: single-cell migration phenotypes after 72 h of culture. Scale bars, 100 μm (overviews) and 10 μm (insets).

(E) Morphology of individualized cells expressing calpain-uncleavable talin (L432G) during hypoxia or DMOG treatment. Morphometric subtypes: elongated (E), pseudopodal-amoeboid (P), and blebbing-amoeboid (B). Data represent the means \pm SD (5 tumoroids/experiment, n = 3). ***p < 0.0009, **p < 0.003, *p < 0.04 (two-way ANOVA).

(F) Subcellular localization of uncleavable talin. Representative confocal micrographs of detached 4T1 cells expressing GFP-TalinL432G during migration in 3D collagen 72 h after transfection and simultaneous HIF stabilization. Arrowheads indicate focalized clusters. Scale bars, 100 μm (overview) and 50 μm (inset).

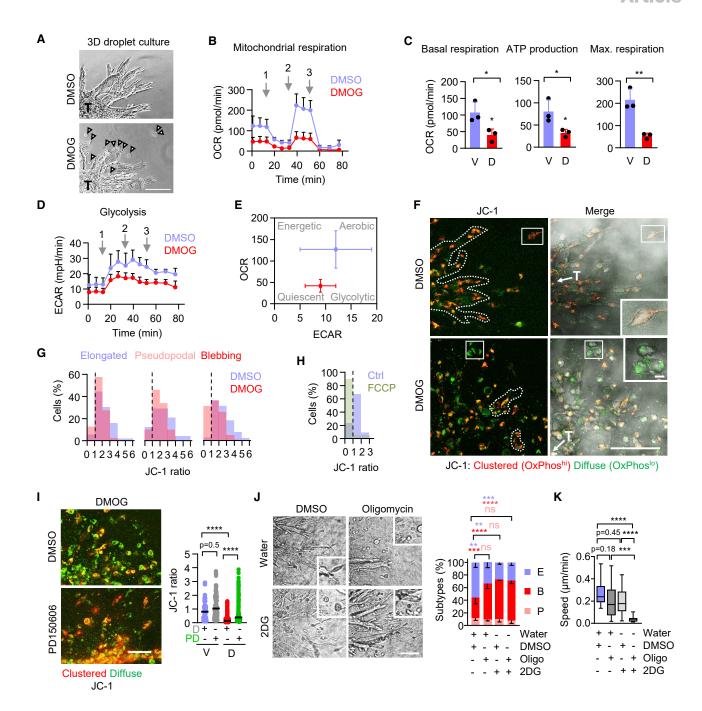


Figure 5. Metabolic adaptation associated with HIF-induced amoeboid reprogramming

(A) Representative micrographs of 4T1 tumoroids (T) invading within collagen droplets used for the Seahorse XF Mito Stress test. Arrowheads indicate detached invading single cells. Scale bar, 100 μm.

- (B) Time-dependent oxygen consumption rate (OCR) of 4T1 tumoroids in collagen 48 h after HIF stabilization. Arrows indicate time of addition of (1) oligomycin (2 μΜ), (2) FCCP (1 μΜ), and (3) rotenone and antimycin A (2 μΜ each). Data represent the means and SD (5–10 tumoroids/experiment, n = 3).
- (C) Mitochondrial basal respiration, ATP production, and maximum respiratory capacity of 4T1 tumoroids 48 h after HIF stabilization measured by OCR. Data (from n = 3) are represented as in (B). *p < 0.03, **p = 0.005 (unpaired t test, two-sided).
- (D) Time-dependent extracellular acidification rate (ECAR) of 4T1 tumoroids 48 h after HIF stabilization. Arrows and data are represented as in (B).
- (E) Energy map of 4T1 tumoroids showing altered glycolytic (ECAR) and mitochondrial (OCR) activity after HIF stabilization compared to control cultures. Data are compiled from (B) and (E).

(F) Representative confocal micrographs depicting mitochondrial activity detected by JC-1 (10 μg/mL) of 4T1 tumoroid ("T") invasion into collagen 72 h after HIF stabilization. Red fluorescence denotes high and green fluorescence denotes low mitochondrial activity. Scale bars, 100 μm (overview) and 10 μm (insets). (G) Resulting JC-1 ratio (red/green) distribution within elongated, amoeboid-pseudopodal and amoeboid-blebbing 4T1 single-cell migration subsets from 103 (E), 74 (P), and 137 (B) cells pooled from n = 3.

Article

(Figure 5E), not unlike energetic silencing 54,55 and/or switching to alternative energy sources (e.g., amino acids, lipids).56

To verify that mitochondrial activity decreased in migrating cells, we measured the mitochondrial membrane potential in 3D tumoroid culture using the ratiometric fluorophore tetraethylbenzimidazolylcarbocyanine iodide (JC-1). HIF stabilization reduced the JC-1 ratio in invading single-cell subsets (Figures 5F and 5G), but reduction of oxidative phosphorylation was particularly strong in elongated and blebbing rounded-moving subsets (Figure S5C). Notably, very low mitochondrial activity (JC-1 ratio < 1) was detected in a subset of blebbing-amoeboid cells (30% of the total population), whereas this subset was absent in control cultures (Figures 5G, dashed lines, and S5C). In addition, as a technical control for the JC-1 assay, the oxidative phosphorylation uncoupling agent FCCP (carbonyl cyanide-4-[trifluoromethoxy]phenylhydrazone) induced a cell subset with similarly low mitochondrial activity (JC-1 ratio < 1) under normoxic conditions (Figure 5H, dashed line; Figure S5D). Thus, HIF-induced blebbing-amoeboid cancer cells migrate with very low mitochondrial activity.

Calpain subtypes, including calpain-1, -2, and -10, are localized in mitochondria, where they cleave mitochondrial proteins and contribute to the mitochondrial stress response and apoptosis induction.⁵⁷ Activation of mitochondrial-localized calpain-10 cleaves electron transport chain proteins and decreases mitochondrial respiration.⁵⁸ Whether calpain activity in response to HIF stabilization also affects oxidative energy metabolism in migrating cells, without inducing cell death (compare Figure S1), remains unclear. PD150606 interferes with the Ca²⁺-binding domain of calpains and targets calpain-1 and -2, among others, but does not inhibit calpain-10 activity.⁵⁸ In 3D invasion culture treated with DMOG, calpain-2 inhibitor PD150606 partially reverted the decreased JC-1 ratio, alongside increased cell elongation (compare Figures 3E and 3G), and mildly increased the JC-1 ratio in vehicle control culture (Figure 5I). Likewise, PD150606 partially rescued HIF-mediated decreased OCR in tumoroids (Figure S5E). This implicates HIF-mediated calpain-2 activation in downregulating oxidative phosphorylation.

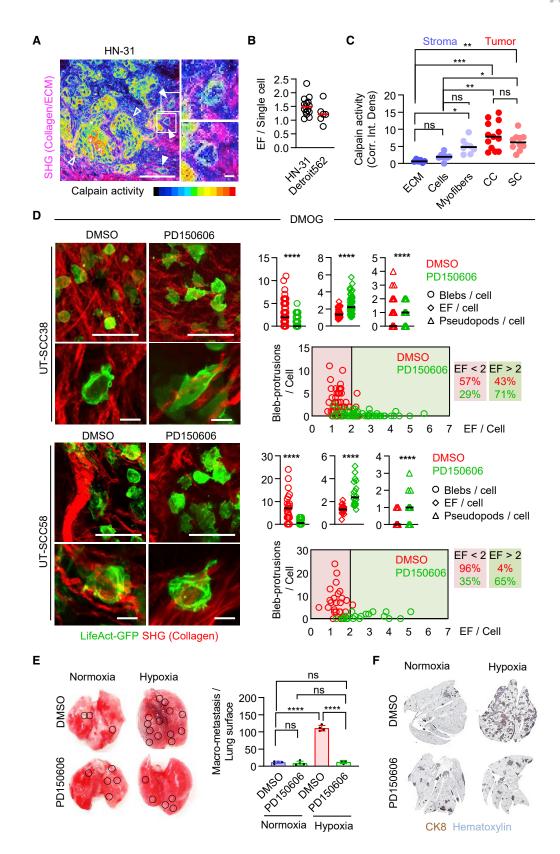
To examine directly whether conversion to blebbing-amoeboid migration is compatible with, or even induced by, perturbation of cell metabolism, we inhibited oxidative phosphorylation and glycolysis, alone and in combination, and monitored the migration mode and speed. Inhibition of oxidative phosphorylation with oligomycin, which inhibited mitochondrial respiration by more than 60% in 3D tumoroid invasion culture (Figures 5B and 5C), increased the fraction of blebbing-amoeboid cells (Figure 5J). Inhibition of glycolysis by 2-deoxy-D-glucose (2DG), which efficiently reduced both oxidative (by 30%) and glycolytic flux (by 60%) in 3D tumoroid culture (Figures S5F and S5G), nearly doubled the blebbing-amoeboid fraction (Figure 5J). When combined, oligomycin and 2DG did not further increase the rate of cell rounding compared to each individual condition (Figure 5J). Importantly, individual interference with oligomycin or 2DG caused only moderate reduction (minus 20%-30%) of migration speed; however, their combined administration abrogated migration completely (Figure 5K; Video S5). Thus, blebbing-amoeboid migration is a direct consequence of moderately reduced oxidative or glycolytic metabolism, whereas severe impairment of metabolism results in migration arrest.

Calpain activity, blebbing-amoeboid conversion, and relevance for metastasis in vivo

Calpain is activated in both early invasive primary tumors and metastatic lesions and further has been implicated in predicting poor prognosis in clinical epithelial cancers. 38-41,45 To explore whether calpain is activated in the invasion zone of epithelial tumors in vivo, we applied the calpain sensor CMAC to freshfrozen sections of human HN-31 and Detroit562 HN-SCCs after 6 to 8 weeks of orthotopic growth in nude mice. The invasion pattern of both tumors comprised multicellular nests and groups, typical for cross-sectioned collective invasion strands, ⁵⁹ and scattered individual cells, which displayed notable rounded morphology (median EF 1.2 to 1.5) (Figures 6A, arrowheads, 6B, and S6A). Compared to stromal regions, calpain activity was elevated in all tumor portions, including multicellular nests and rounded tumor cells (Figures 6C and S6A). Thus, similar to collective strands and detached single cells in 3D culture, calpain activity is high in disseminated amoeboid-like cells in HN-SCC tumors.

To directly test whether calpain controls cell shape in vivo, UT-SCC38 and UT-SCC58 cells were pretreated with the HIF stabilizer DMOG, implanted into the collagen-rich mouse dermis, and monitored by intravital microscopy (Figure S6B). DMOG-pretreated cells developed round shapes with multiple blebs in contact with collagen fibrils and bundles (Figures 6D and S6C), and three-dimensionally intercalated between collagen structures (Figure S6C). Coexposure with DMOG and calpain inhibitor PD150606 diminished bleb-like protrusions and favored elongated morphologies with pointed protrusions toward collagen fibrils (Figures 6D and S6C). These data confirm calpain-dependent blebbing-amoeboid phenotypes in connective tissue

Hypoxia is a strong inducer of metastatic activity, 60 and calpain-2 activation predicts disease progression and poor


(H) JC-1 ratio distribution of detached invading 4T1 single cells treated with the mitochondrial oxidative phosphorylation uncoupler FCCP (200 nM) (63 cells, n = 1). (I) Representative confocal micrographs of mitochondrial activity detected by JC-1 (10 µg/mL) of 4T1 invasion into collagen 72 h after HIF stabilization and calpain inhibition using PD150606 (50 μM, 4 h) or DMSO (D). Data represent individual cells; horizontal lines indicate the median. Vehicle + DMSO (V+D), 124; V+PD, 128; D+DMSO, 245; D+PD, 208 cells pooled from 3 independent experiments. ***p < 0.0001 (Kruskal-Wallis test).

Oligo, oligomycin; 2DG, 2-deoxy-D-glucose.

⁽J) Representative bright-field micrographs of 4T1 tumoroids invading into 3D collagen under the indicated conditions (left). Oligomycin (2 µM) and 2DG (5 mM) treatment was performed for 15 h starting at 48 h after invasion onset. Insets: single-cell migration phenotypes after 60 h of culture. Scale bars, 100 µm (overviews) and 10 µm (insets). Frequency of single-cell migration subtypes per tumoroid (right). Data represent the means ± SD of morphologic classifiers (5 tumoroids/ experiment, n = 3). ****p < 0.0001; ns, p = 0.99 (two-way ANOVA).

⁽K) Migration speed of individual 4T1 cells in intermediate-density collagen after amoeboid conversion for the time period from 48 to 60 h. Treatment conditions were as in (J). Box and whiskers show the median, 25/75 percentile, and minimum/maximum (125 cells, 2-4 tumoroids/experiment, n = 1-2). ****p < 0.0001 (Kruskal-Wallis test).

(legend on next page)

Article

prognosis in epithelial cancer. 45 To investigate whether hypoxiainduced metastasis depends on calpain, 4T1 cells were maintained in hypoxic or normoxic 2-day culture in vitro in the absence or presence of low-dose calpain inhibitor PD150606, injected into the tail vein of nude mice, and analyzed for lung metastasis 14 days later (Figure S6D). Hypoxia enhanced lung metastasis profoundly, and this effect was reverted by calpain inhibition to baseline levels obtained by normoxic control culture (Figures 6E and 6F). Exposure to PD150606 did not compromise cell viability or proliferation rates during pretreatment (Figures S6E and S6F) nor the colony-forming capacity in vitro (Figure S6G). Thus, calpain activity controls hypoxia-induced metastatic organ colonization and outgrowth.

DISCUSSION

Combining in vitro, in vivo, and in silico analysis of epithelial cancer cell migration, we here show that hypoxia/HIF signaling provides a microenvironmental trigger for rapid plasticity of mechanocoupling and adaptation of invasion, i.e., the transition from collective or mesenchymal to blebbing-amoeboid migration.

We show that HIF-induced blebbing-amoeboid conversion is distinct from, and should not be confused with, morphologically similar apoptotic blebbing, based on (1) intact cell viability over several days, (2) ongoing occasional cell proliferation, (3) asymmetry of blebs to the leading cell edge providing polarized interactions with collagen fibers in the direction of migration (compare Video S2), (4) induction of the calpain/talin axis but not of caspase activity, and (5) the ability of blebbing cells to translocate up to hundreds of micrometers per day. These findings support the concept that blebbing-amoeboid migration is an evolutionarily conserved program induced by cell stress, including Dictyostelium discoideum amoebae under nutrient starvation, 8,61 migrating primordial germ cells forming the gonad in zebrafish embryos, 62 melanoma cells, 63-65 and, shown here, epithelial cancer cells during hypoxia.

Mesenchymally and collectively invading cancer cells can undergo amoeboid conversion in response to various experimental conditions, including inhibition of MMPs, extreme confinement, targeted inhibition of integrins or deprivation of ECM ligands, and augmenting Rho-mediated actomyosin contractility. 11,12,14,30,66 HIF signaling thus represents an upstream trigger inducing integrin deactivation and blebbingamoeboid migration. HIF signaling is induced by a range of microenvironmental triggers, including hypoxia and acidosis, 67 growth factors, and cell transformation through PI3K/Akt/ mTOR and MEK/ERK pathways. 68 Thus, beyond hypoxia, other cell-autonomous and microenvironmental conditions may elicit amoeboid conversion and escape.

Mechanistically, the calpain-2/talin-1 axis was sufficient in downregulating integrin activity and inducing low-adhesive amoeboid migration. Calpain-2 regulates focal adhesion turnover in the cell rear, e.g., in adhesive fibroblasts, where it locally weakens adhesion bonds and facilitates uropod sliding without affecting overall cell adhesion and elongation. 36,38 By contrast, HIF-activated calpain-2 de-regulates integrin function throughout the cell, affecting both leading and trailing cell poles. Thus, calpain-2 causes global cell de-adhesion and amoeboid conversion, as a cell-intrinsic process. Beyond regulating integrin-cytoskeletal interactions, calpain-2 cleaves other proteins involved in cell migration, including cadherins and β-catenin,³⁶ hence weakening cell-cell junctions and favoring individualization.

We further identified amoeboid-blebbing motion as an energyconserving migration mode. Actomyosin treadmilling and focal adhesion signaling are ATP-consuming processes important in mesenchymal migration.⁶⁹ Active calpain-2 dampens the celladhesion machinery and calpain inhibitor PD150606, which inhibits calpains 1, 2, and 9,70 partially reverts the HIF-mediated decrease of oxidative respiration. This may suggest that cytoplasmic and mitochondrial calpain substrates contribute to amoeboid conversion, by connecting mechanoadaptation with mitochondrial respiration. Calpains are known to contribute to the mitochondrial stress response during cell damage, resulting in cell death as an endpoint. 57,71 Possibly, when activated within cell-intrinsic regulation downstream of HIF signaling, controlled increase of calpain activity affects oxidative energy metabolism without inducing cell death, to enable cell survival and amoeboid escape from the metabolically challenged microenvironment.

Amoeboid movement retains actomyosin contractility and cortical actin dynamics, whereas integrin and protease systems are dispensable 11 and, thus, can be regarded as the molecularly and metabolically least demanding migration mode ("eco-mode"). Indeed, perturbing cell metabolism, by

Figure 6. Calpain activity and function during tissue invasion and experimental metastasis in vivo

(A) Representative micrograph of calpain activity (cleaved CMAC intensity) in ex vivo orthotopic human HN-SCC tumor xenograft tissue. Insets and filled arrowheads show CMAC-positive roundish-shaped single cells. Open arrowheads indicate multicellular clusters. The image represents 3 tumor regions from 1 HN-31 tumor. Scale bars, 100 μm (overview) and 10 μm (insets).

(B) EF of single CMAC-positive cells from HN-SCC xenografts. Horizontal lines indicate the median and dots 15 cells from HN-31 and 4 cells from Detroit562 xenograft from 1 tumor region (n = 1 tumor sample each).

(C) Cleaved CMAC intensity in HN-31 tumor and stromal compartments, including cell-free matrix (ECM, 6 regions), 8 small cells, 8 myofibers, 13 collective cells (CC), and 10 single cells (SC) in the tumor compartment from 1 tumor region. Horizontal lines indicate the median. ***p = 0.0001, **p < 0.003, *p < 0.04 (Kruskal-

(D) Representative multiphoton projections (left) and morphology and protrusion analysis (right) of Lifeact-GFP-expressing UT-SCC38 and UT-SCC58 single cells migrating in the mouse dermis (SHG signal, collagen) after pretreatment with DMOG combined with calpain inhibitor PD150606 (100 µM) or DMSO (workflow in Figure S6B). Dots represent individual cells and horizontal lines represent the median from 111 UT-SCC38 and 45 UT-SCC58 cells from four tumor regions (n = 1 mouse). ****p < 0.0001 (Mann-Whitney test, two-sided). Scale bars, 50 μm (overviews) and 10 μm (insets).

(E) Macro-metastases (circles) on the lung surface of mice (left) and quantification (right) 14 days after tail-vein injection of 4T1 cells pretreated with normoxia or hypoxia with or without PD150606 (100 μM) (workflow in Figure S6D). Data show the means ± SD; data points represent individual lungs (n = 3-4 lungs). ****p < 0.0001 (one-way ANOVA).

(F) Representative micrographs from mid-sections of whole lungs. Cytokeratin-8 (CK8), 4T1 nodules.

pharmacologically downregulating glycolysis or oxidative phosphorylation (by 60%–70%), induced blebbing-amoeboid movement directly. This indicates a bidirectional interaction of low-energy metabolism and amoeboid movement. Thus, cancer cells adjust their migration direction and efficacy⁴⁹ as well as the migration mode to accommodate both performance and energy requirements.

In addition to the blebbing-amoeboid movement induced by HIF signaling via the calpain-2/talin axis, we noted a different type of rounded cell movement, present at low rate in vehicle-treated control conditions. This mode comprises rounded cells with a high JC-1 ratio (Figures 5F and 5G) and further is insensitive to calpain inhibitor PD150606 (Figure 3I) or calpain-2 down-regulation (Figure 3H) as well as to the expression of cleavage-resistant talin (Figure 4E). These preliminary data suggest that epithelial cancer cells can develop at least two types of amoeboid movement, with differing molecular and energetic mechanisms. Future work will be required to address the divergent mechanisms underlying cell-intrinsic and metabolic stress-induced heterogeneity of cancer cell migration in epithelial and other tumor types. ^{12,72,73}

The upstream mechanisms that regulate calpain activity in response to HIF signaling remain to be shown. Hypoxia/HIF may regulate calpain activity through multiple routes, including calpain-2 transcription, 74-76 activity regulation via the calpain subunits S1 or S2 or its endogenous inhibitor calpastatin, as well as calcium homeostasis or protein phosphorylation.³⁶ Our kinetic analyses implicate the HIF-induced calpain response as a durable program, supporting hypermetastatic ability beyond the period of hypoxic challenge. Under continuous hypoxia, blebbing-amoeboid migration remained stable over several days, without reversion to other migration modes. HIF stabilization, as a pretreatment regime, secured blebbing invasion in the normoxic dermis over several hours and mediated metastatic lung colonization over several days, despite discontinuation of hypoxia/HIF trigger, in a calpain-2-dependent manner. Thus, targeting calpain-2 may limit HIF-promoted metastatic dissemination as a secondary prevention in high-risk patients and patients with a high load of circulating tumor cells.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - O Data and code availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - O Cell lines and culture
 - O Animal models
- METHOD DETAILS
 - Hypoxia culture and DMOG treatment
 - Cell isolation from 2D culture
 - Cell viability and proliferation analysis from 2D culture (treatment workflow underlying experimental metastasis assay)

- Colony formation assay
- Immunoblotting
- Flow cytometry
- O Tumoroid invasion assay in 3D collagen matrices
- Pharmacological treatment of 3D tumoroid migration cultures
- Transient transfection of cell monolayers and 3D tumoroid cultures
- Time-lapse microscopy
- Immunostaining and confocal microscopy
- Calpain activity assays
- O Metabolism in 3D culture
- Live-cell microscopy of mitochondrial activity in 3D culture
- Image analysis and single-cell cytometry of 3D culture
- O Computational modeling of cell elongation and speed
- Orthotopic human HN-SCC xenograft model
- Tumor cell implantation in vivo and intravital multiphoton imaging
- Experimental lung metastasis
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cub.2021.11.040.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Jeffrey N. Myers, Department of Head and Neck Surgery, MD Anderson Cancer Center, for the generous supply of samples from HN-31 and Detroit256 HNSCC tumor xenografts. We also gratefully thank Manon Vullings and Dr. Gert-Jan Bakker, Department of Cell Biology, Radboud Institute of Molecular Life Sciences, for help with 3D tumoroid culture and multiphoton imaging of calpain activity of invasive tumoroids; Miranda van Triest, University Medical Center Utrecht, for help with metabolic analyses of inhibitory 2-deoxy-D-glucose effects; and Dr. Bettina Weigelin, Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, for help with intradermal injections of UT-SCC38 and UT-SCC58 cell lines. This work was supported by the European Research Council (617430-DEEPINSIGHT), NWO-Science-XL 2019.022, and NIH U54 CA210184-01 (to P.F.). P.F. and B.M.T.B. were further supported by the Cancer Genomics Center. V.t.B. was supported by the Rosalie B. Hite Fellowship for Cancer Research. M.Mählen was supported by the Boehringer Ingelheim Fonds. Immunohistochemistry analyses were provided by the Tissue Biospecimen & Pathology Resource Core, supported by an NIH/NCI CCSG grant (5P30CA016672).

AUTHOR CONTRIBUTIONS

V.t.B. designed and carried out the experiments, analyzed the data, supervised the work, and wrote the manuscript. L.J. performed immunoblotting, transfections, flow cytometry, and tumoroid invasion culture and carried out morphology analysis. M. Mählen performed active $\beta 1$ integrin immunostainings and JC-1 experiments in 3D tumoroids. M. Meerlo and B.M.T.B. designed and executed metabolic analyses. F.C.D. generated $\beta 1$ integrin and HIF-1 α western blots. Y.Y. and H.L. designed and carried out *in silico* analyses. G.D. performed viability, proliferation, and colony formation analyses. P.F. designed the experiments, supervised the work, and wrote the manuscript. All authors read and corrected the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Article

CellPress

Received: November 28, 2019 Revised: July 5, 2021 Accepted: November 16, 2021 Published: December 8, 2021

REFERENCES

- 1. Sahai, E. (2007). Illuminating the metastatic process. Nat. Rev. Cancer 7,
- 2. Cheung, K.J., Padmanaban, V., Silvestri, V., Schipper, K., Cohen, J.D., Fairchild, A.N., Gorin, M.A., Verdone, J.E., Pienta, K.J., Bader, J.S., and Ewald, A.J. (2016). Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl. Acad. Sci. USA 113, E854-E863.
- 3. Friedl, P., and Alexander, S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992-1009.
- 4. te Boekhorst, V., Preziosi, L., and Friedl, P. (2016). Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491-526.
- 5. Friedl, P., and Wolf, K. (2009). Proteolytic interstitial cell migration: a fivestep process. Cancer Metastasis Rev. 28, 129-135.
- 6. Paluch, E.K., Aspalter, I.M., and Sixt, M. (2016). Focal adhesion-independent cell migration. Annu. Rev. Cell Dev. Biol. 32, 469-490.
- 7. Lämmermann, T., Bader, B.L., Monkley, S.J., Worbs, T., Wedlich-Söldner, R., Hirsch, K., Keller, M., Förster, R., Critchley, D.R., Fässler, R., and Sixt, M. (2008). Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51-55.
- 8. Yoshida, K., and Soldati, T. (2006). Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 119, 3833-3844.
- 9. Charras, G.T. (2008). A short history of blebbing. J. Microsc. 231, 466-478.
- 10. Sahai, E., and Marshall, C.J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711-719.
- 11. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Bröcker, E.-B., and Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267-277.
- 12. Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., and Marshall, C.J. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510-523.
- 13. Zaman, M.H., Trapani, L.M., Sieminski, A.L., Mackellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103, 10889-10894.
- 14. Hegerfeldt, Y., Tusch, M., Bröcker, E.-B., and Friedl, P. (2002). Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res. 62, 2125-2130.
- 15. Clark, A.G., and Vignjevic, D.M. (2015). Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13-22.
- 16. Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J.H., and Semenza, G.L. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 66, 2725-2731.
- 17. McKeown, S.R. (2014). Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br. J. Radiol. 87, 20130676.
- 18. Yang, M.-H., Wu, M.-Z., Chiou, S.-H., Chen, P.-M., Chang, S.-Y., Liu, C.-J., Teng, S.-C., and Wu, K.-J. (2008). Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295-305.
- 19. Semenza, G.L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207-214.

- 20. Lehmann, S., Te Boekhorst, V., Odenthal, J., Bianchi, R., van Helvert, S., Ikenberg, K., Ilina, O., Stoma, S., Xandry, J., Jiang, L., et al. (2017). Hypoxia induces a HIF-1-dependent transition from collective-to-amoeboid dissemination in epithelial cancer cells. Curr. Biol. 27, 392-400.
- 21. Lehmann, S., Stiehl, D.P., Honer, M., Dominietto, M., Keist, R., Kotevic, I., Wollenick, K., Ametamey, S., Wenger, R.H., and Rudin, M. (2009). Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc. Natl. Acad. Sci. USA 106, 14004-
- 22. Büchler, P., Reber, H.A., Lavey, R.S., Tomlinson, J., Büchler, M.W., Friess, H., and Hines, O.J. (2004). Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J. Surg. Res. 120, 295-303.
- 23. Buffa, F.M., Harris, A.L., West, C.M., and Miller, C.J. (2010). Large metaanalysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br. J. Cancer 102, 428-435.
- 24. Ye, I.C., Fertig, E.J., DiGiacomo, J.W., Considine, M., Godet, I., and Gilkes, D.M. (2018). Molecular portrait of hypoxia in breast cancer: a prognostic signature and novel HIF-regulated genes. Mol. Cancer Res. 16, 1889-1901.
- 25. Bhandari, V., Hoey, C., Liu, L.Y., Lalonde, E., Ray, J., Livingstone, J., Lesurf, R., Shiah, Y.-J., Vujcic, T., Huang, X., et al. (2019). Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51,
- 26. Elvidge, G.P., Glenny, L., Appelhoff, R.J., Ratcliffe, P.J., Ragoussis, J., and Gleadle, J.M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215-15226.
- 27. Sanz-Moreno, V., Gaggioli, C., Yeo, M., Albrengues, J., Wallberg, F., Viros, A., Hooper, S., Mitter, R., Féral, C.C., Cook, M., et al. (2011). ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20, 229-245.
- 28. Schmidt, J.M., Panzilius, E., Bartsch, H.S., Irmler, M., Beckers, J., Kari, V., Linnemann, J.R., Dragoi, D., Hirschi, B., Kloos, U.J., et al. (2015). Stemcell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep. 10, 131-139.
- 29. Dongre, A., and Weinberg, R.A. (2019). New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69-84.
- 30. Bergert, M., Erzberger, A., Desai, R.A., Aspalter, I.M., Oates, A.C., Charras, G., Salbreux, G., and Paluch, E.K. (2015). Force transmission during adhesion-independent migration. Nat. Cell Biol. 17, 524-529.
- 31. Shao, D., Levine, H., and Rappel, W.-J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. USA 109, 6851-6856.
- 32. Camley, B.A., and Rappel, W.-J. (2017). Physical models of collective cell motility: from cell to tissue. J. Phys. D Appl. Phys. 50, 113002.
- 33. Campbell, I.D., and Humphries, M.J. (2011). Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994.
- 34. Friedl, P., Entschladen, F., Conrad, C., Niggemann, B., and Zänker, K.S. (1998). CD4⁺ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28, 2331-2343.
- 35. Arregui, C.O., Balsamo, J., and Lilien, J. (1998). Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J. Cell Biol. 143, 861-873.
- 36. Franco, S.J., and Huttenlocher, A. (2005). Regulating cell migration: calpains make the cut. J. Cell Sci. 118, 3829-3838.
- 37. Franco, S.J., Rodgers, M.A., Perrin, B.J., Han, J., Bennin, D.A., Critchley, D.R., and Huttenlocher, A. (2004). Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6, 977-983.

- Storr, S.J., Carragher, N.O., Frame, M.C., Parr, T., and Martin, S.G. (2011).
 The calpain system and cancer. Nat. Rev. Cancer 11, 364–374.
- Storr, S.J., Thompson, N., Pu, X., Zhang, Y., and Martin, S.G. (2015).
 Calpain in breast cancer: role in disease progression and treatment response. Pathobiology 82, 133–141.
- Zhang, S., Deen, S., Storr, S.J., Chondrou, P.S., Nicholls, H., Yao, A., Rungsakaolert, P., and Martin, S.G. (2019). Calpain system protein expression and activity in ovarian cancer. J. Cancer Res. Clin. Oncol. 145, 345–361.
- Gao, X., Mao, Y.-H., Xiao, C., Li, K., Liu, W., Li, L.-Y., and Pang, J. (2018).
 Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-κB/DNMT1 signaling pathway. Prostate 78, 682–690.
- Lakshmikuttyamma, A., Selvakumar, P., Kanthan, R., Kanthan, S.C., and Sharma, R.K. (2004). Overexpression of *m*-calpain in human colorectal adenocarcinomas. Cancer Epidemiol. Biomarkers Prev. 13, 1604–1609.
- 43. Leloup, L., and Wells, A. (2011). Calpains as potential anti-cancer targets. Expert Opin. Ther. Targets *15*, 309–323.
- 44. Spirina, L.V., Kondakova, I.V., Choynzonov, E.L., Chigevskaya, S.Y., Shishkin, D.A., and Kulbakin, D.Y. (2013). Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-kB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities. J. Cancer Res. Clin. Oncol. 139, 625–633.
- Storr, S.J., Lee, K.W., Woolston, C.M., Safuan, S., Green, A.R., Macmillan, R.D., Benhasouna, A., Parr, T., Ellis, I.O., and Martin, S.G. (2012). Calpain system protein expression in basal-like and triple-negative invasive breast cancer. Ann. Oncol. 23, 2289–2296.
- Klapholz, B., and Brown, N.H. (2017). Talin—the master of integrin adhesions. J. Cell Sci. 130, 2435–2446.
- Critchley, D.R., and Gingras, A.R. (2008). Talin at a glance. J. Cell Sci. 121, 1345–1347.
- Zhang, J., Goliwas, K.F., Wang, W., Taufalele, P.V., Bordeleau, F., and Reinhart-King, C.A. (2019). Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc. Natl. Acad. Sci. USA 116, 7867–7872.
- Zanotelli, M.R., Rahman-Zaman, A., VanderBurgh, J.A., Taufalele, P.V., Jain, A., Erickson, D., Bordeleau, F., and Reinhart-King, C.A. (2019). Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat. Commun. 10, 1185
- DeCamp, S.J., Tsuda, V.M.K., Ferruzzi, J., Koehler, S.A., Giblin, J.T., Roblyer, D., Zaman, M.H., Weiss, S.T., Kılıç, A., De Marzio, M., and Park, C.Y. (2020). Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci. Rep. 10, 18302.
- Eales, K.L., Hollinshead, K.E.R., and Tennant, D.A. (2016). Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5, e190.
- Zheng, J. (2012). Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol. Lett. 4, 1151–1157.
- Smith, B., Schafer, X.L., Ambeskovic, A., Spencer, C.M., Land, H., and Munger, J. (2016). Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells. Cell Rep. 17, 821–836.
- 54. Jia, D., Lu, M., Jung, K.H., Park, J.H., Yu, L., Onuchic, J.N., Kaipparettu, B.A., and Levine, H. (2019). Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc. Natl. Acad. Sci. USA 116, 3909–3918.
- Jose, C., Bellance, N., and Rossignol, R. (2011). Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim. Biophys. Acta 1807, 552–561.
- Kamphorst, J.J., Cross, J.R., Fan, J., de Stanchina, E., Mathew, R., White, E.P., Thompson, C.B., and Rabinowitz, J.D. (2013). Hypoxic and Rastransformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. USA 110, 8882–8887.

- 57. Ozaki, T., Yamashita, T., and Ishiguro, S. (2009). Mitochondrial *m*-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta Mol. Cell Res. 1793, 1848–1859.
- Arrington, D.D., Van Vleet, T.R., and Schnellmann, R.G. (2006). Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am. J. Physiol. Cell Physiol. 291, C1159–C1171.
- Khalil, A.A., Ilina, O., Gritsenko, P.G., Bult, P., Span, P.N., and Friedl, P. (2017). Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin. Exp. Metastasis 34, 421–429.
- Nobre, A.R., Entenberg, D., Wang, Y., Condeelis, J., and Aguirre-Ghiso, J.A. (2018). The different routes to metastasis via hypoxia-regulated programs. Trends Cell Biol. 28, 941–956.
- Dubravcic, D., van Baalen, M., and Nizak, C. (2014). An evolutionarily significant unicellular strategy in response to starvation in *Dictyostelium* social amoebae. F1000Res. 3, 133.
- 62. Goudarzi, M., Banisch, T.U., Mobin, M.B., Maghelli, N., Tarbashevich, K., Strate, I., van den Berg, J., Blaser, H., Bandemer, S., Paluch, E., et al. (2012). Identification and regulation of a molecular module for bleb-based cell motility. Dev. Cell 23, 210–218.
- Parri, M., Taddei, M.L., Bianchini, F., Calorini, L., and Chiarugi, P. (2009).
 EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res. 69, 2072–2081.
- 64. Gadea, G., Sanz-Moreno, V., Self, A., Godi, A., and Marshall, C.J. (2008). DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr. Biol. 18, 1456–1465.
- Cantelli, G., Orgaz, J.L., Rodriguez-Hernandez, I., Karagiannis, P., Maiques, O., Matias-Guiu, X., Nestle, F.O., Marti, R.M., Karagiannis, S.N., and Sanz-Moreno, V. (2015). TGF-β-induced transcription sustains amoeboid melanoma migration and dissemination. Curr. Biol. 25, 2899– 2914.
- 66. Liu, Y.-J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuzé, M., Takaki, T., Voituriez, R., and Piel, M. (2015). Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672.
- 67. Chiche, J., Brahimi-Horn, M.C., and Pouysségur, J. (2010). Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 14, 771–794.
- **68.** Masoud, G.N., and Li, W. (2015). HIF-1 α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378–389.
- Bernstein, B.W., and Bamburg, J.R. (2003). Actin-ATP hydrolysis is a major energy drain for neurons. J. Neurosci. 23, 1–6.
- Low, K.E., Karunan Partha, S., Davies, P.L., and Campbell, R.L. (2014).
 Allosteric inhibitors of calpains: reevaluating inhibition by PD150606 and LSEAL. Biochim. Biophys. Acta 1840, 3367–3373.
- Hurst, S., Hoek, J., and Sheu, S.S. (2017). Mitochondrial Ca²⁺ and regulation of the permeability transition pore. J. Bioenerg. Biomembr. 49, 27–47.
- 72. Ilina, O., Gritsenko, P.G., Syga, S., Lippoldt, J., La Porta, C.A.M., Chepizhko, O., Grosser, S., Vullings, M., Bakker, G.J., Starruß, J., et al. (2020). Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115.
- Friedl, P., and Wolf, K. (2010). Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19.
- 74. Cui, W., Zhou, J., Dehne, N., and Brüne, B. (2015). Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell Biosci. 5, 36.
- Edelstein, C.L., Yaqoob, M.M., Alkhunaizi, A.M., Gengaro, P.E., Nemenoff, R.A., Wang, K.K.W., and Schrier, R.W. (1996). Modulation of hypoxiainduced calpain activity in rat renal proximal tubules. Kidney Int. 50, 1150–1157
- Zheng, X., Zhou, A.-X., Rouhi, P., Uramoto, H., Borén, J., Cao, Y., Pereira, T., Akyürek, L.M., and Poellinger, L. (2014). Hypoxia-induced and calpaindependent cleavage of filamin A regulates the hypoxic response. Proc. Natl. Acad. Sci. USA 111, 2560–2565.

Article

- 77. Pulaski, B.A., and Ostrand-Rosenberg, S. (2001). Mouse 4T1 breast tumor model. Curr. Protoc. Immunol., chap. 20, unit 20.2.
- 78. Lansford, C.D., Grenman, R., Bier, H., Somers, K.D., Kim, S.Y., Whiteside, T.L., et al. (1999). Head and neck cancers. In Human Cell Culture, J. R. W. Masters., and B. Palsson., eds. (Kluwer Academic), pp. 185-255.
- 79. Zhou, G., Wang, J., Zhao, M., Xie, T.-X., Tanaka, N., Sano, D., Patel, A.A., Ward, A.M., Sandulache, V.C., Jasser, S.A., et al. (2014). Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell 54, 960-974.
- 80. Korff, T., and Augustin, H.G. (1998). Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341-1352.
- 81. Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A.L., Hoffman, R.M., Figdor, C.G., Weiss, S.J., and Friedl, P. (2013). Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084.
- 82. Myers, J.N., Holsinger, F.C., Jasser, S.A., Bekele, B.N., and Fidler, I.J. (2002). An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin. Cancer Res. 8, 293-298.

STAR***METHODS**

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
rabbit polyclonal anti-HIF1α	Novus Biologicals	Cat#NB100-479 (RRID: AB_10000633)
rabbit polyclonal anti–calpain-2 large subunit	Cell Signaling	Cat#2539 (RRID: AB_2069843)
chicken polyclonal anti-β-actin	Abcam	Cat#13822 (RRID: AB_722540)
abbit polyclonal anti-β-actin	Cell Signaling	Cat#4967 (RRID: AB_330288)
abbit polyclonal anti-talin-1	Sigma Aldrich	Cat#T3287, Clone8d4 (RRID: AB_477572)
abbit monoclonal anti-mouse CD29	Millipore / Abcam	Cat#04-1109, clone EP1041Y (RRID: AB_1977098)/ ab179471, clone 1A27 (RRID: AB_2773020)
nouse monoclonal anti-CD29	Merck Millipore	Cat#MAB2079Z, clone HUTS-4 (RRID: AB_11214024)
mouse monoclonal anti-CD29	Beckman Coulter	Cat#6603113, clone 4B4 (RRID: AB_10638675)
rat monoclonal anti-CD29	BD Biosciences	Cat#553715, clone 9EG7 (RRID: AB_395001)
rat IgG2a	BD Biosciences	Cat#553927, clone R5-95 (RRID: AB_395142)
armenian hamster monoclonal anti-CD29 (FITC-conjugated)	BioLegend	Cat#102206, clone HMβ1-1 (RRID:AB_312883)
armenian hamster IgG (FITC-conjugated)	BioLegend	Cat#400906, clone HTK888
abbit monoclonal anti-cleaved caspase-3	Cell Signaling	Cat#9664 (RRID: AB_2070042)
mouse anti-CD29	BioLegend	Cat#303010, cloneTS2/16 (RRID: AB_314326)
goat anti-rabbit (conjugated to horseradish peroxidase)	Jackson	Cat#211-032-171 (RRID: AB_2339149)
goat anti-mouse (conjugated to horseradish peroxidase)	Jackson	Cat#115-0450174
goat anti-chicken (conjugated to horseradish peroxidase)	Jackson	Cat#103-035-155 (RRID: AB_2337381)
abbit-on-rodent HRP-polymer	Biocare Medical	Cat#RMR622
goat anti-rat IgG AF488	Thermo Fisher Scientific	Cat#A21247 (RRID: AB_141778)
goat anti-rabbit IgG AF633	Thermo Fisher Scientific	Cat#A21071 (RRID: AB_2535732)
RDye® 680RD Goat anti-Mouse IgG Secondary Antibody	Li-Cor	926-68070 (RRID: AB_10956588)
RDye® 680RD Goat anti-Rabbit IgG Secondary Antibody	Li-Cor	926-68071 (RRID: AB_10956166)
Goat anti-Rat IgG Secondary Antibody Alexa Fluor 680	Thermo Fisher Scientific	Cat#A21096 (RRID: AB_10561521)
Biological samples		
Human HN-31 tumor xenograft	Jeffrey Myers Laboratory, MD Anderson Cancer Center	N/A
Human Detroit-261 tumor xenograft	Jeffrey Myers Laboratory, MD Anderson Cancer Center	N/A
Chemicals, peptides, and recombinant proteins		
Dimethyl oxalylglycine (DMOG)	Cayman Chemical	71210-100
PD150606	Cayman Chemical / Sigma Aldrich	13859, CAS: 179528-45-1 / D5946
Etoposide	Sigma Aldrich	E1383, CAS: 33419-42-0
Oligomycin A	Selleckchem	S1478

Current Biology Article

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
2-Deoxy-D-glucose	Sigma Aldrich	D8375, CAS: 154-17-6
Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)	Sigma Aldrich	C2920-10MG
Rotenone	Sigma Aldrich	R8875, CAS: 83-79-4
Antimycin-a	Sigma Aldrich	A8674, CAS: 1397-94-0
Tetraethylbenzimidazolylcarbocyanine iodide (JC-1)	Sigma Aldrich / Enzo LifeSciences	T4069-5MG / ENZ-52304
t-BOC-L-leucyl-L-methionine amide (CMAC)	Thermo Fischer Scientific	A6520
Methyl cellulose	Sigma Aldrich	M6385
Collagen I, High Concentration, Rat Tail, 100 mg	Corning	Cat#354249
Bovine Type I Atelo-Collagen Solution, 3 mg/ml	Advanced Biomatrix	Cat#5005-100ML
LIVE/DEAD fixable stain	Thermo Fisher Scientific	Cat#L34976
MISSION siRNA transfection reagent	Sigma Aldrich	S1452
OptiMEM	Thermo Fisher Scientific	Cat# 31985062
Lipofectamine 2000	Thermo Fisher Scientific	Cat# 11668019
Rodent Decloaker	Biocare Medical	SKU: RD913
Sodium oxamate	Sigma Aldrich	CAS: 565-73-1
Protease inhibitor cocktail	Roche	926-68071
Novex 4-20% Tris-Glycine Mini Gels	Thermo Fisher Scientific	XP04200BOX
cOmplete ULTRA Tablets (Protease inhibitor cocktail)	Roche	05892791001
PhosSTOP	Sigma Aldrich	PHOSS-RO
Immobilon-PSQ Membrane, PVDF	Merck Millipore	Cat#ISEQ85R
Bradford Reagent	Sigma Aldrich	B6916
Phalloidin	Thermo Fisher Scientific	A22283
DAPI	Thermo Fisher Scientific	D21490
Critical commercial assays		
Lactate Colorimetric/Fluorometric Assay Kit	BioVision	K607
Experimental models: Cell lines		
Mouse breast carcinoma: 4T1 cells	ATCC	CRL-2539; STR with matching profile; no interspecies cross contamination
Human head and neck squamous carcinoma: UT-SCC38 cells	Turku University and Turku University Hospital, 20521 Turku, Finland	STR with unique profile; no interspecies cross contamination
Human head and neck squamous carcinoma: UT-SCC58 cells	Obtained from Raider Grenman, University of Turku, Finland	STR with unique profile; no interspecies cross contamination
Human head and neck squamous carcinoma: UT-SCC38 Lifeact-GFP cells	Friedl Laboratory	N/A
Human head and neck squamous carcinoma: UT-SCC58 Lifeact-GFP cells	Friedl Laboratory	N/A
Human head and neck squamous carcinoma: Detroit 562 cells	ATCC	CCL-138
Human head and neck squamous carcinoma: HN-31 cells	Provided by Dr. John Ensley, Wane State University, Detroit, MI	N/A
Experimental models: Organisms/strains		
Swiss nu/nu nudes	MD Anderson Housing and Breeding Center in the Experimental Radiation Oncology Department, MD Anderson Cancer Center	N/A
Athymic nude		069
Athymic nude	Cancer Center ENVIGO	069

(Continued on next page)

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Oligonucleotides		
MISSION siRNA targeting mouse CAPN2 (siRNA ID-#1): SASI_Mm01_00183464, sequence start 1243	Sigma Aldrich	Cat#NM_009794
MISSION siRNA targeting mouse CAPN2 (siRNA ID-#2): SASI_Mm01_00183465, sequence start 1820,	Sigma Aldrich	Cat#NM_009794
MISSION siRNA targeting mouse CAPN2 (siRNA ID-#3): SASI_Mm01_00183467, sequence start 2132	Sigma Aldrich	Cat#NM_009794
MISSION siRNA targeting human CAPN2 (siRNA ID-#1): SASI_Hs01_00059357, Sequence start 1053,	Sigma Aldrich	Cat#NM_001748
MISSION siRNA targeting human CAPN2 (siRNA ID-#2): SASI_Hs01_00059364, Sequence start 810	Sigma Aldrich	Cat#NM_001748
MISSION siRNA targeting human CAPN2 (siRNA ID-#3): SASI_Hs01_00059356, Sequence start 2234	Sigma Aldrich	Cat#NM_001748
MISSION siRNA universal negative control	Sigma Aldrich	Cat#SIC001
Recombinant DNA		
pEGFP N1	ClonTech	Cat#6085-1
plasmid DNA construct GFP-TalinL432G	Addgene	Cat#26725
Software and algorithms		
Fiji	ImageJ	https://imagej.net/software/fiji/
GraphPad Prism 8	GraphPad	https://www.graphpad.com/ scientific-software/prism/
Autozell version 080912	Center for Computing and Communication Technologies [TZI], University of Bremen, Germany	Proprietary code; can be obtained on specific request
MATLAB	MathWorks	https://www.mathworks.com/products/matlab.html
Python version 3.8.	Python Software Foundation	https://www.python.org/
Matplotlib Version 3.4.3.	Matplotlib package	https://matplotlib.org/
Phase Field 2D Cell Motility Simulation v1.0.	Center for Theoretical Physical Biology, Rice University / Northeastern University, USA	https://github.com/yanjun07/phaseField

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to Peter Friedl (pfriedl@mdanderson.org, peter. friedl@radboudumc.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

- Western blot source data for all independent experiments used for quantification are published with this manuscript as Data S1.

 All other data reported in this paper will be shared by the lead contact upon request.
- All original code has been deposited at Github (https://github.com/yanjun07/phaseField) and is publicly available as of the date of publication. DOIs are listed in the Key resources table.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Article

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture

Murine 4T1 breast carcinoma cells (CRL-2539, ATCC), a model for local invasion and distant metastasis, 77 were cultured in RPMI (RPMI1640; Sigma Aldrich, unless stated otherwise) containing 10% fetal bovine serum (FBS; Sigma Aldrich), penicillin (100 U/mL), streptomycin (100 μg/mL; PAA), and sodium pyruvate (1 mM; Thermo Fisher Scientific). Human UT-SCC38 (fully epithelial, locally invasive, non-metastatic) and UT-SCC58 (locally invasive, metastatic) head and neck squamous carcinoma cells (HNSCC), 78 as well as UT-SCC38 Lifeact-GFP and UT-SCC58 Lifeact-GFP cells, were cultured in Dulbecco's modified Eagle medium (DMEM; Sigma Aldrich), supplemented with 10% FBS (Sigma Aldrich), penicillin (100 U/mL), streptomycin (100 µg/mL; PAA), and sodium pyruvate (1 mM; GIBCO). Compared to UT-SCC38 cells which are fully epithelial, ²⁰ 4T1 cells have undergone partial EMT,⁷² and develop a higher proportion of elongated cells at baseline tumoroid culture.

Human Detroit 562 (ATCC) and HN-31 (originally provided by Dr. John Ensley, Wane State University, Detroit, MI) HNSCC cell lines were cultured in DMEM (GIBCO) supplemented with 10% FCS (Sigma Aldrich). Stable Detroit 562 cell lines expressing control vector for short hairpin RNAs (shRNAs) were established as described previously. 79 The tumor cell identity was verified by short tandem repeat (STR) DNA profiling (IDEXX BioResearch) and no interspecies contamination was detected. Cells were routinely tested negative for mycoplasma contamination (Myco Alert, Lonza).

Animal models

Orthotopic implantation of human HN-SCC xenografts was performed into the tongue of 6- to 8-week-old male athymic nude mice (ENVIGO). Tumor cell implantation into the dorsal skin-fold chamber and intravital multiphoton imaging was performed in 8- to 10week-old male athymic nude mice (MD Anderson Housing and Breeding Center in the Experimental Radiation Oncology Department, MD Anderson Cancer Center). Animals were kept in single housing after window transplantation surgery. Experimental lung metastasis studies were performed in 8- to 10-week-old female athymic nude mice (MD Anderson Housing and Breeding Center, Department of Experimental Radiation Oncology, MD Anderson Cancer Center). Littermates were randomly assigned to experimental groups. All animal experiments and intravital microscopy protocols were approved by the Animal Care and Use Committee (ACUC) of the University of Texas MD Anderson Cancer Center.

METHOD DETAILS

Hypoxia culture and DMOG treatment

For cell function studies, cells were cultured as 2D monolayers or tumoroids in 3D collagen lattices in normoxia (21% O2) or hypoxia (0.2% O₂, CB53 incubator, Binder GmbH) for 72 hours (4T1) or 96 hours (UT-SCC38),²⁰ unless indicated otherwise. For pharmacological activation of HIF in culture, cells were treated with DMSO (0.1, solvent control) or the prolyl-hydroxylase inhibitor DMOG (1 mM) for 72 hours (4T1) or 96 hours (UT-SCC38).

Cell isolation from 2D culture

Subconfluent monolayers were grown under normoxic and hypoxic conditions or DMSO and DMOG for 72 hours (4T1) or 96 hours (UT-SCC38), unless otherwise stated. For separation of low- and high-adhesive cell populations, the supernatant medium was gently removed and low-adhesive cells were harvested by manual horizontal circular washing with warm PBS (100 cycles, 37°C). Cells that remained plate-attached after washing (i.e., the highly adhesive population) were detached using trypsin-EDTA (2mM, 37°C), and the low- and high-adhesive subsets were used separately or pooled for further analyses (cell viability, flow cytometry, western blotting).

Cell viability and proliferation analysis from 2D culture (treatment workflow underlying experimental metastasis

4T1 cells were cultured under normoxia or hypoxia in the presence of calpain inhibitor PD150606 (100 μM, unless stated otherwise) or solvent (DMSO) for 48 hours. DMSO and PD150606 were refreshed after every 20 hours. Cell viability was detected by Trypan Blue exclusion. The proliferation ratio reflects the total cell number harvested at the end-point divided by the number of cells seeded.

Colony formation assay

A chilled well-plate was coated with a smooth bottom layer of reconstituted basement membrane (rBM) (matrigel; BD Bioscience) by centrifugation with slow acceleration (4°C, 300 x g, 10 min) and solidification (37°C, 30 min). 4T1 cells were cultured under normoxia or hypoxia in the presence of calpain inhibitor PD150606 (100 µM) or solvent (DMSO) for 2 days (refreshed every 20 hours and 2 hours before harvesting). Low- and high-adhesive cells were harvested (by PBS rinse and trypsin-EDTA (2 mM), respectively), pooled, resuspended in medium containing 5% rBM solution and added onto polymerized rBM for 5-day culture (37°C, 5% CO₂), with medium refreshment at day 3. Colonies were fixed (2% pre-warmed PFA, 5 min), followed by incubation in 4% PFA (10 min) and staining with DAPI. Colonies were imaged by epifluorescence and brightfield microscopy (Olympus IX-71, EM-CCD camera). Z stacks were displayed as composites of maximum projections.

Immunoblotting

Western blot analysis of protein expression was performed using subconfluent 2D cell monolayers. Cells were washed twice with ice-cold PBS, followed by protein extraction with lysis buffer (10 mM Tris, pH 8.0; 1 mM EDTA, pH 8.0; 150 mM NaCl; 0.1% NP-40), supplemented with a protease and phosphatase inhibitor cocktail. For detection of active β 1 integrin epitope, cells were lysed under non-reducing conditions (no β -mercaptoethanol in lysis buffer). Protein concentration was determined by the Bradford assay. Lysates containing 40 μ g of protein were loaded on Novex 4%-to-20% Tris-Glycine Mini Gels and transferred by electroblotting (120 V, 1 hour) in transfer buffer (28 mM Tris-HCL; 39 mM Glycine; 20% methanol v/v) onto SQ-PVDF membranes. Immunodetection was performed using primary antibody dilutions (1/100 – 1/1000) and HRP conjugated secondary antibodies (1/2000 – 1/10000 dilutions) in combination with the SuperSignal West Pico Chemiluminescent Substrate and CL-Xposure films or with Alexa Fluor/IRDye 680 secondary antibodies in combination with the Typhoon Biomolecular Imager (Amersham). Densitometry of bands was performed after normalization to the β -actin loading control for each protein followed by normalization to the reference protein using Fiji/ImageJ.

Flow cytometry

For detection of $\beta1$ integrin levels, cells were cultured as subconfluent monolayers and detached by trypsin-EDTA (2 mM), washed in PBS and stained with LIVE/DEAD stain (30 min, 4°C). 4T1 cells were stained with primary antibodies and matching IgG controls dissolved in FACS buffer (2% FBS/2mM EDTA in PBS; 1 hour, 4°C), washed with FACS buffer, incubated with secondary antibody dissolved in FACS buffer (30 – 60 min, 4°C), and analyzed by flow cytometry (BD FACS CANTO II; BD Biosciences). Quantification of the median fluorescence intensity (MFI) was calculated by linear subtraction of IgG control MFIs followed by total $\beta1$ integrin content and/or normalization to MFIs of DMSO, as indicated. All data analysis was performed using FlowJo (version 10.3.).

Tumoroid invasion assay in 3D collagen matrices

cells were disaggregated by trypsin-EDTA (2mM).

Multicellular tumoroids were generated from subconfluent culture using the hanging-drop assay (20% methylcellulose; 500 cells/25 μ L drop; overnight tumoroid assembly). Tumoroids were embedded in mid-density non-pepsinized rat-tail collagen type I (2.5 mg/ml, average pore size 4 μ m²), low-density bovine collagen (1.7 mg/mL, 20 μ m²), or high-density rat-tail collagen (4 mg/mL, 1 μ m²). After collagen polymerization (37°C, 10 – 20 min), 3D cultures were treated with DMOG (1 mM) or DMSO (0.1%, vehicle control) dissolved in respective cell culture media or placed in incubators with 21% normoxic or 0.2% hypoxic oxygen levels. Migration morphology and efficacy were monitored by brightfield time-lapse microscopy (Leica) or endpoint analysis after 72 hours (4T1) or 96 hours (UT-SCC38). For cell counting of tumoroid 3D invasive cultures, tumoroid-collagen droplets were incubated with collagenase type I at 37°C and

Pharmacological treatment of 3D tumoroid migration cultures

The molecular dependencies of cell migration modes and the migration efficacy of individual cells were tested in 3D collagen cultures after 48 hours (4T1) or 72 hours (UT-SCC38) in DMSO/DMOG or normoxia or hypoxia conditions. At these time points, single-cell migration was established. The following reagents and compounds were added to the culture media: β 1 integrin–blocking antibody 4B4 (0.5-5 μ g/mL for reducing speed; 10 μ g/mL for probing morphology), β 1 integrin–activating antibody TS2/16 (20 μ g/mL, UT-SCC38), β 1 integrin activating antibody 9EG7 (5 μ g/mL, 4T1), calpain inhibitor PD150606 (50 or 100 μ M), 2-Deoxy-D-glucose (5mM for inhibition of glycolysis, no additional sodium pyruvate was added), ATP-sytnhase inhibitor oligomycin (2 μ M for inhibition of OXPHOS) and etoposide (200 μ M). Tumoroid cultures in 3D collagen were incubated (37°C) with compound and monitored by single time-point or, for up to 20 hours, time-lapse brightfield microscopy (Leica). All antibodies and inhibitors used in live-cell assays were purchased as azide-free compounds or dialyzed (Slide-A-Lyzer mini dialysis device, 20 MWCO).

Transient transfection of cell monolayers and 3D tumoroid cultures

Cells in monolayer culture were incubated (20 hours, 37° C) with a mission-siRNA transfection mix (100 nM siCAPN2 or siControl, 128 μ L MISSION siRNA transfection reagent, 1.2 mL serum-free medium, 6.8 mL complete medium, 200,000 cells, per 10cm^2 dish) or with a plasmid DNA transfection mix (6 μ g GFP-TalinL432G or pEGFP plasmid DNA, 15 μ L Lipofectamine 2000, 500 μ L Opti-MEM, 9 mL complete medium, 75,000 cells, per 10 cm^2 dish). The transfection medium was removed and transfected cells were used for further analysis.

For molecular intervention followed by 3D matrix culture, cell transfection was performed during 3D tumoroid aggregation. A mission-siRNA transfection mixture (100 nM of mission-siRNA siCAPN2 or siControl, 32 μ L MISSION siRNA transfection reagent, 200 μ L serum-free medium) or a plasmid DNA transfection mixture (4 μ g GFP-TalinL432G or pEGFP plasmid DNA, 10 μ L Lipofectamine 2000, 75 μ L OptiMEM) was added to the cell suspension (50,000 cells, suspended in aggregation medium containing 20% methylcellulose) plated as hanging drops (500 cells per 25 μ L per drop) for cell aggregation (18 hours, 37°C). Tumoroids were washed with medium and used for 3D collagen culture.

Time-lapse microscopy

3D tumoroid cultures were placed and maintained (37°C) in wax-sealed migration cambers. ⁸¹ Brightfield time-lapse microscopy was performed using DM IL LED microscopes using 20x/0.30 HI Plan objectives (Leica Microsystems), equipped with STC-405 cameras (Sentech). Image acquisition was obtained by the 16-Channel Recorder software (SVS-Vistek GmbH 2004) at 4 min intervals.

Article

Immunostaining and confocal microscopy

For immunofluorescence staining, 3D collagen cultures (100 µL) were fixed (2% PFA, 5 min, 37°C; followed by 4% PFA, 10 min, 37°C), washed (PBS, 3x10 min), permeabilized and blocked (PBS/0.1% BSA/10% normal goat serum /0.3% Triton X-100, 1 hour, RT), and incubated with primary antibody (in 0.1% PBS/BSA/0.3% Triton X-100, 18 hours, 4°C). Cultures were washed eight times (PBS, 1 hour each), incubated with DAPI and secondary antibody (18 hours, 4°C in PBS/0.1% BSA/ 0.3% Triton X-100), washed three times (PBS, 10 min each), and imaged as whole-mount 3D samples. Confocal fluorescence and reflectance microscopy were performed by sequential single-channel confocal scanning using a CS APO 40x NA 1.15 objective (TCS SP5 Confocal Microscope, Leica Microsystems) and an inter-slice distance of 2 µm.

For detection of active β1 integrin levels in situ, 3D collagen cultures (100 μL) of 4T1 tumoroids were incubated with active β1 integrin antibody 9EG7 diluted in medium (15 min, 37°C), washed (warm PBS, 3x5 min each) and fixed in 2% PFA (5 min, 37°C) followed by 4% PFA (10 min, 37°C). Samples were blocked (1 hour, blocking buffer: 0.1% PBS/BSA/10% normal goat serum) and incubated with DAPI, phalloidin, primary and secondary antibody dissolved in blocking buffer (18 hours, 4°C). Structured illumination microscopy using a 20x/0.8 objective (Zeiss LSM880/AiryScan) was performed for detecting phalloidin, active β1 and total β1 integrin signals at an inter-slice distance of 1 μ m.

Calpain activity assays

For detection of calpain activity in subconfluent monolayers, cells were detached with trypsin-EDTA (2mM), washed (PBS), incubated in the dark with LIVE/DEAD dye (Thermo Fisher Scientific) together with CMAC (10 µM, 20 min, 37°C), washed (PBS), incubated with calpain inhibitor PD150606 (100 µM in medium, 2 hours, 37°C, unless stated otherwise) or DMSO vehicle and fixed (0.5% PFA/PBS, 18 hours, 4°C). CMAC substrate cleavage was detected by flow cytometry (LSRII, BD) using 355nm laser excitation and detected through a 440/40 filter (excitation/emission peaks at 351/430 nm). As reference for baseline fluorescence, cell autofluorescence was used and subtracted from the MFI of cleaved CMAC intensity using FlowJo (version 10.3).

Calpain activity in 3D tumoroid culture or in human tumor xenografts was detected using multiphoton microscopy (LaVision Bio-Tec) using a 25x NA 1.05 water objective (Olympus). Live tumoroid-containing 3D collagen cultures were washed (PBS, 5 min), incubated with CMAC (20 µM, 30 min, 37°C), and fixed (2% PFA in PBS, 5 min, 37°C; followed by 4% PFA, 10 min, 37°C). For calpain inhibition, 3D tumoroid cultures were incubated with calpain inhibitor PD150606 (100 μM, 37°C, 20 hours), and inhibitor was refreshed 2 hours before fixation. For shape analysis of CMAC-stained cells, 3D samples were additionally incubated with AlexaFluor 546-conjugated phalloidin (1 hour, RT). Calpain activity in human tumor xenografts was detected in fresh-frozen cryosections (50 μm), which were thawed (5 min, 20°C), incubated with CMAC (100 μM, 45 min, 37°C), washed twice (PBS, 5 min each) and fixed (2% PFA, 5 min, 37°C followed by 4% PFA, 10 min, 37°C). Images were acquired as 3D stacks with 2 μm inter-slice distance using excitation at 730 nm (20 mW power under the objective) and simultaneous 2-channel emission of cleaved/uncleaved CMAC was obtained using customized 427/10 filter (Semrock) and dichroic filter 405 nm (Semrock), respectively. Further channels were AlexaFluor 546-conjugated phalloidin (excitation: 1090nm; detection: 620/50), second harmonic generation (excitation: 1090nm; detection: 525/50). Timelapse multiphoton microscopy of calpain activity in 3D tomoroid culture was performed as 3D z-stacks with 5um interslice distance at 8 min time intervals for 6 to 8 hours.

Metabolism in 3D culture

Oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) in 3D tumoroid invasion cultures were quantified using the Seahorse Bioscience XFe24 analyzer (Agilent). Individual 4T1 tumoroids were placed in collagen droplets (rat-tail collagen, 4 mg/ mL) in XF24 V28 plates (Agilent) and treated with DMOG (1 mM) or solvent (DMSO) 48 hours prior to metabolic analysis. Thirty minutes before the measurements, the culture medium was replaced by XF Base medium (Agilent) supplemented with 2 mM L-glutamine, 1 mM pyruvate, 12 mM glucose (pH 7.4, 37°C), and OCR and ECAR were measured for 2 min periods with 3 min wait intervals. Three basal activity measurements were followed by treatment with oligomycin (2 µM), FCCP (1 µM), and a combination of Rotenone (2 µM) and Antimycin-a (2 μ M) in triplicate measurements.

For detection of lactate release, tumoroid invasion cultures were maintained (48 hours) under normoxic and hypoxic conditions or treated with DMOG (1 mM) or control vehicle (DMSO). The supernatant was harvested, treated with sodium oxamate (100 µM, LDH inhibitor) to prevent lactate-to-pyruvate conversion, and secreted lactate was determined colorimetrically (Lactate kit K607; Biovision). In brief, a reaction mix containing the sample, enzyme mix and buffer was generated and incubated (20°C, 30 min, in darkness). Absorbance was measured at OD 570 nm and corrected by subtracting the background absorbance and the basic lactatesupplement from the medium and was normalized to the number of tumoroids.

Live-cell microscopy of mitochondrial activity in 3D culture

To evaluate the mitochondrial membrane depolarization status, JC-1 dye (10 μg/mL) or solvent (DMSO) were added (for 60 min) to 3D invasion culture. For pharmacological uncoupling of mitochondrial oxidative phosphorylation, FCCP (200nM) or solvent (ethanol, 1:5,000) was added (40 min after start of JC-1 incubation, for 20 min total). Live tumoroid cultures were washed (HBSS, 3 × 5 min) and confocal microscopy (LSM880, Zeiss; 37°C) was performed in phenol-red free medium as 3D stacks (2 µm inter-slice distance) with the following settings: 488nm excitation, detection (Ch2GaAsP detector) at 511 to 567 nm (green) and 575 to 624nm (red).

Image analysis and single-cell cytometry of 3D culture

Brightfield, confocal, and multiphoton microscopy images were analyzed and processed using Fiji/ImageJ (version 1.51). Excluded from analysis were: dead cells, detected by cellular or nuclear fragmentation or condensation; mitotic cells, detected by cell swelling and/or rounding; and post-mitotic cells, including oppositely polarized cell doublets.

Protrusion types and number and the frequency of migrating single cells exhibiting a classified protrusion type were counted using the phalloidin channel from confocal maximum intensity z-projections (40x/1.15 objective). Migration morphology of subtypes was classified from brightfield movies or still images (20x/0.30 HI Plan objective) acquired as z series from non-overlapping tumoroid quadrants (4T1) or whole tumoroids (UT-SCC38). Scoring was performed by two independent operators in a non-blinded fashion and results of selected experiments were verified by double-blinded analysis, based on the following morphological criteria: Elongated (E), cell body is at least twofold longer than wide (equivalent to EF \geq 2), with spindle-shaped morphology and 1 or several pointed pseudopodal protrusions at either cell pole; amoeboid pseudopodal (P), roundish cell shape (equivalent to EF < 2) with indentations (deformation marks) and 1 or several pointed, pseudopodal protrusions; amoeboid blebbing (B), roundish cell shape (equivalent to EF > 2) with multiple bleb-shaped protrusions and absence of pointed protrusions.

The total number of 4T1 subtypes per tumoroid was obtained from tumoroid quadrants and multiplied by 4. Migration paths and speed of single cells were digitized using Autozell (software version 080912; Center for Computing and Communication Technologies [TZI], University of Bremen, Bremen, Germany). The average migration speed was calculated by the length of the xy-path divided by the time. Only viable cells were included in the analysis. Cell elongation of detached cells was measured from stand-still images as the ratio of the maximum cell length over the maximum cell width.

The activation status of β1 integrin on individually migrating cells in 3D collagen culture was obtained by manually segmenting detached cells, creation of the summed intensity z-projection, and automated segmentation of the nucleus (DAPI channel) and F-actin (phalloidin channel). The merged DAPI and phalloidin channels were used for defining the cell area from which the raw integrated density of both active and total β 1 integrin epitope was quantified.

Calpain activity in invading cells was quantified from maximum intensity z-projections. Single detached cells were segmented manually from the phalloidin channel using the shape tool. Cleaved and uncleaved CMAC substrate intensities were calculated as corrected total cell fluorescence (CTCF) with the formula: CTCF = Integrated Density - (Area of selected cell X Mean fluorescence of background readings). The signal ratio of cleaved/uncleaved CMAC was proportional to cleaved CMAC signal intensities only (427/10 emission), thus representing calpain activity by single channel detection. To identify calpain activity in migration subsets, CTCF per cell and cell elongation (maximum cell length/maximum cell width; phalloidin channel) were coregistered.

Mitochondrial membrane depolarization in invading single cells was obtained using JC-1. Summed intensity z-projections were created and the region of interest (single detached cells) were drawn manually using the shape tool on the brightfield channel. The mean intensity of the red and green JC-1 channels per cell were obtained to calculate the JC-1 ratio (red/green intensity).

Computational modeling of cell elongation and speed

A two-dimensional phase field model was used to simulate cells with different contractility and cell-substrate friction, which jointly regulate the cell shape, actin flow field, and traction force toward the substrate. 31 In this model, cell contractility and cell-substrate friction lead to an elongated cell shape. The cell boundary was defined by a set of partial differential equations for the phase field ϕ which minimize its energy. For a single cell, its Hamiltonian (energy) can be written in form of Equation 1:

$$H = \gamma \int d^2r \left[\frac{\varepsilon}{2} |\nabla \varnothing|^2 + \frac{G(\phi)}{\varepsilon} \right] + \kappa \int d^2r \frac{1}{2\varepsilon} \left[\varepsilon \nabla^2 \phi - \frac{G'(\phi)}{\varepsilon} \right]^2$$
 (Equation 1)

where the first term is related to the cell perimeter, and the second term represents the energy for the curvature integrated over the membrane. The phase field evolves with time, simulating the movement of the cell via coupling of the actomyosin cytoskeleton and adhesion to the substrate to the phase field. This coupling involves active force generation through both actin polymerization and the activity of myosin motors. The detailed dynamics for the phase field systems underlying our simulations were taken from Shao et al. 31

To regulate the intracellular contractility and friction between the cell and the substrate, three parameters were used: myosin contraction coefficient (η_m^0) , effective viscosity of actin flow (v_0) , and gripping coefficient (k_{grip}^0) . A larger η_m^0 will lead to a larger contraction tility, and a larger k_{grip}^0 (or v_0) results in a larger friction. We assume a relationship between v_0 and k_{grip}^0 in the form of Equation 2 to simplify the model,

$$k_{ario}^0 = 1.0 \times (\log(v_0 - \log(500) + 0.1))$$
 (Equation 2)

For each run, the simulation was initialized with different k_{qrip}^0 (v_0) changes according to Equation 2 and η_m^0 . After initialization, the cell starts to move according to the dynamic equations. Cell shape and speed weres recorded at steady state. The elongation factor of cells with different k_{grip}^0 and η_m^0 was calculated based on images as the ratio cell length/width. The average speed of cells with different k_{grip}^0 and η_m^0 was calculated and represented as 3D landscape plot (speed versus k_{grip}^0 and η_m^0). Mathematical algorithms are unpublished but can be provided upon reasonable request.

Orthotopic human HN-SCC xenograft model

Animal experiments were approved by the Animal Care and Use Committee (ACUC) of the University of Texas MD Anderson Cancer Center (00001148-RN00 and 00001522-RN00). Orthotopic human HN-SCC xenografts in nude mice were established as described. 82 HN-31 and Detroit 562 cells were injected (5 × 10⁴ in 30 μL serum-free DMEM; GIBCO) into the dorsal part of the tongue of 6- to 8-week-old male athymic nude mice (ENVIGO). Mice were euthanized by CO₂ asphyxiation 30 days post-injection or when losing more than 20% of their pre-injection body weight. Tongues containing primary tumors were resected at the endpoint and cryopreserved.

Tumor cell implantation in vivo and intravital multiphoton imaging

Intravital microscopy protocols were approved by the Animal Care and Use Committee (ACUC) of the University of Texas MD Anderson Cancer Center (00001002). A dorsal skin-fold chamber containing an optical imaging window was transplanted onto 8- to 10-week-old male athymic nude mice (MD Anderson Housing and Breeding Center in the Experimental Radiation Oncology Department, MD Anderson Cancer Center). Prior to injection, UT-SCC38 or UT-SCC58 cells expressing H2B-mCherry/Lifeact-GFP were cultured in the presence of DMOG (1 mM) with or without calpain inhibitor PD150606 (100 µM) for 48 hours. DMOG and PD150606 were refreshed after 20 hours and 2 hours before cell harvesting. Both weakly and firmly adhesive cells were harvested (PBS rinse, trypsin-EDTA (2mM) respectively), filtered through a FACS cell strainer cap (35 μm, Thermo Fisher) and injected as individual cells (1x10⁴ cells in PBS/mouse) intradermally into the optical imaging window 2 days after transplantation surgery. Four hours (UT-SCC58) and 20 hours (UT-SCC38) post-injection, intra-vital multiphoton microscopy was performed (3D z stacks, 2 μm interslice distance, 3-5 regions, 1 animal/ cell line) with the following excitation and detection settings: Lifeact-GFP (920 nm, 20mW, BP 525/ 50); H2B-mCherry (1090 nm, 50mW, BP620/50); second harmonic generation (SHG; collagen) (1090 nm, 50mW, BD 525/50), third harmonic generation (1180 nm, 70mW, BP 387/15). Image analysis, 3D reconstruction and maximum intensity projections were performed using Fiji/ImageJ (version 1.51). Dying cells (nuclear fragmentation) and non-migrating cells (lacking actin-rich protrusions) were excluded from the analysis.

Experimental lung metastasis

Animal experiments were approved by the Animal Care and Use Committee (ACUC) of the University of Texas MD Anderson Cancer Center (00001002). 2 days prior to tail-vein injection, cells were cultured under normoxic or hypoxic conditions in the presence of calpain inhibitor PD150606 (100 μM) or vehicle control (0.1% DMSO). PD150606 was refreshed after every 20 hours. Two hours after the last refreshment, weakly and firmly adhesive cells were harvested (PBS rinse, trypsin-EDTA [2mM] respectively), filtered through a FACS cell strainer cap (35 µm, Thermo Fisher) washed (PBS), and injected (30 G needle) as individual cells (500,000 cells in 100 μL/ mouse) into the tail vein of 8- to 10-week-old female athymic nude mice (MD Anderson Housing and Breeding Center, Department of Experimental Radiation Oncology, MD Anderson Cancer Center). Fourteen days post-injection, mice were euthanized and subjected to whole-lung perfusion fixation (10% neutral buffered formalin, 5 min). Lung macrometastases were manually counted, defined as whitish colonies on the lung surface. Metastasis by epithelial cells was immunohistochemically confirmed, by submerging the lungs in formalin (10%, 5-7 days) followed by sectioning (4 µm thickness; Research Histology Core Laboratory, MD Anderson Cancer Center). Antigen retrieval was performed in citrate buffer (Rodent Decloaker) and anti-cytokeratin 8 antibody (30 min incubation) was detected using rabbit-on-rodent HRP detection polymer (15 min incubation) visualized with diaminobenzidine, counterstained with hematoxylin and imaged with panoramic digital scanner (3DHISTECH, sysmex, Norderstedt, Germany; 40X objective).

QUANTIFICATION AND STATISTICAL ANALYSIS

Bar graphs represent the means and standard deviation and scatter diagrams the median and interquartile range (25%-75%) of individual cell data points from pooled experiments. Statistical analysis was performed using the two-tailed non-paired t test (two groups) or one- or two-way ANOVA (more than two groups). For non-parametric distributions determined by normality testing, Mann-Whitney U (two groups) or Kruskal-Wallis multiple comparison with Dunn's correction (multiple groups) were used, unless otherwise indicated. The statistical details of experiments, definition of significance and statistical method used can be found in the figure legends. Statistical analysis was performed using GraphPad Prism 8 software (GraphPad Software, Inc., San Diego, CA).