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Abstract

The extracellular matrix (ECM) is a highly dynamic, well-organized acellular network of tissue-specific biomole-
cules, that can be divided into structural or core ECM proteins and ECM-associated proteins. The ECM serves
as a blueprint for organ development and function and, when structurally altered through mutation, altered
expression, or degradation, can lead to debilitating syndromes that often affect one tissue more than another.
Cross-referencing the FANTOMS5 SSTAR (Semantic catalog of Samples, Transcription initiation And Regula-
tors) and the defined catalog of core matrisome ECM (glyco)proteins, we conducted a comprehensive analysis
of 511 different human samples to annotate the context-specific transcription of the individual components of
the defined matrisome. Relative log expression normalized SSTAR cap analysis gene expression peak data
files were downloaded from the FANTOMS5 online database and filtered to exclude all cell lines and diseased tis-
sues. Promoter-level expression values were categorized further into eight core tissue systems and three major
ECM categories: proteoglycans, glycoproteins, and collagens. Hierarchical clustering and correlation analyses
were conducted to identify complex relationships in promoter-driven gene expression activity. Integration of the
core matrisome and curated FANTOM5 SSTAR data creates a unique tool that provides insight into the pro-
moter-level expression of ECM-encoding genes in a tissue- and cell-specific manner. Unbiased clustering of
cap analysis gene expression peak data reveals unique ECM signatures within defined tissue systems. Correla-
tion analysis among tissue systems exposes both positive and negative correlation of ECM promoters with vary-
ing levels of significance. This tool can be used to provide new insight into the relationships between ECM
components and tissues and can inform future research on the ECM in human disease and development. We
invite the matrix biology community to continue to explore and discuss this dataset as part of a larger and con-
tinuing conversation about the human ECM. An interactive web tool can be found at matrixpromoterome.github.
io along with additional resources that can be found at dx.doi.org/10.6084/m9.figshare. 19794481 (figures) and
https:/ffigshare.com/s/e18ecbc3ae5aaf919b78 (python notebook).
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Introduction

The extracellular matrix (ECM) is a highly dynamic,
well-organized acellular network of biomolecules that
are assembled in a tissue-specific manner. The ECM
lends overall function and form to tissues, aiding in
the fine-tuning of cellular phenotype, adhesion,
wound repair, mechanical transduction, development,
differentiation, and, when disrupted, disease and dys-
regulated repair [1—4]. In the seminal matrisome
paper published by the Hynes group in 2011, the
ECM and its associated proteins were divided into
two major groups (core matrisome and matrix-associ-
ated) based on in silico definitions [5,6]. The core
matrisome was divided further into three major cate-
gories of ECM: proteoglycans, glycoproteins, and col-
lagens [6—10]. Briefly, these categories can be
defined by major features of the group wherein glyco-
proteins are macromolecules with covalently linked
carbohydrates, or glycans, of varying lengths and
degrees of branching, attached to a protein core. Pro-
teoglycans, a subclass of glycoproteins, contain spe-
cific linear glycosaminoglycans attached to a protein
core with repeating disaccharides that define them as
chondroitin sulfate, heparin/heparan sulfate, derma-
tan sulfate, or keratan sulfate [11,12]. Collagens are
the most abundant category, by percentage, of the
ECM, and are characterized by their unique right
handed three parallel polypeptide strand helical struc-
ture that can be either continuous or interrupted [13].
These definitions, as well as consensus structural
elements and structural domain elements, are what
helped define the original annotated matrisome.

While this original analysis provided a first-of-its-
kind definition of the ECM and affiliated components,
there remained the intriguing opportunity to overlay
these individual ECM components with their relative
tissue- and cell-level distributions. Several groups
have conducted analysis on the matrisome using
datasets comprised of single-cell RNA-sequencing
and gene expression data from the Genotype-Tis-
sue Expression, The Cancer Genome Atlas pro-
gram, and the Gene Expression Omnibus, to name
a few. These papers looked at the matrisome in tis-
sue, age, sex, disease, and as signatures for cell
typing in developing embryos, though none are able
to provide a comprehensive overview of the matri-
some at the promoter level in homeostatic tissues
[14,15].

The SSTAR (Semantic catalog of Samples, Tran-
scription initiation And Regulators) was released
through the RIKEN FANTOMS project and contains
relative read values of cap analysis gene expression
(CAGE) peak data as it relates to promoter-level
activity, where unique cap identifiers are read to
generate tags per million reference values that cor-
respond to each active promoter [16]. CAGE peak is
unique in its ability to capture the true active tran-
scription of specific genes and providing promoter-

level expression as it relates to individual samples.
This data set was a collaborative effort from labora-
tories around the world, including our own, that sub-
mitted samples (tissues and cells) from various
organ systems. The comprehensive database con-
tains transcription start site data from ~1800 human
samples, with detailed readings that can be interro-
gated either by gene symbol or name (https:/fan
tom.gsc.riken.jp/5/sstar/Main_Page). We combined
the information in the matrisome and FANTOMS5
database to reveal the complexity and specificity of
the components of the matrisome in the human
body. Here we describe for the first time this useful
analysis and discuss examples of the relationships
that can be observed through correlation and clus-
tering analysis of ECM-encoding genes and tissue/
cell samples.

Results and Interpretation

Data reduction produced a data matrix of 261
genes with 511 samples

The original data set for this analysis was derived
from cross-referencing the matrisome [8] and the
FANTOM5 SSTAR databases [16] resulting in a
matrix of 274 core matrisome genes x 891 tissue/cell
samples as shown in Figure 1. The data was
divided further into three major categories: proteo-
glycans, glycoproteins, and collagens containing 36,
182, and 43 genes, respectively. Matrisome genes
not included in this analysis are AMELY, BSPH1,
CDCP2, DSPP, NTN5, OTOG, OTOL1, POMZP3,
SSPO, TECTA, ZP4, ZPLD1, and COL6A6 because
the corresponding SSTAR data was missing from
the FANTOMS5 database. The final matrix promoter-
level gene expression dataset included 261 ECM-
encoding genes that were analyzed. We note here
that AGRN was re-categorized from the original
matrisome definition to a proteoglycan, consistent
with what is now known about the protein. [9] COLX-
VIII and COLXV are considered proteoglycans, but
for this analysis were left in the collagen category,
consistent with the original matrisome assignments.

The data set was filtered further to remove immor-
talized cells lines, diseased tissues, experimentally
treated primary cells, and samples with missing val-
ues. The samples were categorized manually into
systems based on their primary affiliation. Primary
affiliation here is defined as the system in which a
cell or tissue type is most closely phenotypically,
rather than anatomically, related. The traditional
physiological ten system nomenclature (cardiovas-
cular, nervous and sensory, digestive, respiratory,
renal, reproductive, endocrine, immune, musculo-
skeletal, and integumentary system) did not fit the
matrix promoter-level expression data well (data not
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274 Core Matrisome Genes

891 FANTOMS promoter-
level expression samples

Log-based
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Statistical Analysis
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Figure 1. Workflows diagram of matrisome and FANTOM5 data reduction. Matrisome genes were cross-referenced
with the FANTOMS5 CAGE peak data to create the resulting analysis matrix. Further data reduction produced three major

matrices with manual system annotations for each sample.

shown) so major tissue categories were defined for
this analysis as: cardiovascular, connective, diges-
tive, endothelial, epithelial, immune, nervous, and
reproductive. As an example of how these catego-
ries fit the samples, adipocytes from the breast were
assigned to the connective tissue system. We note
here that some samples may adequately fit within
multiple categories but are defined using additional
information available in the FANTOMS database.
Any samples that could not fit broadly into these
major tissue categories were eliminated from the
analysis, resulting in a data set of 511 total samples.

Hierarchical clustering reveals unique tissue/
cell-level clusters of gene promoter activity

Delineation of matrisome components into eight
color-coded primary systems reveals unique clus-
ters and broad trends in promoter-level expression.
(Figure 2) Samples were hierarchically clustered,
as described in the methods section, where average
linkage representing the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) and the
Euclidean distance metric were used to put like
genes in a spatially related order, as indicated by
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Figure 2. ClusterMaps of genes expressing proteoglycans, glycoproteins, and collagens with annotated tissue sys-
tems. Proteoglycans (green, A), glycoproteins (red, B), and collagens (blue, C) show unique patterns of expression
through hierarchical clustering. Relative expression of gene promoters within hierarchical clustering maps divided into the

previously defined matrisome categories.

hierarchical trees. (Figure 2) From this clustering,
we could determine relative trends in expression
between certain tissue/cell systems and their tran-
scriptionally active ECM gene sets.

Among the proteoglycans, KERA, IMPG2, OPTC,
EPYC, PRGS3, IMPG1, and NYX showed little
expression in almost all tissue/cell samples.
HAPLN4, SPOCK3, BCAN, NCAN, CHADL, and
HAPLN2 make up a unique region that is localized
at higher levels to the nervous system. (Figure 2A)
From the glycoproteins category, fibrinogens FGB,
FGA, and FGG comprise one of the most highly
expressed gene sets and are present in abundance
in liver-derived samples, as expected. FNDC7 also
is unique in this set for its near absence.
(Figure 2B) (A fully annotated version of the glyco-
proteins correlation map can be found in Supple-
mentary Figure S10.) Similar to what is seen for
proteoglycans and glycoproteins, the immune sys-
tem showed an overall lack of expression of ECM-
encoding genes in the collagen data set. Distinct
features in this ClusterMap include COL17A1
expression in the epithelial system and COL6A1,
COL6A2, COL1A1, and COL1A2 consistently
expressed in both the connective and reproductive
systems. (Figure 2C)

Z-scores were used to enable statistical compari-
sons across both genes and samples, allowing for a
more significant interpretation of the data. A positive
(red) z-score indicates a sample with a greater rela-
tive tags per million value, as compared to the
mean, which correlates to a more active promoter. A
negative (blue) z-score indicates a sample that has
a comparatively smaller tags per million value, indi-
cating a lower level of transcriptional activation.
Comparisons of z-scores across a gene, such as in
Supplementary Figure S1, demonstrates the sta-
tistical significance of the differences between differ-
ent samples/categories for a singular gene.

Z-scores calculated across samples, such as in
Supplementary Figure S2, demonstrates the rela-
tive distribution of transcriptionally active genes
within a single sample.

To demonstrate this idea, the proteoglycan SRGN
showed highest expression in the immune system,
as indicated by a highly positive (red) z-score, as
compared to other systems. (Supplementary
Figure S1). Within the immune system, proteogly-
cans SPOCK2, HAPLN3, and VCAN showed high
levels of promoter-level expression as compared to
other proteoglycans (Supplementary Figure S2). In
the glycoproteins group, SPARC, IGFBP7, and
LAMB?2 are least active in the immune system and
relatively consistent in activity across the connective
system. (Supplementary Figure S3) Across the
nervous system. SPARCL1, SPP1, NELL2,
IGFBP7, SPARC, IGFBP4, IGFBP5, and MGP were
some of the most highly transcribed genes, while
LAMA3, LAMB3, and LAMC2 appeared as major
players in the epithelial system. (Supplementary
Figure S4) In the category of collagens, COL6A2
was the most highly transcribed collagen in the
immune samples. (Supplementary Figure S6)
Connective tissues and cells dominated production
of this matrisome category overall as compared to
other systems. (Supplementary Figure S5)

Extracted cluster of interest from epithelial
glycoproteins demonstrates tissue system-
specific signatures that can unveil unforeseen
expression patterns

ClusterMaps and z-score analysis provided high-
level detail of promoter-level gene expression in all
samples, so that relative trends could be assessed.
Unique signatures were revealed through these
analyses by employing hierarchical clustering meth-
ods and statistical analysis. Zooming in on one
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cluster of interest, as an example, revealed the rela-
tive active transcription of genes encoding
SPARCL1, SPP1, FGL2, EMILIN2, TNFAIPS,
LAMAS, LAMBS, and LAMC2 in epithelial samples.
(Figure 3) LAMAS3, LAMB3, LAMC2, and SPP1
were actively transcribed in epithelial samples
extracted in this region, while genes such as FGL2
were not. (Supplementary Figure S7)

While the relationship between LAMAS, LAMB3,
and LAMC2 may seem obvious, other members of
this cluster can provide new information into previ-
ously unknown ECM interactions in tissue/cell sys-
tems. In this example, the reason for this interaction
in the dataset is not immediately obvious. SPARCL1
is not well described in epithelial cell literature but is
found predominantly in neural tissues. In studies of
SPARCL1 knockout mice, SPARCL1 was found to
modulate the dermal ECM via regulation of decorin

levels and collagen fibril assembly and functions to
create intermediate states of adhesion in cells adja-
cent to the epithelium [17]. SPP1 is a member of a
subgroup of ECM proteins known as matricellular
proteins and is well-known for its involvement in the
attachment of osteoclasts to the mineralized bone
matrix [18—20]. Interestingly, this analysis shows
kidney epithelial cells as one of the highest express-
ers of SPP1 (bone marrow is the other), consistent
with the known disease states associated with its
mutation [21]. EMILIN2 acts in various ways
throughout the body, serving to induce angiogenesis
in tumors via an epidermal growth factor receptor-
dependent interaction [22], acting in a pro-apoptotic
role[23], and forming an association with elastin-
microfibrils [24]. TNFAIP6 is a hyaluronate-binding
protein closely related to CD44 and is implicated in
cell-cell and cell-matrix interactions during
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Figure 3. Extracted cluster of interest from glycoproteins category reveals ECM-encoding gene expression patterns in
epithelial samples consistent with type | hemidesmosomes. The extracted cluster contains SPARCL1, SPP1, FGL2, EMI-

LIN2, TNFAIP6, LAMA3, LAMB3, LAMC2.
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inflammation and tumorigenesis [25]. This protein
may also play an essential role in endometrium dur-
ing the proliferative and secretory phases of the
menstrual cycle [26]. LAMAS, LAMBS3, LAMC2 are
subunits of laminin 332 (commonly known as lami-
nin 5) in the epithelial basement membrane and play
an integral role in the formation of epithelial anchor-
ing complexes including type | hemidesmosomes
[27,28]. Mutations in laminin 332 result in junctional
epidermolysis bullosa-Herlitz. where, in 80% of
cases, LAMB3 is affected [29]. While this extracted
group of proteins plays, in some capacity, a role in
epithelial cell anchorage and movement, their inter-
connected relationship has not been well defined.
This analysis offers potential opportunities such as
this one to uncover novel interactions in ECM gene
expression in unexpected tissue locations.

Correlation of matrisome components across
tissue types

Correlation maps of the matrisome components
across all tissue types can reveal unique interac-
tions that exist among these ECM molecules. Posi-
tive correlation (red) indicates actively transcribed
genes that behave in a similar way while negative
correlation (blue) indicates a high probability that
these promoters exist independently of one another.
Once again, for this analysis the promoter-level
expression data was divided into the three matri-
some categories of proteoglycans, glycoproteins,
and collagens.

One interesting example of a positive correlation
cluster in the proteoglycans group is among OPTC,
HAPLN2, IMPG2, NCAN, HAPLN4, and IMPG1.
SRGN, another proteocglycan, was very negatively
correlated with molecules such as KERA and ASPN.
(Figure 4A) Taken together, we can appreciate that

B g

Proteoglycans

Glycoproteins

OPTC, HAPLN2, IMPG2, NCAN, HAPLN4, and
IMPG1 are likely to be actively transcribed or not tran-
scribed in unison while negatively correlated SRGN
and KERA would be less likely to show similar con-
nections in terms of promoter activity.

In the glycoproteins gene set (Figure 4B), several
correlation clusters stood out during data analysis.
These new correlations can provide clues into previ-
ously unappreciated gene clusters that may account
for common phenotypes or identify negative regula-
tors of cell behavior. One such cluster is that of posi-
tive correlation between MATN4, KCP, RSPOf1,
AMELX, VWA3B, ZP1, IGSF10, ELSPBP1, and
FNDCS8. In terms of negative correlation, we saw
LRG1 whose expression is strikingly anti-correlative
with MATNS3, RSPO4, LAMA1, and NTNGH1, indicat-
ing these proteins exhibit distinct promoter-level
behaviors from each other. To aid in visualization of
the negative correlation between LRG1 and other
glycoproteins, we extracted this region and included
it in Supplementary Figure S8. LRG1 positively
correlated with MATN1, DMBT1, IGFBP1, VWA5B2,
FGG, FGA, FGL1, FGB, TINAG, OIT2, IGFALS, and
VTN of the glycoprotein group, meaning it behaves
in a similar manner to these genes. Once again, this
region was extracted from the large glycoprotein
matrix to provide more insight into these positive
LRG1 interactions. (Supplementary Figure S9)

From the positive cluster, MATN4 is one of the
most ubiquitously expressed matrilins in the human
body and can found in epithelial, muscle, and ner-
vous tissue as well as connective tissue of internal
organs [30,31]. MATN4 is crucial to maintaining the
stability of articular cartilage and interacts with vari-
ous proteins to interconnect and stabilize these mac-
romolecular networks [32]. RSPO1 and AMELX also
demonstrate unique roles in the context of bone biol-
ogy. RSPO1 has a bone anabolic effect, enhancing

Collagens

Figure 4. Correlation of matrisome components in all tissue types. Proteoglycans (A), glycoproteins (B), and collagens
(C) show positive (red) and negative correlation (blue) in promoter-level gene expression among various ECM constitu-

ents.
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osteogenic markers and osteoprotegerin expression
[33—36] as well as inducing and enhancing osteo-
blast differentiation. AMELX is a protein secreted by
ameloblasts to create tooth enamel [37]. KCP is a
potent paracrine enhancer of bone morphogenetic
protein signaling in embryonic brain and kidney sam-
ples [38], increases expression in human failing
hearts [39], and aids in high fat diet-induced obesity
[40]. While there is no directly described role of KCP
in bone, clustering of this protein near other bone-
affecting genes supports its ability to interact with
and signal in bone via its known bone morphoge-
netic protein signaling capacity. Additionally,
VWAZ3B is known for its effect, when mutated, in spi-
nocerebellar ataxia [41] but has no known role in
bone, meaning it could face a similar fate as KCP
within this bone-associated cluster. Taken together,
this analysis offers new insight into the potential role
and relationship of these proteins in a new context,
the connective system.

ZP1, IGSF10, and ELSPBP1 all play crucial roles
in human reproduction and clustered quite readily
with the lesser known FNDC8. ZP1 is expressed in
the zona matrix of secondary and antral follicles,
ovulated oocytes, atretic follicles, and degenerating
intravascular oocytes in the female reproductive
tract but also binds to capacitated spermatozoa and
induces acrosomal exocytosis [42]. IGSF10 muta-
tions caused delayed puberty and hypogonadism [1]
while also exerting an important effect on breast
cancer tumorigenesis [43]. ELSPBP1 known pri-
mary role is in its binding to already dead spermato-
zoa through epididymosomes [44—47]. The roll of
FNDCS8 is not well described in literature, but hierar-
chical clustering in this region could be indicative of
its potential role in these areas, where its positive
correlation indicates similar behaviors to locally clus-
tered genes. Additionally, RSPO1, discussed in the
previous paragraph in the context of bone, has two
hormone-related roles in the body. RSPO1 can play
a role in sex determination via Wnt4/B-catenin sig-
naling during ovarian development [48,49] and is
required for normal development of the mammary
gland [50]. From the more negatively glycoprotein
cluster, LRG1 can function in signal transduction,
cell proliferation, cell migration, cell invasion, cell
adhesion, cell survival, and cell apoptosis [51], roles
which we believe would make it more likely to posi-
tively correlate with other genes, making this nega-
tive correlation even more striking.

Collagens traditionally have been thought of in the
context of deposition by fibroblasts in connective tis-
sue, but this analysis provides insight into other cell
and tissue types that express collagen family mem-
bers [52]. COL19A1 was unique in this dataset for
its large negative correlation with other members of
the collagen family. (Figure 4C) Interestingly, in
mouse studies of Col19a1, mRNA can be found in
all tissues except liver. In the adult mouse however,

Col19a1 mRNA was largely limited to the brain,
which may explain its limited correlation with other
matrix components [53]. COL5A1, COL5A2,
COL3A1, COL16A1, COL1A1, and COL1A2 repre-
sent a positively correlated cluster in this family,
indicative of similar trends in promoter-level expres-
sion across the human body. COL5A1, COL5A2,
COL3A1, COL1A1, and COL1A2 are all fibril-form-
ing collagens, while COL16A1 is a fibril-associated
collagen [10]. COL2A1 and COL3A1 are present in
hyaline cartilage [54], COL1A1, COL1A2, and
COL3A1 are present in skin, while COL1Af1,
COL1A2, COL5A1, and COL5A2 are found in the
cornea [55]. COL16A1 is a component of microfibrils
containing fibrillin-1 in skin alongside COL2A1,
COL2A2, COL11A1, and COL11A2 [56]. While all of
these collagens appear to be associated with a
broad array of tissues, this analysis offers a better
look at how these genes may interact at the pro-
moter level across different tissues and cells where
they are actively transcribed.

Extracted correlation map of proteoglycans in
epithelial samples

Interesting patterns emerged when individual sys-
tems were extracted from the data and correlation
analyses were performed. In Figure 5, a correlation
map was utilized to provide insight into the expres-
sion relationships of proteoglycans in the epithelial
system alone. Pairs such as HAPLN2 and SPOCKS
and BCAN and HAPLN4 showed positive correlation
between genes. Larger clusters such as PRELP,
FMOD and PODN; BGN, SRGN, DCN, and LUM;
CHADL, CHAD, and KERA also exhibited positive
correlation where positive correlation (red) means
two genes are likely to behave in the same way.
OPTC and HSPG2, NYX and HAPLNS, and
PODNL3, BCAN, and HAPLN4 were all negatively
correlated ECM-encoding genes. This negative cor-
relation indicates that this set of promoters have an
opposite relationship, with one being more active
when the other is less active. Taken together, these
clustering regions indicate regions of either similar
or dissimilar behavior within ECM promoters of the
epithelial system, showing a system-specific signa-
ture of gene behavior as opposed to a signature
across all tissues/cell systems. This type of extrac-
tion allows for a clearer idea of how one system may
function in comparison to all systems in the body.

Open-Access Data Through Web
Application Deployment

Modern web frameworks make published data
easily accessible to the larger scientific community.
The Dart/Flutter Software Development Kit is an
open-source Google project designed for cross-
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Figure 5. Correlation map of proteoglycans in the epithelial system.

platform applications, which was used to develop a
GitHub pages website (matrixpromoterome.github.
i0) to share the log-transformed promoter activity
data. Widgets for data queries, interactive graphing,
and downloads allow for more granular insight into a
matrix-promoting gene of interest’s promoter activity
in a particular tissue or cell type. Furthermore, high
resolution images can be found at dx.doi.org/
10.6084/m9.figshare.19794481. The code used for
this analysis can also be found as a Python note-
book in the figshare repository at https://figshare.
com/s/e18ecbc3aebaafd19b78.

Discussion

Since it was published in 2011, the concept of the
matrisome has remained a landmark work in the field

of matrix biology. For a decade, this analysis has pro-
vided major insight into the ECM and shifted percep-
tions of links between structure and function. With the
analysis presented in this paper, we further establish
the importance of the matrisome and offer a new tool
to interrogate the dynamics of human matrix biology
at the gene promoter level. Our analysis is unique in
the comprehensive nature of the data from the FAN-
TOMS5 database as it bypasses previous limitations of
sample size and consistent experimental value acqui-
sition. Additionally, this analysis examines specific
promoter-level gene expression as opposed to rela-
tive protein levels, indicative of what is being actively
transcribed in cells and tissues. It is important to note
that this data is uninformative about steady state RNA
levels or post-transcriptional regulation, revealing only
the amount of active transcription occurring in the sys-
tem. Additionally, this dataset is internally calibrated,
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as all biological samples were shipped to Riken under
prescribe conditions after which they were prepared
and analyzed at the same site, eliminating any techni-
cal differences that could have arisen from protocol
deviations at the contributing sites. We use the epithe-
lial system as an example of how this information can
be utilized and recognize the value of this type of anal-
ysis in other systems as well.

In this analysis, immortalized cell lines were
excluded from the data set due to existing research
on the consequences of long-term cell culture on
human cell lines. In the premier FANTOMS5 paper,
in-depth analysis on primary tissues/cells vs immor-
talized cell lines shows that cell lines are far more
likely to cluster with themselves than with their
derived tissue, indicative of the changes that occur
in these cell lineages over time [57]. As one specific
example, studies have shown that the cultured cells
adapt to their culture environment (e.g. plastic) to
express non-physiological levels of ECM-binding
proteins such as the vitronectin receptor [58]. While
this text has a tissue-centric organization, it is impor-
tant to remember that this analysis includes immune
cells as well as epithelial cells regardless of tissue
organ, endothelial cells regardless of tissue origin,
and some specialized cells that each have their own
unique signature imbedded in the analysis. In the
clustermaps in Figure 2, each row represents each
unique cell sample, grouped into their respective tis-
sue systems. We mention briefly in the results sec-
tion the difficulty of fitting our dataset to the
traditional ten physiological system nomenclature.
Given our observations with these datasets, the
authors argue that the traditional ten system nomen-
clature that is commonly used may need to be
reevaluated as gene expression data at the single
cell level becomes common. As an example, an epi-
thelial cell in the breast is more like an epithelial cell
in the colon than it is like an adipocyte in the breast,
where anatomical constriction confounds the data
rather than clarifying it.

Correlation analysis of the ECM as performed
here offers new unbiased insights into tissue loca-
tions and potential interactions where ECM genes
are being actively transcribed. Such information can
inform future interrogations of the roles of specific
ECM constituents in tissue formation, repair, and
disease. To our knowledge, this is the first data to
reveal the transcription activity of the matrisome,
with earlier analyses rather focused on steady state
levels of proteins and mRNAs. Gaining an under-
standing of this transcription provides an opportunity
to consider tissue- and cell-level differences as they
relate to control of transcription that can determine
the types of matrix that cells produce. We unveiled
examples of well-established relationships among
ECM components while also revealing potentially
new tissue-level interactions. While we focused here
only on normal cells and tissues, this analysis can

provide insights into the potential involvement of var-
ious ECM molecules in human developmental disor-
ders. In analyses where tissue specimens were
grouped, it is important to recognize the potential
limitations of correlation. Considering different tissue
types individually can reveal interactions that are
more predominant in some systems over others,
explaining why certain mutations cause changes
only in some tissues. This analysis can be paired
with results of mouse gene knockout strategies
where often unpredicted phenotypes are seen,
examples of which include osteopontin and small
leucine-rich proteoglycan deficiencies [59,60]

For this analysis we focused only on the interac-
tions of the core matrisome, but the importance of
matrix-associated genes could be considered in
future analyses. Many disease states are associated
not just with the matrix itself, but also with those mol-
ecules that interact with and modify the matrix envi-
ronment. For example, levels of various matrix
metalloproteinases can support the aggressive
metastasis of various cancers [61,62]. Understand-
ing how these modifiers interact with the core matri-
some in normal vs disease states could help identify
new targets for novel therapeutics to prevent dysre-
gulation of proteins.

The matrix promoter-level expression dataset is a
novel example of the power of large data analytics
and how it can inform more basic biological ques-
tions. This analysis is unique in its specific interro-
gation of the promoter-level expression of the
matrisome genes in the context of normal, homeo-
static tissues/cells and provides a unique opportu-
nity to interrogate not just context-specific
expression but the relationships that may exist
between these ECM genes. This analysis provides
insights that can be leveraged by both matrix biolo-
gists and clinicians alike, as they seek to better
understand the role of the ECM in human biology.
We offer this analysis to the matrix community at
large as a resource for exploring the ECM and invite
members of the community to dig into this data fur-
ther via the publicly available annotated raw dataset
that can be found at http://farachcarsonwulab.com/.
We believe this analysis functions as a living docu-
ment and this is simply the first iteration of the matrix
promoter-level gene expression data set that we
invite the community to explore and discuss as part
of a larger conversation.

Experimental Procedures

Data Processing

Relative log expression (RLE) normalized SSTAR
CAGE peak data files annotated with hg19human
reference genome assembly were downloaded from
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the FANTOMS online database for both phase 1 and
2 using FANTOMS5 Table Extraction Tool (TET)
found at https://fantom.gsc.riken.jp/5/tet/#\/search/
hg19.cage_peak_counts_ann_decoded.osc.ixt.gz.
The data set was filtered to exclude all cell lines, dis-
eased tissues and samples with missing values
resulting in a total of 511 samples across all tissue
systems (3 samples were removed due to missing
values (nan s). Genes encoding the core matrisome
were extracted and utilized for this analysis. First,
the individual CAGE peak tags per million expres-
sion values of each gene from the sample set were
summed to obtain a gene level value. A pseudo-
count of 0.5 was added across the data set before
logarithm transformation in order to prevent unde-
fined values where data values are zero prior to
downstream statistical analysis. Samples were fur-
ther categorized into 8 core tissue systems and
genes were annotated into 3 major ECM categories:
proteoglycans, glycoproteins, and collagens. CAGE
peak data for each category was gathered for all
511 samples in a matrix.

Data Analysis

All analysis was executed using Python version
3.6 [63] using multiple packages including pandas
[64], NumPy [65], the sklearn.metrics, sklearn.utils,
in SciKits [66], Matplotlib [67], seaborn [68], and
scipy [69]. The seaborn.clustermap function of the
seaborn package was used to perform hierarchical
clustering of the heatmaps for each gene category
using the average linkage representing the
Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) method and the Euclidean distance
metric to calculate the distance between each new
cluster and the remaining cluster. The ClusterMaps
were annotated with color bars indicating the core
tissue systems of the samples. To demonstrate if
the differences of CAGE expression across ECM-
encoding genes and the differences across samples
were statistically significant, we converted the
expression values to z-scores. We did this by apply-
ing z-score transformation to the log2 transformed
data using the z-score statistical function from the
stats module of the scipy package in Python. To
investigate the co-expression patterns of genes in
each ECM category and determine complex rela-
tionships in promoter activity, correlation analyses
were conducted. For these analyses, the log trans-
formed data was used and the Pearson correlations
were calculated by evaluating pairwise correlations
of all gene pairs after excluding all null values. To
ensure the reproducibility of our results, all code
used for this analysis is available as a python note-
book in the figshare repository https://figshare.com/
s/e18ecbc3ae5aaf919b78.
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