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ARTICLE INFO ABSTRACT

Editor: Michael E. Boettcher The oxygen isotope value (5'%0) of a-cellulose extracted from modern and fossil wood has been used widely to
reconstruct climate throughout the Quaternary and deep-time. Substantial effort has been made towards
developing more efficient and cost-effective methods for obtaining a-cellulose from whole wood, though some
research groups advocate for measuring §'%0 directly on whole wood due to a constant offset between the 580
of whole wood and a-cellulose. The utility of alternative substrates to a-cellulose (e.g., whole wood or hol-
ocellulose) for paleoclimate reconstruction using fossil wood, however, has not been evaluated. Here we present
48 new 5'0 measurements on mummified (subfossil) wood ranging in age from Eocene to Miocene. Whereas the
580 value of whole wood and o-cellulose is only weakly related in these subfossils, there is a strong linear
correlation between the 5'80 value of a-cellulose and holocellulose. We augmented this dataset with 1546 new
and published oxygen isotope pairs on whole wood, a-cellulose, and holocellulose from modern wood (Qua-
ternary to present) to compare with our pre-Quaternary fossil samples. In contrast to the fossil wood, we found
strong correlations between a-cellulose and whole wood and a-cellulose and holocellulose in modern samples.
This finding suggests that all three substrates (whole wood, cellulose and holocellulose) derive oxygen isotopes
from a common source (i.e., meteoric water) on a global scale, and that processing of a-cellulose may not be
required for modern wood in some settings. Because average holocellulose yields in fossil wood were approxi-
mately double that of a-cellulose (22.2 + 12.8% versus 11.6 + 10.3%), 5% analysis on holocellulose rather
than a-cellulose should produce reliable environmental data while reducing time and sample material required.

Keywords:

Tree rings

Oxygen isotope
Cellulose extraction
Dendroclimate
Mummified wood

1. Introduction

Oxygen isotope of tree-ring a-cellulose (8'%0,.ce) is mainly
controlled by the 8'%0 of source water (commonly regarded as meteoric
water, 5'80pw), the relative humidity (RH) and post-photosynthesis
process (Gessler et al., 2014; Miranda et al., 2021; Roden et al., 2000).
Post-photosynthetic processes have little impact on 51804 cels thereby
providing a useful substrate for paleoclimate reconstruction (Jahren and
Sternberg, 2003; Managave et al., 2020). In modern settings, the relative
contribution to §'0y.cel from 580 of source water and RH depends on
time scales and locations. For example, RH may play a more important
role on regulating Slsoa_cel in xeric environments than 8180Mw (Xuetal.,
2021), while 580y can dominate seasonal 580, variations in

humid environments (Baker et al., 2016).

Combing oxygen isotope and hydrogen isotope of fossil wood, RH
and 6180Mw can be reconstructed (Jahren and Sternberg, 2003). Despite
some uncertainties, 61800(_&1 can be used as a proxy for SISOMW in deep
time (Rees-Owen et al., 2021; Ren et al., 2021; Richter et al., 2008b).
Since oxygen isotopes behave differently between biomolecular sub-
strates (e.g., resin, lignin, holocellulose, hemicellulose, and a-cellulose)
within wood tissue (Barbour et al., 2001; Cullen and MacFarlane, 2005;
Zech et al., 2014), chemical extraction of a-cellulose from living trees
and fossil wood is therefore an important tool for quantifying past
climate beyond the instrumental record (Ballantyne et al., 2006; Csank
et al., 2013; Jahren and Sternberg, 2003; Rees-Owen et al., 2021; Ren
et al., 2021; Richter et al., 2008a; Schubert and Jahren, 2015; Xu et al.,
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2018).

Multiple methods have been developed for the chemical extraction
and purification of a-cellulose from tree rings (Brendel et al., 2000;
Green, 1963; Leavitt and Danzer, 1993; Sauer and Sternberg, 1994).
Because these methods all increase the time, cost, and sample size
required for analysis, researchers have developed methods to improve
efficiency, reduce sample loss, and optimize high-throughput sampling
(Andreu-Hayles et al., 2019; Greer et al., 2018; Hook et al., 2015;
Kagawa et al., 2015; Li et al., 2011; Loader et al., 2015; Wieloch et al.,
2011; Xu et al., 2011). Nonetheless, other studies have shown a close
correspondence between the 580 value of whole wood (5'80yy00q) and
5'804.cel, which suggests that the time and resources expended in cel-
lulose extraction may be unnecessary to reconstruct 5'%Oyw value
(Barbour et al., 2001; Borella et al., 1999; Gori et al., 2013; Guerrieri
et al., 2017; Nakai et al., 2018; Pons and Helle, 2011; Sidorova et al.,
2010). A limited number of studies have also investigated holocellulose,
which is comprised of both a-cellulose and hemicellulose and does not
require treatment with NaOH, as an alternative to purified a-cellulose
(Cullen and MacFarlane, 2005; Ferrio and Voltas, 2005; Szymczak et al.,
2011; Voltas et al., 2008; Wright, 2008). A lack of consensus contributes
doubt over whether 6180WOQd can be used as a reliable recorder of
5'80Mw value. Yet, all of the above studies investigated living or recently
felled trees unaffected by diagenesis and cellulose degradation. In
contrast to these unaltered samples, fossil wood may contain little to no
a-cellulose (Lukens et al., 2019); therefore, analysis of whole wood
might open new analytical opportunities for reconstructing climate in
deep time using wood of various preservation states.

Our previous work showed that the stable carbon isotopic compo-
sition of whole wood (8'3Cyeoq) correlated strongly with the carbon
isotope value of a-cellulose (5'3Cq.cep) Within both modern and fossil
samples (Lukens et al., 2019), suggesting extraction of a-cellulose was
not necessary when patterns of 5'°C data are used in proxy system
models (e.g., Vornlocher et al., 2021). These prior analyses also revealed
that a larger apparent enrichment exists between §13Cq.cel and 5'%Cood
in deep-time samples relative to modern trees, which demonstrates a
need for correcting deep-time 5'3Cyood data where 8'3Cy.cel analysis is
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untenable. However, the fidelity of §'%0 signals across compounds in
modern and fossil wood may differ from that of §'>C for several reasons.
Tree ring 580 values can be influenced by post-photosynthetic reactions
that can involve the exchange of oxygen isotopes, including the use of
xylem water during cellulose formation, exchange with organics during
phloem transport, and exchange with intracellular water during lignin
biosynthesis (Gessler et al., 2009; Gessler et al., 2014; Song et al., 2022).
Variable preservation potential of cellulose, lignin, and extractives may
affect the apparent enrichment of oxygen isotopes between whole wood
and cellulose.

Here, we report new measurements on 6180a_cel and 6180wood within
modern (Holocene to present) and fossil (pre-Quaternary) wood samples
that represent a wide range of preservation states (1.2% to 43% a-cel-
lulose) in order to test the efficacy of 6180WOOd as a reliable substitute for
5'804.ce1 in modern and fossil wood. We further investigate the potential
for 8180 value of holocellulose (6180h_cel) to be a reliable alternative to
determination of §'80,.¢e in the fossil record.

2. Materials and methods

To obtain a broad spatial and temporal coverage of tree ring 5'0
values under wide-ranging environmental conditions, 16 fossil deep-
time samples and 6 Holocene wood samples were analyzed for this
study (Fig. 1). Deep-time specimens included: 1) four Eocene samples
collected from Banks Island, Canada; 2) five Oligocene samples collected
from Nanning basin, China; and 3) seven Miocene samples collected
from northeastern Siberia (Finish Stream site near Cherskiy, Russia,
Schubert et al., 2017) and multiple sites across China. Holocene samples
included: 1) one ~2000-year-old Cupressus sp. collected from sediments
near New Orleans, Louisiana, USA; 2) one ~3000-year-old sample
collected from permafrost sediments at Duvanny Yar, Sakha Republic,
Russia; 3) one ~200-year-old Pinus sp. collected from the Roy House,
Lafayette, Louisiana, USA. Sample site locations and descriptions are
shown in the Table 1, and more details are provided in Supplement.

Subsamples of whole wood from each of the 22 samples were ho-
mogenized to a powder (< 0.1 mm) using a ball mill (Spex 8000 Mixer/
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Fig. 1. Map showing locations of new (stars) and published (circles) oxygen isotope data analyzed for this study (see details in the Supplement). Open symbols
indicate modern samples, and filled symbols indicate deep-time (pre-Quaternary) fossil samples.
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Table 1
The list of samples in this study.

Location Age interval No. of samples
Banks Island, Canada Eocene 4
Nanning Basin, China Oligocene 5
Cherskiy, Russia Miocene 1
Baoging, China Miocene 2
Guiping Basin, China Miocene 2
Qujing, China Miocene 2
Duvanny Yar, Russia Holocene (3 ka) 2
New Orleans, USA Holocene (2 ka) 1
Lafayette, USA Holocene (0.2 ka) 3

Note: All samples consisted of bulk wood averaged across ~2-3 rings. The
sample from Lafayette, USA, consists of subsamples across the upper, middle and
bottom sections of a timber from the Roy House.

Mill, USA) with stainless steel vial and ball, and then divided into three
approximately equal aliquots. Approximately one-third of each aliquot
was set aside for analysis of 51804004, while the remaining material was
split between two 1.5 ml polyethylene microcentrifuge tubes and
designated for cellulose extraction (a-cellulose and holocellulose,
respectively) using the modified Brendel method (Brendel et al., 2000;
Gaudinski et al., 2005). Lignin and non-cellulose polysaccharides were
first removed from each sample by adding a 10:1 ratio of 80% acetic acid
to 70% nitric acid (i.e., 360 pl 80% acetic acid and 36 pl 70% nitric acid),
gently mixing, and then heating in an aluminum heating-block at 120 °C
for 30 min. Samples were allowed to cool for 5 to 10 min and the
resulting material, comprised of holocellulose, was then washed twice in
1 ml of 99% ethanol, and then once each in 1 ml of DI water, 300 pl of
99% ethanol, and finally 300 pl of acetone. Samples were then dried
overnight at 50 °C. One aliquot was then set aside for analysis of hol-
ocellulose, while the other aliquot was washed in an additional step for
10 min in 300 pl of NaOH (17% w/v) to isolate a-cellulose then again
rinsed in the following: 1) 1 ml of DI water, 2) 260 pl of DI water and 36
pul of 80% acetic acid, 3) 1 ml of DI water, 4) 300 pl of 99% ethanol, 5)
300 pl of acetone, before being again dried overnight at 50 °C. All the
above steps were completed in triplicate so that for each wood sample,
we recovered three different replicate subsamples of whole wood, hol-
ocellulose, and a-cellulose for stable isotope analysis.

The dried whole wood, holocellulose, and a-cellulose were then
weighed into silver capsules, and !0 values were determined using a
High-Temperature-Conversion Elemental Analyzer coupled with a
Delta-V Advantage Mass Spectrometer (Thermo Fisher Scientific, Inc.,
USA) at the University of Louisiana at Lafayette. Samples were analyzed
with three internal laboratory reference materials (ACELL = 32.33 +
0.06%o, JCELLO1 = 17.64 + 0.09%o, and SigmaCell = 28.46 + 0.07%o)
calibrated against International Atomic Energy Agency (IAEA) benzoic
acid reference materials: IAEA 601 (23.24 + 0.19%0) and IAEA 602
(71.28 =+ 0.36%0). A quality assurance sample (JCELLOZ2, 5!80 = 20.44
+ 0.10%o) was analyzed within each batch and analyzed as an unknown.
The analytical precision of the quality assurance sample was 0.2%o (1o,
n = 12). The '80 values are reported as the average of three replicate
samples relative to the VSMOW standard.

We quantified isotopic differences between substrates by calculating
offsets in 5'80 value between substrates [¢, or apparent enrichment,
after (Craig, 1954)] after averaging 5'%0 values of replicate samples,
where:

€ = 618(:)0(—ce]_618C)w00cl (1)

8‘0 = 618Ohft:cl_smownod 2

In all cases, simple subtraction of 5'®0 values between substrates
yielded offset estimates that were within analytical uncertainty (i.e., <
0.2%o) of other approaches to calculating apparent enrichment, for
example:
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€ = [(8" Oy ce1 + 1000) / (8'* Oyooa + 1000)-1 ] (3)
3. Statistical methods

Statistical analyses and visualizations were performed in RStudio
4.2.2 (R Core Team, 2022) using the following packages: gghalves
(Tiedemann, 2022); here (Miiller, 2020); and tidyverse (Wickham et al.,
2019). Differences in 5'%0 value measured on whole wood, hol-
ocellulose, and o-cellulose were assessed by binning data by geologic
epoch, given that ice volume and global temperature—and therefore
5180Mw—change over such timespans (Westerhold et al., 2020). Within
each time bin, a non-parametric Kruskal-Wallis test was performed with
substrate (whole wood, holocellulose, and a-cellulose) as a grouping
variable and 580 value as the outcome. This approach was chosen due
to deviations from normality, which were first assessed using the
Shapiro-Wilk test at the 0.05 significance level. In cases where the
Kruskal-Wallis test indicated significant differences between groups,
Dunn's test was performed post hoc to assess directionality in differences
of mean ranks. Bonferoni adjustments were made for p-values in the
multiple comparisons test.

Differences in the yield of holocellulose and a-cellulose from indi-
vidual specimens of fossil and modern wood analyzed in this study were
assessed using the Wilcoxon signed rank-sum test, as groups of data
deviated from normality and the samples are paired between extraction
protocols. Here, cellulose extraction protocol was assigned as the
grouping variable and cellulose yield as the outcome.

We applied the Wilcoxon rank-sum test to test for differences in
median values of §'%0 offset (eo and €'o) between fossil (deep-time)
versus modern (Holocene) wood. This non-parametric test was chosen
because preliminary analyses using the Shapiro-Wilk test found data
distributions that deviated from normality and samples were not paired.

Finally, linear regression was used in assessing the association and
spread of §'%0 values across substrates. The significance level for all
tests was set at 0.05. These approaches were applied only on data sets
that had numbers of observations sufficient to provide meaningful re-
sults; otherwise, qualitative comparisons between data groups were
made. All data sets are available in the Supplementary Materials.

4. Results and discussion

Stable isotope analyses of the fossil (n = 16) and modern (n = 6)
samples yielded a wide range of 6180(,_@1, 6180h_ce1, and 618Owood values
(Table 2), consistent with the wide range of environments from which
these specimens are sourced (Fig. 2A). For each time bin, 5'%0wo0d
differed significantly from 5'80.cel and 5'80},.ce; measured on the same
specimen (Kruskal-Wallis followed by Dunn's test, p < 0.05; Fig. 2A).
However, 61800,_@1 and 6180h_ce1 on paired samples were not signifi-
cantly different on average (p > 0.05).

Yields of a-cellulose (based on weight) within the fossil samples
ranged from 1.2 to 42.8% (Fig. 2B), consistent with the wide range of
preservation states represented by our samples (Lukens et al., 2019).

Table 2
Summary of new 8'®0 analyses from fossil and modern wood.

Substrate Fossil (Deep-time) Modern (Holocene)

Mean sd Range n Mean sd Range n
5"%0ucel (%) 22,0 21 80 16 262 7.6 159 6
6180h.cel (%0) 22.5 1.9 7.5 16 26.5 7.2 15.2 6
5%0u00d (%)  15.6 2.9 15.6 16 20.7 71 95 6

Note: Abbreviations are as follows: sd = standard deviation, range = the dif-
ference between the maximum value and the minimum value for each substrate
(8'®0max — 880 min), n = number of samples in group. Deep-time samples include
Eocene, Oligocene, and Miocene epochs (i.e., pre-Quaternary). Raw data is
presented in the Supplement.
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Fig. 2. Raincloud plots (kernel density functions with data points) of the A) 5'%0 value (n = 198) and B) cellulose yield (n = 126) for samples analyzed in this study.
Sample substrates are color coded according to legend in first box of panel A. Gray lines connect aliquots across substrates; all data from replicate analyses are shown
as individual points (n = 198). Brackets indicate significant differences between groups from statistical tests (panel A: Dunn's test; panel B: Wilcoxon signed rank sum
rest; see Methods), where: * = p < 0.05; ** = p < 0.005; *** = p < 0.0005; **** = p < 0.00005. Pairs without brackets were not significantly different. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Cellulose yields differed significantly for paired samples in four time
bins (Wilcoxon signed rank sum test, p < 0.05; Fig. 2B). In each group,
holocellulose extraction produced larger yields than o-cellulose on
average. Out of the 62 paired extractions, we note that only one sample
(NNWO069-01) produced lower holocellulose than a-cellulose, which
may have been due to sample loss during laboratory preparation.

The range in 5'%0 values reported here (Fig. 2, Table 2) is larger than
observed for previous studies comparing oxygen isotope values of cel-
lulose and whole wood (Sternberg et al., 2007; Xu et al., 2021), but still
only represents approximately half the range of §'20 values reported for
trees growing across the planet today (Ren et al., 2021). We therefore
augmented our dataset with paired 5'804.ce1-8 8 0wo0d, 5 0q.cel- 5 E0n.
cel, and 880 ce1-6'80y00d values from 24 published studies, yielding a
total of 3320 stable isotope measurements and 1546 pairs (1363 5180,
ce1 and 880004 pairs, 64 5'804.ce1 and 5'80y.cel pairs, and 119 5'80h.cel
and &' Owood Pairs; Supplement). This comprehensive dataset of new
and published §'%0 values includes data from both field and herbarium
collections and at least 54 genera sampled across 53 degrees of latitude.
In order to compare the effect of diagenesis on oxygen isotope value, we
separated the dataset into two age categories: modern (Quaternary to
present, n = 3179) and deep-time (pre-Quaternary, n = 141).

We observed a wide range of gp values for fossil samples (eq:
4.1-10.7%o) that tend to be higher on average (Wilcoxon rank-sum test,
p < 0.001) but overlap in value with modern samples (go: 0.4-10.7%o)
(Fig. 3A). Likewise, €' values from fossils (¢'o: 4.3-11.2%0) are greater
on average (Wilcoxon rank-sum test, p < 0.001) compared to modern
samples (€'o: 2.2-8.4%o), and fossil €'o values extend to higher values
that are not observed in the modern specimens (Fig. 3B). This latter
observation may be due to under-sampling of modern 5'%0n.cel space.
Although each of the deep-time age bins contain too few samples to
analyze quantitatively, we do not observe any evidence for systematic
5180 offset through time in the pre-Quaternary samples. Variability
between deep-time sample 5'%0 offset values is best attributed to vari-
able preservation state between individual fossil assemblages rather
than long-term temporal control on wood decay.

Previous studies of modern wood have reported a wide range of
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relationships between 5'80,.ce1 and 8'80yo04 (e.g., Ferrio and Voltas,
2005; Gori et al., 2013; Guerrieri et al., 2017; Szymczak et al., 2011)
(Supplement). The slope of many of these relationships deviates signif-
icantly from 1 (range = 0.18 to 1.29), suggesting a non-uniform offset
between 8'80y.ce and 5'80,,00q. The range of 5180 values investigated
within each study, however, was small compared to the more compre-
hensive data set in the current investigation; our new compilation allows
for a more complete assessment of global relationships between §'%0
among the three commonly measured substrates in wood tissue.

Analysis of the full range of 5'20 values represented by our global
compilation reveals a strong linear relationship between slsowmd and
5'80.cel for the modern samples (R? = 0.94, n = 1347; Fig. 4A) across
diverse species and environments. However, the slope and its associated
standard error (m = 1.12 + 0.01) of this relationship deviates from
unity, indicating a larger offset between 5'80w00d and §'80y.cel (€0) in
settings with higher 5'0. We hypothesize that this deviation from unity
is caused by variability in wood tissue composition across trees on a
global scale. For example, trees living in humid, low-latitude sites tend
to produce copious amounts of oils and resin, which carry low 5'%0
values and would therefore decrease bulk 880004 values without
affecting 6180a_cel (Barbour et al., 2001; Cullen and MacFarlane, 2005;
Langenheim, 1990; Nissenbaum et al., 2005). Alternatively, the devia-
tion from a 1:1 relationship between 6180w00d and 6180u_cel could be due
to a sampling bias against high-latitude/altitude or colder settings that
contain low 8®0y00q and 8'80.e values (e.g., Dansgaard, 1964).
Further work is needed to test this hypothesis.

In contrast to modern samples, a much weaker relationship was
observed between 8'804.ce) and 88004 for the fossils we analyzed (R?
= 0.21, n = 46; Fig. 4A). Thus, determination of 5'80wo0d might
represent an alternative to 5'804.cel from living and recently felled trees,
but isotopic exchange and cellulose loss during diagenesis mean that
5'80wo0d has limited utility for quantifying environmental change from
fossil samples. Lignin has a much lower 5'80 value compared to cellu-
lose extracted from the same wood tissue (~10%o; Barbour et al., 2001;
Gray and Thompson, 1977). Therefore, progressive cellulose loss during
diagenesis would lower 5'%0w00qa and may be one pathway for

40
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5180(,_&1—8180‘,\,00(1 and 6180‘,_@1— 818011{% Coefficient of determination (R?) and slope (+ standard error) are shown for each linear regression model.
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generation of higher e and €' values in wood fossils.

Our new analyses combined with published 618Oh_cel and 6180(,_@1
pairs showed these two substrates to have a strong linear relationship for
both modern (R? = 0.98, n = 47) and deep-time samples ®R%= 0.98,n=
16) (Fig. 4B). The strong coefficients of determination and slopes that
are near unity (modern: m = 1.02 + 0.02; fossil: m = 1.09 + 0.05)
indicate that coherent 5'0 data are recorded across a-cellulose and
holocellulose, regardless of the diagenetic history of a wood specimen.
Similar agreement between 618Oa_cel and 6180h_c31 has been observed
previously for modern samples across a smaller range of 5'80 values
(Cullen and MacFarlane, 2005; Wright, 2008). The larger compilation of
the current study shows this association is robust across a wide range of
species and environments, and includes the first comparison within
deep-time samples. The potential for holocellulose to serve as an alter-
native substrate to a-cellulose is particularly promising for deep-time
fossils, which may have limited sample size and only small quantities
of preserved a-cellulose. Because yields of holocellulose (mean = 22. 2
+ 12.8%) are ~2x greater than for a-cellulose on average (mean = 11.6
+ 10.3%) in fossil samples (Fig. 2B), determination of 5'80},.cel rather
than 8'80,.ce; may open new possibilities for higher-resolution analysis
and less sample destruction of small or irreplaceable fossil samples.

5. Conclusion

Chemical separation and purification of a-cellulose from whole wood
have become standard practice for generating robust tree-ring oxygen
isotope data (e.g., McCarroll and Loader, 2004). Here, we demonstrated
that whole wood §'80 values can be used in lieu of the a-cellulose for
interpretation of 5'80 trends in modern wood, but differences between
5'%04.cel and 8'80y0q4 values were not constant. Thus, no single
correction factor can be applied to 5804004 data from fossil wood to
relate them to 6180(,{61 data, and therefore to 6180MW. This suggests
chemical extraction of cellulose extraction is necessary for accurate
interpretation of §'80 values but that the robust correlation between
5'804.cel and 880404 values in living trees does not necessitate cellu-
lose extraction unless variations in '%0 values are very low in the data
sets under study (Helle et al., 2022).

In contrast, examination of fossil, pre-Quaternary wood samples did
not yield a significant relationship between 6180‘1_@1 and 6180w00d,
suggesting diagenesis affects the §'80 value of whole wood on geologic
timescales. However, we identified for the first time, a 1:1 relationship
between the 5'%0 value of holocellulose and a-cellulose in fossil wood.
We note that analysis of holocellulose is beneficial over a-cellulose
because it allows for analysis of more degraded fossil samples with a
lower preserved cellulose content, and higher resolution sampling due
to the smaller amount of starting material required for analysis of 580y,
cel versus 880y cel. Together this comparison of 5'80wo0d, 8-204.cel, and
5'80},.ce1 across wood of various ages and states of degradation is
promising for the development of longer and higher-resolution records
of 8'80 trends using modern [including archaeological wood suffered
aging and decay (Dominguez-Delmas, 2020)] and fossil wood.
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