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Regulatory networks as large and complex as those implicated in cell-fate choice
are expected to exhibit intricate, very high-dimensional dynamics. Cell-fate choice,
however, is a macroscopically simple process. Additionally, regulatory network models
are almost always incomplete and/or inexact, and do not incorporate all the regulators
and interactions that may be involved in cell-fate regulation. In spite of these
issues, regulatory network models have proven to be incredibly effective tools for
understanding cell-fate choice across contexts and for making useful predictions. Here,
we show that minimal frustration—a feature of biological networks across contexts but
not of random networks—can compel simple, low-dimensional steady-state behavior
even in large and complex networks. Moreover, the steady-state behavior of minimally
frustrated networks can be recapitulated by simpler networks such as those lacking
many of the nodes and edges and those that treat multiple regulators as one. The
present study provides a theoretical explanation for the success of network models in
biology and for the challenges in network inference.

cell-fate choice | gene regulatory networks | frustration | network inference | sloppiness

Biological network models that describe the regulatory relationship between different
molecular players or between higher-level biological entities (such as signaling pathways
or cell types) have been extremely useful in systems biology (1, 2) to model and
understand the features of cell-fate regulation (3). With the advent of high-throughput
molecular profiling techniques, network-based models and approaches have become
nearly indispensable (4, 5). Identifying features that distinguish biological networks from
random networks has been an area of active research. Previous studies have argued
that biological networks present a scale-free degree distribution (6, 7), are hierarchically
organized (8), and exhibit recurrence of certain patterns called motifs with a higher
probability than expected by random chance (9). However, these and other analyses
of topological differences have provided little insight into the functional differences
between actual biological networks and random networks, i.e. those differences that
enable biological networks to effectively regulate cell fates.

Two functional behaviors of biological regulatory networks stand out. First, physics
would suggest that even systems with a relatively small number of independent variables
are expected to exhibit exceedingly complex behaviors (10, 11). However, cell-fate
regulation, successfully modeled using large and complex networks, is a macroscopically
simple process (12-18). Different cell fates are characterized by distinct expression
patterns or activity levels of sets of genes (including transcription factors, micro-RNAs,
etc.) (19). The typical approach to modeling the establishment of distinct cell fates is to
simulate the dynamics of a regulatory network using a methodology of choice (ordinary
differential equation-based modeling or rule-based modeling, among others), identify
the steady states of network dynamics, and then map each steady state or each group
of similar steady states to a distinct cell fate. While the set of cell types—specific gene
expression patterns seen in biology—is fairly limited, dynamical models of the size and
complexity of biological regulatory networks should, in general, be capable of exhibiting
a far more diverse set of expression patterns at steady state. Is there then a universal
feature of regulatory networks in biology that restricts the set of gene expression patterns
commonly seen?

Second, nearly all network descriptions of cell-fate regulation involve models that
are inexact and/or incomplete—such network models do not incorporate all of the
genes involved or all the interactions between the chosen genes and often treat multiple
biomolecules as a single regulator. This is a consequence of the limited resolution of
current experimental techniques, limited data availability, noise in the collection and
interpretation of data from high-throughput experiments, the high context dependence
of biological assays, and, in many cases, choices made to simplify the modeling task.
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For example, gene networks of widely different sizes have been
used to usefully model the regulation of choice between epithelial
and mesenchymal fates (13, 14, 20-22). While none of these
network models can claim to be more exact than the others, all
can claim to recapitulate the gene expression patterns associated
with epithelial and mesenchymal cell fates and to provide useful
insights into the regulation of the underlying biological process.
The success of these incomplete and inexact regulatory network
models raises the following question: Is there a universal feature
of regulatory networks in biology that allows us to recapitulate
the observed biological behavior and make useful predictions
without the need to know and incorporate the exact network
structure?

Our previous work (23) answered, in part, the first question.
We identified minimal frustration as a key property of biological
regulatory networks across contexts and showed, within a
Boolean modeling framework (14), that biological networks
exhibit certain steady states with exceptionally low frustration.
These states are the ones that are most frequently encountered
when simulating network dynamics and correspond to the gene
expression patterns seen in biology. Such low-frustration states
are not seen in the case of random networks that have the same
topological features as the biological network. While minimally
frustrated biological networks can still exhibit steady states with
nonbiological gene expression patterns, such steady states are
rarely dynamically encountered.

In the present study, we extend our analysis to ordinary differ-
ential equation-based models of biological regulatory networks.
We show that provided the network is minimally frustrated as
defined previously (23) (and discussed below), the steady-state
network behavior is simple and largely one-dimensional, in spite
of the complex and multidimensional nature of the network
model. This property underlies the suitability of large biological
networks for describing a macroscopically one-dimensional
process such as cell-fate regulation. We then go on to answer
the second question posed above and show that the behavior
modeled by a minimally frustrated network can be recapitulated
by much smaller, simpler network models either lacking many
of the regulators and interactions present in the original network
or combining multiple regulators into single nodes. Thus, the
present study builds upon the analysis in ref. 23 to establish
minimal frustration as a key feature of biological regulatory
networks and helps explain the success of necessarily incomplete
systems biology models in modeling cell-fate regulation.

Modeling Regulatory Dynamics

Specifying regulatory networks—A regulatory network involved
in cell-fate regulation can be specified using a directed graph.
A node in such a graph may correspond to a transcription
factor, a micro-RNA, an epigenetic modifier, or any other
regulatory factor. Each directed edge in the graph is signed—
either activating or inhibiting—depending on the type of the
regulatory relationship between the regulators. Mathematically,
a regulatory network with N nodes can be described with an
N x N connection matrix / such that /; = +1 if the edge
i < jis activating and J; = —1 if the edge is inhibitory;
Jii = 0 if there is no edge from j to i Provided that the
rules governing how the different inputs to a node combine are
available, the network dynamics may be simulated either within
a discrete modeling framework, (a Boolean framework being the
most commonly used (24)), or a continuous framework involving

ordinary differential equations (ODEs).
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Boolean modeling and definition of frustration— In a Boolean
modeling framework, the state of an N-node network is specified
by a sequence of IV binary variables {s, 2, ..., sy}, with s; = +1
if the regulatory species represented by node i is active and/or
highly expressed, and 5; = —1 otherwise. The various inputs
to a given node, as described by the connection matrix /, may
combine additively or via more complex logic-based rules. Here,
we consider the simple case wherein the inputs to any given node
combine additively and independently (14). In such a scenario,
the discrete-time network dynamics are given as (23)

Sl'(t—F 1) =4J-1 if Z]]l]s] <0, [1]
si(2) Zj]z’jfj =0.

The network state is updated in an asynchronous fashion: at
any given point in time, a node is chosen at random and its
state updated using Eq. 1. Note that simulating the dynamics
of biological regulation using Eq. 1 requires only the network
connection matrix /—there are no other parameters involved.
One can identify the stable states of such dynamics as any network
state {s;} wherein 5;(# + 1) = s5;(¢) for all 7. For every network
state, one can define frustration as the fraction of network edges
that are not satisfied in that state, i.e., the fraction of edges for
which Jjsis; < 0(23, 25). In the case wherein the inputs to a given
node combine via logic-based rules, frustration of a network state
may be similarly defined. However, the precise mathematical
definition is more complex in such a scenario (see ref. 23).

Throughout this manuscript, we refer to a network as being
minimally frustrated if, within the Boolean modeling framework
described above, the network exhibits certain steady states with
frustration significantly lower than that of the steady states
exhibited by random networks with similar topological features
(i.e., random networks with the same number of nodes and
edges, the same number of activating and inhibitory edges,
and the same in-degree and out-degree for each node). Such
random networks can be generated from the original biological
network by repeatedly choosing a pair of network edges at random
and swapping their targets (SI Appendix, section S1A). The
random networks thus obtained may be more or less modular,
as quantified by the directed Louvain modularity (26), than the
corresponding biological network (S7 Appendix, Fig. S1).

ODE-based modeling—In an ODE-based modeling frame-
work, the regulatory network state is described by a continuous
N-dimensional vector {y1,y2,.... v}, where y; describes the
expression or activity level of the regulator represented by
node 7. Given a connection matrix /, the network dynamics
(in continuous time) can be described using a set of ordinary
differential equations of the form (27)

Ay S
PR l_[ H> (95, hij» O, mjj) — kyyi. (2]
7170

Here, H° is the shifted Hill function: HS()/]-, )»l-j, @Z-]-, nl]) =
i + (1 — AU)W Note that A; > 1 if the edge

i < jis activating (i.e., if /; = +1) and A; < 1 if the
edge i < j is inhibitory (i.e., if /; = —1). Once again, we
assume that the inputs to any given node act independently
of one another. The system of ODEs in Eq. 2 associates two
kinetic parameters with each network node: g;, the production
rate, and #4;, the degradation rate of the regulator represented
by node i. Three kinetic parameters are associated with each
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network edge: A, the maximum fold change in the production
rate of node 7 that node j can cause, ©®;;, the threshold
parameter of the Hill function, and #;, the Hill coefhicient.
The system of ODEs in Eq. 2 describes a general setup to
model the dynamics of a system of regulatory nodes that can
activate or inhibit one another. Such a system can be defined
for any given connection matrix /. A more specialized setup
with different equations explicitly modeling different modes
of biological regulation (e.g., transcriptional regulation, micro-
RNA-mediated regulation, ubiquitination-mediated regulation,
etc.) may be chosen to model specific biological systems of
interest.

For a given network connection matrix /, the dynamics
in an ODE-based framework will, of course, depend on the
choice of the kinetic parameters involved in Eq. 2. The choice
of an appropriate parameter set will vary with the biological
context and, in general, can be exceedingly difficult. Here, we
analyze generic, statistical features of the dynamics for a fixed
connection matrix / and an ensemble of kinetic parameter
sets generated using the random circuit perturbation (RACIPE)
approach (27) (S Appendix, section S1B). RACIPE generates an
ensemble of kinetic parameter sets in a systematic fashion such
that the ensemble is representative of all biologically relevant
possibilities. This approach ensures that our analysis is not
restricted to the dynamical behavior under a fixed parameter
set fitted to some given (arbitrarily chosen) experimental context.
More importantly, it allows us to capture the heterogeneity in
dynamical behavior that is inherent in biological systems. In fact,
each parameter set in the ensemble generated by RACIPE can
be interpreted as modeling a different cell in a population, with
the variation in the ensemble capturing the cell-to-cell variation
in a population. RACIPE can capture the variation arising from
intrinsic (different genetic and epigenetic backgrounds) as well
as extrinsic (different signaling environments) sources. Note that
given the deterministic dynamics for each parameter set generated
by RACIPE and the focus on steady-state behavior, the present
study does not address how biological and random networks
behave under stochastic gene expression noise or in response to
fast environmental fluctuations.

Results

Steady-State Dynamics of Biological Regulatory Networks Are
Simple. We analyzed features of the set of steady states exhibited
by multiple biological regulatory networks taken from the
literature (15, 16, 22) for an ensemble of kinetic parameter
sets (as described in 87 Appendix, section S1B) and compared
these features with those obtained for random networks with
similar topological features. Fig. 1 A-C shows that in the case
of biological networks, most of the variation in the steady
states is one-dimensional—along the first principal component.
This suggests that while these networks are complex—they
involve many biomolecular regulators and numerous interactions
among them—their behavior at steady state is simple and can
be sufficiently described by a single order parameter (e.g., the
first principal component). There is no need to specify the
expression/activity levels of all of the network nodes to describe
the network steady state. In contrast, in the case of random
networks, the behavior at steady state is much more complex: a
much smaller fraction of the total variance in the set of steady
states is captured by the first principal component than in the
case of the biological network sharing similar topological features.
Thus, describing the steady state in the case of random networks
would require specifying the expression/activity levels of many
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or all of the network nodes, and restricting the description to
the first (or even the first few) principal component(s) would be
uninformative (S/ Appendix, Fig. S2). Note that RACIPE was run
ab initio for each biological network and each random network
instance. Thus, the ensemble of kinetic parameters for which the
network behavior is simulated is distinct in each case.

Analyzing the underlying structure in the set of steady states
obtained in different cases, we find that the distribution of the
first principal component in the case of the biological networks
analyzed here is largely bimodal (Fig. 1 D-F). This indicates
that the steady states obtained for the ensemble of parameter
sets in the biological case cluster into two distinct groups. This
observation is confirmed visually by hierarchical clustering of
the set of steady states obtained (7op-Left plot in Fig. 1 G-I),
wherein we see two sets of steady states with distinct activity
patterns of the network nodes (also, see S/ Appendix, Fig. S3).
No such discernible pattern can be seen in the case of random
networks (plots other than the 7op-Left one in Fig. 1 G-I). The
readily evident clustering of the steady states into two distinct
groups (Fig. 1 D-/) indicates that most of the steady states of
these networks can be mapped to one of two phenotypic states
with distinct gene expression patterns. This is consistent with
the role of these networks in establishing two distinct cell fates:
epithelial cells and mesenchymal cells in the case of the epithelial-
mesenchymal transition (EMT) network (22), neuroendocrine
cells and mesenchymal cells in the case of the small cell lung
cancer (SCLC) network (16), and stem cells and differentiated
cells in the case of the pluripotency network (15).

Recall that the only input to RACIPE is the connection matrix
J. The approach does not take any other experimental data
as input, generating the ensemble of kinetic parameters in an
unbiased fashion so as to capture the range of possible network
behaviors. Thus, the structure in the steady states obtained using
RACIPE (shown in Fig. 1 D-/) is an intrinsic property of
biological connection matrices that is seen to be absent in random
networks.

Fig. 1 demonstrates the capability of the biological networks
analyzed here to robustly establish cell types with biological gene
expression patterns. Biological networks exhibit this behavior
for a broad range of kinetic parameter sets in a manner that
is dependent on the network connection matrix /. While these
networks can still exhibit certain steady states that cannot be un-
controversially mapped to one of the two groups that correspond
to biological phenotypic states (Fig. 1 D—F) and with expression
patterns not seen in canonical cell types, such steady states are
infrequently encountered when simulating network dynamics
starting from random initial conditions. Such steady states with
aberrant expression patterns are seen at a higher frequency in
the case of the SCLC network (see Fig. 1 £ and H) as has
been noted elsewhere (16). The noncanonical expression patterns
corresponding to such aberrant steady states, while suppressed
in healthy cells, have been reported in cancer cells (16, 28).
Phenotypes with noncanonical expression patterns (and high
frustration) have also been associated with transitions between
phenotypic states with canonical gene expression patterns (29).

Minimal Frustration Underlies the Simple Steady-State Dy-
namics of Biological Regulatory Networks. We have previously
demonstrated that biological regulatory networks taken from
the literature (including the ones analyzed in Fig. 1), within
a Boolean modeling framework, exhibit certain steady states
with frustration lower than that of steady states exhibited by
random networks with similar topological features, i.e., biological
regulatory networks are minimally frustrated (23). In the previous
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Fig.1.  Steady-state dynamics of complex biological networks are simple and largely one-dimensional. (A-C) Distribution of the percentage variance explained
by the first principal component (PC1 % variance) in the case of random networks (histograms) with the same number of nodes and edges and similar topological
features as the biological network (dashed vertical lines with arrows). In each case, PC1 is the principal component that explains the greatest percentage of the
variance in the steady states. See S/ Appendix, Fig. S2 for contribution from the other principal components. (D-F) Distribution of PC1 projection of the steady
states obtained for the three biological networks. See S/ Appendix, Fig. S3 for the projection of the steady states along PC1 and PC2. (G-/) Expression levels of
the different network nodes in the various steady states obtained for biological and random networks. Different steady states are shown along the rows, while
the network nodes are shown along the columns of the heatmaps, with the colors indicating the expression levels. Both rows and columns were hierarchically
clustered to obtain the heatmap in each case (S/ Appendix, section S1C). Left column (A, D, and G): epithelial-mesenchymal transition (EMT) network (22); Middle
column (B, E, and H): small cell lung cancer (SCLC) network (16); right column (C, £, and /): pluripotency network (15).

section Steady-State Dynamics of Biological Regulatory Networks
Are Simple, we have shown that, within an ODE-based modeling
framework, the steady states exhibited by biological networks
are simple and largely one-dimensional. In both cases, we
argue that the reported biological network behavior underlies
the ability of large and complex networks to describe cell-fate
regulation. To determine whether the two features—minimal
frustration within a Boolean modeling framework and simple,
largely one-dimensional steady-state dynamics within an ODE-
based modeling framework—are directly related, we simulated
the evolution of a population of random networks with the same
topological features as the EMT network (22) subject to different
selection pressures (see ST Appendix, section S1D for the detailed
methodology). Under selection for networks for which the
steady-state dynamics are largely one-dimensional (as quantified
by the percentage of variance in the set of steady states explained
by the first principal component) (Fig. 24), we obtained networks
that were minimally frustrated (Fig. 2B). Reciprocally, selection
for the low-frustration property (Fig. 2C) led to the emergence
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of networks with largely one-dimensional steady-state dynamics
(Fig. 2D). Moreover, under selection for low frustration, we
obtained networks that exhibited steady-state gene expression
patterns very similar to the biological case (compare Fig. 2F and
the Top-Left plotin Fig. 1G). It has previously been suggested that
a large, complex regulatory network can exhibit low-dimensional
gene expression patterns if the network has a modular topology
(30). However, we did not see an increase in the modularity of
networks in the population while selecting for networks with
largely one-dimensional steady-state dynamics (S/ Appendix, Fig.
S4). Emergence of networks with largely one-dimensional steady-
state dynamics was also observed for the case of simulations
involving growth in network size (emulating increase in the size
and complexity of the regulatory network involved in a certain
cell-fate choice process over the course of biological evolution)
under selection for minimal frustration (S Appendix, Fig. S5).
The behavior in Fig. 2 shows that the minimal frustration
property and the property of exhibiting simple, largely one-
dimensional steady-state dynamics over an ensemble of parameter
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sets are, in fact, equivalent—selection for one automatically
selects for the other. Since a Boolean model, defined here simply
by the connection matrix /, can be built into a corresponding
ODE-based model by including a suitable set of kinetic pa-
rameters and mathematical expressions, we may conclude that
the minimal frustration property within the Boolean framework
underlies the simple steady-state dynamics seen in the ODE-
based framework. An approach for directly obtaining a Boolean
modeling framework starting from an ODE-based model would
be helpful for verifying whether simple steady-state dynamics
in an ODE-based model can underlie minimal frustration within
a Boolean modeling framework. Such an approach will be
investigated in a future study.

Simplicity of Steady-State Dynamics Is Preserved Under Node
and Edge Deletions. Robustness of functional behavior to ge-
nomic and environmental perturbations is a well-known feature
of biological systems (31). To determine whether the func-
tional characteristic of biological regulatory networks highlighted
here—simple, largely one-dimensional steady-state dynamics—is
robust to node and edge deletion, we deleted nodes (Fig. 34) and
edges (Fig. 3B) in the EMT network (22) one by one (following
the approach detailed in S/ Appendix, section S1E), and reported
the percentage of variance in the steady states that is explained by
the first principal component (corrected for the number of nodes
in the network) at each step. Fig. 3 A and B shows that the steady-
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state dynamics remain largely one-dimensional even as nodes
and edges are successively deleted from the EMT network, and
this behavior is maintained over the deletion of a large fraction
of nodes and edges. Similar behavior is observed in the case
of a minimally frustrated network (Fig. 3 C and D) obtained
at the end of the evolution simulation subject to selection for
low frustration shown in Fig. 2C as well as for other biological
networks (87 Appendix, Fig. S6). The shape of the distribution of
the first principal component can also withstand the deletion of
a large fraction of network nodes and edges (Fig. 3 £ and F and
SI Appendix, Fig. S7). Note that the change in the variance along
the first principal component depends on the order in which the
nodes or edges are deleted (compare the red (blue) plots with
the pink (light blue) plots in Fig. 3 A-D), indicating that certain
nodes and edges in the network are more important than others
in maintaining the simple, one-dimensional network dynamics.

Networks Lacking Multiple Nodes and Edges Can Recapitulate
Biological Expression Patterns. Until now, we have shown that
in spite of their large size and complexity, minimally frustrated
networks such as biological networks taken from the literature
exhibit fairly simple, one-dimensional steady-state dynamics.
Based on this observation, we hypothesized that “simpler”
network models should be capable of recapitulating the steady-
state behavior exhibited by a larger, more complex network
provided the larger network is minimally frustrated. Here, by
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Fig.3. Thesimple, one-dimensional steady-state behavior as characterized
by a large fraction of the variance in the steady states being explained by the
first principal component (PC1) is preserved under node and edge deletion in
the case of the 26-node, 100-edge epithelial-mesenchymal (EMT) network (22)
(A and B) as well as in the case of a minimally frustrated network obtained via
an evolution simulation (C-F). (E and F) Change in the distribution of the first
principal component (PC1) projection of the steady states during node (£) and
edge (F) deletion. To generate the curves labeled “Remove nodes/edges in
order of sensitivity”, we defined “sensitivity” so as to capture the dependence
of the obtained steady states on specific model parameters: higher sensitivity
implies a larger change in steady states upon varying the model parameters
(see SIAppendix, section S1E for a mathematical definition). In A, C (red curves),
and E, the node with the lowest sensitivity was deleted first. In B, D (blue
curves), and in F, the edge with the lowest sensitivity was deleted first. See
Sl Appendix, Fig. S7 for a quantitative comparison of the distributions obtained
after node or edge deletion with the original distribution.

https://doi.org/10.1073/pnas.2216109120

5 of 12


https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2216109120#supplementary-materials

Downloaded from https://www.pnas.org by RICE UNIVERSITY FONDREN LIBRARY/MS 235 on May 31, 2023 from IP address 168.5.145.200.

“simpler,” we imply networks lacking multiple nodes and/or
edges present in the original network. A different manner of
network simplification is addressed in the next section.

In agreement with the above hypothesis, we find that networks
lacking numerous nodes and edges present in the EMT network
(22) (see SI Appendix, section S1E for how such networks
were obtained) can still recapitulate the pattern of node ex-
pression/activity levels exhibited by the full 26-node, 100-edge
EMT network (Fig. 4 A and C). Importantly, these smaller,
simpler networks exhibit strikingly similar behavior in response
to gene knockouts as the full EMT network (Fig. 4 B and D
and SI Appendix, Fig. S8): the change in the distribution of the
first principal component upon gene knockout in the simpler
networks is qualitatively similar to the change in the case of the
original network. Thus, given experimental data on the gene
expression profiles seen in cells and even data on the effect of
knocking out multiple genes, it is impossible to uniquely identify
any one network model as the correct one. Instead, one can
employ many useful network models of different sizes and varying
complexities to model EMT, each missing a different subset of
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the nodes and edges present in the original network. Clearly, it
is not necessary to know the exact network to recapitulate the
overall biological behavior. In fact, the 26-node, 100-edge EMT
network considered as the full EMT network in this section is
itself not the “correct” network—while it captures many of the
features of EMT regulation, it cannot claim to incorporate all
the regulators that can affect EMT or even the entire set of
interactions among the regulators it does incorporate. Note that
useful network models of EMT cannot be simplified beyond
a certain limit: exceedingly simple networks cannot adequately
recapitulate biological behavior. This can be clearly seen in the
heatmaps presented in Fig. 4C. Interestingly, this behavior is not
limited to the EMT network. ST Appendix, Fig. S9 shows that
for a minimally frustrated network obtained via the evolution
simulation (Fig. 2 C and D), the steady-state node activity pattern
can also be recapitulated by simpler networks with fewer nodes
and edges.

Networks that Combine Regulators Can Recapitulate Biological
Behavior. In the previous section, we analyzed the steady-state
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Fig. 4.  The pattern of node expression/activity levels at steady state exhibited by the 26-node, 100-edge epithelial-mesenchymal (EMT) network (22) is
recapitulated by simpler networks obtained upon node deletion (A) or edge deletion (C). Each heatmap shows the expression levels (indicated by the color)
of the same eight nodes of interest across the different steady states obtained for each network. Different steady states are shown along the rows, while the
network nodes are shown along the columns of the heatmaps. The heatmaps shown here were generated by hierarchically clustering the rows (i.e., the steady
states), while the network nodes (i.e., the columns) are shown in the same order. The simpler networks obtained are shown alongside the corresponding
heatmaps. (B and D) The simpler networks obtained upon node or edge deletion recapitulate the response of the larger, original EMT network to multiple
gene knockouts. In each plot shown in B and D, the blue histogram shows the distribution of the first principal component in the control case, while the pink
histogram shows the distribution obtained upon gene knockout. The principal component analysis was carried out for the eight nodes of interest. Each row in
panels B and D shows the behavior for a fixed network (whose size is indicated in the figure), while each column shows the response to a given gene knockout
(KO). See SI Appendix, Fig. S8 for a quantitative comparison of the distributions obtained after gene knockout with the distributions in the control case. The
simpler networks analyzed here were obtained by successively deleting randomly chosen nodes (A and B) or edges (C and D) while ensuring that the eight
nodes of interest are retained in the simpler networks. The same eight nodes were the nodes of interest in panels A-D: four epithelial state markers (CDH1,
miR-200b, miR-200¢, and miR-34a) and four mesenchymal state markers (VIM, ZEB1, SNAI1, and TWIST1). In each of the networks in A and C, nodes with the
same name are shown in the same position. Descriptions of all networks shown are available online (S/ Appendix, section STH).
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Fig. 5. (A, Bottom) Simpler networks obtained by repeatedly applying the coarse-graining procedure described in S/ Appendix, section S1F to the 26-node,

100-edge epithelial-mesenchymal (EMT) network (22) recapitulate the steady-state expression patterns exhibited by the larger, original network. Each heatmap
shows the expression levels (indicated by the color) of the same eight nodes of interest (same as the nodes of interest in Fig. 4) across the different steady states
obtained for each network. (4, Top) The original 26-node, 100-edge EMT network is shown (Left) along with the simpler networks obtained via the coarse-graining
procedure. (B, Top) Simpler networks obtained via the coarse-graining procedure applied to the 72-node, 142-edge EMT network (14) exhibit steady-state
expression patterns similar to the pattern obtained for the larger, original network. Each heatmap shows the expression levels (indicated by the color) of the
same twelve nodes of interest across the different steady states obtained for each network. The twelve nodes of interest were Ecadherin, KLF4, cateninmemb,
miR200, GSK3, TrCP, cateninnuc, ZEB1, SNAI1, TWIST1, ZEB2, and FOXC2. (B, Bottom) The original 72-node, 142-edge EMT network is shown (Left) along with the
simpler networks obtained via the coarse-graining procedure. In both A and B, the coarse-graining procedure was applied while ensuring that the nodes of
interest are not combined with any other network node at any step. In all heatmaps, different steady states are shown along the rows while the network nodes
are shown along the columns of the heatmaps. The heatmaps shown here were generated by hierarchically clustering the rows (i.e., the steady states). Each
heatmap shows the network nodes (i.e., the columns) in the same order. In each of the networks in A and B, nodes with the same name are shown in the same
position along the periphery, while nodes that represent multiple nodes combined into one are shown toward the center. Descriptions of all networks shown

are available online (S/ Appendix, section S1H.

behavior of simpler networks that lack many of the nodes and
edges present in the larger, original network. Here, we consider
simpler networks obtained by combining sets of nodes in the
original network and treating each set as a single regulator. Such
a network simplification was motivated by the observation that,
in the literature, cell types and cell-state transitions have been
described both in terms of the expression levels of individual
genes as well as in terms of the overall activity levels of different
pathways (often comprising numerous genes) (32, 33). We first
developed a systematic procedure to combine sets of nodes
into a single regulator (described in S Appendix, section S1F).
SI Appendix, Fig. S10 shows the sequence of networks obtained
by repeatedly applying this “coarse-graining” procedure to the
EMT network (22). Note that the network obtained at each step
has both fewer nodes and edges and is thus simpler than the
network in the previous step.

Consistent with the behavior in Fig. 4, we find that the simpler
networks obtained by applying the above-mentioned coarse-
graining procedure to the 26-node, 100-edge EMT network are
able to recapitulate the steady-state expression patterns exhibited

PNAS 2023 Vol. 120 No.1 2216109120

by the original network (Fig. 5A4). SI Appendix, Fig. S11 shows
two of the simplified networks obtained via the coarse-graining
procedure. Note that the rightmost network shown therein
groups together specific epithelial factors (miR-101, miR-200a,
miR-141, CLDN7, OVOL2, GRHL2, miR-30c, and miR-
9) into a single regulatory node and specific mesenchymal
factors (FOXC2, ZEB2, SNAI2, TGF-beta, TWIST2, GSC,
KLF8, TCF3, miR-205, and NP63) into another regulatory
node, instead of treating each of these factors separately. This
simplified network exhibits a steady-state expression pattern
very similar to the one exhibited by the original, larger EMT
network (compare the first and last panels in Fig. 54). We
also applied our coarse-graining procedure to a larger EMT
network taken from the literature, one with 72 nodes and
142 edges (14). Like other biological networks analyzed in
the present study, this network is also minimally frustrated
(23). Once again, the simpler networks obtained by coarse
graining reproduced the steady-state expression patterns of the
key EMT-related genes (Fig. 5B) exhibited by the larger, original
network. The grouping of different nodes in the simpler networks
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is biologically interpretable (see the network on the right in
SI Appendix, Fig. S12): genes that are in the same pathway
are grouped together. The hypoxia stimulus, HIF1 gene, and
LOXL gene are grouped to form a node representing the hypoxia
pathway. Various factors involved in growth-factor signaling,
including platelet-derived growth factor (PDGF) and receptor
(PDGEFR), epithelial growth factor (EGF) and receptor (EGFR),
insulin-like growth factor (IGF1) and receptor (IGF1R), and
fibroblast growth factor (FGF) and receptor (FGFR), are also
grouped to form a single node representing the many signaling
pathways known to drive EMT. The Notch pathway genes and
factors NOTCH, NOTCH intracellular domain (NOTCHic),
DELTA, Jagged, and HEY1) are grouped together and so are
the molecular players involved in the Wnt signaling pathway
(TCF/LEF, Wnt, Frizzled, and AXIN2). We also applied the
coarse-graining procedure to the SCLC network (16): the simpler
networks thus obtained are shown in S/ Appendix, Fig. S13. Once
again, we observe that the simpler networks obtained recapitulate
the gene expression patterns exhibited by the larger, original
network.

SI Appendix, Fig. S9 shows that the ability of simpler, coarse-
grained networks to recapitulate the steady-state gene expression
patterns exhibited by the larger network is not limited to the
case of biological networks taken from the literature but extends
to minimally frustrated networks obtained via the evolution
simulation in Fig. 2 C-F.

A Data-Driven Example. So far, we have analyzed the behavior of
previously published biological networks that were constructed
by aggregating information from the literature and from biolog-
ical databases using a variety of methods (14-16, 22). For our
final example, we turn to a network constructed directly from
gene expression data.

Specifically, we study the regulation of MYC-pathway activa-
tion in breast tumors. Terunuma et al. obtained the bulk gene
expression profiles from 61 breast tumor samples and identified
a subset of tumors that showed a MYC-activated phenotypic
state (34). This phenotype was associated with elevated levels of
the oncometabolite 2-hydroxyglutarate, DNA hypermethylation,
and poor disease prognosis. We used the gene expression data
from this study as an input to the GRNBoost2 algorithm (35) and
obtained a regulatory network that may be involved in the reg-
ulation of tumor cell-fate choice between high MYC-activation
and low MYC-activation states (see S Appendix, section S1G for
the detailed methodology). We chose GRNBoost2 for network
inference here since it is a popular and efficient algorithm, and
a recent benchmarking study that compared multiple network
inference methods recommended GRNBoost2 as a method of
choice (36). Moreover, we believe that the choice of the network
inference method is unlikely to change the conclusion here. The
inferred regulatory network returned by GRNBoost2 consisted of
138 nodes and 451 edges. We have previously shown that such an
inferred network is minimally frustrated, just like the biological
networks taken from the literature (23). Here, we report that
the inferred regulatory network modeled using ODEs exhibits
steady states that vary mostly along the first principal component
(Fig. 6B; red dot), once again consistent with the behavior seen
in the case of biological networks taken from the literature
(Fig. 1). This was not true for the case of networks inferred
by using randomly shuffled gene expression patterns as inputs
to our network inference methodology (Fig. 6B; blue dots).
Importantly, simulation of dynamics of the inferred network
using RACIPE (SI Appendix, section S1B) recapitulated the gene
expression patterns seen in patient tumor samples (Fig. 6 A and
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D). As in the case of biological networks taken from the literature,
the steady-state gene expression patterns exhibited by the large
inferred network could be recapitulated by simpler networks
obtained by node deletion, edge deletion, or via the coarse-
graining procedure (Fig. 6D). Interestingly, the simpler networks
obtained via the coarse-graining procedure better preserve the
steady-state expression patterns of the nodes of interest than do
the simpler networks obtained via node or edge deletion.

The low-dimensional dynamics in Fig. 6 are not altogether
surprising given that the gene expression profiles of breast tumor
samples in the dataset used for network inference are inherently
low dimensional (evident from Fig. 64). Thus, it would be
reasonable that the inferred gene regulatory network must also
have low-dimensional dynamics. The analysis in Fig. 6 does
directly indicate that there was no role played by any possible
systematic bias in the methodologies used to construct the
other biological networks analyzed in the present study (the 26-
node (22) and the 72-node (14) EMT networks, the SCLC
network (16), and the pluripotency network (15)) that give rise
to our demonstrated results. Instead, networks inferred from
biological data in a fully automated manner with minimal human
intervention (such as the MYC pathway activation network in
Fig. 6) also exhibit similar low-dimensional dynamical behavior.

Additionally, the set of genes whose expression levels were
used as inputs to GRNBoost2 to obtain the network analyzed in
Fig. 6 included both genes that are up-regulated as well as those
that are down-regulated in response to MYC activation (37) (see
SI Appendix, section S1G for details). The fact that the inferred
network involving these genes has features of minimally frustrated
networks would suggest that the regulatory connections among
the direct and indirect targets of MYC are organized so as to
have low frustration: genes activated by MYC typically activate
other genes activated by MYC while repressing MYC targets that
are inhibited by MYC induction. Conversely, genes repressed
by MYC typically activate other genes repressed by MYC while
repressing MYC targets that are activated upon MYC induction.
This observation further supports our hypothesis that gene
regulatory networks in biology are minimally frustrated.

Discussion

Large, complex networks involving numerous molecular players
and various regulatory relationships among them are frequently
used to describe and model cell-fate choice, especially as high-
throughput assays have become increasingly commonplace.
From a dynamical systems perspective, such networks would be
expected to exhibit complex behaviors in very high-dimensional
spaces (10, 11). However, in most cases, cell-fate choice appears
to be a macroscopically simple and low-dimensional process (12)
and where a given cell falls on the spectrum between distinct
cell fates can be specified with a single order parameter. For
example, pseudotime, which is essendally a one-dimensional
order parameter, has been widely used to order cells along a cell-
fate trajectory based on their gene expression patterns (38, 39).
Multiple studies have described metrics, a single number in each
case, to specify where a sample lies on the epithelial-mesenchymal
spectrum on the basis of the gene expression in that sample (40—
42). Another one-dimensional metric has been developed to assess
the stemness of leukemia samples (43). In the present study, we
have shown that large, complex networks can exhibit largely
one-dimensional steady-state behavior provided the network
is minimally frustrated (as defined in ref. 23). Importantly,
we demonstrate that minimally frustrated networks can be
simplified—one can obtain multiple smaller networks that can
recapitulate the behavior exhibited by the larger network. Since,
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Anetwork inferred from a gene expression dataset (34) exhibits the same behavior as biological networks taken from the literature and other minimally

frustrated networks. (A) Expression of 30 MYC-associated genes in 61 breast tumor samples obtained by Terunuma et al. (34). Different tumor samples are
shown along the rows while the genes are shown along the columns. Color indicates the expression level. (B) Fraction of variance in the steady states explained
by the first principal component (PC1) in the case of the network inferred from breast tumor samples (34) (red dot) and from randomized gene expression
profiles (blue dots). Principal components are sorted in decreasing order of the fraction of variance explained. (C) The percentage of variance in the steady
states explained by the different principal components in the case of the network inferred from a biological dataset (34) (pink curve) and from randomized
gene expression datasets (blue curves). (D, Left) The network inferred from the expression profiles of breast tumor samples (34) exhibits steady states with
gene expression patterns similar to those seen in the breast tumor samples in A. (D, Right) Simpler networks obtained via node deletion (Top Row), edge deletion
(Middle Row), or coarse graining (Bottom Row) recapitulate the expression patterns exhibited by the larger inferred network. Each heatmap shows the expression
levels of the same 30 nodes of interest across the different steady states. The simpler networks were obtained by deleting nodes and edges in random order
while retaining the 30 nodes of interest at each stage. While applying the coarse-graining procedure, the 30 nodes of interest were not combined with any
other network node at any stage. In all heatmaps, different steady states are shown along the rows, while the network nodes are shown along the columns of
the heatmaps. The heatmap in A was obtained by hierarchically clustering both the rows (i.e., the patient expression profiles) and the columns (i.e., the genes
of interest). The heatmaps in D were generated by hierarchically clustering the rows (i.e., the steady states): each heatmap shows the network nodes (i.e., the
columns) in the same order as in A. The names of the 30 nodes of interest are listed below the heatmap in A.

as shown in ref. 23, cell-fate networks are minimally frustrated,
it is possible to develop network models that can recapitulate
the observed behavior without the need to incorporate all of the
details of biological regulation.

The minimal frustration property described here is closely
related to the near-monotone nature of biological networks
characterized previously by Sontag et al. (44, 45). In fact, for
the system of ODEs in Eq. 2, the species graph (a signed
digraph), as defined in ref. 44, is given by the connection
matrix / defined in Modeling Regulatory Dynamics (ignoring
self-edges, same as the case in ref. 44). A system is said to
be near-monotone if there exists a spin assignment {o;} for
the species graph such that the number of edges for which
Jiioioj < 0 is close to zero (closer to zero as compared to
the case of random networks). Thus, the definition of near-
monotonicity is the same as the definition of minimal frustration
(provided that all self-edges are ignored). Monotone systems
are unlikely to exhibit chaotic behaviors, and their response to
perturbations is robust and predictable. The near-monotonicity
of biological networks has been implicated in their dynamically

PNAS 2023 Vol. 120 No.1 2216109120

stable behavior (45). However, monotonicity analysis relies solely
on the existence of a minimally inconsistent spin assignment
and does not consider whether that spin assignment has any
special biological meaning. The analysis in ref. 23 showed that
the minimally inconsistent spin assignments correspond to steady
states of Boolean dynamics that are biologically important and
exhibit very large basins of attraction as compared to the more
inconsistent spin assignments. In predicting that the dynamics
of minimally frustrated, or near-monotone, biological networks
are largely one-dimensional, with steady states corresponding
to biological gene expression patterns having very large basins
of attraction, the present analysis provides far more functional
insight than the prediction of monotone dynamics for Eq. 2.
Interestingly, the mathematical framework for characterizing the
monotonicity of dynamical systems, along with the tools for
analyzing network state spaces and controllability in the context
of monotone systems/subsystems (46, 47), provides a promising
methodology for extending the concept of minimal frustration
beyond regulatory networks to signaling and other biochemical
networks. This idea will be explored in a future study.
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As genome-wide transcriptional profiling became common-
place, first via microarray analysis and then via RNA-seq, it
was recognized that gene expression datasets are effectively low
dimensional, as evidenced by the extensive covariation in the
gene expression levels (48, 49). The observed low dimensionality
has been attributed to the coregulation of genes within regulatory
modules, with the number of modules in the underlying network
determining the dimensionality of the gene expression dataset
(30). Our analysis suggests that the regulatory network need not
be modular to generate gene expression datasets that are low
dimensional: The randomized networks in our analysis can be
more or less modular as compared to the biological network with
similar topological features (S/ Appendix, Fig. S1). The steady-
state expression profiles obtained from the biological networks
are however always more one-dimensional as compared to their
random counterparts (Fig. 1). While selection for networks
that exhibit low-dimensional steady-state expression patterns
automatically results in the emergence of minimally frustrated
networks (Fig. 2 A and B), such a selection pressure does not
result in networks with higher modularity (57 Appendix, Fig. S4).
These results clearly establish that low-dimensional steady-state
gene expression is a consequence of the minimal frustration
property of the underlying regulatory network, independent of
the network modularity. Note that a different scenario wherein a
large network can exhibit low-dimensional behavior is when the
network consists of a very small “core” subnetwork and numerous
downstream genes that are regulated by the core subnetwork with
no feedback from the downstream genes to this subnetwork. If
this was the case with the networks analyzed here, biological
networks should exhibit a very different flow hierarchy (50) than
random networks. We have previously shown that this is not the
case (Fig. S1 in ref. 23): the hierarchical structure in our studied
biological networks is comparable to that of random networks
with similar topological properties.

The results presented here and in our previous study (23)
raise the following question: what kind of evolutionary selection
pressure could have resulted in minimally frustrated regulatory
networks? We posit that while macroscopically simple cell-fate
decision processes can be regulated by small gene networks such as
by a toggle switch with only two genes (51), increasing complexity
in higher organisms would have favored the emergence of larger,
more complex regulatory networks so as to accommodate a
broader range of inputs to the cell-fate decision-making process,
which must nevertheless remain decisive. These larger networks
would also allow for various interactions between numerous
cellular processes in higher organisms. Large networks are also
more robust to the loss of one or more genes as compared
to smaller networks (which may become dysfunctional upon
mutation in a single gene) and are more likely to exhibit
parameter-independent dynamical behavior. Emergence of the
minimal frustration property as smaller networks grew into
larger, complex networks over the course of evolution would
help ensure that the large network can still regulate a cell-
fate decision-making process that is macroscopically simple.
This is illustrated by the rudimentary simulation of network
growth in SI Appendix, Fig. S5. The importance of maintaining
macroscopically simple cell-fate decision-making processes, even
in higher organisms, is a more difficult question and beyond the
scope of the present study.

Sethna et al. have previously shown that systems biology
models are sloppy—the dynamical behavior of these models
is dominated by a small number of combinations of kinetic
parameters (52, 53). This property makes dynamical models with
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poorly constrained kinetic parameters sufficient for recapitulating
biological behavior and for making useful predictions. In the
present study, we have shown that regulatory network models can
recapitulate experimental behavior and make useful predictions
even if the network connection matrix / is poorly constrained: one
need not have a complete and exact description of the regulatory
network underlying a physiological process to obtain a useful
model of the process. Interestingly, while the sloppy parameter
sensitivities reported by Sethna et al. are not limited to systems
biology models and seem to extend to multiparameter models in
general (54, 55), the behavior reported in the present study is
restricted to minimally frustrated networks. In any case, it would
be interesting to compare the sloppiness property of biological
regulatory networks with that of random networks exhibiting
similar topological properties.

Just as parameter fits even to comprehensive time series data
fail to yield precise estimates of the underlying kinetic parameters
due to the sloppy parameter sensitivities of systems biology
models (53), our analysis suggests that collecting gene expression
profiles at increasingly higher resolution and from more and
more cells (56) is unlikely to yield more accurate biological
regulatory networks. Pratapa et al. (36), benchmarking twelve
different network inference algorithms on a variety of simulated
and experimental gene expression datasets, found low stability
in network prediction across datasets for the same biological
process and little agreement between the predictions by different
algorithms for the same dataset. This is unsurprising in light
of our observation that the expression profiles generated by
biological networks and other minimally frustrated networks can
be recapitulated by various simpler networks that lack several of
the nodes and edges present in the original network (Figs. 3 and
4), as well as by lower-resolution, coarse-grained networks that
approximate the activity of several nodes by a single regulator (Fig.
5). Thus, the present study explains why the inference of gene
regulatory networks from expression data remains a formidable
challenge despite more than 20 years of research and one that
is unlikely to benefit from higher-resolution experimental data
(36). Instead of striving to obtain exact regulatory networks
involved in establishing cell type-specific gene expression patterns
by collecting higher-resolution data and employing advanced
statistical techniques, efforts to understand cell-fate choice must
focus on building imperfect, predictive network models with
rapidly verifiable predictions, and on carrying out experiments
that are optimally designed to constrain the network connection
matrix.

Our analysis shows that in the case of biological regulatory
networks and in the case of minimally frustrated networks in
general, steady-state expression patterns are largely preserved
under progressive coarse graining of the network, a simplification
procedure during which sets of network nodes are combined into
single regulators (Fig. 5). Such behavior was previously reported
for the small cell lung cancer (SCLC) network (16) analyzed in
Fig. 1 (57). This result provides a theoretical explanation for the
popularity, despite the increasingly high resolution at which gene
expression levels can be characterized by modern experimental
techniques (56), of approaches involving the aggregation of genes
into meaningful sets. One such approach is gene set enrichment
analysis (58), whose popularity has endured the transition from
microarray analysis to RNA-seq as the preferred method for
transcriptome characterization. Previous studies have shown that
gene pathways—based metrics that coarse-grain the information
contained in the expression levels of the constituent genes retain
crucial information about the biological sample (32). Note that
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the strategy to coarse-grain a regulatory network described here
is fairly simplistic and is proposed only as a sample strategy to
demonstrate that the network behavior can be preserved under
such a procedure. There exist numerous possibilities for vastly
improving upon the present strategy; for example, one could
introduce an objective function that a network coarse-graining
procedure must optimize. Strategies for coarse-graining other
biological network models including signaling networks and
metabolic networks have been described elsewhere (59, 60) and
could motivate improvements to the strategy introduced here for
regulatory networks.

While previous studies have attributed the robustness of
biological networks to the different topological features of these
networks, our analysis posits a fairly simple explanation: the
structure of these networks is far more complex and requires
far more information to describe as compared to the dynamics
exhibited by the underlying biological process. Consequently, loss
of features such as nodes and edges from the network description
is unlikely to significantly affect the behavior. Since simple steady-
state dynamics can emerge from a complex regulatory network
only if the network is minimally frustrated, we posit that the
minimal frustration property of biological networks is responsible
for their functional robustness.

Finally, we note that the minimal frustration property,
along with the simple steady-state dynamics, will be seen
in biological networks of sufficient size and complexity; the
minimal frustration framework becomes less insightful in the
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