Expanding RIFT: Improving performance for GW parameter inference
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The Rapid Iterative FiTting (RIFT) parameter inference algorithm provides a framework for effi-
cient, highly-parallelized parameter inference for GW sources. In this paper, we summarize essential
algorithm enhancements and operating point choices for the RIFT iterative algorithm, including set-
tings used for analysis of LIGO/Virgo O3 observations. We also describe other extensions to the
RIFT algorithm and software ecosystem. Some extensions increase RIFT’s flexibility to produce
outputs pertinent to GW astrophysics. Other extensions increase its computational efficiency or
stability. Using many randomly-selected sources, we assess code robustness with two distinct code
configurations, one designed to mimic settings as of LIGO/Virgo O3 and another employing several
performance enhancements. We illustrate RIFT’s capabilities with analysis of selected events.

I. INTRODUCTION

Ground-based gravitational wave (GW) detectors in-
cluding Advanced LIGO [1] and Virgo [2, 3|, now joined
by KAGRA [4] continue to identify coalescing compact
binaries [5-10]. Many more GW observations are ex-
pected as observatories reach design sensitivity [11], with
detection rates expected to exceed one per day when de-
tectors reach their design sensitivity. Their properties
can be characterized via Bayesian inference, comparing
data to the expectations given different potential sources
[6—7, 12-18]. At present, a wide variety of phenomeno-
logical or interpolated estimates for GW from a merging
binary are available [19-24]. Inferences using these mod-
els can be very computationally costly, particularly when
using the best available models.

The Rapid Iterative FiTting (RIFT) [17] is one of sev-
eral parameter inference algorithms [18, 25] used to pro-
duce the initial interpretation of GW observations [7—
10, 14, 15, 26-28]. The most popular approaches for
gravitational wave parameter inference rely on Markov
chains, within either Markov Chain Monte Carlo or
nested sampling codes; see [29] for a recent review.
By contrast, RIFT performs Bayesian inference through
Monte Carlo quadrature, combined with an iterative
algorithm to successively approximate pertinent likeli-
hoods [17, 30]. RIFT’s structure offers novel opportuni-
ties to efficiently construct and re-use the outputs needed
for Bayesian parameter and population inference [17, 31].
RIFT naturally exports a continuous likelihood versus
source parameters, valuable for population inference [32]
and critical when downstream use employs tightly con-
strained source populations like a concrete nuclear equa-
tion of state [32, 33]. RIFT can use these exported
likelihoods to produce low-cost, high-accuracy model ev-
idences, allowing for model selection between different
source physics scenarios (e.g., between an aligned or pre-
cessing BH binary [34], between a model with and with-

out higher order multipole GW [34], or between different
models for the nuclear equation of state [35]). RIFT can
natively perform multimodel inference using both inter-
polated likelihoods and the raw data from which they
are generated [31], important given notable modeling
systematics. These multimodel inferences enable exten-
sion and re-use of previous analyses to incorporate ad-
ditional modeling as needed. With companion software
[36], RIFT’s workflow can even identify its own settings,
for example expanding mass prior ranges as needed.

RIFT’s structure also offers novel opportunities to per-
form inference using large-scale distributed computing,
while mitigating the downside of intermittently unreli-
able computing environments. RIFT’s computational
cost is dominated by an embarrassingly parallel explo-
ration phase, where many source parameters are indepen-
dently compared to the data, allowing it to scale to very
large computing resources at need. Inevitably, these large
workflows naturally discover any poorly-configured hard-
ware and software, particularly when interpreting many
candidate sources. RIFT’s iterative structure, however,
means that its workflow and settings can be succes-
sively adapted to compensate for infrastructure prob-
lems, avoiding poorly-behaved nodes [36]. RIFT achieves
the aforementioned flexibility with low computational
cost, based at root on an efficient re-representation of
the GW likelihood [16], combined with GPU-accelerated
likelihood evaluation [30]. The RIFT software ecosystem
thus provides a robust framework to reduce the overall
cost of inferring source parameters, enabling larger-scale
analyses and greater scope to probe waveform system-
atics. Reducing overall evaluation cost and runtime has
many potential downstream implications, not least in-
cluding low-latency parameter inference [37-39] needed
to facilitate multimessenger followup observations; see,
e.g., [40] and references therein.

In this paper, we introduce several extensions of the
original RIFT implementation, all available through its



open-source code repository [41]. Several of these fea-
tures were used to interpret gravitational wave sources
during O3, the third observing run of the Advanced
LIGO and Advanced Virgo instruments; see, e.g., [8, 9,
27, 28, 34]. This paper is organized as follows. In Sec-
tion II we briefly review the essential elements of the
RIFT algorithm in regular use prior to the O3 analy-
sis. In Section III, we describe essential additions em-
ployed in the O3 analysis, and validate our production
setup with standard tests. In Section IV, we describe
extensions to RIFT’s O3-style approach, to improve its
efficiency, flexibility, and capability for unsupervised op-
eration. While many of these extensions were first in-
troduced in the RIFT source several years ago, and have
been applied in other work, this paper provides the first
detailed description of these updates. In Section V, we
enumerate the specific prototype RIFT configurations we
recommend for regular use and which we assess here. In
Section VI, we validate several of the key RIFT elements
described above with targeted and statistical tests. Fi-
nally, in Section VII we report on reanalysis of selected
real observations, to highlight RIFT’s improved perfor-
mance and capability. Several of our demonstrations are
performed on real gravitational wave data, available from
the Gravitational Wave Open Science center [42]. Our
study provides a backward- and forward-looking descrip-
tion of RIFT code development, as needed for long-term
sustainable reproducibility of its GW inference results.

II. RIFT REVIEW

A coalescing compact binary in a quasicircular orbit
can be completely characterized by its intrinsic and ex-
trinsic parameters. By intrinsic parameters we refer to
the binary’s masses m;, spins, and any quantities char-
acterizing matter in the system. By extrinsic parame-
ters we refer to the seven numbers needed to characterize
its spacetime location and orientation. We will express
masses in solar mass units and dimensionless spins in
terms of Cartesian components X;,u, Xi,y, Xi,z» expressed
relative to a frame with 2 = L and (for simplicity) at
the orbital frequency corresponding to the earliest time
of computational interest (e.g., an orbital frequency of
~ 10Hz). We will use A, § to refer to intrinsic and extrin-
sic parameters, respectively.

As illustrated in Figure 1, RIFT principally consists
of a two-stage iterative process to interpret gravitational
wave observations d via comparison to predicted gravi-
tational wave signals h(X, 8). In one stage, implemented
by many workers in parallel (denoted by ILE in the dia-
gram), RIFT computes a marginal likelihood

L) = / Lo(X, 0)p(6)d0 (1)

from the likelihood Lei(A, 6) of the gravitational wave
signal in the multi-detector network, accounting for de-
tector response; see [16, 17] for a more detailed specifica-

tion. In the second stage, denoted by CIP in the diagram,
RIFT performs two tasks. First, it generates an approxi-
mation to £(A) based on its accumulated archived knowl-
edge of marginal likelihood evaluations (A, £4). Second,
using this approximation, it deduces the (detector-frame)
posterior distribution

LA)p(A)
=2 2
Ppost fd)\/:()\)p()\) ( )
where prior p(A) is the prior on intrinsic parameters like
mass and spin.

A. Evaluating the marginalized likelihood

As described in previous work [16], RIFT’s likelihood
uses physical insight to carry out its evaluation particu-
larly efficiently for binaries with similar intrinsic param-
eters but different extrinsic parameters. At a high level,
RIFT relies on a decomposition of arbitrary gravitational
wave signals h(t) into physical basis signals hj,(t), as-
sociated with a (spin-weighted) spherical harmonic de-
composition of radiation in all possible emission direc-
tions. This decomposition allows RIFT to compute cross-
correlations between this basis and each detector’s data;
the likelihood for arbitrary source orientations, sky po-
sitions, and distances follows by a weighted average of
these cross-correlation timeseries. Recently, Wysocki and
collaborators described a very efficient GPU-accelerated
implementation of the likelihood, enabling significant
speed improvements [30].

Given the likelihood Lg(A, 8), RIFT evaluates the
marginal likelihood via an adaptive Monte Carlo inte-
grator:

L)~ 5 3 LanX 00000 /p.(6)  (3)
k

Inherited from its progenitor [16], RIFT performed this
Monte Carlo integrator using an (adaptive) sampling
prior ps which has product form, consistent with stan-
dard Cartesian adaptive integrators [43-45]. After a large
block of evaluations, each one-dimensional marginal sam-
pling prior can be updated to more closely conform to the
support of the integrand, based on a (smoothed) fixed-
size one-dimensional histogram for each adaptive dimen-
sion. While very powerful, this adaptive integrator limits
RIFT for two common applications. First, its proposed
sampling prior is extremely inefficient when the integrand
exhibits strong correlations between many dimensions.
Second, its python-based implementation generates ran-
dom numbers with its CPU, which must be transferred
back and forth to and from the GPU when evaluating the
likelihood. In this work, we will examine two alternatives
which alleviate each limitation in turn.
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FIG. 1: RIFT workflow: A flowchart of the RIFT iterative workflow. The individual worker jobs (ILE, an acronym derived
from “integrate likelihood:extrinsic”) compute the marginalized likelihood; the likelihood fitting and posterior-generation code
(CIP, an acronym derived from “construct intrinsic posterior”) uses these marginal likelihoods to estimate the posterior distri-
bution. The join stage combines the results from ILE workers for a specific iteration; the “unify” step accumulates results over
multiple iterations into a single file. The iterative workflow starts with an initial grid, encompassing some estimate of initial
parameters. Not shown here explicitly are (a) the jittering or “puffball” step, which generates a mirror grid with a subset of
parameters randomly perturbed, accordingly to the samples’ covariance matrix, whose results are used as the inputs to the
“puff group” shown on the right; (b) the option for multiple CIP instances, which work in parallel to more efficiently generate
slowly-converging posteriors; and (c) convergence testing, to assess when to terminate the iterative process.

B. Likelihood interpolation and posterior
distributions

To estimate £ from discrete samples Ao, L., RIFT
used Gaussian process regression. Following the RIFT
paper, for brevity and to be consistent with conventional
notation, in this section we denote A, by = and In Liyarga
by y. In this approach, we estimate the expected value
of y(z) from data z, and values y, via

(y(x)) = Z k(xvm*,a)(Kil)a,a/y*,a’ (4)

a,a’

where « is an integer running over the number of training
samples in (z.,y.) and where the matrix K = k(x,,z,)
y«. We employ a kernel function k(z, z’) which allows for
uncertainty in each estimated training point’s value y. o
due to Monte Carlo integration, as well as a conventional
squared exponential kernel to allow for changes in the

functions versus parameters:
k(z,2') = o2e~ (#=7)R@=20/2 L 525 (5)
The hyper-parameters of this kernel (o,,0, and the

positive-definite symmetric matrix @) are chosen to min-
imize the likelihood of our training data xg,y, with co-

variance matrix K:

K]

Intly) = ~5(0/o) K (0/0) ~Iny [ 5y (®

where o}, are the individual estimated uncertainties in
each y; and o = [[, o7. We perform all Gaussian pro-
cess interpolation with widely-available open-source soft-
ware [46]. The computational cost of full-scale Gaussian
process optimization and evaluation increases rapidly
with the dimension D of the matrix K, as D? and D?
respectively.

Given the likelihood, fair samples from the posterior
distribution are generated by the following two-step pro-
cess, described in the RIFT paper. First, using the likeli-
hood estimate Liarg and the same adaptive Monte Carlo
integrator described above, we perform the Monte Carlo
integral f dALmargP(A), producing sample locations A
and associated weights wy = ﬁmargp()\)/ps()\). Second,
we make a fair draw from these weighted samples.

C. Exploring the parameter space

For expedient convergence, RIFT has two additional
methods to explore the parameter space: dithering and
incremental dimensionality.



After the posterior is produced and a candidate grid
generated, RIFT can optionally produce a second can-
didate grid derived from and supplementing the first.
In this second grid, points are generated by performing
dithering on (or randomization of) arbitrary combina-
tions of parameters, then rejecting unphysical combina-
tions. For example, the candidate points may have small
(correlated) offsets in chirp mass, 1, and x.g added, with
offset covariance matrix set by the covariance matrix of
the input candidate grid. Particularly after several itera-
tions, this dithering can remedy a significantly-offset ini-
tial grid which misses the true likelihood maximum. This
dithering also insures good sampling outside the bound-
aries of the target point. The original RIFT paper [17]
only implemented correlated dithering based on sample
covariance. Later in this paper, we describe incremen-
tal improvements to the dithering process which further
improve performance.

RIFT can also employ different parameterizations at
each stage. In particular, as explained in the RIFT pa-
per, RIFT can employ likelihood models with increasing
numbers of parameters, starting with the dominant de-
grees of freedom (e.g., M., 1, and X.q for massive BHs)
and adding in subdominant degrees of freedom in subse-
quent iterations. This approach helps address a tradeoff
between cost and complexity. For the first few iterations,
RIFT needs to identify the peak likelihood, as character-
ized by the dominant parameters. Using all model pa-
rameters can be highly counterproductive, as fits with
all degrees of freedom require overwhelming numbers of
evaluations A, L in order to avoid overfitting/under-
resolving. (With too few evaluations and several ir-
relevant parameters included, the Gaussian process be-
haves pathologically.) By reducing the number of poorly-
constrained parameters early on, we can employ far fewer
points early on. Because of the computational cost of
GP regression in high dimensions and with many points,
this was essential for handling complex sources like pre-
cessing BH binaries with the original GP likelihood esti-
mate. The appropriate dimensional hierarchy depends on
the physics involved (e.g., configurations with high mass;
BHNS with strong precession; NS-NS binaries with tides;
et cetera) but is well-motivated from simple Fisher ma-
trix arguments. Specifically, the component masses and a
measure of aligned binary spin (e.g., Xefr) approximately
characterize the dominant degrees of freedom for nearly-
nonprecessing binaries, particularly when organized as
the chirp mass M, and symmetric mass ratio . As most
observed binaries exhibit nearly no precession, these vari-
ables form a natural set to adopt for the first iterations.
As transverse and other spin degrees of freedom have a
subdominant impact on the marginal likelihood, we can
add these incrementally, after obtaining a converged es-
timate for the behavior for nonprecessing degrees of free-
dom. Prior to O3, these choices were made by humans,
and the iteration plan assembled by hand and adjusted
at need.

D. Convergence testing

The RIFT paper [17] introduced a procedure to as-
sess convergence: for each marginal 1d distribution, com-
pute the KL divergence between successive iterations,
Dkr(plg) = [deplnp/q where p,q are 1-dimensional
probability densities. A fiducial convergence threshold
was O(1072) for each variable. At the time, these KL di-
vergences were evaluated using KDE-based estimates of
each 1d marginal distribution. Subsequently, Delfavero
[47] introduced and assessed a simpler and more stable
1d convergence diagnostic: the net L' difference between
each one-dimensional CDF:

Dry = max |P(z) — Q(a)| (7)

where P, (@ are empirical CDFs associated with the two
sample sizes. The L! norm has been well-studied in the
context of KS tests. Delfavero proposed a convergence
threshold of —% In o, where o was the desired confidence
level of the test and N is the common sample size.

Finally, to better capture correlations in our conver-
gence tests, we have also implemented a simplified multi-
dimensional convergence test, which compares the empir-
ical means p1, uo and covariance matrices 31, Yo associ-
ated with two sets of fair samples under the assumption
that both characterize a Gaussian distribution:

1 _
Dicr, = = [(p2 — 1) 5 (p2 — )

2

1 2o
+H(Tr(35°%1) —d) + In =— (8)
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where d is the dimension of the problem. Like the 1d KL
divergence test, we adopt a fiducial convergence threshold
of 1072. The user can select any subset of variables (and
any coordinates) with which to evaluate this joint test,
though we recommend using M., 7, xegq at a minimum.
Unless otherwise noted, we adopt and report on runs

using the latter convergence diagnostic below.

E. Limitations

To recap, RIFT organizes Bayesian inference as an it-
erative two-stage process. In one stage, it rapidly eval-
uates a marginal likelihood £ for compact binary source
parameters A, via a Monte Carlo integral. In another
stage, it uses its accumulated knowledge of previous like-
lihood evaluations (Ag, £x) to estimate £ as a function of
arbitrary \; from this estimate, it draws samples for the
posterior for A\, again via a Monte Carlo integral. The
output of the second stage is passed back to the first,
until the results converge.

While in principle effective, in practice this strategy
relied principally on high-dimensional fits and dithering
to explore the model space. The Gaussian process fits
employed previously, however, were excessively parsimo-
nious outside the previously trained domain, prohibiting



exploration. Dithering was an essential but occasionally
fragile element of our procedure to explore the param-
eter space. For this reason, in Section III below we in-
troduced several additional techniques to automate ex-
ploration of the binary parameter space, particularly by
improved dithering and by systematically hierarchically
adding degrees of freedom with increasingly subdominant
effects on typical likelihoods.

Additionally, as originally implemented, key elements
of the RIFT parameter inference strategy had notable
sources of inefficiency. For example, the adaptive Monte
Carlo integrator inherited from Pankow et al [16] is both
relatively slow and algorithmically inflexible, not well-
suited to sample distributions with strong correlations
which its adaptive algorithm’s built-in assumptions can’t
efficiently replicate. More painfully, the standard inter-
polation implementation adopted (Gaussian process re-
gression) scaled very inefficiently with the number of in-
put likelihood evaluations, placing severe limits on the
scale of problems that could be usefully addressed. De-
scribed at greater length below, these defects are being
addressed by the methods first described in this work.

III. RIFT DURING O3

In the O3 era, production-scale RIFT calculations em-
ployed several additional operating-point choices and fea-
tures which have not previously been described in the
literature.

A. Waveform support

RIFT inference is performed using the spin-weighted
spherical harmonic waveforms hy,(t) or hu,(f) [16,
17, 30, 48], usually computed from binary parameters
through the lalsimulation library. During the O3 anal-
ysis era and publications [9, 28], commonly-used esti-
mates for the gravitational waves emitted from quasicir-
cular binary merger included IMRPhenomD [49, 50], IM-
RPhenomPv2 [19], IMRPhenomXPHM [23], and SEOB-
NRv4PHM (24, 51]. While the illustrations and tests
presented in this work draw upon these established
source models, we point out that RIFT’s likelihood-based
approach enables transparent visualization, calculation,
and mitigation of the impact of waveform systematics
17, 31].

B. Dithering and exploration

RIFT originally generated candidate future samples
using an estimate Lmarg of the marginal likelihood.
While this method could very efficiently explore the pa-
rameter space, it would often only explore within the
neighborhood already explored, even with high likelihood
on the edge of the previously-explored set. In O3, we
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FIG. 2: Demonstration of dithering algorithms: The blue
points show synthetic input data which is uniform in x1z, x1,y
in |x1] € [0.2,0.4] and x1,. € [—0.1,0.1]. The green points
show the orginal dithering procedure with F' = 1 and € = 0.
The orange points show the result with F' = 3,e¢ = 0.01. The
modified algorithm more efficiently explores the outskirts of
the otherwise-sampled area.

therefore added a simple dithering algorithm, to supple-
ment candidate points with a companion set, where each
companion point was drawn from the original sample
but had added random uncertainty in selected param-
eters. We chose random uncertainties centered on but
with larger than the covariance than the available train-
ing data x,, with the goal of enveloping the posterior and
its marginal-significance tails, to stabilize our estimate of
the log likelihood in a region not well served by RIFT’s
normal approach for selecting training data (draws from
the posterior). [In a sense, we use an “overdispersed”
investigation of training data x, to avoid an “underdis-
persed” final posterior.] We further generalized our
dithering algorithm in three ways: by rejecting dithered
samples based on proximity; by allowing the user to elim-
inate cross terms in the covariance matrix used for dither-
ing; and by allowing the user to request random can-
didates in any subset of parameters, instead of simple
dithering.

Our first dithering algorithm draws dx, for a spec-
ified set of variables «, based on the empirical covari-
ance matrix X,g for those variables. The offsets are
randomly drawn from a multivariate normal distribution
with covariance matrix F2Y with F a user-specified fac-
tor (chosen as F' = 3 by default). Without rejection,
this method frequently produces candidate points in ex-
tremely close proximity to previously densely-explored
regions. We therefore allowed the user to specify a
threshold e, such that dithered samples with distance
0z b2 Z;ﬁl /d smaller than € to any previously-evaluated
point would be removed, where d is the dimension of pa-
rameters being dithered. As a result, the dithered sam-
ples at late times better explore the outskirts of the pos-



terior. Figure 2 shows an example of the two methods,
applied to a toy problem. The modified method does not
generate samples inside regions otherwise being explored
by the input grid. The current implementation adopts
the same € for all iterations, and performs dithering and
rejection based on the most recent samples rather than
all past history.

RIFT’s original dithering algorithm would also extend
only along the principal axes of existing correlations in
its targeted input variables. While GW observations can
produce strong correlations near the peak likelihood, far-
ther away from the peak the likelihood surface can exhibit
other correlations. As a result, RIFT’s original dither-
ing algorithm would not enable efficient identification of
subdominant correlations and extended, correlated tails
in the posterior distribution. To address this deficiency,
we provide the capability to employ two core modifica-
tions, though neither is active by default. In the first,
the user can modify the covariance matrix used to dither
the input samples by requiring ¥, 3 = X,, = 0 for any
list of user-specified pairs («, ). In the second, the user
can request that any specific coordinate « is drawn at
random, uniformly over a user-specified range. The lat-
ter method is extremely useful for marginally-accessible
degrees of freedom (e.g., subdominant tidal parameters),
which are prone to overfitting.

C. Physics-inspired iterative architecture

RIFT’s final results are produced from a set of like-
lihood evaluations {Aq,InLmarga}. Nominally, RIFT
uses the same prior and likelihood model to produce fi-
nal results and accumulate these likelihood evaluations,
in its iterative process. However, RIFT can also accu-
mulate these likelihood evaluations with any prior, and
using iterations with fit estimates which omit known-
subdominant degrees of freedom. These choices, denoted
as architectures in the text below, can significantly re-
duce the latency or even overall computational cost, as
noted in Section ITC. We used them in O3 because
higher-dimensional likelihood models require more input
data and often higher computational (gaussian-process)
cost; whenever plausible, lower-dimensional likelihood
models were desirable for exploratory iterations.
Architectures for binary black holes: For all com-
pact binaries without matter, RIFT’s O3-era unsu-
pervised approach was very conservative. Specifically,
the O3-era RIFT starts with 3 iterations fitting using
M, n, Xet, With a volumetric spin prior; 2 iterations fit-
ting with M., 7, Yo and x— = (mix1.2 — maxa,.)/M
and a volumetric spin prior; 2 iterations fitting with
M, 1, Xeff, X,z Xiyw for ¢ = 1,2 with a volumetric spin
prior; and (if adopting conventional priors) 3 iterations
using the same parameters, but with a spin prior that is
uniform in spin magnitude. The validation study for this
approach is described in Section VI with Figure 14.

This strategy was designed to characterize the mas-

sive BH binaries with M, > 20M that were relatively
common in 0102, and was particularly targeted to iden-
tify signatures of strong precession. With relatively few
cycles in contemporary ground-based instruments, BH
binaries with M, > 20Mg have posterior distributions
which only weakly constrain intrinsic parameters except
for M, n, xes. Particularly at very high mass, the trans-
verse spins in particular usually have minimal impact
on the posterior distribution. As a result, when inves-
tigating massive and possibly precessing BH binaries, we
can adopt an architecture which increases in complex-
ity, where the first few iterations use a fit with only
M, 1, Xerr; the next few iterations add an antisymmetric
aligned spin x_; and the last few iterations use all spin
degrees of freedom.

For most massive BH binaries, this unsupervised ar-
chitecture was massive overkill. However, this configu-
ration is also robust and efficient when the true signal
parameters are not covered by the initial candidate grid.
Frequently, real GW searches identify parameters well-
seperated from the final posterior distribution. Similarly,
due to strong model systematics, the true parameters
may be recovered with substantial bias with an alterna-
tive model.

Architectures for matter: While this paper will describe
all pertinent updates to RIF'T, we have chosen to empha-
size binary black holes and largely eschew matter effects,
for clarity deferring new demonstrations of our current
and extended matter-related capabilities to future work.
When performing an unsupervised analysis with matter,
the O3-era RIFT algorithm adopted the same architec-
ture choices as massive binary black holes, in particular
assuming the likelihood at leading order only depends
on M., 1, Xef and tides. As with binary black holes,
we adopted a lower-dimensional model early on, assum-
ing the marginal likelihood depends on the dimensionless
tidal deformabilities A; only through A for most itera-
tions; see [7, 35] for discussion of these parameters. To
account for degeneracies, we perform correlated dither-
ing in M, 7, Xest, A. To further ensure the low-A region
is well-explored, in O3 we adopted a non-uniform prior
on A; which favors small A. RIFT results using this ap-
proach have been previously presented, including a novel
population study [32].

As with the BH-BH case, this architecture is motivated
by the physics of binary inspiral. Working to leading or-
der, we characterize the gravitational effects of compact
objects with matter by a dimensionless tidal deformabil-
ity parameter A;. Following convention when presenting
results not conditioned on other observations or theory,
we adopt a uniform prior on these A;, extending from 0
to 5000 independent of compact object mass. This prior
is not well-suited to exploring the tidal parameter space,
because real compact objects are subject to an equation
of state and thus A(m) relation which depends strongly
on mass, is typically much less than 5000, and goes to
zero at high mass. Additionally, tidal effects are highly



subdominant and enter at leading order through a single
mass-weighted combination A. Exploring the tidal pa-
rameter space using the default prior with RIFT is excep-
tionally inefficient, because the prior strongly disfavors
the low-A configurations associated with the (weak) peak
in the marginal likelihood, particularly for very massive
NS with extremely small A(m). Conversely, the approach
described above was demonstrably sufficient to enable a
multi-event population analysis to recover a proposed NS
equation of state and mass/spin distribution from syn-
thetic GW observations [32].

D. Well-motivated initial grids

When given a good starting grid {\;}, RIFT con-
verges well. For unsupervised analysis of binary black
holes in O3, we used a hypercube in M_,n, xes chosen
based on the search-reported candidate parameters. The
chirp mass region was chosen over a logarithmic region
of width Aln M, = 4(1.5)%0.3(v/0.2)"/p centered on
the reported chirp mass M.,, where v is the smaller
of (MM, fmin)*/? or 0.2, p is the search-reported sig-
nal to noise, and f,i, is the minimum frequency used for
parameter inference. The 7 extent covers from 7y, to
1/4. If the trigger symmetric mass ratio 7, > 0.1, then
Nmin Was (by default) the larger of 0.1 and that value
n such that me = 1My given M,,,m. If the trigger
symmetric mass ratio is more extreme (7. < 0.1), then
Tmin = 0.257,. Finally, the y.g interval was chosen to be
Xeft,« = 0.3/p. This wide region in mass, mass ratio, and
aligned spin helped compensate for the often-large biases
between search trigger parameters and the true posterior.

For unsupervised investigations involving matter, mo-
tivated by plausible nuclear equations of state, we adopt
an initial grid which uniformly covers a region in the
neighborhood of a fiducial analytic estimate A j;q(m),
assumed to be 20 for m > 2.2Mg and 3000((2.2 —
m/Mg)/1.2))? otherwise. Specifically, we uniformly sam-
ple A € [Mnin, fids Amaz, fid] where Ay, riq is the smaller
of 50 and 0.2A ;4 and Ap,qz, fia is the smaller of 0.2A ¢4
and 1500. With this starting grid, we can recover tidal
parameters for realistic NS over a wide range of masses.
For example, these settings were adopted in our detailed
systematics study about jointly fitting the nuclear equa-
tion of state and BNS population [32].

E. Validation of O3 configuration

Among other tests, we validated RIFT O3-era code
configurations against generic, randomly chosen merging
binaries using a standard probability-probability (PP)
plot test [52, 53]. Using RIFT on each source k, with
true parameters )\, we estimate the fraction of the pos-
terior distributions which is below the true source value
Moo [Pr,a(< Ago)] for each intrinsic parameter . Af-
ter reindexing the sources so Pk’a (Ak,a) increases with k
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FIG. 3: Nonprecessing PP plot, early-O3 code:
Probability-probability plot to validate recovery of precessing
synthetic signals, following the RIFT methods paper [17]. The
synthetic sources and parameter inferences are constructed
with IMRPhenomD in gaussian noise with presumed known
PSDs, for 3-detector networks, starting the signal at 20 Hz
and using a 4096 Hz sampling rate. Detector-frame masses are
drawn uniformly in the region bounded by M /Mg € [30, 60]
and n € [0.2,1/4], and sources are drawn volumetrically be-
tween 1.5 and 4Gpc. Both BH dimensionless spins are drawn
uniformly in x; .. For computational efficiency, all sources
in this specific test have a fixed and presumed known sky
location.

for some fixed «, a plot of k/N versus Pk()\k7a) for both
mass parameters can be compared with the expected re-
sult (P(< p) = p) and binomial uncertainty interval.

Other previously-published studies have already re-
ported on comparable PP plot tests, in the context of
waveform systematics [54], using the O3-era code. Con-
versely, Section VI describes more comprehensive tests
and PP plots applied to the current edition of the code.
However, for completeness, Figure 3 shows the result of
one such contemporary O3-era test for intrinsic degrees
of freedom.

F. Inefficiencies and Limitations of the O3
configuration

RIFT’s development up to O3 was tightly constrained,
needing to be completed and assessed well before any
03 analysis, resulting in occasionally fragile and sub-
optimally efficient but still extremely portable and re-
producible tool. RIFT’s O3 configurations have many
completely arbitrary limitations, introduced both by the
difficulties inherent in our software environment and our
timeline. The foremost difficulty in operating RIFT re-
mains its organization: multiple independent command-
line scripts, communicating information via files, orches-
trated into a pipeline via condor [55-57]. For O3, we did



not have sufficient time to implement more than the most
naive control logic: a fixed number of iterations to inves-
tigate the intrinsic variables, followed by an (optional)
step to extract extrinsic variables, with some fixed O(1)
set, of extrinsic samples associated to each intrinsic point.
Convergence diagnostics were only used post-facto by the
end user, to characterize run quality. With convergence
tested only by humans in postprocessing, we needed to
run every analysis for an extended period, usually em-
ploying many more iterations than necessary, to ensure
almost all problems would be well-converged without hu-
man intervention. The most challenging and unantici-
pated problems, however, would require human interven-
tion.

The deployment timeline also introduced additional
unavoidable development requirements, occurring often
simultaneously with ongoing efforts to refine our work-
flow during O3a. For the first half of O3 (O3a), RIFT
had to be refactored into a python package (pypi and
conda in particular), so it could be integrated into the
LVK’s standard software infrastructure. To support this
refactoring specifically and code portability in general,
we also had to create a continuous-integration test suite.
Prior to the second half of O3 (0O3b), RIFT had to be
ported to python 3.

Despite its fragility and overkill, RIFT was extremely
successful in O3. In O3a, RIFT was extensively used to
analyze the GWTC-2 events using models with higher-
order modes [28]. In O3b (GWTC-3), RIFT was also
used to analyze events with a costly model including
higher-order modes [9], and was also operated principally
by external groups through large-scale automated soft-
ware (asimov) [58].

Above and beyond the severe limitations introduced
by using a fixed number of iterations, without conver-
gence test integration within our control logic, our O3
experience suggested several additional elements of RIFT
needed improvement. Figure 4 provides an example of
an unpleasant but typical O3 RIFT inference of a low-
mass binary, illustrating many of the problems described
below. First and foremost, our Gaussian-process fitting
implementation using fiducial coordinates became almost
unusably slow when trained with many inputs, requir-
ing as much as a day to generate for several challenging
problems of astrophysical interest. In fact, in O3, we im-
plemented several workarounds to prevent our fit from
ever using too many training points. However, particu-
larly for low-mass binaries with strong inter-parameter
correlations in its posterior, our fits were also prone to
misidentify suitable length scales [i.e., the diagonal ele-
ments of @ in Eq. (5)], leading to patchy and irregular
posteriors when the fits were not informed by overwhelm-
ingly large data volumes; see Figure 4 for examples. Since
our technique required many iterations of fitting, often
one to several weeks could be required to interpret the
most interesting precessing binaries.

Second, our adaptive Monte Carlo integration algo-
rithm did not effectively exploit extremely strong and

FIG. 4: Illustration of O3 architecture limitations for
unsupervised inference of low-mass binaries: A corner
plot with 90% credible interval quantiles for different RIFT
iterations, indicated by different line colors. The color scale
shows the likelihood range, over a dynamic range Aln £ < 15;
gray points indicate likelihood evaluations below this range.
This figure shows an unsupervised analysis of GW190707,
evaluated using the old O3 convergence architecture (with
SEOBNRv4PHM). The panels show marginal distributions
in chirp mass M., asymmetric mass ratio § = (m1 —m2)/M,
inspiral effective spin xes, and the magnitude of the trans-

VX X
Section III F enumerates the many algorithmic limitations of
the O3 analysis highlighted by this kind of analysis.

verse dimensionless spin of the primary xi,1 =

well-understood correlations in the posterior distribu-
tion of chirping binaries. For BHNS binaries in par-
ticular, the natural error ellipsoids are extremely long
and narrow; see, e.g., [59, 60]. For these extreme bina-
ries, our intrinsic posterior Monte Carlo integration (per-
formed in CIP) typically completed with a ratio neg/n,
which roughly measures the number of independent sam-
ple points per proposed Monte Carlo trial, often smaller
than 10~8. Even typical low-mass binaries had low values
of neg/n. Combined with the relatively long evaluation
time of Gaussian processes, all low-mass binaries were
uncomfortably difficult to investigate.

Third, our choice for how to explore precessing DOF
was not well-adapted to investigate the low-mass binaries
which nature provides, whose overall spins (and trans-
verse spins) seem small. Instead, motivated by discovery
potential, in O3 we used a volumetric prior (in a hy-
percube) for the component spins x; to initially explore
both aligned and transverse degrees of freedom. This
prior was used in most of the initial iterations, when we



adopted a fitting ansatz based only on the aligned degrees
of freedom, under the assumption that precession effects
were small, to populate presumed-subdominant precess-
ing degrees of freedom. We used this prior for several
iterations, including early iterations where the likelihood
fit did not include and could not adapt to transverse de-
grees of freedom. However, as became apparent later
in O3, none of the low mass events had significant sup-
port for nonzero transverse spin. By contrast, our prior
frequently generated points with large transverse spins,
which fit poorly (because these configurations would have
many easily-observable precession cycles at low mass).
At best, our choice of volumetric prior wasted time that
could have been spent exploring the transverse degrees of
freedom more efficiently. At worst, the volumetric prior
points actively impeded convergence early on. In prac-
tice, we sometimes needed the final fully-precessing itera-
tions even to get a plausible posterior at all for low-mass
binaries such as NSBH [8].

Figure 4 provides an example showing how our in-
ference only stabilized after adopting a uniform-spin-
magnitude prior in the final iterations. In this analysis,
the first several iterations incorrectly adopted a likeli-
hood completely independent of transverse spin, despite
frequently sampling large transverse spins which corre-
sponded to substantial precession. This O3-era combi-
nation of extreme-spin prior and no-transverse likelihood
model was extremely difficult to fit and sample, partic-
ularly in the old coordinate system which lacked aware-
ness of the strong M., n, xest correlations expected from
leading-order post-Newtonian inspiral. The last few it-
erations (here labelled 6,7,8) however employ transverse
spins in their fits and, combined with a more suitable
spin prior, finally recover a smooth posterior. For this
and similar posteriors, where only the last few iterations
are well-behaved, manual additional investigation was re-
quired, extending the existing run to assess if RIFT had
indeed converged.

Finally, given the many inefficiencies already limiting
our performance and limited development time, we left
many elements of RIFT in highly unoptimized forms.
For example, the coordinate conversions within CIP used
to implement generic chart transformations between fit-
ting and sampling coordinates used a generic but slow
data structure instead of fast vectorized once-and-for-all
transformations. CIP workers were operated such that,
if any one failed, all were rerun. This poor choice re-
quired considerably more processing and longer latency
when very large numbers of workers were needed to han-
dle BHNS binaries, for example. Some of our integration
algorithms were insufficiently overflow-protected, caus-
ing errors when even modest-amplitude signals’ likeli-
hoods were evaluated directly (as opposed to only as
a logarithm). Finally, users had few guarantees about
the effective sample size of their output. For a hand-
ful of low-significance events in particular, the small and
unpredictable sample size was intermittently a challenge
in O3b, during which several postprocessing resampling

stages were applied to RIFT’s output via asimov to
change the distance prior and add calibration marginal-
ization.

IV. UPDATES

In this section, we describe several extensions to the
way RIFT was used during O3, improving its likelihood
approximation; integration; and workflow. Where appro-
priate, we also provide simple (PP) tests to validate spe-
cific modules. After describing these many possible addi-
tions, in the next Section VI we describe how we downse-
lect between these options: by measuring RIFT perfom-
rance when interpreting two fiducial sources: a synthetic
binary black hole and GW190412. Having downselected
between the many available configurations, that section
also provides targeted validation studies using synthetic
binary black hole and binary neutron star sources.

A. Added coordinate systems (and priors)

All algorithms used within RIFT — interpolation, pos-
terior generation, grid placement, dithering, convergence
tests, et cetera — perform better in coordinate systems
which are well-adapted to the likelihoods of real gravi-
tational wave sources. For example, all our current and
new unstructured interpolation algorithms inherit some
implicit or explicit dependence on the coordinate system
used to formulate them.

Rotated Inspiral-Phase (RIP) coordinates Particularly
for low-mass systems, the neigborhood of near-peak like-
lihood is best characterized (and quite ellipsoidal) in well-
chosen, instrument-dependent coordinates. While opti-
mal local coordinates can always be derived by Fisher
matrix methods, in general the orientation of this op-
timal ellipsoid relative to an underlying generic coordi-
nate chart is highly source-dependent. However, using
a fiducial contemporary ground-based network to elimi-
nate (minimal) ambiguity about the appropriate detector
network, recently Lee and collaborators [61] introduced a
global coordinate system remapping M., ¢, X1,z, X2,- into
a global coordinate system which is well-suited to model
the likelihood for arbitrary sources.

The RIP coordinate system is motivated by the
leading-order post-Newtonian expressions for the grav-
itational wave strain emitted by a nonprecessing binary
in the ¢, |m| = (2,2) mode. Using standard techniques
[62, 63], the frequency-domain gravitational wave phase

h = |h(f)|exp(—i¥(f))), evaluated at some reference
frequency can be expressed in terms of several post-
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FIG. 5: RIP PP plot: Probability-probability plot to
validate the rotated inspiral phase coordinates. The syn-
thetic sources and parameter inferences are constructed with
NRHybSur3dg8Tidal (¢ = 5) in gaussian noise with pre-
sumed known PSDs, for 3-detector networks, starting the sig-
nal at 30 Hz and using a 4096 Hz sampling rate. Detector-
frame masses are drawn uniformly in the region bounded by
M/Mg € [1.2,1.4] and n € [0.2,1/4], and sources are drawn
volumetrically between 90 and 240Mpc. Both NS dimen-
sionless spins are drawn uniformly and volumetrically from
[0,0.05]. For computational efficiency, all sources in this test
have a fixed and presumed known sky location.

Newtonian parameters

3

1 = o2 (TMefrer) ™ 5/3 (9a)
55 743 _

Yo = @(77 + @)77 25(r Mo fret) ! (9b)

Uy = (B~ 4m P Mfr) (90

where for convenience we adopt G = ¢ = 1 units in our
expressions, where the PN parameter § is defined by [64]

2

1

EZ [113(mi/M)* + 5] Xi,- (10)
i=1

and where x; , = lAZSz/ml2 is the projection of the dimen-
sionless spin along the instantaneous angular momentum
axis. The rotated inspiral-phase coordinates X; follow
from a coordinate transformation X = U where U
an instrument-dependent 3 x 3 matrix derived from the
Fisher matrix expressed in terms of these coordinates.
To be concrete, we follow Lee et al and adopt a single
fiducial choice for U:

0.97437198  0.20868103 0.08397302
U = |-0.22132704 0.82273827 0.52356096 (11)
0.04016942 —0.52872863 0.84783987

Unless otherwise noted, we employ a nominal fif =
200Hz to define this transformation for all masses. De-
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spite the relatively high reference frequency, this transfor-
mation remains well-behaved even for very massive black
hole binaries, implying the coordinates can be employed
throughout the observed (detector-frame) space of com-
pact binary parameters.

Following Lee et al (their Section II1.C), we define the
RIP coordinate system fi1, ft2, 9, x2,.. Within the frame-
work described so far, this coordinate system can be em-
ployed within the fitting and posterior generation stage
(CIP) in two ways. On the one hand, we can use RIP as a
coordinate system well-adapted to fitting the likelihood.
In this approach, after re-expressing our training points A
in the RIP coordinate system, our unstructured interpo-
lation code produces an approximation £(A) in terms of
those coordinates. Aside from this modest change, CIP
can be used the same way, for example using any coor-
dinate system and Monte Carlo integration technique to
perform posterior generation. Figure 5 shows an end-
to-end validation study of RIFT when RIP coordinates
are employed within CIP, using a suite of many synthetic
aligned-spin sources drawn with random intrinsic and ex-
trinsic parameters.

On the other hand, we can also use RIP as a coordi-
nate system well-adapted to exploring and sampling the
likelihood. To do so we must define an effective sampling
prior pscff(A) for the RIP coordinates A. Though nom-
inally simple, the complicated nonseperable boundaries
associated with this sampling prior have so far compli-
cated our ability to employ this seemingly simple prior
within our existing frameworks based on purely seper-
able physical priors. We defer use of these accelerated
coordinates to future work on very-low-latency analysis.
Rotated detector-network-frame sky coordinates To more
efficiently sample the sky, we provide users the option to
use a coordinate system for the sky where the nominal
north pole corresponds to a vector connecting two of the
interferometers. As discussed in many previous imple-
mentations of this transformation (see, e.g., [18, 65]), in
this coordinate system the posterior distribution will be
aligned with lines of constant nominal declination, en-
abling more efficient adaptive sampling.
Pseudo-cylindrical coordinates for spheres: Posterior
generation of precessing spins can be computationally
costly in the most straightforward spin coordinate sys-
tem; spherical polar coordinates for each spin. For con-
text, for nonprecessing binaries we can adopt carteisan
aligned spins x;., and use an adaptive integration
method which captures correlations between xi ., X2,z
By contrast, in spherical polar coordinates, these sim-
ple and strong correlations are distributed among many
more parameters. Similarly, for most massive BH bina-
ries observed so far, the transverse spin components x; |
are extremely weakly constrained. However, in spherical
polar coordinates, the transverse and aligned spin com-
ponents are strongly mixed.

To improve the prospects for our adaptive integra-
tors to better reflect the correlations among spin pa-
rameters, we introduce a coordinate transformation map-



ping a sphere to a cylinder: (R,z) = (RV1 — 22, %) for
R,z € [0,1]. In these coordinates, the overall spher-
ical volume element d¢ A RAR A dz can be recovered
with the seperable sampling priors py(R) = 2R and
pv(2) = 3(1 — 22)/4. These coordinates enable effi-
cient sampling of the unit sphere with a volumetric prior
pv(R)pv(2)/27 using ccoordinates well-adapted to the
typical constraints afforded by GW observations.

While sufficient for volumetric sampling, however, the
discussion in Appendix B suggests more singular sam-
pling priors will enable better sampling of the fiducial
uniform-spin-magnitude spin prior (i.e., d®x/3|x|?). In
this common scenario, we adopt a more singular pseudo-
radial sampling prior ps(R) = R~3/*/4, or equivalently a
uniformly-sampled radial coordinate & = R'/*. Numeri-
cal experiments similar to those in Appendix B demon-
strate improved scaling relative to naively reweighting
volumetric samples. To be concrete, these modified
pseudo-cylindrical coordinates represent a dimensionless
spin vector x as

X = 2x: + XaV/1 — X2[cos ok +singy]  (12)

In terms of these coordinates Y,,®, X., a volumetric
prior follows from py by change of coordinate and ja-
cobian: pyy = 15%7(1 — x2)/8w. The corresponding
uniform spin magnitude prior is 1/3|x|? times this func-
tion.

Generalized  precession  coordinate: The  orig-
inally proposed precession parameter X, =
max (X1 sin 64, sz sin 02) characterizes the largest

dynamical spin in the binary, but fails to account for
the effects of dual-misalignment. This deficiency, which
manifests in systems with equal mass ratio and large
transverse spins, is resolved by the parameter (x,),
which averages over all spin angles on the precession
timescale [66]. The initial implementation of (x,) is
detailed in [67], where events from O3b were analyzed
as a post-processing step using existing samples to
compute posteriors for both x, and (x,). Additionally
this parameter is a constant of motion at 2PN order
on the spin-precession timescale (and nearly conserved
on the radiation-reaction timescale), making it a good
candidate for a fitting coordinate when computing
posteriors for analyses that assume precession. By com-
puting an approximate £(\) from the archived marginal
likelihood calculations in the (x,) coordinate, we then
assign a uniform prior in the domain 0 < (x,) < 2 to
compute the posterior distribution. Note that although
the 1 < (xp) < 2 domain is exclusive to binaries with
two misaligned spins, there are spin morpholigies in the
0 < (xp) < 1 domain for which (x,) differs strongly
from x,. Allowing the prior to cover this space leaves
the analysis agnostic to the fully precessing behavior.
This functionality has now been implemented in RIFT
as part of the CIP subroutine, and the efficacy of this
parameter is currently being tested via injection study,
the results of which will be discussed in a forthcoming
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publication; see also [68].

B. More robust and efficient likelihood
approximations

In this section, we summarize several different tech-
niques to approximate the marginal likelihood.

1. Random forests

First used in RIFT for interpolation in [69], random
forests interpolate generic functions by constructing a
family of many random decision trees, with piecewise
constant approximations of the form y(x) = >, wiIx(x)
where Iy is unity inside the selected volume and zero
elsewhere [70-72]. Customarily, each choice in the deci-
sion tree decides between one (randomly selected) coor-
dinate in the variable z; as a result, each decision tree
selects a sequence of rectangular cartesian regions. Ran-
dom forests construct an ensemble of trees, each with
randomly chosen decision points. We employ the Extra-
Trees algorithm [72], as implemented in scikit-learn [46].
In the limit of extremely deep and random trees, this al-
gorithm converges to a piecewise linear and continuous
approximation [72].

Because random forests’ basis functions I are step
functions aligned with the coordinate axes of x, ran-
dom forests can be sensitive to the choice of coordi-
nates, particularly when the posterior exhibits strong
correlations between multiple parameters. Our investi-
gations suggest RF fits robustly perform well in all co-
ordinates for sources with broad, uncorrelated posteriors
(e.g., massive binary black holes). By contrast, for high-
mass-ratio sources in particular RF fits should only be
used with specialized coordinate systems like the RIP
coordinates above. Even more so than gaussian pro-
cesses, random forests do not extrapolate well outside of
their domain, and as a result posteriors which extend to
sharp prior boundaries can introduce undersampling or
even pathologicar behavior. As a concrete example, RF-
based posterior generation for binary neutron star obser-
vations with nonprecessing binaries with uniform priors
on xi. € [—1,1] can behave extremely poorly; uniform
spin magnitude sampling for nonprecessing BNS with RF
fits should always employ a tightly restricted spin prior.
As a second example, RF-based posteriors for the trans-
verse spin require extensive sampling near x; | =~ 0 to
explore this region well, hence the pseudo-cylindrical co-
ordinates of Eq. (12). As a third example, RF-based pos-
terior generation near the equal-mass line can be prone
to under-predicting the region near g ~ 1, though suit-
able mass ratio sampling coordinates could mitigate this
effect.



2. Sparse gaussian processes

RIFT initially adopted conventional Gaussian Process
(GP) regression to estimate the marginal likelihood ver-
sus intrinsic parameters, with a full rank (squared ex-
ponential) kernel k(x,2’) as provided by SCIKIT-LEARN.
Straightforward GP regression techniques are costly since
they involve matrix inverses, with nominal cost scaling as
n? for a full-rank matrix [73]. This scaling severely lim-
ited our ability to increase model dimension or to use
more training data. Sparse kernels or approximations
have been widely explored in the GP literature [74-77].
To perform GP regression more efficiently, we have impli-
mented a piecewise polynomial covariance function with
compact support [73]. These basis functions are guar-
enteed to be positive definite, and the covariance between
points becomes zero as their distance increases, and are
given as Kp,p q(7).

Kpppo(r) = (1 - T)i (13)
Kpppa(r) = (1 - r)?l((j +1r+1) (14)
Kyppa(r) = LG+ 4 +33)r2 +(3j+6)r +3)
(15)
Kpppa(r) = (1 =) (53 + 952 + 235 + 15)r®

+(652 4 365 + 45)r?
+(155 + 45)r +15)) + 15 (16)

Where j = ng + ¢+ 1, D is the dimensionality of your
data set. ¢ is chosen such that the sample function is 2¢
times differentiable. We have chosen ¢ = 1, and added a
whitenoise kernel as well. We have seen that the sample
time for this function scales only with n for high n.

8. Quadratic and gaussian estimates for placement

During initial exploration the posterior for tightly con-
strained events, particularly for precessing binaries, rela-
tively few points A, will have high likelihood £,. With
limited training data in these iterations, our most flexible
and efficient interpolation methods in practice can spu-
riously identify overly-complicated likelihood estimates,
with complex isocontours and mutiple extrema. For sev-
eral future applications, we introduce two simple likeli-
hood approximations, both using some pre-determined
threshold L.,; to identify the subset of training data A,
with £, > L. In the mean-covariance approximation,
we compute the sample mean A and sample covariance
3, then adopt the ansatz

~ 1 _
InLeow =InLopaw — 5(A = Ap(A=A)E ) (17)

In the quadratic approximation, by contrast, we perform
a least-squares quadratic form fit to In £ versus A, then
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use the expression
. 1
In Loy =InLopagric — 5(/\ —A)p(A=A)eTpy  (18)

where In Lax6t, A,y are all identified by the quadratic
fit. We provide these simple approximations for test-
ing, for potential use in ultra-low-latency analysis, and
to better extract simple approximate results (e.g., Gaus-
sian approximations) from detailed analyses. These two
approximations are not included in the operational rec-
ommendations for long-latency offline inference presented
later in this work.

C. Improved integration

RIFT uses Monte Carlo integration in both stages of
its iterative process, for posterior generation (CIP) and
likelihood marginalization (ILE). Beacuse of the dynamic
range, sometimes sharp features, and strong correlations
present in the likelihood integrand, RIFT uses custom
implementations of adaptive Monte Carlo integration.
In this section, we primarily describe alternative Monte
Carlo integration implementations which meet some of
our design goals. Appendix B describes how RIFT and
other codes characterize sampling size: RIFT customar-
ily uses neg while ngss is used by many other inference
codes. Figure 6 illustrates how the two new Monte Carlo
integration methods compare to our previous approach,
for the purposes of estimating posterior distributions via
weighted samples. The code used to generate this fig-
ure (and thus test the integrators at a variety of target
resolutions) is disseminated with the source and run as
part of our continuous integration suite. Also dissemi-
nated with the RIFT source is the code used to generate
Figure 7, the inferred sample distribution implied by the
Rosenbrock likelihood [78, 79].

RIFT’s low-level likelihood evaluation can use direct
quadrature over some extrinsic degrees of freedom. In
this work, we specifically describe how RIFT can now
use a fast numerical quadrature over distance.

1. Adaptive sampling with gaussian mizture models

Because many of our integrands have strongly cor-
related dimensions, seperable sampling priors are often
very inefficient. To identify correlations, we provide an
alternative adaptive sampler, such that p, is built from
Gaussian mixture models.

In the simplest and default form, we continue to as-
sume a seperable sampling prior. For adaptive dimen-
sions, we adopt one-dimensional sampling distributions

ps,k(ak) = Zwapn(akmmaa) (19)



where p,, is a standard normal distribution with mean p,
and standard deviation o, ; where w,, are weights associ-
ated with each gaussian component; and where for sim-
plicity we fix the number of components a priori. Each
adaptive iteration, we use the expectation-maximization
algorithm to re-assess the weights and covariance [80—
82], organizing the calculation to enable fast iterative up-
dates; see the Appendix for details. For example, each it-
eration the integral result I and variance o7 are updated
with a running average using the previous values I, o7

and the values over the current subsample Inew, 07,00
according to
I = Nl + Inew (20)
ng+1

2 2

9 nso; +o
)= ———— 21
o1 ne + 1 (21)

where ng is the number of previous iterations. To grace-
fully handle finite boundaries, we use truncated normal
distributions p,_: in place of normal distributions p,, in
our mixture model.

More commonly, we employ correlated sampling in
subsets of dimensions: ps is no longer seperable. The
same algorithm applies. To handle finite boundaries, we
use fast rejection sampling to identify valid configura-
tions; see the Appendix. Our implementation allows the
user to specify at runtime which (if any) dimensions will
use correlated sampling.

To illustrate how this new sampler compares to the
original implementation in controlled circumstances, we
employ both to produce independent samples from an
underlying correlated three-dimensional gaussian likeli-
hood function. Figure 6 shows the true and estimated
one-dimensional cumulative distribution functions, after
a fixed number of likelihood evaluations. As expected,
the new GMM-based integrator recovers the true distri-
bution more accurately at fixed cost. More extensive
tests with a wider range of sample sizes and reference
distributions corroborates this anecdotal example.

2. GPU-accelerated Monte Carlo integration

The ILE likelihood is dramatically more efficient when
implemented on GPUs. The previous adaptive integra-
tor, however, performed all random number generation
with a CPU, then transferred large numbers of random
samples to the likelihood evaluator on the GPU. The
overhead associated with the Monte Carlo integrator can
limit ILE’s performance. We therefore re-implemented a
simplified version of the previous Monte Carlo integration
algorithm, using CUPY/NUMPY to allow the same source
code to drive both CPU-only and GPU-enhanced mode.
The end-user can request this integration algorithm in
both CIP (in CPU-only mode) and ILE.

As in the initial implementation, we assume a sepera-
ble sampling prior ps(6) = [, ps,x(0r). For dimensions
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FIG. 6: Integrating random multidimensional gaus-
sian: Cumulative distribution functions inferred for a random
uncorrelated three-dimensional gaussian likelihood, different
adaptive weighted Monte Carlo integration techniques. The
horizontal axis indicates the dimension z; and the vertical
axis our estimate of P(< ;). Colors indicate the dimension
being rendered (e.g., z1,z2 or x3), line styles indicate the
method used to generate the CDF. Solid lines show the true
CDF; dashed lines show a CDF obtained with the original
MCMC integrator; thin dotted lines show the corresponding
estimate from the gaussian mixture model (GMM) integrator;
and heavy dots show the results with the adaptive cartesian
integrator. All three estimates are derived from the same
number of function evaluations (2 x 10*) and produce com-
parable neg ~ O(50); both are chosen to be small enough
(and hence our resolution poor enough) so that the reader
can differentiate between the different curves in the figure.

that do not benefit from adaptive refinement, we use fixed
priors. For adaptive dimensions, ps () is revised based
on the recent past history of Nagapt = Madapt * Mehunk
samples. The adapted sampling distribution after refine-
ment is a histogram

1

ps,k(x) = A@kNadapt

Z NaS(2|Ta; AX/Nadapt) (22)

where n, is the number of samples in the past history
with ), between 6, and 0, +AO/N, s0 Y na = Nadapt;
and where S(z|z., Az) is a unit step function equal to 1
between z, and z. + Az and zero elsewhere. To mini-
mize fine-tuning and the need for costly conditional state-
ments, following the original implementation we we em-
ploy a fixed number ny;,s = 100 bins in adaptive dimen-
sions.

When combined with RIFT’s GPU-native likelihood
function, all elements of the Monte Carlo integration can
be performed on the GPU board, with minimal data
transfer as needed to orchestrate the integration. As
a result, this fully-GPU marginal likelihood evaluates
very quickly, even for models involving many higher-order
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FIG. 7: Integrating the rosenbrock likelihood: One-
dimensional marginal distributions for the two-dimensional
rosenbrock likelihood inferred using our three standard in-
tegrators with a fixed number 10° random adaptive likeli-
hood evaluations using 10* samples per adaptive batch. The
solid line shows an independent solution derived from one-
dimensional quadrature [79]. All three integrators predict
an integration error and recover the quadrature-based evi-
dence (~ —5.804) to within ~ 1072 for this fixed sample
size. For these settings we find ngss ~ 5800, 1400, 5800
(nes =~ 3000,130,300) for the default, adaptive cartesian
(AC), and gaussian mixture model (GMM) integrations re-
spectively. The one-dimensional Jensen-Shannon (JS) diver-
gence between inferred marginal distributions for each param-
eter is comparable to or smaller than a fiducial threshold [83]
of 10/max[ngss, A, ness,s] for the integrators A,B respectively
(e.g., for the default and AC integrators it is < 1073, well be-
low this threshold; for any other integrator and the GMM
integrator, it is less than 5 x 1072, or modestly above the
target). Note that since RIFT convergence is assessed using
ne, the GMM integration would be run many times longer
in a normal RIFT run.

modes. All of the essential coordinate transformations
described previously which accelerate ILE are compatible
with this implementation, including distance marginal-
ization and rotated sky coordinates. Figure 8 shows
an end-to-end validation study of RIFT when adaptive
cartesian integration is employed within ILE, using a
suite of many synthetic zero-spin sources drawn with ran-
dom intrinsic and extrinsic parameters.

8. Distance marginalization

Following previous work [84], Morisaki developed
a concrete technique to directly marginalize over
distance[85]. An implementation of this technique by
Morisaki and Wysocki is now available within ILE.
Figure 9 shows a large-scale end-to-end test of this
code, to demonstrate it preserves the statistical purity
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FIG. 8: End-to-end test with GPU-accelerated Monte
Carlo integration Similar to Figure 3, a probability-
probability plot constructed with synthetic zero-spin in-
jections. In this figure, the underlying calculations used
marginalized likelihood calculations evaluated using the GPU-
accelerated Monte Carlo integration code.
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FIG. 9: End-to-end test with distance marginalization
Similar to Figure 3, a probability-probability plot constructed
with synthetic zero-spin injections. In this figure, the under-
lying calculations used marginalized likelihood calculations
evaluated using the distance marginalization code.

of our recovered intrinsic parameter distributions. Di-
rectly marginalizing in distance reduces the computa-
tional overhead of the Monte Carlo integration step, al-
lowing notably faster performance at fixed target accu-
racy. Figure 9 shows an end-to-end validation study of
RIFT when distance marginalization is employed within
ILE, using a suite of many synthetic zero-spin sources
drawn with random intrinsic and extrinsic parameters.



4. Gaussian resampling of gaussian likelihoods

When suitable, a gaussian likelihood approximation
[Eq. (18)] allows us to refactor our Monte Carlo inte-
gration technique: rather than draw samples xj from
a sampling prior ps and computing the expectation of
L(z)p(x)/ps(x), we instead draw samples from the nor-
mal likelihood [modulo boundary truncation effects] and
compute the expectation of L,q.p(x)/pg(0) where pg
is the appropriate truncated normal distrbution evalu-
ated at its peak. The posteriors deduced with a Gaus-
sian likelihood can be surprisingly close to the full an-
swer, even allowing for large model dimensions [86]. This
reweighting-based technique can also be performed ex-
tremely quickly, with the corresponding calculations gen-
erally limited by infrastructure (e.g., starting up an in-
terpreter and loading libraries; file input and output). A
subsequent companion study will outline the reliability
and performance of various ultra-low-latency strategies,
including the reliability and efficiency of this approach.

D. Updated convergence architecture

As described in Section IITC, RIFT adopts different
settings in different iterations, to leverage our experience
with hierarchically exploring compact binary parameter
space. Particularly for unsupervised operation, RIFT’s
initial grids often only explore a three-dimensional subset
of nonprecessing binary parameters. We therefore adopt
a sequence of settings for each iteration’s use of the CIP
code, which both performs fits and generates the poste-
rior via weighted Monte Carlo integration. In O3, these
settings were chosen to gradually increase the sampling
and fitting dimensionality, with the hope of identifying
and characterizing many strongly precessing BH-BH bi-
naries. However, as described in Section IIIF, the overly
conservative and inflexible choices adopted for unsuper-
vised operation in O3 were extremely inefficient for low-
mass or highly-asymmetric binaries.

In this work, we introduce a new architecture which
(conbined with the previously-reported coordinates and
integrators) efficiently and reliably recovers the proper-
ties of low-mass and asymmetric binaries. Specifically,
we first perform two iterations using Mg, d, xeg as fit-
ting parameters, sampling uniformly in mass; uniformly
in x;,.; and with a modified prior for x; . These it-
erations capture the dominant aligned-spin degrees of
freedom for most BH binaries, while populating the
transverse spins. We next perform two iterations using
M, 0, Xeff, Xp as fitting parameters, with the same pri-
ors as before. By adding transverse spin dependence, we
capture the (dominant) impact of transverse spin, partic-
ularly important for low masses or asymmetric binaries
when transverse spins are so frequently constrained to
be nearly zero. Finally, we iterate to convergence, using
M, 0, Xeff, X—> Xi,. as fitting parameters, and uniform-
in-spin-magnitude sampling parameters. Extrinsic pa-
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rameters are extracted from the final converged iteration.
For comparison, we will also describe results derived us-
ing an otherwise similar architecture, but adopting the
pseudo-cylindrical coordinates for spin provided by Eq.
(12). In these alternative analyses, the first four itera-
tions adopt a uniform prior on ¥; ,, which densely sam-
ples the region with x; | ~ 0.

This new approach is enabled by adding a notable
missing feature for RIFT: iteration until convergence.
RIFT users can now request a specific CIP configura-
tion be used repeatedly, in a recursively-generated sub-
workflow, until the posterior converges according to the
user-specified convergence diagnostic.

Figure 10 illustrates unsupervised operation for
GW190425, interpreted with IMRPhenomPv2. The left
panel shows our default new architecture, where the ini-
tial prior over transverse spins is well-adapted to discov-
ering and characterizing large transverse spins, while the
right panel employs a more concentrated initial spin prior
(i.e., the uniform-in-y;, prior). Both demonstrations
perform dramatically better than the low-mass analysis
shown in Figure 4, with a steady increase in understand-
ing as our exploration and likelihood model adapts as
necessary to model the posterior given the adopted pri-
ors. However, these two analyses’ small differences high-
light the importance of adopting initial priors well-suited
to the event and final objective.

In the left panel of Figure 10, the RIP and spin coor-
dinate systems enable the first two iterations to rapidlly
identify pertinent aligned degrees of freedom. The next
two iterations then correctly contrain the transverse spin,
while refining an estimate for masses and x; . that is ap-
propriate for our initial prior. However, when we adopt
the final spin prior and iterate to convergence, the code
(correctly) increasingly identifies an extended region with
higher spin and mass ratio, smoothly connected to the
main posterior but now identified as pertinent given the
new prior. Iterations cease when the code converges.

In the right panel of Figure 10, we repeat our analysis
using the alternative configuration above, differing only
in the spin coordinates used throughout the analysis and
in the transverse spin prior adopted for the first few it-
erations. As exemplified by the analysis from the left
panel, nature so far has provided binary black holes con-
sistent with zero transverse spin. For low mass binaries,
the transverse spins are well constrained to be near zero.
As a result, the analysis shown on the right converges
much more quickly to our final result.

The contrasting performance of the two analyses shown
in Figure 10 highlights the dangers of simply reweighting
an existing result to a new prior; see also Appendix B
for further discussion. Figure 11 provides another way to
quantify the impact of our initial prior choices on con-
vergence, using the multiple Monte Carlo estimates of
the evidence Z = f LiargdX and their error reported by
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FIG. 10: GW190425, inferred with different choices for initial priors: Both panels show corner plots with 90% credible
interval quantiles inference for GW190425 using IMRPhenomPv2 using binary black hole priors (i.e., |x;| uniform in magnitude
between 0 and 1) for different RIFT iterations, indicated by different line colors; the color scale shows the likelihood range,
over a dynamic range Aln £ < 15. The two panels adopt the same architecture, differing only in the coordinates used for spin
sampling [Eq. (12)] and in the prior adopted for transverse spins in the first four iterations.
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FIG. 11: Intermediate evidence estimate versus it-
eration: For the RIFT analyses of 190425 shown in Fig-
ure 10, this figure shows our internal evidence estimates
Z = [ Lmargp(A)dX produced by each CIP worker versus it-
eration number, while iterating towards convergence. Points
show the Monte Carlo estimate, and error bars are estimated
90% statistical confidence intervals (i.e., 1.64 times the Monte
Carlo integration error estimate). We have slightly jittered
the z coordinates in this figure to better differentiate over-
lapping error bars. Orange and blue indicate the analyses
performed in the left and right panels of Figure 10 respec-
tively.

each CIP worker.! In the orange points, showing the
analysis using our default transverse prior for the first
initial iterations, we see the evidence estimate system-
atically evolves upward as the posterior approaches our
final converged result. As expected given Figure 10, the
statistical errors estimated from Monte Carlo integration
substantially understate the systematic error in the evi-
dence. By contrast, the green traces immediately identify
the final overall evidence, again as expected given Figure
10.

E. Automated information transfer between
analyses

Due to its iterative nature and reliance on archived
likelihood evaluations {Ag, Lx}, RIFT has unique capa-
bilities to use information from previous or even concur-
rent analyses with different models and configurations
[17]. Though these capabilities are particularly power-
ful when adopting the same waveform model and data
analysis settings (i.e., the likelihoods themselves can be

1 This internal-use evidence during these intermediate iterations
has substantially larger statistical errors than final evidence,
which is evaluated using much longer iterations during the fi-
nal iteration.



re-used), they can also be very powerful tools even be-
tween waveforms. As a concrete example, RIFT analyses
performed using multiple waveform models can efficiently
marginalize over waveform uncertainty [54]. As another
example, rapid analyses with simpler waveform physics
(e.g., no precession) or faster waveform models can feed
directly into an ongoing RIFT analysis, by supplying ad-
ditional target points for likelihood evaluation.

The RIFT workflow has always had natural stages
where external information can be conveniently inserted
(e.g., adding likelihood evaluations, or proposing new
points for next-step evaluation). Where previously we
had ad hoc procedures to manually edit or supply the
necessary files, with the latest generation of RIFT we in-
troduce the fetch process, designed to retrieve candidate
points (or likelihoods) from any external run. [In fact,
we even retrieve information from the recursive iterate-
to-convergence stage via this same framework.|

We foresee three natural use cases for the fetch frame-
work. First, this framework enables a particularly effi-
cient run hierarchy for modest-latency analysis over the
first few minutes, hours, and days. Fast analyses (with
RIFT and other codes) using simplified physics (e.g.,
without precession) seed longer-timescale analysis with
more physics. Within and between stages, RIFT supplies
an approximate posterior distribution. Second, build-
ing on this approach for offline followup, this framework
enables efficient analysis with multiple approximations,
where these approximations’ analyses may have different
timescales owing to their computational cost. The two
analyses can inform each other, if simultaneous, or the
fast analysis can inform the slower one if computational
costs are significantly different (e.g., due to the incorpo-
ration of many higher-order modes). Finally, by fetching
from previous work, RIFT can most efficiently complete
final production-quality analyses, building on previous
experience.

F. Adaptive mesh refinement

In conventional RIFT, the fitting- and posterior-
generation stage is the most serial and time-consuming,
particularly for low-mass sources. Rose et al [87] intro-
duced an adaptive mesh refinement (AMR) for gravita-
tional wave parameter inference, a strategy which very ef-
ficiently finds and explores the (intrinsic, marginal) like-
lihood over modest dimensionality (i.e. d < 4, corre-
sponding to the nonprecessing intrinsic degrees of free-
dom). Below, we describe one way that RIFT can use
AMR without employing additional external information
supplied by searches or precomputed overlap tables.

Our default AMR approach is initiated with a coor-
dinate hypercube in one of a few blessed groups of pa-
rameters, such as M., §, x;,.. The AMR engine then suc-
cessively retrieves information about likelihoods on grid
nodes; assesses grid cells which require refinement; and
identifies new node centers for subsequent evaluation. At
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each specific grid level, cells are identified as needing re-
finement based on a threshold p. A specific cell n out
of N cells is selected if (after sorting all cell likelihoods
L, and forming the cumulative sum S(n) = >7_, Lx)
the sum satisfies S(n)/S(N) > 1 — p. Roughly speak-
ing, this threshold associates each cell (at any refinement
level) with equal AMR probability mass, and performs
refinement of the most significant fraction p of the nom-
inal AMR probability mass. Each successive grid level
fully refines all areas requested for refinement. No prior
coordinate-dependent or refinement-level information is
used to guide the refinement choices.

To assess convergence of our refinement, we have
two natural diagnostics: the integrated likelihood and
the distribution of likelihoods. For the first, at each
level we can estimate the unweighted evidence Z =
J Ldz with successive Riemann integral estimates Z, =
>ox Lik 1, Axa/l where Ly, are the likelihood values
in level £ with a top-level grid spacing of Ax, for each
dimension «. For the second, we can use the distribution
of 2InLy, at each £. When AMR is nearly converged,
the inter-evaluation seperations will be small, and the
distribution should be roughly consistent with a x? dis-
tribution with roughly d degrees of freedom, depending
on the number of well-constrained parameters being si-
multaneously explored.

Lacking the need to interpolate the likelihood or sam-
ple a posterior, the AMR engine operates within seconds.
Operationally, the AMR engine behaves like a drop-in
replacement for CIP: the code can effectively iterate to
convergence using just AMR. Thus, the AMR engine pro-
vides an extremely rapid way to explore the likelihood.
As desired, we can also run conventional CIP in paral-
lel, during postprocessing, or even as part of a parallel
non-AMR analysis with more degrees of freedom to iden-
tify a fully-interpolated posterior distribution. This lat-
ter approach in particular offers an extremely powerful
technique to bootstrap inference for the most challenging
low-mass, high-mass ratio sources.

G. Single-event EOS inference with pretabulated
equation of state

RIFT already has at least two frameworks to constrain
the nuclear equation of state (EOS). On the one hand,
given any tabulated EOS, RIFT can efficiently compute
an evidence for that EOS, based on integrating the in-
terpolated marginal likelihood £(A) while accounting for
the unique relationship between NS mass m and tidal
deformability A that this EOS allows [88]. On the other
hand, RIFT can also similarly constrain a parameter-
ized equation of state, constructing a posterior for its
hyperparameters [17]. However, single-event inferences
have two significant limitations. First, near-future mea-
surements must simultaneously constrain the EOS and
NS mass and spin distribution, to avoid introducing bi-
ases into the recovered EOS. Second and more pertinent



here, any single-event inference ignores substantial prior
knowledge about the nuclear EOS obtained from previ-
ous analyses. The extension described below provides a
simple remedy to this situation suitable for near-future
investigations.

Several studies have adopted nonparametric ap-
proaches to EOS inference, relying on concrete tables of
many EOS realizations [89-92]. These EOS libraries can
be weighted to better fit any observation (e.g., gravita-
tional wave, NICER, or pulsar mass constraint) and as
needed resampled to impose desired priors (e.g., uniform
in maximum mass, R4, et cetera). The most precise
but computationally intensive RIFT strategy involves
brute force: compute the EOS evidence for each tabu-
lated EOS. A simpler albeit more approximate strategy
involves an order statistic S, defined for every tabulated
EOS a. We have adopted S = A\(M,. x 21/5) as our or-
dering statistic: the tidal deformability of each neutron
star in a symmetric binary, such that the chirp mass is
consistent with the observed (detector-frame) chirp mass.
Because in practice the mass ratio of NS binaries can’t
be differentiated from unity, this quantity is a good es-
timate for the dominant impact (A) that the EOS has
on the inspiralling binary, evaluated at masses appropri-
ate for the binary. Each iteration, CIP can construct a
posterior in X = (m;, x;,S) and thus proposed synthetic
binaries Ag, where the binary tidal deformabilities A; as-
sociated with each X} are estimated using the EOS with
the closest order statistic S, to Sk (i.e., A;(S,)). This
approach allows us to quickly employ any EOS tabula-
tion conditioned on any previous measurements as part
of our usual iterative inference technique.

V. SELECTING FIDUCIAL RIFT
CONFIGURATIONS

RIFT’s modular organization offers immense opera-
tional flexibility. Before providing detailed validation
studies for selected configurations, in this section we
briefly describe several code configurations and report
on their performance, to illuminate our choices behind
the specific configurations.

A. Selecting between integration and fitting
algorithms: A matrix of configurations

RIFT has several modules for integration and interpo-
lation. To simplify the process of discriminating between
and validating all of the principal code configurations, we
for simplicity focus the most well-behaved scenario: mas-
sive binary black holes, similar to those frequently iden-
tified by binary black hole searches in advanced LIGO
and Virgo data during O3. This choice for fiducial pro-
filing tests, anecdotal examples, and PP plots allows us
to assess these configurations in the best possible light,
and is appropriate for most observed sources.
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Specifically, we summarized three integration tech-
niques for CIP (default, GMM, and adaptive cartesian
or AC) and three fitting methods (gaussian process (gp),
random forest (rf), and sparse gaussian process). Addi-
tionally, some of these CIP techniques can be employed
with multiple refinements (e.g., different parameter cor-
relations allowed for GMM,; different coordinate systems;
et cetera). Both new integration techniques can poten-
tially also be used in and accelerate ILE. Being GPU-
accelerated, the AC method is particularly well-suited
for ILE, since its other costly likelihood-evaluation oper-
ations are already performed on-GPU. In subsequent sec-
tions, we will exclusively employ AC integration within
ILE. With a focus only on seleting between different CIP
configurations, in this section we fix our ILE settings,
employing the previous default Monte Carlo integrator,
and only report the impact on overall CIP runtime.

Table I illustrates changing overall code resource use
from an analysis of GW190620 with a straw-man config-
uration: a nonprecessing IMRPhenomD model with uni-
form priors on x;, , € [—1,1]. All configurations adopt the
same architecture: RIP coordinates for spin; an initial
grid of 1500 points; two iterations omitting the subdom-
inant spin, followed by iteration to convergence with the
subdominant spin included. As demonstrated by Figure
12, all analyses converge to a comparable-quality result.
Considering all possible pairs of these 5 analyses, the
mean one-dimensional JS divergence for M., , q, xet are
(2,1.8,1.9) x 1073, respectively, dominated by compar-
isons with the O3 configuration (GP/default) and consis-
tent with the target threshold and sample size produced
by this experiment: 4500 samples produced from each
analysis, based on neg. Despite intentionally adopting
the most favorable circumstances for the default config-
uration, with very few points and model complexity for
the gaussian process interpolator and fiducial integrator,
this intentionally simplified example shows that even in
this simplest of cases, using our new interpolation and
integration methods produce overall better performance.

Figure 13 illustrates code performance on inference of
a single zero-spin binary black hole using a nonprecessing
IMRPhenomD model.

B. Fiducial production-quality configuration

Motivated by the above, we recommend the following
settings for our production analysis. For marginal like-
lihoods (ILE), we use the AC integrator with distance
marginalization, using a target n.g =~ 10. Only the
skymap is adapted; other degrees of freedom are sam-
pled by brute force. When assessing batches of points
by a single ILE worker, we freeze the skymap after the
first iteration. For posterior generation (CIP), we use
the GMM sampler with an RF fit, using the previously-
described convergence architectures including iterating
to convergence, with at least 3 CIP workers contribut-
ing to the overall posterior in each iteration. We use



Fit | Integrator | Total (h)|CIP (h)|ILE (h)|7Tw (100,3)
GP| Default 14.25 3.8 10.5 1.4
GP| GMM 11.8 3.5 8.25 1.2
RF| Default 7.5 0.17 7.5 0.13
RF| GMM 7.3 0.17 7.1 0.13
RF AC 5.5 0.17 5.3 0.11

TABLE I: Example of total analysis costs: GW190620:
Runtime costs (in hours) for a complete, converged analysis
of GW190620 using IMRPhenomD and five different RIFT
configurations: two different interpolators and three different
integrators. The first two columns indicate the CIP interpola-
tion and integration configuration; the third is the total CIP
resource usage (here, over all 3 simultaneous CIP instances);
and the fourth is the total ILE resource usage, which is smaller
for more efficient posterior exploration and modeling. The
last column [Eq. (C1), evaluated with Ny = 100 and N¢ = 3]
estimates the average wait time if 100 ILE instances and 3
CIP instances are always available for RIFT inference.
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FIG. 12: Example of results from fiducial GW190620
analysis: Posteriors derived from all five benchmark analyses
of GW190620 enumerated in Table I using IMRPhenomD and
uniform priors on x; .. All agree. The run labels 1,2,3,4,5
matches the row order used in Table 1.

correlated sampling among M., ¢ and the cartesian spin
components early on, to accelerate sampling.
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VI. TESTS
A. Anecdotal end-to-end unsupervised operation

To insure that these alternative algorithmic compo-
nents do not change RIFT’s inferences, and to obtain
profiling information to characterize their performance,
we performed a large suite of analyses on real events
throughout and after the development process. Figure
10 shows a concrete example: an analysis of GW190425
with IMRPhenomPv2 with ¢ < 2 modes. Our default
test suite included GW151226, GW170829, GW190412,
GW190425, GW190814, GW190620, and GW200115.
Almost all worked without human supervision through-
out the development process; in our final code configura-
tion, GW190814 converges quickly as well. We system-
atically tested ILE with GPU acceleration and distance
marginalization; CIP with a random-forest fit and cor-
related GMM sampling, with 3 workers; and a workflow
with a convergent subdag and customary precessing iter-
ative structure. Selected examples from these validation
studies appear elsewhere in this work.

B. Illustrative example

To provide systematic, controlled, quantitative tests
of our algorithmic changes, we employed two fiducial
sources: GW190620, as discussed with Figure I and Table
12 above, and a fiducial synthetic zero-spin source, shown
in Figures 13. We employ six variants of our algorithms,
changing the fitting method (line colors) and the MC
integrator (line styles). Likelihood interpolation meth-
ods shown are the original aproach (black), our sparse
GP code (blue), and the random forest code (green).
Monte Carlo integration options for CIP are the origi-
nal MC method (solid) and the GMM adaptive integra-
tor (dashed). Unlike the previous example, which used a
contemporary adaptive architecture, the synthetic source
used an O3-style configuration: a fixed number of itera-
tions, using a fixed (and complete) coordinate system to
characterize the likelihood.

This anecdotal example consists of a zero-spin BH,
shown as the first panel in Figure 13. In this example,
RIFT uses the same setup as the ILE-GPU paper [30]:
we perform 7 iterations, starting with a 100-point uni-
form grid in M, J; each iteration has 5000 evaluation
points. Each of these tests use a jittering factor of 3 and
force-away parameter of 0.05. We show posterior distri-
butions obtained with RIFT using each combination of
settings. All agree.

C. Component performance on many
randomly-selected sources

We have also validated several of the new code con-
figurations with probability-probability (PP) plot tests,
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FIG. 13: Recovering a fiducial posterior distributions:
binary black hole: Results of an analysis of a binary black
hole model with aligned spins. Posterior distribution for M.
and 6 = (m1 — mg)/M obtained using RIFT with different
interpolation methods (colors) and integration methods (line
styles). All source parameters and analysis settings agree pre-
cisely with the original RIFT-GPU paper [30]. The black
curves indicate conventional GP interpolation with a squared
exponential kernel, as in the original RIFT paper; the blue,
green, and red lines indicate sparse-GP interpolation (SGP),
random-forest interpolation (RF). Colors and line styles indi-
cate the integration and fitting methods used.

using models of varying complexity. Several of these PP
plot tests have already appeared earlier, in sections de-
scribing and validating individual module components:
Figure 5, a PP test for RIP coordinates and nonprecess-
ing PE for NS with tides (and higher-order modes); Fig-
ure 8, a PP test for the AC integrator; and Figure 9,
a PP test for distance marginalization. Figure 14 shows
yet another test of multiple new code components — here,
random forest fits and GMM integration in CIP. For this
figure, we constructed 200 random synthetic sources with
precessing black hole spins, then estimated their param-
eters using the IMRPhenomPv2 waveform model.

To more sharply validate that our different code con-
figurations for CIP produce identical results on a large
sample of synthetic sources, we compared two code con-
figurations on 100 random synthetic injections with zero
spin in distinct realizations of random gaussian noise:
the fiducial code configuration used in O3, and a version
using a random forest fit and GMM sampler in CIP. We
extended each analysis until our KL-divergence-based di-
agnostic on M., fell below 1072, We find that each pair of
analyses of the same data produces the same results, as
measured by our KL-divergence-based diagnostic Figure
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FIG. 14: Precessing PP plot: Probability-probability plot
to validate recovery of precessing synthetic signals, following
the RIFT methods paper [17]. The synthetic sources and
parameter inferences are constructed with IMRPhenomPv2
in gaussian noise with presumed known PSDs, for 3-detector
networks, starting the signal at 20 Hz and using a 4096 Hz
sampling rate. Detector-frame masses are drawn uniformly in
the region bounded by M /Mg € [30,60] and n € [0.2,1/4],
and sources are drawn volumetrically between 1.5 and 4Gpc.
Both BH dimensionless spins are drawn uniformly and volu-
metrically from the unit sphere. For computational efficiency,
all sources in this test have a fixed and presumed known sky
location.

15 shows another measure of agreement between the two
algorithms: the difference between the quantiles P(x;),
versus P. Small random differences ~ 1/v/10% between
the two inferred P are expected because both probabili-
ties are derived from 10* posterior samples. By construc-
tion, this test shows both codes produce indistinguishable
PP plots. In short, all the extensions described produce
indistinguishable results, differing only in their efficiency.

VII. ANALYSIS OF RECENT EVENTS

RIFT has been extensively used to analyze GW obser-
vations in O1 [93], O2 [15], and O3 [9, 10, 27, 28, 34].
In this section, we briefly reanalyze some recent notable
observations with RIFT, to highlight the performance ad-
vantages of the configurations and extensions described
in this paper. Additionally, we also examine selected
events which other groups have prioritized for their own
reanalysis. While we adopt largely consistent data con-
ditioning settings and priors as used in previously pub-
lished work, we do not attempt to rigorously reproduce
any previously published work, for simplicity adopting
the algorithms described above without any added non-
RIFT extensions. (For example and by contrast, the
headline results presented in recent LVK analysis of O3
adopt a different fiducial distance prior and attempt to



‘@
<
X
S 2
— [ ] [ ] °
° e " o
.LO o 3 ;" e o
LAl » ®
04 O -
p ¥ ® , 4 .‘.
L] o0 o
° -
_2_
0.0 0.2 0.4 0.6 0.8 1.0
P

FIG. 15: Recovering many random posterior distri-
butions: For the two code configurations a plot of inferred
AP = Pi(z) — Px(z) versus P (z) for j indexing the synthetic
event, where p corresponds to the empirical estimate of the
posterior CDF deduced from posterior samples (here using
10* samples), 1,2 refer to the two code configurations, and
where z refers to chirp mass (blue) or mass ratio (orange).
The two codes assign nearly the same quantile to the injected
value for all injections.

marginalize over calibration uncertainties [9, 10]. In this
work we adopt the customary d2 distance prior and do
not include marginalization over data processing uncer-
tainties.) Rather, the illustrative results presented be-
low in part reflect the reasonable differences expected
between groups adopting different analysis choices.

A. GW190814, GW190412

The two events GW190814 and GW190412 are asym-
metric compact binary black hole mergers, whose pos-
teriors exhibit strong correlations between M., 7, and
component compact object spins. As a result, the re-
vised RIFT configuration enables significantly more effi-
cient performance for these events. For context, during
O3 both events required months of wallclock time and ex-
tensive human oversight, at least two orders of magnitude
more effort than other contemporary O3 RIFT analyses.
Now, both events can be analyzed automatically with
substantially reduced computational and wallclock time,
with minimal human oversight. While detailed timing
depends strongly on the waveform model and optimiza-
tion settings used, we can consistently produce results for
both within days (for slow models with complex physics)
to even tens of minutes (for simple physics and fast mod-
els). As our replication study adds no new scientific in-
sight about these three events, we do not illustrate them
here. Instead, Figure 16 shows the estimated run du-
ration assuming no resource congestion: the cumulative
CIP evaluation time, divided by the number of CIP work-
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FIG. 16: Projected runtime for exceptional events A
histogram of the runtime Tiun (in minutes) for RIFT us-
ing IMRPhenomPv2 for GW190425 (blue), GW190814 (or-
ange), and GW190412 (green), run multiple times for each
event, with successive runs using contemporary and near-
contemporary code configurations.

ers used simultaneously (here, 3). While this histogram
shows only runtimes for IMRPhenomPv2, RIFT’s com-
putational cost should be comparable for more costly
waveforms; see Appendix C for further discussion.

B. GW200115

Based on the inferred mass of its secondary, the low
mass asymmetric merger GW200115 is expected to be
a neutron star-black hole merger. As with GW190814
and GW190412, the revised RIFT extensions and con-
figurations presented in this work enable dramatically
more efficnet analysis, without human intervention. The
left panel in Figure 17 shows an analysis with IMR-
PhenomPv2 of GW200115 plotted against the SEOB-
NRv4PHM production run (black solid). The new
run uses a faster set of interpolators (rf) and samplers
(GMM) and a better and new coordinate system, which
reduces the runtime to a matter of a couple of days com-
pared to weeks.

The right panel in Figure 17 shows a similar reanaly-
sis of GW200115 with IMRPhenomXPHM. For compar-
ison, the solid black and blue contours and distributions
illustrate previously-reported results, which incorporate
calibration marginalization and an alternative distance
prior, and were performed with a different analysis code.
As expected, the RIFT analysis presented here conforms
as expected to the marginal likelhoods shown in color
scale. This reanalysis favors a higher secondary mass and
a more negatively aligned spin. All differences between
these calculations are modest, with largely overlapping
support.
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FIG. 17: Analysis of GW200115: Corner plot with likelihoods (points and color scale) for GW200115, analyzed with RIFT
and IMRPhenomPv2 (left panel) and IMRPhenomXPHM (right panel), showing the parameters M., § = (m1 —ma)/M, Xes

and the magnitude of the transverse component of the primary spin x1,1 =

\/Xi.+x3,. Color scale shows RIFT marginal

likelihood evaluations versus intrinsic parameters; solid contours show 90% credible intervals for the two-dimensional marginal
distributions; and the diagonal panels show one-dimensional marginal distributions of these parameters. In the left panel, for
comparison the black solid curves and distributions show similar results derived with the published SEOBNRv4PHM analysis.
In the right panel, for comparison the green and blue curves show previously-reported results derived with IMRPhenomXPHM

with different analysis settings and inference.

C. GW151226

The original published analyses of GW151226 favored
comparable binary masses, with a nominal posterior for
the two ordered variables m; > ms as close to equal mass
as would be expected given the strong degeneracy along
lines of constant M,.. These results were corrobrated
in GWTC-2 with reanalysis including direct comparison
to numerical relativity simulations including higher-order
modes, albeit at the time limited only to nonprecessing
simulations [94]. Several groups have published reanaly-
ses of these events (e.g., [95-97]), including a recent LVK
reanalysis [10].

One followup reinvestigation of this event using models
with recent semianalytic waveform models have found
modest support for higher mass ratio [97]. They suggest
the high-mass-ratio configurations (1/q > 5) could be
consistent with strong orbital precession.

The two panels of Figure 18 shows an unsupervised
RIFT reanalysis of this event with IMRPhenomXPHM,
using our contemporary architecture: adaptive conver-
gence, RIP and pseudo-cylindrical coordiantes, et cetera
as described in Section V B. As previously, contours indi-
cate 90% credible intervals, while the colorscale indicates
In £; points colored in light gray have In £ farther than
15 away from the peak value. All analyses use settings

comparable to our original analysis of this event: C02
data, with identical noise power spectra estimates. We
have both reanalyzed these events with our customary
current pipeline and also performed a targeted analysis
to densely evaluate the likelihood for n € [0.02,0.08]. For
our analysis with IMRPhenomXPHM, we adopt a refer-
ence frequency of fef = 100Hz, comparable to [97]. We
have corroborated our conclusions with a focused inves-
tigation of high-mass-ratio region. In neither analysis do
we find the posterior strongly supports a high g, strongly
precessing interpretation of GW151226.

Looking more closely at the underlying marginal like-
lihoods, in both cases we find some high-q, strongly-
precessing configurations with significant (but nonexcep-
tional) marginal likelihood. In both our unsupervised
and targeted analyses, we find that, conditioned on the
requirement of high mass ratio, the posterior distribu-
tion for transverse spin x;,; suggests well-localized spin
orientation, consistent with the statements in [97]. In
other words, the high-¢g region of the posterior modestly
favors transverse spins, and the specific orientation of
these spins is better constrained with f.of = 100Hz than
the fiducial 10 Hz. At this reference frequency, the one-
dimensional distribution of ¢; and the two-dimensional
distributions xi,; show some modest asymmetries, in
this mass region. While we concur with [97] that the
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FIG. 18: Reanalysis of GW151226 with IMRPhenomXPHM: Two corner plots with 90% credible interval quantiles for
the last two RIFT iterations, indicated by different line colors. The left panel shows M., ¢ = ma/m1, Xes and the magnitude of

the transverse dimensionless spin of the primary x1,1 =

\ /xf’z + xf’y. The right panel shows the two transverse components of

the dimensionless spin of the primary x1,z, X1,y. The color scale shows the likelihood range, over a dynamic range Aln £ < 15;
gray points indicate likelihood evaluations below this range. While a small region of marginally higher likelihood exists at
asymmetric mass ratio, large transverse spins, and positive xes, overall our inferences still favor a conventional interpretation

for this event.

choice of prior strongly suppresses the significance of the
transverse spins in the posterior, the lack of exceptional
precessing configurations with with high marginal like-
lihoods demonstrates that these are at best comparably
likely to the well-explored comparable-mass component
of the posterior.

The differences in interpretation between this analy-
sis and those of Chia et al can easily arise from relatively
small details, For a relatively weak event like GW151226,
small perturbations to a nearly-flat, low-significance like-
lihood introduced by (for example) different choices in
data conditioning can easily produce large changes in
the posterior. Closely examining their work, their fig-
ures suggest no support for spin-orbit-induced modula-
tions during the insprial phase: their Fig. 6 suggests
that their early-time maximum likelihood waveforms are
consistent with low transverse spin. In other words, their
results are consistent with a viewing angle consistent with
+J, the total angular momentum direction, along which
minimal modulation is expected.

VIII. CONCLUSIONS

We have described extensions of the RIFT parame-
ter inference software ecosystem, including the specific
choices adopted during O3 and many new extensions

proposed for post-O3 work. In this work specifically,
we introduce new coordinate systems, fitting techniques,
integration techniques, and pipeline architectures which
together significantly accelerate the performance and sci-
entific return of RIFT as a parameter inference tool. To
highlight RIFT’s capabilities, we briefly report on reanal-
yses of several pertinent GW observations.

The improvements highlighted here do not exhaust
RIFT’s capability, both in general or for ultra-low-
latency analysis. For example, previous studies proposed
direct quadrature of both intrinsic and extrinsic variables
using surrogate models [48]. RIFT could likewise benefit
from normalizing flows to accelerate its Monte Carlo in-
tegration, in effect accelerating our importance sampling
via approximate inference and benefitting from several
group’s efforts to provide such preliminary estimates [98—
102]. Additionally and more broadly, RIFT can benefit
from many additional improvements in its implementa-
tion details, including more optimal coordinates; more
use of GPU-accelerated computation; and streamlined
pipeline architecture. Even with the existing codebase,
RIFT offers novel low-latency capability, even with costly
models. For example, RIFT could use a small number of
very large iterations, after loose targeting with prelimi-
nary estimates (e.g., from nonprecessing inference). Even
the existing framework can complete inference within a
handful of minutes for simple models, with appropriate



operating point choices. We defer discussion of specific
low-latency analysis frameworks to a dedicated publica-
tion.
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APPENDIX A: GAUSSIAN MIXTURE MODEL
IMPLEMENTATION

Gaussian mixture models (GMMs) and expectation-

maximization (EM) have been thoroughly described in
the literature [80-82]. In this appendix, we summarize
our implementation, emphasizing features needed for our
work.
Ezpectation-mazximization (EM) for GMMs: The EM al-
gorithm fits K Gaussians, each described by its mean gy,
its covariance Xy, and its mixture weight 7, such that
the likelihood of the model .Z is maximized. For each
sample x,, and its corresponding sample weight w,,,

P(x) is the probability of a point & under the current
model, or

P(x,) = wn > N(@plpr, Zi)r,
k

(A2)

where N (@, |pi, X)) is the multivariate Gaussian den-
sity. P(x) can be split into the K individual probabilities
for each x:

N(zn|pr, X)) T wn,
P(x,)

Pnk = (AS)

The above equations describe the expectation step (E-
step) of the EM algorithm. The means, covariances, and
mixture weights are estimated from p,j in the maximiza-
tion step (M-step) as follows.

Hi = ankxn/ ank

(A4)

= Y pan(@n — )@ — ) [ Do pue (A5)
g = %ank (AG)

P(z,)

The iterative EM algorithm is initilized by guessing
initial values for the means, covariances, and mixture
weights. Alternating E-steps and M-steps are done until
the change in .Z between iterations is below a predeter-
mined threshold.

The standard expectation-maximization algorithm has
been modified to allow iterative, online updates of the
model with a new set of samples and weights. A new
GMM is first trained using the new data. Each compo-
nent ¢ in the new model is then matched to a component
7 in the old model in such a way as to minimize the total
Mahalanobis distance Mp between all of the means:

> Mp=> (\/(Hj — 1) (g — i)

4,J=0

/i = 1) TS5 (s — 1)

(A8)

The combination of components which minimizes >~ Mp
is the one that is kept.

Once the components have been matched, they are
combined. N is the total number of points the old model
has been trained on and M is the number of samples in
the new batch.

N NTI'j/Lj +M7Ti/,bi

= A9
N N’/Tj+M7T1' ( )
5 N2+ MmX; | Nmjpjpu] + M) ~
Nﬂjﬁ*Mﬂi N7Tj+M7Ti
(A10)
Nm: + My,
= TNt (A11)

Accounting for finite domains: Monte Carlo sampling for
parameter estimation requires samples from a finite, rect-
angular domain. When sampling from a GMM, therefore,
we must truncate the infinite-domain multivariate Gaus-
sians to our finite domain. There is no widely-used im-
plementation of a truncated multivariate Gaussian, but
we can take advantage of Scipy’s univariate truncnorm
function.

In general, to generate a sample from a multivari-
ate Gaussian from a distribution with covariance 3 and
mean u, we first generate a sample x from a Gaussian



centered at the origin with covariance 1. Our final sample
is then

z' = A 2¢px + p, (A12)
where A is a diagonal matrix of the eigenvalues of 3 and
¢ is a matrix containing the corresponding eigenvectors
of 3.

To generate truncated Gaussian samples, we then sim-
ply take our initial sample (with mean 0 and covariance 1)
using truncnorm, and transform them to have the desired
mean and covariance. The problem with this approach,
however, is that the bounds are transformed along with
the samples, resulting in a parallelogram-shaped domain.
Our solution to this problem is to sample from the small-
est rectangualar region that, when transformed, will con-
tain the desired sampling domain; any samples that end
up outside of this region are simply thrown out.

Each corner of our desired domain is transformed by
r, where

r=[AY2g] 7. (A13)
For each dimension, the minimum and maximum trans-
formed corner points are used as the bounds for our
univariate truncnorm samples. After transforming the
samples, we throw out any that fall outside our original
bounds.

APPENDIX B: MONTE CARLO INTEGRATION
AND INDEPENDENT SAMPLES

RIFT relies heavily on Monte Carlo integration. This
appendix provides a brief review, highlighting pertinent
subtle issues about results and convergence that arise in
real applications. In this section, we will consider an
integral S = [ Lp(z)dz over some volume in z relative
to a normalized probability p(x), and its alternative ex-
pression S = [ L[p(x)/p.(z)|ps(z)dz relative to another
probability density p,(x) over . We will define the ran-
dom variable w = Lp/p,, such that S = (w) (averag-
ing over the distribution from ps). The Monte Carlo
approach to this integral involves drawing many sam-
ples xy, evaluating wy, and evaluating the sample mean
w = Zgﬂ wg/N. According to the weak (and strong)
laws of large numbers, the sample mean will converge to
S, so long as (w) is finite (even if higher-order moments
do not exist). In the special case that w has finite and
known variance V (w) = o2, the distribution of the sam-
ple mean will be asymptotically normal, with a mean of
(w) and a variance of o2 /N. If the variance exists and
can be well-approximated by the sample variance, then
the samples themselves provide an estimate for the inte-
gral and its error [45].

RIFT both uses the Monte Carlo integral (ILE) and,
when appropriate (CIP), the associated weighted samples
themselves. To introduce notation, the weighted Monte
Carlo integration methods output points xj, likelihoods
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Ly > 0, and weights wy = L(xg)p(zk)/ps(xr), where
2 are fair draws from the sampling prior p(z). Us-
ing these outputs, we evaluate overall Monte Carlo inte-
grals; estimate marginal distributions; and resample to
produce fair-draw outputs. As each outcome involves a
different expression of these samples, several measures
of convergence and hence the “number of independent
samples” have been adopted, expressed in terms of nor-
malized sample probabilities pr, = wy/ > g W

Historically, RIFT adopts a very conservative account
of the number of independent samples [16]:

> Dk

max{py }

Neff = (Bl)
The value 1/neg is the largest discontinuous jump in
the estimator P(< z) = Y., prf(xx — z) for any one-
dimensional cumulative probability distribution P(< )
derived from the full samples. Alternatively, the sample
size can be defined using the estimated moments of the
weight distribution. For example, one estimate of the
effective sample size is [103]

(Zk Pk)2

Neff ESS = 5
ok Pr

An alternative choice grounded in the Monte Carlo in-
tegral error standardizes the sample size to the sample
variance. As the natural count of independent samples
scales as N/V (w), an alternative estimate for the num-
ber of independent samples based on the Monte Carlo
variance estimate [104]:

(B2)

<w>2:i 7<w>2+#zw2
Near N N 14 k

(B3)

In other words, neg is the ratio of the sample mean
(squared) and the sample variance, times the number of
points drawn: neg = N1D2/52 where s? denotes the sam-
ple variance. This accounting of the number of indepen-
dent points can be dramatically larger than the conser-
vative estimate of Eq. (B1), depending on the integrand,
or nearly zero for scenarios where the variance diverges,
as discussed below. Finally, the entropy of the probabil-
ity weights H(p) = >, pr In(1/py) is maximized at Inn
when all the probability weights are equal. Motivated by
the maximum value of entropy, we define

Nest,n = exp(H (p)) (B4)
This information-theory-based estimate of the number of
independent evaluations can be slightly less conservative
than Neff -

As a practical illustration of these sample size conven-
tions, we introduce a one-dimensional toy model: L =1,
p(z) = 1 and p,(z) = az®~?! for z € [0,1], with a > 0.
For example, these pair of priors might represent an at-
tempt to rescale a single spin’s volumetric sampling den-
sity (i.e., the case @« = 3 and = = |x1]) to reflect a



physical uniform spin magnitude prior. In this scenario,
w = p/ps = 1/ax* !, which is defined over [1/a, o00) for
a > 1 and over [0,1/a) for o < 1. All comments below
are easily verified by simple numerical experiments.

e Monte Carlo integral: As required by the strong
and weak law of large numbers, ), wy /N is nearly
unity almost always for large N. At fixed sam-
ple size but changing «, the standard naive Monte
Carlo uncertainty estimate s/v/N increases, reflect-
ing the rarity of sample points sufficiently close to
the small region near z ~ 0 which dominates the
integral.

Nominally we would expect the Monte Carlo un-
certainty to scale as V(w)/N. For ao € (0,2) the
variance is integrable, but for @ > 2 the lower limit
diverges:

2 = lx xfil z2e
<w>\/0d/p3()04(2—04)

0

Therefore, the analytic expression V(w) = (1 —
a)?/a(2 — a) for the variance is only well-defined
for a« < 2 — in particular, excluding the highly-
desirable scenario of reweighting from a volumet-
ric to a uniform spin magnitude prior! Nonethe-
less, above this threshold and in the regime of a
formally divergent variance, the conventional esti-
mate for Monte Carlo error based on the sample
variance is a reasonable estimate of the true error
scale for many a < 10. These divergences in the
moments of w do mot limit the efficacy of Monte
Carlo integration, whose convergence is asymptot-
ically protected by the law of large numbers.

o Moment-based size: We proposed two sample size
estimates based on (sample) means and variances
of the distribution. As noted above, for a > 2,
the true second moment and variances diverge.
Nonetheless, in empirical experiments with our toy
problem with a > 2, both n.z and n.,, exhibit
qualitative consistent behavior relative to the other
two sample size estimates discussed below.

e Default (maz-sample) size:  The single-most-
significant sample provides a conservative esti-
mate for the effective sample size which manifestly
must remain finite and comprehensible. For non-
normalized draws wy such that (w) = 1, our de-
fault estimate for Neg is approximately N/maxjwy.
For the scenario with a > 1, roughly speaking
since the nearest sample has probability 1/N, this
means neg ~ Naz® ! ~ aNz®/z ~ a/r, and thus
Neft = N/Wmax = aN'YVe — in other words, a few
times the natural number N/ of points expected
nearby.

More formally for o > 1, the cumualtive distribu-
tion of the largest value wpax: out of N samples of
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w is P(< wmax)”™. Because of reordering between
r and w for o > 1, the cumulative distribution
function for w is easily expressed in terms of the
cumulative distribution of v = z* : P(< w) =
P(>uw) =1—u=1-(1/aw)@/0=2)) In the
limit of large N, the median value of wy,yx can be
estimated by solving 1/2 = P(< wpax)”, leading
to a simple approximate expression for the median
value of neg for this one-dimensional rescaling:

N —(a—1)/a
mediang (neg) ~ Na <ln2> o O(Nl/a) (B5)

e Entropy-based size: Finally, because our entropy
size estimate involves a Monte Carlo estimate of the
distribution entropy, we anticipate that the finite-
ness of the entropy ensures the entropy-based sam-
ple size is stable and well-posed for all a > 0.

As illustrated by the discussion above, these different
sample size estimates can have dramatically different be-
havior, including different scaling with N! For our toy
problem, empirically n.g u is a nearly constant fraction
of N neg scales as N/, with a very unfavorable prefac-
tor; and Nefr var ™ Nefr,mSs Scale roughly in between (e.g.,
comparable to N2/ ®). In particular, these expressions
suggest that both our probability distributions (with er-
ror scale set by 1/neg in their cumulative) and evidence
(with error scale set by 1/,/fvar) have uncertainties scal-
ing as N~/ for this toy problem. This expected but
extremely unfavorable scaling has straightforward impli-
cations for our reweighting strategies: in short, avoid spin
reweighting whenever possible, unless drawing samples
from a distribution with similar singular behavior near
the origin.

APPENDIX C: HOW RESOURCES DETERMINE
POSSIBLE OPERATING POINTS

As synthetic and real sources accumulate, RIFT users
typically need to perform extremely large numbers of
source inferences. The rate, latency, and accuracy of
these inferences depend on the available resources, wave-
form model cost, and population of signals being ana-
lyzed. Different science objectives and available resources
can produce dramatically different choices for how to op-
erate the RIFT pipeline. In this section., we briefly out-
line how these choices impact RIFT analysis throughput
and overall cost, highlighting a few expected use cases.

Generally, RIFT involves two sets of calculations, po-
tentially provided by distinct pools of resources: ILE
evaluations, provided by N resources (e.g., low-cost
GPUs); and CIP posterior generation, provided by N¢
resources (e.g., usually modestly memory-rich CPUs).
Both ILE and CIP are characterized by a typical runtime.
Each ILE marginal likelihood evaluation for a specific
model (i.e., approximation, mode list, starting frequency)



and at a fiducial accuracy e (i.e., the relative error in their
marginal likelihood) requires a time 77, ranging from a
second to a few minutes. Each CIP posterior generation
worker requires a time 7¢ that depends strongly on the
approach used, dimensionality of the space, and model
complexity. In this appendix we consider CIP configu-
rations with runtimes from seconds to hours. Uusally,
both ILE and CIP involve Monte Carlo integration, so
their runtime nominally increases as 1/e2. RIFT employs
many instances of ILE and CIP simultaneously.

The typical wait time and total pipeline resource us-
age follows by accounting for the total cost needed for
all stages of the analysis. We assume a full analysis
requires n; =~ O(10%) likelihood evaluations, organized
roughly into n;; chunks of size ny/n;;. After each chunk,
a number n. CIP workers will each independently gen-
erate a fraction of the overall posterior; the total time
needed to complete posterior generation can be appre-
ciably reduced by employing many CIP workers simul-
taneously. When many RIFT analyses are performed
simultaneously, the overall resource usage per event can
be estimated ignoring the pipeline’s serialization of ILE
and CIP stages. In this circumstance, the resource usage
Tr and average analysis time Ty

Tr = Tiny + TcNcnit (Cla)

Tr/10% =~ (1;/s)(n;/10*) + 10(7./h)(nc/3)(ni/10)
(C1b)
(Cle)

TNy | TCNCcNit

T =
VTN, Nc

where the first expression provides the total time needed
to perform an analysis, while the second estimates the
effective analysis duration given the resources available.
The total resource usage needed to perform N analyses is
just NTg. The two types of resources contribute equally
to the average analysis wait time when

TCcNCeNt

NC,match = NI (Cld)

niTy
(7e/h)(nc/3)(nit/10)
(7i/h)(nr/10%)

More concretely, a RIFT analysis pool could need roughly
Nematen /N7 ~ ten times as many CPUs as GPUs, to
maintain a steady state, given these fiducial timescales
71, 7c. Finally, ignoring resource contention limits and
recognizing that each ILE job in fact evaluates w ~ O(10)
likelihood evaluations in series, the user time needed to
complete a single targeted analysis with a larger number
ng of CIP instances could be as short as

~ 10N[

T = ngs |:T]U} + /TC} (Cle)
ne/ne

where we assume each worker performs a fraction

Tene/ng of the overall work of generating the poste-

rior. The runtime 7; depends strongly on the maximum

mode order f,.x, if waveform generation costs are sub-

dominant to the costs of evaluating the likelihood many
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times. Because the RIFT likelihood depends on matrix
multiplications over arrays of modes, in this regime the
ILE runtime will scale roughly as the square of the num-
ber of waveform spherical harmonic modes h;,, used in
the analysis:

Y
1 X 2 L+31
T =~ T],ref§ ;(26 + 1) = TI,rmrefg(Emax + 1)3 - 6
(C2)
=~ TI,ref80(€max/4)3 (03)

For contemporary hardware and GPU-accelerated inte-
gration in ILE, we observe 7; between 30-90 seconds for
lmax = 4 and 77 et less than one second for a simple
nonprecessing model.

In practice, users will not achieve even these modest
benchmarks on Ty, Ty due to resource contention, queu-
ing time, and cluster mismaps. For example, with typ-
ically 5000 likelihood evaluations used in the first itera-
tion and w ~ 20 likelihood evaluations per worker, only a
small fraction of the 5000/w ~ 250 ILE jobs needed can
be queued simultaneously, as usually N; < 250. As these
first short likelihood evaluations finish, the time needed
to queue new jobs to replace them often substantially ex-
ceeds their duration unless 77 is exceptionally long or w
large, both factors contributing to overall run latency.

1. Default operating choices

Our default operating point choices reflect the fidu-
cial scalings in Eq. (C1), appropriate to precessing black
hole binaries analyzed with a fast waveform approxima-
tion. Conflating the impact of our hardware and queue
priority environments, we effectively have access to rela-
tively many low-cost GPUs (e.g., tens of GPUs per user),
but have less frequent access to the high-memory nodes
we usually use for CIP (e.g., tens of non-GPU cores per
user). Otherwise, our typical analyses’ inputs are com-
praable to the fiducial scalings above: N; ~ 2 x 10*
marginal likelihood evaluations to achieve our target ac-
curacy, with ny; between 5 and 10. As a result, our analy-
ses’ wait times are invariably CIP-constrained, as N¢g <
N¢ match; total resource usage is likewise CIP dominated,
with Tr ~ Ne7eniy between a few tens to O(100) hours
per run; and effective wait times Ty ~ 7cngni/Ne of
order a few to several hours, or even tens of hours for
larger 7. The user wait time Ty for any specific anal-
ysis will be smaller in direct proportion to the number
of workers employed. An individual with access to these
resources can maintain roughly N¢/ninc analyses si-
multaneously in a steady state; for our fiducial single
user, this number is of order unity. While we scaled the
discussion above to individual users, a large organization
with more resources (e.g., Ny ~ 200, N¢ > 2000) and
control over queue priority can achieve correspondingly
higher throughput simply by allocating more resources
and priority to RIFT operations. Such high resources



should be sufficient in principle to complete even costly
analyses with larger values of 7;,7¢ in roughly tens of
minutes on average [30].

In these circumstances, operating point choices which
maximize N¢,e and minimize 7on;ne have immediate
return on overall cost and latency. For example, the num-
ber of matching CIP-capable resources N¢ can be en-
hanced with lower memory requirements or alternative
computing pools (e.g., the open science grid). The num-
ber of iterations and 7¢ can be reduced by well-adapted
coordinates and prior settings. Three extreme examples
of low 7¢ involve nonprecessing binaries (for which CIP
can often complete within minutes); Gaussian-based pos-
terior generation (for which CIP can complete within
about one minute); and AMR-based grid placement (for
which 7¢ completes in seconds). The user efficiency & can
be increased with careful planning and extensive automa-
tion. In a resource-saturated environment, increasing the
number ngc of workers per job does not change through-
put, just the latency Ty of each analysis.

Finally, we emphasize that user mishaps, poor plan-
ning, and cluster mischance usually dominate unused
time. A typical single user will usually complete only
a small fraction € of intended analyses in their final
form, with the overwhelming majority associated with
exploratory work, preliminary analysis, and validation.

2. High-resource, low-latency configuration

If a highly-resourced organizations targets large-scale
automated low-latency analysis with the conventional
RIFT pipeline, the achievable latency would nominally
eventually be limited by the first term in Eq. (Cle):
nieTrw, associated with the runtime needed to serially
perform n;; instances of ILE in series, each evaluating the
likelihood w times. In practice, however, several sources
of pipeline overhead will contribute to added lag, such as
the startup time for CIP and ILE.

3. Extremely low-latency configurations

The lowest possible latencies Ty can be achieved us-
ing a simple waveform model (i.e., low 77) with limited
waveform physics (i.e., small 7¢), small numbers of eval-
uations w per ILE worker, and few iterations n;; needed
to achieve the target accuracy goal. As an example, the
AMR-based strategy [87] referenced above is designed to
have w ~ 1 and likelihood evaluation times 77 of order
tens of seconds (i.e., larger than the steady-state limit
due to startup and file access overhead). Using high-
priority queuing and with AMR grid placement requir-
ing 7o of order seconds, conceivably an AMR approach
should perform followup within a minute or less.
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4. GPU-limited configuration

A configuration with large 77 or relatively small N; can
produce an unusual ILE-limited configuration. These cir-
cumstances can arise for analyses with many higher or-
der modes, as 77 oc £2,, , or with few available high-speed
GPU resources needed to achieve accelerated integration.
These circumstances also require that Ny /7y is larger for
a GPU configuration (small N7 but also small 77) is still
large compared to the corresponding product for a CPU
configuration (larger Ny but much larger 77). In these
circumstances, the typical analysis time will be domi-
nated by likelihood evaluations ( Tw =~ 7yn;/Ny). As a
concrete example, a user performing analyses of higher-
order-mode models with a small GPU pool (N; ~ 10)
could have 77 ~ 1min, implying a typical analysis wait
time of Ty ~ 50h, ignoring the smaller contribution from
CIP to the overall analysis time.

5. Extremely high-cost waveforms

RIFT has in the past operated successfully with wave-
forms requiring hours to generate. Even for relatively
modern waveform generators, the generation of wave-
forms for very low-mass binaries could be costly and
produce large data products, owing to the signal’s du-
ration and the potential need to adopt a high sampling
rate to resolve high-frequency higher-order modes. When
the waveform generation cost dominates all other consid-
erations, RIFT should employ the largest possible pool
of resources for N;: both GPU and non-GPU resources
should be included. Similarly, each worker should evi-
dently only analyze one observation (w ~ 1) to reduce
latency Ty ~ mnu77. In this configuration, the cost
per analysis can substantially increase: Tgr =~ nyu711 ~
2 x 10%h (7/4min)(n;/10). We emphasize that a high
waveform cost does not preclude low-latency analysis, if
77 is sufficiently small compared to the target latency.

APPENDIX D: NUMERICAL AND
ADAPTATION APPROACHES NEEDED FOR
STRONG SIGNALS

The main text describes our customary recommen-
dations for RIFT, appropriate to the vast majority of
sources with signal-to-noise p below ~ 30. In this sec-
tion, we address additional numerical, operating point,
and algorithmic choices more appropriate to signals with
high or very high amplitudes.

1. Estimates of signal strength

The intrinsic source signal-to-noise ratio has a well-
understood impact on the complexity and scale of the
likelihood L, and posterior. In this subsection, we will



use p to denote the true signal amplitude, defined such
that in the absence of moise p2/2 = maxy gLsull; Phint
will be an estimated signal amplitude, provided by the
search pipelines which discovered the event candidate;
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and Pguess(A) is a guess described below designed to es-

timate maxg+\/2Lsa1 (A, 6) for a specific set of source pa-
rameters \.

Our estimate pguess(A) is expressed in terms of the factors entering into the full likelihood used within ILE [16]:

1
InLin(X,0) = =5 D (he (X, 0) — dilhi(A.0) = diyy — {dildi), (D1)
k
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where the pertinent factors are expressed in terms of in-
ner products of the signal modes h;,, with each other or
with the data:
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Our order-of-magnitude estimate pguess follows by ap-
proximating this likelihood expression, omtting V; elid-
ing the impact of extrinsic angular factors Fy,Y},,; and
ignoring timing-related triangulation effects:

D D,ct/D)?
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D 4
Maximizing this expression over the single remaining ex-

trinsic parameter D produces an order-of-magnitude es-
timate for the maximum value:

In Lo >~

U
Q
To account for all pertinent interferometers and modes
symmetrically, we therefore define pguess as follows:

Z Z | Uk tmim (A
max |Qk Im )|2
In this expression, the factor of 2.3 has been chosen em-

pirically, to produce estimates which correspond closely
to cases with known p.

maxg In L(\,0) ~ O(1) (D6)

(pguess * 2, 3 (D7)

2. Choices for finite-precision floating point
arithmetic and overflow

RIFT performs Monte Carlo integrals such as Eq. (3)

over functions of order e”’/2. For loud signals, these

large integrands can easily produce numerical overflow.
For example, since a conventional 64-bit double-precision
floating point number can express numbers between ~
e3%8  while a conventional 128-bit quad-precision float-
ing number can express numbers over roughly twice that
dynamic range, a source with amplitude louder than
p > 1/2In(10) x 308 ~ 37.5 (for single precision) or
53 (for quad precision) would produce a peak likelihood
Lean (A, 0) which overflows the precision of available arith-
metic.

RIFT’s Monte Carlo integration suite offers a range of
solutions, balancing stability against speed. The two new
integrators (GMM and AC) both can operate in a con-
ventional overflow-protected mode, where all likelihoods
are expressed as logs and all sums appearing in integrals
like Eq. (3) are performed via the “logsumexp” func-
tion g(x) = In)_, e®*. This stability comes at increased
cost, primarily for the AC integrator which may need to
transfer data between the CPU and GPU to perform this
calculation. For most soures with modest amplitudes,
however, RIFT can safely operate all its integrators with
raw floating point numbers. To mitigate the impact of
overflow, the user can choose to offset the floating point
precision window, multiplying the likelihoods by a factor
e~9. Customarily, we choose O ~ pZ, ./2 — O(few) or
O ~ 2 s /2 — O(few), to ensure evaluations in the sup-
port of the posterior avoid overflow. This workaround al-
lows us to mildly stretch the window available for analysis
with raw floating point operations. The pertinent limits
for CPU-enabled operation of all our Monte Carlo inte-
grators in raw floating-point mode, both in CIP and ILE,
are usually set by quad-precision floating point arith-
metic. However, when using GPU acceleration, the AC
integrator is currently limited by double-precision arith-
metic, a constraint which limits GPU-accelerated AC in-
tegration in ILE with raw floating-point numbers to sig-
nals of p < 35.



3. More flexible sampling models

As described in the text, our default extrinsic inte-
gration strategy does not adapt in several dimensions,
limiting adaptation usually to sky location. This brute-
force approach ensures ILE and RIFT will correctly cover
the complex, correlated, often multimodal extrinsic pos-
teriors arising ubiquitously for weak sources. For strong
sources, however, our brute-force approach becomes un-
tenable. Rather, to have any chance to find the small
fraction ~ p~9eft of the prior extrinsic volume where
the posterior has support, where deg counts the num-
ber of extrinsic dimensions, we must adapt our sampling
distribution in all dimensions simultaneously, using well-
chosen coordinates.

For these reasons, four the loudest signals, we recom-
mend GMM sampling, using sky- and phase-rotated co-
ordinates, with distance marginalization.

APPENDIX E: TARGETS FOR FUTURE
IMPROVEMENT

While we’ve substantially extneded RIFT relative to
the O2 and O3 editions, RIFT could be easily improved
in several ways.

1. Conventional convergence criteria

While most other inference codes have standardized
on a target Nef,var, RIFT’s hodepodge of convergence
tests and diagnostics can produce uneven-quality poste-
riors over parameter space. We should report and use
evidence-based convergence diagnostics for the iterate-
to-convergence step, and consistently report neg var from
CIP at all stages. Both of these updates require architec-
tural changes: our pipeline currently only passes samples
to our convergence tests, not evidences (or evidence his-
tories).

RIFT should also adopt a much longer, user-selected
iterate-to-convergence cap. Our experience suggests that
10 iterations will be more than enough; if more iterations
are required, the user should reconsider their choices, as
they’ve probably made an error or adopted options that
are poorly suited to their problem. However, most end-
users want a black-box framework which will iterate to
convergence no matter how long it takes.

2. Miscellaneous technical improvements

Better coordinates: Our interpolations and thus RIFT
can be prone to under-exploring regions near the hard
q¢ ~ 1 boundary. Initial grids and mass ratio coordinates
that further emphasize this region should be explored.

Better integration (general): Two of our adaptive Monte
Carlo integrators (AC and default) adopt largely ad hoc
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choices for the number of sampling bins (i.e., 100 bins
for each adaptive coordinate). This arbitrary dimension-
independent choice places severe limits on our ability to
adaptively sample in many dimensions d,. The GMM
integrators adopt ad-hoc choices for the number of com-
ponents, and those components are initiallzed randomly
without information deduced from previous analysis or
function data. For example, the adaptive CIP integrators
are re-initialized and independently adapt for each iter-
ation and for each worker, not efficiently exploiting the
many previous iterations to initialize an adaptive sam-
pler. Particularly for the GMM sampler and during the
convergence phase, such initialization could help improve
convergence.
Better integration (ILE): Despite heavy use of GPU op-
timization, our Monte Carlo integration of the extrinsic
likelihood could be substantially improved. For exam-
ple, recent work [105] strongly suggests that the pos-
terior (and hence our Monte Carlo integration) can be
substantially simplified by suitable coordinates. They
demonstrate that careful use of reference frequency, po-
larization coordinate, and emission polar angle can dra-
matically simplify the phase posterior. By contrast, we're
presently sampling uniformly over these two angles, in-
troducing substantial inefficnecy at high amplitude. ILE
integration generally only adapts in a small subset of the
available dimensions.
Integration target (CIP,convergence): The integration
sample size target n.ss for each individual CIP worker
and the overall output isn’t self-consistently chosen with
the target accuracy threshold used to assess convergence.
The fiducial threshold of 1072 applied to Eq. (8), or
equivalent thresholds applied to other metrics like the JS
divergence, should be user-adjustable, using some clearly
understood empirical relationship between this threshold
and a target accuracy goal for the final posterior. As sev-
eral other groups have adopted JS divergence to assess
convergence, we should adjust our convergence criteria to
use this diagnostic. The target accuracy threshold should
be adaptively tightened, and the number of raw Monte
Carlo samples N increased, over the course of an analy-
sis, rather than fix the threshold and maximum number
of evaluations for iterations.
Overall infrastructure: ILE and CIP should use a task-
based parallelism architecture, offloading startup costs
and management to the scheduler and better-enabling
ongoing use of resources. Too often nodes are under-
used for ILE integration, while too few CIP instances are
instantiated given integration needs.

We should generalize our approach to allow for condi-
tional priors, such as a mass-dependent prior on the tidal
deformability A or mass ratio.

3. Caveats and stability considerations

RIFT’s code settings and use cases are carefully tai-
lored to match the capabilities of the fitting and Monte



Carlo integration algorithms used. Previously in Section
IITF, we described several inefficiencies and limitations
of the code elements used in RIFT’s O3-era operation. In
this section, we briefly highlight ways in which the new
components of RIFT could be misused or misbehave, as
an aid to diagnosing potential analysis problems.

GMM integrator stability with correlated sampling: The
GMM integrator was designed to adapt efficiently to cor-
related dimensions, including multiple correlated compo-
nents. However, this flexibility if employed unchecked
can easily wildly overfit, with the EM algorithm pro-
ducing singular covariance matricies. For this reason, at
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present we hardcode the number of components for both
ILE and CIP, depending on the use case. Additionally,
for ILE we only allow pairwise correlation, using physics-
based motivation.

Since our production configuration uses correlated
GMM sampling, we emphasize the ways in which this
configuration can misbehave. For low-mass and high-
mass ratio binaries, the strongly correlated posteriors can
produce singular covariance matricies, requiring the sam-
pler to reset. If this sampler reset occurs at an inoppor-
tune time, just prior to the end of a run, an individual
worker’s output is more likely to be “spoiled”.
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